[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5803116B2 - Indirect spot welding method - Google Patents

Indirect spot welding method Download PDF

Info

Publication number
JP5803116B2
JP5803116B2 JP2011019130A JP2011019130A JP5803116B2 JP 5803116 B2 JP5803116 B2 JP 5803116B2 JP 2011019130 A JP2011019130 A JP 2011019130A JP 2011019130 A JP2011019130 A JP 2011019130A JP 5803116 B2 JP5803116 B2 JP 5803116B2
Authority
JP
Japan
Prior art keywords
welding
spot welding
electrode
metal plates
welded portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011019130A
Other languages
Japanese (ja)
Other versions
JP2012157888A (en
Inventor
松下 宗生
宗生 松下
池田 倫正
倫正 池田
藤田 毅
毅 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011019130A priority Critical patent/JP5803116B2/en
Publication of JP2012157888A publication Critical patent/JP2012157888A/en
Application granted granted Critical
Publication of JP5803116B2 publication Critical patent/JP5803116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、少なくとも2枚の金属板を重ね合わせた部材に対し、一方の面側から金属板に溶接電極を加圧しながら押し当て、他方の面側の金属板には離れた位置で給電端子を取り付け、これら溶接電極と給電端子との間で通電して溶接を行うインダイレクトスポット溶接の方法に関し、特に簡便な溶接前工程により安定した溶融ナゲットの形成を可能ならしめようとするものである。   The present invention presses a welding electrode while pressing a welding electrode against a metal plate from one surface side against a member in which at least two metal plates are overlapped, and feed terminal at a position away from the metal plate on the other surface side The indirect spot welding method in which welding is performed by energizing between the welding electrode and the power supply terminal is intended to enable the formation of a stable melt nugget by a particularly simple pre-welding process. .

自動車ボディーや自動車部品の溶接に際しては、従来から抵抗スポット溶接、主にダイレクトスポット溶接が使用されてきたが、最近では、シリーズスポット溶接法やインダイレクトスポット溶接法等が使用されるようになった。   Conventionally, resistance spot welding, mainly direct spot welding, has been used for welding automobile bodies and parts, but recently, series spot welding and indirect spot welding methods have been used. .

上記した3種類のスポット溶接の特徴を、図1を用いて説明する。
いずれのスポット溶接も、重ね合わせた少なくとも2枚の金属板を溶接により接合する点では変わりはない。
図1(a)は、ダイレクトスポット溶接法を示したものである。この溶接は、同図に示すとおり、重ね合わせた2枚の金属板1,2を挟んでその上下から一対の電極3,4を加圧しつつ電流を流し、金属板の抵抗発熱を利用して、点状の溶接部5を得る方法である。なお、電極3,4はいずれも、加圧制御装置6,7および電流制御装置8をそなえており、これらによって加圧力と通電する電流値が制御できる仕組みになっている。
The characteristics of the above three types of spot welding will be described with reference to FIG.
In any spot welding, there is no change in that at least two superposed metal plates are joined by welding.
FIG. 1A shows the direct spot welding method. In this welding, as shown in the figure, a current is applied while pressing a pair of electrodes 3 and 4 from above and below between the two stacked metal plates 1 and 2, and the resistance heating of the metal plates is used. This is a method for obtaining a spot-like welded portion 5. Each of the electrodes 3 and 4 includes pressurization control devices 6 and 7 and a current control device 8, so that the pressurizing force and the current value to be energized can be controlled by these.

図1(b)に示すシリーズスポット溶接法は、重ね合わせた2枚の金属板11,12に対し、離れた位置で、同一面側(同一方向)から一対の電極13,14を加圧しつつ電流を流し、点状の溶接部15-1,15-2を得る方法である。   In the series spot welding method shown in FIG. 1 (b), a pair of electrodes 13 and 14 are pressed from the same surface side (in the same direction) at a position apart from two superimposed metal plates 11 and 12. In this method, a current is passed to obtain the spot welds 15-1 and 15-2.

図1(c)に示すインダイレクトスポット溶接法は、重ね合わせた2枚の金属板21,22に対し、一方の金属板21には電極23を加圧しながら押し当て、他方の金属板22には離れた位置で給電端子24を取り付け、これらの間で通電することにより、金属板21,22に点状の溶接部25を形成する方法である。   In the indirect spot welding method shown in FIG. 1 (c), the electrode 23 is pressed against one metal plate 21 while pressing the two metal plates 21, 22, and the other metal plate 22 is pressed against the other metal plate 22. Is a method of forming a spot-like welded portion 25 on the metal plates 21 and 22 by attaching the power supply terminal 24 at a distant position and energizing between them.

上記した3種類の溶接法のうち、スペース的に余裕があり、金属板を上下から挟む開口部が得られる場合には、ダイレクトスポット溶接法が用いられる。
しかしながら、実際の溶接に際しては、十分なスペースがない、閉断面構造で金属板を上下から挟むことができない場合も多く、かような場合には、シリーズスポット溶接法やインダイレクトスポット溶接法が用いられる。
Of the three types of welding methods described above, direct spot welding is used when there is sufficient space and an opening that sandwiches the metal plate from above and below is obtained.
However, in actual welding, there are many cases where there is not enough space and the metal plate cannot be sandwiched from above and below with a closed cross-sectional structure. In such cases, the series spot welding method or indirect spot welding method is used. It is done.

しかしながら、シリーズスポット溶接法やインダイレクトスポット溶接法を上記のような用途に使用する際には、重ね合わせた金属板は一方向からのみ電極により加圧され、その反対側は支持の無い中空の状態になっている。従って、両側から電極で挟むダイレクトスポット溶接法のように電極直下に局部的に高い加圧力を与えることができない。また、通電中に電極が金属板に沈み込んでいくため、電極−金属板、金属板−金属板間の接触状態が変化する。このような理由により、重ね合わせた金属板間で電流の通電経路が安定せず、溶融溶接部が形成されにくいという問題があった。   However, when the series spot welding method or the indirect spot welding method is used for the above-mentioned applications, the stacked metal plates are pressed by the electrode only from one direction, and the opposite side is a hollow with no support. It is in a state. Therefore, it is not possible to apply a high applied pressure directly under the electrodes as in the direct spot welding method in which the electrodes are sandwiched from both sides. Further, since the electrode sinks into the metal plate during energization, the contact state between the electrode-metal plate and the metal plate-metal plate changes. For these reasons, there is a problem in that the current energization path is not stable between the stacked metal plates, and it is difficult to form a fusion weld.

上記の問題を解決するため、溶接中の電流または電極加圧力を変化させるシリーズスポット溶接方法またはインダイレクトスポット溶接方法が、特許文献1〜3に開示されている。   In order to solve the above problems, Patent Documents 1 to 3 disclose a series spot welding method or an indirect spot welding method in which a current during welding or an electrode pressing force is changed.

特許文献1には、「金属板を重ねた接触点にナゲットを形成するため、溶接初期に大電流を流して電極ナゲットを形成してから、定常電流を流す」ようにしたシリーズスポット溶接が記載されている。   Patent Document 1 describes a series spot welding in which “a nugget is formed at a contact point where metal plates are overlapped, so that a large current is passed at the beginning of welding to form an electrode nugget and then a steady current is passed”. Has been.

また、特許文献2には、「シリーズスポット溶接又はインダイレクトスポット溶接の通電時に、電流値を高く維持する時間帯と電流値を低く維持する時間帯を交互に繰り返す」ことからなる溶接法、さらには「電流値を高く維持する時間帯と電流値を低く維持する時間帯を交互に繰り返すにつれて、電流値を高く維持する時間帯の電流値を徐々に高くする」ことからなる溶接方法が開示されている。   Patent Document 2 discloses a welding method consisting of “repeating alternately a time zone in which a current value is kept high and a time zone in which a current value is kept low during energization of series spot welding or indirect spot welding”; Discloses a welding method that consists of “gradually increasing the current value in the time period in which the current value is kept high as the time period in which the current value is kept high and the time period in which the current value is kept low are alternately repeated”. ing.

さらに、特許文献3には、「少なくとも2枚の金属板を重ね合わせた部材に対し、一方の面側から金属板に溶接電極を加圧しながら押し当て、他方の面側の金属板には該溶接電極と離隔した位置に給電端子を取り付け、該溶接電極と該給電端子との間で通電して溶接を行うインダイレクトスポット溶接法において、通電する電流値については通電開始から終了まで一定にする一方、電極の加圧力に関しては、通電開始から2つの時間帯t1,t2に区分し、最初の時間帯t1では加圧力F1で加圧したのち、次の時間帯t2では、F1よりも低い加圧力F2で加圧することを特徴とするインダイレクトスポット溶接方法」が開示されている。 Further, Patent Document 3 states that “a member in which at least two metal plates are overlapped is pressed against a metal plate while pressing a welding electrode from one surface side, and the metal plate on the other surface side is In the indirect spot welding method in which a power supply terminal is attached at a position separated from the welding electrode, and welding is performed by energizing between the welding electrode and the power supply terminal, the current value to be energized is constant from the start to the end of the energization. On the other hand, the pressure applied to the electrode is divided into two time zones t 1 and t 2 from the start of energization. In the first time zone t 1 , after pressurizing with the pressure F 1 , in the next time zone t 2 , An indirect spot welding method characterized by pressurizing at a pressure F 2 lower than F 1 is disclosed.

また、上記の問題を解決するため、溶接部周辺の金属板間の接触状態を規定したシリーズスポット溶接方法およびインダイレクトスポット溶接方法が、それぞれ特許文献4および本出願人による先行出願(特願2009-200946)に記載されている。   In order to solve the above problem, a series spot welding method and an indirect spot welding method that define the contact state between the metal plates around the welded portion are disclosed in Patent Document 4 and the prior application (Japanese Patent Application 2009). -200946).

特許文献4には、「電極を接触させる位置に他の部分よりも一段高い座面を形成し、座面を押しつぶすように加圧接触させて溶接することにより、バック電極なしに十分な溶接強度が得られる」ようにしたシリーズスポット溶接が開示されている。   Patent Document 4 states that “a seat surface that is one step higher than other portions is formed at a position where the electrode is brought into contact, and that the seat surface is pressed and contacted so as to crush, thereby providing sufficient welding strength without a back electrode. Series spot welding is disclosed.

また、特願2009-200946には、「少なくとも2枚の金属板を重ね合わせた部材に対し、一方の面側から金属板に溶接電極を加圧しながら押し当て、他方の面側の金属板には該溶接電極と離隔した位置に給電端子を取り付け、該溶接電極と該給電端子との間で通電して溶接を行うインダイレクトスポット溶接において、溶接部を除く金属板間の重合面を電気的に絶縁する」ことにより、溶接時における電流の分散を効果的に抑制して、安定的に溶融ナゲットを形成することができるようにしたインダイレクトスポット溶接方法が記載されている。このインダイレクトスポット溶接方法において、溶接部を除く金属板間の重合面を電気的に絶縁するための絶縁体は、固有抵抗が十分に大きく、また溶接時に溶接部の周囲へ伝導する熱で加熱、溶融、酸化等による劣化が起こらない材料で構成され、具体的には、アクリル樹脂、メラミン樹脂、シリコン樹脂およびフッ素樹脂等の有機材料および無機材料またはこれらをベースとする塗料や被覆材、あるいはアラミドや石英ガラス等の有機材料や無機材料またはこれらをベースとする繊維材等が例示されている。   In addition, Japanese Patent Application No. 2009-200946 states that “a member in which at least two metal plates are overlapped is pressed against a metal plate while pressing a welding electrode from one surface side to the metal plate on the other surface side. In indirect spot welding in which a power supply terminal is attached at a position separated from the welding electrode and welding is performed by energizing between the welding electrode and the power supply terminal, the overlapping surface between the metal plates excluding the welded portion is electrically An indirect spot welding method is described in which the dispersion of current during welding is effectively suppressed by insulating, so that a molten nugget can be stably formed. In this indirect spot welding method, the insulator for electrically insulating the overlapping surface between the metal plates excluding the welded part has a sufficiently large specific resistance and is heated by heat conducted to the periphery of the welded part during welding. It is composed of materials that do not deteriorate due to melting, oxidation, etc., specifically, organic materials and inorganic materials such as acrylic resins, melamine resins, silicone resins and fluororesins, or paints and coating materials based on these materials, or Examples include organic materials such as aramid and quartz glass, inorganic materials, and fiber materials based on these materials.

一方、近年、自動車等の組付けに関し、接着とダイレクトスポット溶接法を併用したウェルドボンド法が注目されるようになり、徐々にその適用範囲を広げている。従来のダイレクトスポット溶接法は点接合であるが、ウェルドボンド法は面接合となることから、接合強度及び剛性が向上する。従って車体の軽量化に有効とされ、さらには振動・衝撃特性に優れ、騒音の低減、シール性の確保等、利点が多いとされている。接着剤を併用したダイレクトスポット溶接方法は、特許文献5〜10に開示されている。   On the other hand, in recent years, with respect to the assembly of automobiles and the like, a weld bond method using a combination of adhesion and direct spot welding has been attracting attention, and its application range has been gradually expanded. The conventional direct spot welding method is point bonding, but since the weld bond method is surface bonding, the bonding strength and rigidity are improved. Therefore, it is effective for reducing the weight of the vehicle body, and further has excellent advantages such as excellent vibration and impact characteristics, noise reduction, and sealing performance. Direct spot welding methods using an adhesive are disclosed in Patent Documents 5 to 10.

特開平11-333569号公報Japanese Patent Laid-Open No. 11-333569 特開2006-198676号公報JP 2006-198676 特開2010-194609号公報JP 2010-194609 特許第3753005号公報Japanese Patent No. 3753005 特開平4-123879号公報Japanese Unexamined Patent Publication No. 4-123879 特許第3184260号公報Japanese Patent No. 3184260 特開平6-55277号公報JP-A-6-55277 特開平2-211986号公報Japanese Unexamined Patent Publication No. 2-211986 特許第3169902号公報Japanese Patent No. 3169902 特開2008-80394号公報JP 2008-80394 A

しかしながら、特許文献1〜3では、溶接中に電流、電極加圧力を変化させることが可能な溶接設備を使用する必要があるという制約がある。   However, in Patent Documents 1 to 3, there is a restriction that it is necessary to use welding equipment capable of changing the current and the electrode pressing force during welding.

また、特許文献4では、シリーズスポット溶接については有効であると考えられるが、インダイレクトスポット溶接に対しては有効であるとは限らず、しかも電極を接触させる位置に他の部分よりも一段高い座面をプレスなどで形成する工程が必要になり、高コストとなるという問題がある。   Further, in Patent Document 4, it is considered effective for series spot welding, but it is not always effective for indirect spot welding, and it is one step higher than the other parts at the position where the electrode contacts. There is a problem that a process for forming the seating surface with a press or the like is required, resulting in high cost.

また、特願2009-200946では、「溶接部を除く金属板間の重合面を電気的に絶縁する」ためには、溶接部を除く領域において選択的に絶縁体を介在させるという煩雑な工程を必要とするだけでなく、絶縁されていない位置を十分な精度で溶接することが難しいというところにも若干の問題を残していた。   In addition, in Japanese Patent Application No. 2009-200946, in order to “electrically insulate the overlapping surfaces between the metal plates excluding the welded portion”, a complicated process of selectively interposing an insulator in the region excluding the welded portion is used. Not only is it necessary, it also leaves some problems where it is difficult to weld uninsulated positions with sufficient accuracy.

一方、特許文献5〜10に開示のウェルドボンド法は、上述のとおり接着剤を併用し面接合とすることによって接合強度及び剛性の向上を図った抵抗スポット溶接法であるにすぎず、これら文献には、接着剤を併用したインダイレクトスポット溶接方法は開示されていない。また、溶接部を除く金属板間の重合面を電気的に絶縁するために接着剤を活用することについても開示がない。   On the other hand, the weld bond method disclosed in Patent Documents 5 to 10 is only a resistance spot welding method in which joint strength and rigidity are improved by using an adhesive in combination as described above to achieve surface bonding. Does not disclose an indirect spot welding method using an adhesive. Further, there is no disclosure about using an adhesive to electrically insulate the overlapping surface between the metal plates excluding the welded portion.

本発明は、上記の現状に鑑み開発されたもので、重ね合わせた金属板を一方向からのみ電極で加圧し、その反対側は支持の無い中空の状態で溶接するインダイレクトスポット溶接に際し、溶接設備の機能の制約を受けず、簡便な溶接前工程によって、溶融した状態で形成されたナゲットを安定して得ることができるインダイレクトスポット溶接方法を提案することを目的とする。   The present invention has been developed in view of the above-mentioned present situation. In the indirect spot welding in which the stacked metal plates are pressurized with electrodes only from one direction and the opposite side is welded in a hollow state without support, welding is performed. An object of the present invention is to propose an indirect spot welding method capable of stably obtaining a nugget formed in a molten state by a simple pre-welding process without being restricted by the function of the equipment.

さて、発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、以下に述べる知見を得た。
a)重ね合わせた金属板を一方向からのみ電極を接触、加圧し、その反対側は支持の無い中空の状態でインダイレクトスポット溶接を行う場合、両側から電極で挟むダイレクトスポット溶接法のように電極直下に局部的に高い加圧力を与えることができないため、電極直下で金属板が加圧され生じる密着面に高い電流密度が得られず、その周辺に通電経路が分散する。そのため、インダイレクトスポット溶接では前記密着面で溶融に達するに十分な発熱が得難く、溶融ナゲットが形成されにくい。また、溶融ナゲットが形成される場合でも、溶融ナゲットの形成される位置が、金属板の板厚方向に対して、電極に接触する金属板側に偏り、密着面での溶融が十分に得られないことがある。
b)上記a)の問題を解決するには、重ね合わせた金属板において、溶接を実施する領域を除く金属板間の重合面を絶縁した状態で溶接を実施し、通電経路を溶接部に限定することが有効であり、これにより、安定して溶融ナゲットを形成することができる。
しかしながら、溶接部以外の領域のみに絶縁体を介在させるには、煩雑な工程が必要であった。
c)上記b)の解決策は、金属板間の重合面の全面に絶縁性の粘稠な物質を介在させることにより簡便に達成することができる。すなわち、金属板間の重合面に絶縁性の粘稠な物質を介在させることにより、溶接部以外の領域については金属板間を電気的に絶縁することができる一方、溶接部については電極を加圧することにより、粘稠な物質が押し退けられるので金属板間の通電が確保される。これにより、溶接部の周辺に通電経路が分散する問題を解決することができ、溶融した状態で形成されたナゲットを安定して得ることができる。
d)また、上記した絶縁性の粘稠な物質としては、例えば、熱硬化性または常温硬化性のエポキシ系などの有機樹脂が挙げられる。上記粘稠な物質を熱硬化性の有機樹脂系の接着剤とすれば、当該接着剤を金属板間の重合面に未固化状態で介在させて溶接した後、例えば自動車の焼付け塗装工程のような加熱を経ることで硬化させて金属板間を接着することができ、上記したような安定した溶融ナゲットを形成することができる効果に加えて、接合強度及び剛性を向上させることができる。また、上記粘稠な物質を常温硬化性の有機樹脂系の接着剤としても、同様の効果を得ることができる。
As a result of intensive studies to solve the above problems, the inventors have obtained the following knowledge.
a) When indirect spot welding is performed in a hollow state where the electrodes are contacted and pressed only in one direction and the opposite side is unsupported on the opposite side, as in the direct spot welding method in which the electrodes are sandwiched from both sides Since a high pressurizing force cannot be applied locally directly under the electrode, a high current density cannot be obtained on the contact surface generated when the metal plate is pressed directly under the electrode, and the energization path is dispersed in the vicinity thereof. Therefore, in indirect spot welding, it is difficult to obtain sufficient heat to reach melting at the contact surface, and a molten nugget is difficult to form. In addition, even when a molten nugget is formed, the position at which the molten nugget is formed is biased toward the metal plate in contact with the electrode with respect to the thickness direction of the metal plate, and sufficient melting on the adhesion surface is obtained. There may not be.
b) In order to solve the problem of a), welding is performed in a state where the overlapping surfaces between the metal plates excluding the region to be welded are insulated, and the energization path is limited to the welded portion. It is effective to form a molten nugget stably.
However, a complicated process is required to interpose the insulator only in the region other than the welded portion.
c) The solution of b) can be easily achieved by interposing an insulating viscous substance over the entire polymerization surface between the metal plates. In other words, by interposing an insulating viscous material between the overlapping surfaces of the metal plates, it is possible to electrically insulate the metal plates in areas other than the welded portion, while adding electrodes to the welded portion. By pressing, the viscous material is pushed away, so that energization between the metal plates is ensured. Thereby, the problem that the energization path is dispersed around the welded portion can be solved, and the nugget formed in a molten state can be stably obtained.
d) Moreover, as the above-mentioned insulating viscous substance, for example, an organic resin such as a thermosetting or room temperature curable epoxy resin may be used. If the viscous material is a thermosetting organic resin-based adhesive, the adhesive is welded by interposing it in a polymerized surface between metal plates in an unsolidified state, and then, for example, in an automobile baking coating process. In addition to the effect of forming a stable molten nugget as described above, the bonding strength and rigidity can be improved. Further, the same effect can be obtained even when the viscous substance is used as a room temperature curable organic resin adhesive.

e)一方、上記c)のように溶接を行うと、金属板の種類、厚さによっては、上記a)で述べた傾向とは逆に、溶融ナゲットの形成される位置が、金属板の板厚方向に対して、電極が接触していない側の金属板に偏る傾向を示すことがある。 e) On the other hand, when welding is performed as in c) above, depending on the type and thickness of the metal plate, the position where the molten nugget is formed is opposite to the tendency described in a) above. There may be a tendency to be biased toward the metal plate on the side where the electrode is not in contact with the thickness direction.

f)上記d)の傾向を是正し、溶融ナゲットをより好適な位置に形成するためには、上記c)のように金属板間の重合面に絶縁性の粘稠な物質を介在させることに加え、溶接部以外の箇所に通電経路を設け、溶接時にその通電経路に流れる電流を調整して、給電される総電流に対する溶接部に流れる電流の比率を制御することが有利であり、これにより、電極直下に形成される溶融ナゲットの板厚方向の位置を調整することができる。すなわち、電流制御装置から給電される総電流に対して溶接部に流れる電流の比率を小さくしていくと、溶接部の密着面での抵抗発熱が抑えられる一方、電極周辺の電極が接触する金属板では、溶接部と溶接部以外の箇所で通電した電流の総計が集中するため、抵抗発熱が顕著となる。よって、電極に接触する金属板側に溶融ナゲットが形成される傾向となる。上記に示す方法により、溶融ナゲットの板厚方向の位置を金属板間を十分に跨ぐ位置に調整することができ、溶接部の密着面で十分な溶融ナゲットの径を得ることができる。 f) In order to correct the tendency of d) and form a molten nugget at a more suitable position, an insulating viscous substance is interposed on the polymerization surface between the metal plates as in c). In addition, it is advantageous to control the ratio of the current flowing in the welded portion relative to the total current supplied by adjusting the current flowing in the current-carrying route at the place other than the welded portion and adjusting the current flowing in the energized route during welding. The position of the molten nugget formed immediately below the electrode in the thickness direction can be adjusted. That is, when the ratio of the current flowing through the welded portion to the total current fed from the current control device is reduced, resistance heat generation at the adhesion surface of the welded portion can be suppressed, while the metal around which the electrodes around the electrode are in contact In the plate, since the total of the currents applied at the portions other than the welded portion and the welded portion is concentrated, resistance heat generation becomes significant. Therefore, the molten nugget tends to be formed on the side of the metal plate that contacts the electrode. By the method shown above, the position of the molten nugget in the plate thickness direction can be adjusted to a position that sufficiently crosses between the metal plates, and a sufficient diameter of the molten nugget can be obtained at the close contact surface of the welded portion.

本発明は、上記の知見に立脚するものである。
すなわち、本発明の要旨構成は次のとおりである。
1.少なくとも2枚の金属板を重ね合わせた部材に対し、一方の面側から金属板に溶接電極を加圧しながら押し当て、他方の面側の金属板には該溶接電極と離隔した位置に給電端子を取り付け、該溶接電極と該給電端子との間で通電して溶接を行うインダイレクトスポット溶接において、
金属板間の重ね合わせ面全面を、厚み0.5mm〜2.0mmの絶縁性を有する粘度0.7Pa・s〜20Pa・sの粘稠な物質を介在させた状態とし、その状態で該溶接電極を加圧し、粘稠な物質が押し退けられて金属板と接触した状態としたのちに通電を開始して溶接を行うことを特徴とするインダイレクトスポット溶接方法。
2.上記1において、前記絶縁性を有する粘稠な物質は接着剤であり、該接着剤を未固化状態で金属板間の重ね合わせ面全面に介在させて溶接を行った後、該接着剤を固化させることを特徴とするインダイレクトスポット溶接方法。
3.上記1または2において、重ね合わせた金属板の溶接部以外の箇所に通電経路を設け、該通電経路に流れる電流を調整して、給電される総電流に対する溶接部に流れる電流の比率を制御することにより、該溶接部に形成される溶融ナゲットの板厚方向の位置を調整することを特徴とするインダイレクトスポット溶接方法。
The present invention is based on the above findings.
That is, the gist configuration of the present invention is as follows.
1. Pressing the welding electrode against the metal plate from one side while pressing the welding electrode against a member on which at least two metal plates are overlapped, and feeding the terminal on the other side of the metal plate at a position separated from the welding electrode In indirect spot welding in which welding is performed by energizing between the welding electrode and the power supply terminal,
The entire overlapping surface between the metal plates is in a state where a viscous material having a thickness of 0.5 mm to 2.0 mm and an insulating property of 0.7 Pa · s to 20 Pa · s is interposed , and the welding electrode is added in this state. An indirect spot welding method characterized in that welding is performed by starting energization after pressing and pressing the viscous material into contact with the metal plate .
2. In the above 1, the viscous substance having insulating properties is an adhesive, and welding is performed by interposing the adhesive on the entire overlapping surface between metal plates in an unsolidified state, and then solidifying the adhesive. And an indirect spot welding method.
3. In 1 or 2 above, an energization path is provided in a portion other than the welded portions of the overlapped metal plates, and the current flowing in the energization path is adjusted to control the ratio of the current flowing in the welded portion to the total current supplied. The indirect spot welding method characterized by adjusting the position of the molten nugget formed in this welding part in the plate | board thickness direction.

本発明に従い、金属板間の重ね合わせ面に絶縁性の粘稠な物質を介在させた状態で溶接を行うことにより、溶接設備の機能の制約を受けず、簡便な溶接前工程によって、溶接時における電流の分散を効果的に抑制し、溶融した状態で形成されたナゲットを安定して形成することができる。
また、本発明に従い、絶縁性を有する粘稠な物質を接着剤とし、接着剤を未固化状態で金属板間の重ね合わせ面全面に介在させて溶接を行った後、接着剤を固化させることにより、接合強度及び剛性を効果的に向上させることができる。
また、本発明に従い、重ね合わせた金属板の溶接部以外の箇所に設けた通電経路に流れる電流を調整して、給電される総電流に対する溶接部に流れる電流の比率を制御することにより、溶接部に形成される溶融ナゲットの板厚方向の位置を調整することができ、その結果、溶接部の金属板同士の密着面で十分な径の溶融ナゲットを得ることができる。
According to the present invention, welding is performed in a state where an insulating viscous material is interposed between the overlapping surfaces of the metal plates, so that there is no restriction on the function of the welding equipment, and by a simple pre-welding process, It is possible to effectively suppress the dispersion of current in and to stably form a nugget formed in a molten state.
Further, according to the present invention, a viscous substance having insulating properties is used as an adhesive, and the adhesive is solidified after being welded by interposing the adhesive on the entire overlapping surface between the metal plates in an unsolidified state. Thereby, joint strength and rigidity can be improved effectively.
Further, according to the present invention, welding is performed by adjusting the current flowing in the energization path provided in a place other than the welded portion of the overlapped metal plates and controlling the ratio of the current flowing in the welded portion to the total current supplied. The position of the molten nugget formed in the portion in the plate thickness direction can be adjusted. As a result, a molten nugget having a sufficient diameter can be obtained at the contact surface between the metal plates of the welded portion.

ダイレクトスポット溶接法(a)、シリーズスポット溶接法(b)およびインダイレクトスポット溶接法(c)の溶接要領の説明図である。It is explanatory drawing of the welding point of the direct spot welding method (a), the series spot welding method (b), and the indirect spot welding method (c). 本発明に従うインダイレクトスポット溶接の溶接要領を示した図であって、(a)は、金属板間の重合面に絶縁性の粘稠な物質を介在させる段階、(b)は、金属板の一方の面側から溶接電極を加圧しながら押し当てる段階、(c)は、溶接電極と給電端子との間で通電する段階を示す。It is the figure which showed the welding procedure of indirect spot welding according to this invention, Comprising: (a) is a step which interposes an insulating viscous substance in the superposition | polymerization surface between metal plates, (b) is a metal plate. Step (c) of pressing the welding electrode while pressing the welding electrode from one surface side shows a step of energizing between the welding electrode and the power supply terminal. 図2に示す本発明に従うインダイレクトスポット溶接において、重ね合わせた金属板の溶接部以外の箇所に通電経路を設ける場合の溶接要領を示す図である。(a)は、重ね合わせた金属板に接触端子を取り付け、かかる通電端子を抵抗を介して結線する場合、(b)は、重ね合わせた金属板間の重合面に予め溶接部を設けて通電経路とする場合、(c)は、重ね合わせた金属板間の重合面の一部を加圧して粘稠な物質を押し退け、金属板を密着させて通電経路とする場合を示す。In indirect spot welding according to this invention shown in FIG. 2, it is a figure which shows the welding point in the case of providing an electricity supply path | route in places other than the welding part of the piled metal plate. When (a) attaches a contact terminal to the overlapped metal plate and connects the current-carrying terminal via a resistor, (b) applies current by providing a welded portion in advance on the overlapping surface between the overlapped metal plates. In the case of the path, (c) shows a case where a part of the polymerized surface between the stacked metal plates is pressed to push away the viscous substance and the metal plates are brought into close contact to form an energization path. 本発明に従うインダイレクトスポット溶接の溶接要領の別例を示す図である。(a)は、重ね合わせた金属板の溶接部以外の箇所には通電経路を設けない場合、(b)は、重ね合わせた金属板に接触端子を取り付け、かかる通電端子を抵抗を介して結線する場合、(c)は、重ね合わせた金属板間の重合面に予め溶接部を設けて通電経路とする場合を示す。It is a figure which shows another example of the welding procedure of indirect spot welding according to this invention. When (a) does not provide a current-carrying path in a place other than the welded portion of the overlapped metal plate, (b) attaches a contact terminal to the overlapped metal plate and connects the current-carrying terminal via a resistor. (C) shows the case where a welding part is previously provided in the superposition | polymerization surface between the piled metal plates, and it is set as an electricity supply path | route.

以下、本発明を図面に従い具体的に説明する。
図2に、本発明に従い、金属板間の重ね合わせ面に絶縁性の粘稠な物質を介在させた状態、すなわち、溶接部を除く金属板間の重ね合わせ面を上記粘稠な物質によって電気的に絶縁した状態で溶接を行うインダイレクトスポット溶接の溶接要領を示す。構成の骨子は、前掲図1(c)に示した従来のインダイレクトスポット溶接と共通するので、同一の番号を付して示し、図中番号26が絶縁性の粘稠な物質である。
Hereinafter, the present invention will be specifically described with reference to the drawings.
In FIG. 2, in accordance with the present invention, an insulating viscous material is interposed between the overlapping surfaces of the metal plates, that is, the overlapping surfaces between the metal plates excluding the welded portion are electrically connected by the viscous material. The welding procedure of indirect spot welding in which welding is performed in an electrically insulated state is shown. Since the structure is the same as that of the conventional indirect spot welding shown in FIG. 1C, the same reference numeral is given, and reference numeral 26 in the figure is an insulating viscous substance.

粘稠な物質26は、固有抵抗が十分に大きく、金属板間に配置された際に、溶接時の金属板間の通電を遮断する程度の絶縁性を有する物質で構成され、かつ、適正な粘度および塗布厚さ、すなわち金属板が電極による加圧を受けた際に、溶接部では粘稠な物質が押し退けられて金属板間の通電が確保される程度の粘度および塗布厚さを有している。
ここに粘度については、0.1 Pa・s 〜1000 Pa・s の範囲とすることが好ましい。粘度がこの範囲より小さいと、金属板が電極による加圧を受けた際に、粘稠な物質が過度に押し退けられてしまい、通電を溶接部に限定する効果が十分に得られないからであり、他方、粘度がこの範囲より大きいと、金属板が電極による加圧を受けた際に、溶接部から粘稠な物質が十分に押し退けられず、溶接部での通電が行われないおそれがあるからである。より好ましい粘度範囲は0.7Pa・s 〜20Pa・s である。
また、塗布厚さは、0.1 mm 〜3 mm の範囲とすることが好ましい。塗布厚さがこの範囲より小さいと、金属板が電極による加圧を受けた際に、やはり粘稠な物質が過度に押し退けられてしまい、通電を溶接部に限定する効果が十分に得られないからであり、他方、塗布厚さがこの範囲より大きいと、金属板が電極による加圧を受けた際に、溶接部から粘稠な物質が十分に押し退けられず、溶接部での通電が行われないおそれがあるからである。より好ましい塗布厚さは0.5mm 〜2.0mm である。
なお、電極による加圧により、溶接部の粘稠な物質が完全にその周りに押し退けられるわけではないが、金属板同志が局所的にでも接触していれば通電するので、溶接が可能になる。
本発明の粘稠な物質としては、例えば、液加熱硬化型エポキシ系の有機樹脂や、上記有機樹脂系の接着剤などが挙げられる。
The viscous material 26 has a sufficiently large specific resistance, and is composed of a material having an insulation property that cuts off the electric current between the metal plates at the time of welding when disposed between the metal plates. Viscosity and coating thickness, that is, when the metal plate is pressurized by the electrode, the welded portion has a viscosity and coating thickness that will allow the viscous material to be pushed away and ensure electrical conduction between the metal plates. ing.
Here, the viscosity is preferably in the range of 0.1 Pa · s to 1000 Pa · s. If the viscosity is smaller than this range, when the metal plate is pressurized by the electrode, the viscous material is excessively displaced, and the effect of limiting the current conduction to the welded portion cannot be sufficiently obtained. On the other hand, if the viscosity is larger than this range, when the metal plate is pressurized by the electrode, the viscous material is not sufficiently pushed away from the welded portion, and there is a risk that the welded portion may not be energized. Because. A more preferable viscosity range is 0.7 Pa · s to 20 Pa · s.
The coating thickness is preferably in the range of 0.1 mm to 3 mm. If the coating thickness is smaller than this range, when the metal plate is pressed by the electrode, the viscous material is excessively pushed away, and the effect of limiting the energization to the welded portion cannot be sufficiently obtained. On the other hand, if the coating thickness is larger than this range, when the metal plate is pressurized by the electrode, the viscous material is not sufficiently pushed away from the welded portion, and the welded portion is energized. This is because there is a risk of not being broken. A more preferable coating thickness is 0.5 mm to 2.0 mm.
Note that the pressure applied by the electrode does not completely displace the viscous material in the weld zone around it, but if the metal plates are in contact with each other locally, they will be energized, enabling welding. .
Examples of the viscous substance of the present invention include liquid heat curable epoxy organic resins and the above organic resin adhesives.

このような粘稠な物質26を用いて実施する、本発明に従う溶接要領は次のとおりである。
すなわち、
a)まず、図2(a)に示すように、重ね合わせた金属板間の重合面に絶縁性の粘稠な物質26を介在させる。これにより、金属板間を電気的に絶縁することができる。
b)さらに、図2(b)に示すように、これら金属板の一方の面側から溶接電極23を加圧しながら押し当てる。この電極加圧により、溶接部では粘稠な物質26が押し退けられて金属板間の密着面が確保される。
c)この電極加圧を行った状態で、図2(c)に示すように、溶接電極23と給電端子24との間で通電して溶接を実施する。
上述した要領で溶接を行うことにより、金属板間の通電が溶接部に限定され、高い電流密度が得られるため、溶接部において溶融ナゲット25の安定した形成が可能になる。
また、絶縁性の粘稠な物質26として接着剤を用いることにより、上記した溶融ナゲット25の安定した形成が可能となるだけでなく、従来の接着とダイレクトスポット溶接法を併用したウェルドボンド法と同様に、接合強度及び剛性の向上、さらには優れた振動・衝撃特性、騒音の低減、シール性の確保等の利点も得られることは言うまでもない。
なお、絶縁性の粘稠な物質26としてエポキシ系有機樹脂などの熱硬化性の接着剤を用いる場合は、溶接後に通常行われる鋼板の焼付塗装時の加熱により固化させることができるため、かような未固化の接着剤26の固化のために特別な工程を設ける必要はない。
The welding procedure according to the present invention performed using such a viscous material 26 is as follows.
That is,
a) First, as shown in FIG. 2 (a), an insulating viscous material 26 is interposed between the overlapping surfaces of the stacked metal plates. Thereby, between metal plates can be electrically insulated.
b) Further, as shown in FIG. 2B, the welding electrode 23 is pressed from one side of these metal plates while being pressed. By this electrode pressurization, the viscous material 26 is pushed away in the welded portion, and a close contact surface between the metal plates is secured.
c) With this electrode pressure applied, welding is performed by energizing between the welding electrode 23 and the power supply terminal 24 as shown in FIG. 2 (c).
By performing the welding in the above-described manner, the current conduction between the metal plates is limited to the welded portion, and a high current density can be obtained. Therefore, the molten nugget 25 can be stably formed in the welded portion.
In addition, by using an adhesive as the insulating viscous material 26, not only the above-described molten nugget 25 can be stably formed, but also a weld bond method using a combination of conventional bonding and direct spot welding methods. Similarly, it goes without saying that advantages such as improved bonding strength and rigidity, excellent vibration / impact characteristics, noise reduction, and sealing performance can be obtained.
In addition, when using a thermosetting adhesive such as an epoxy-based organic resin as the insulating viscous substance 26, it can be solidified by heating at the time of baking coating of the steel sheet, which is usually performed after welding. It is not necessary to provide a special process for solidifying the unsolidified adhesive 26.

ところで、上述したように、溶接を実施する領域を除く金属板間の重合面を絶縁した状態で溶接を行うと、金属板の種類、厚さによっては、溶融ナゲットの形成される位置が、金属板の板厚方向に対して、電極が接触していない側の金属板に偏る傾向を示す。
そこで、かような場合には、重ね合わせた金属板において溶接部以外の箇所に通電経路を設け、その経路の電気抵抗を操作することにより、溶接時にその経路に流れる電流を調整することが有利である。これにより、電流制御装置から給電される総電流に対する溶接部に流れる電流の比率を制御し、電極直下に形成される溶融ナゲットの板厚方向の位置を変化させることができ、溶接部の金属板同士の密着面で十分な溶融ナゲットの径を得ることができる。
By the way, as described above, when welding is performed in a state where the overlapping surfaces between the metal plates excluding the region to be welded are insulated, the position where the molten nugget is formed depends on the type and thickness of the metal plate. It shows a tendency to be biased toward the metal plate on the side where the electrode is not in contact with the plate thickness direction of the plate.
Therefore, in such a case, it is advantageous to adjust the current flowing through the path during welding by providing an energization path in a place other than the welded portion in the overlapped metal plate and operating the electrical resistance of the path. It is. As a result, the ratio of the current flowing through the weld to the total current fed from the current controller can be controlled, and the position of the molten nugget formed immediately below the electrode in the thickness direction can be changed. A sufficient diameter of the melted nugget can be obtained at the close contact surfaces.

具体的には、電流制御装置から給電される総電流に対して溶接部に流れる電流の比率が小さくなると、溶接部の密着面での抵抗発熱が抑えられる一方、電極周辺の電極が接触する金属板では、溶接部と溶接部以外の箇所で通電した電流の総計が集中するため、抵抗発熱が顕著となる。よって、電極に接触する金属板側に溶融ナゲットが形成される傾向となり、前記の板厚方向に対して電極が接触していない側の金属板への溶融ナゲットの偏りを調整することができる。溶融ナゲットの板厚方向の位置を金属板間を十分に跨ぐ位置に調整するために好適な、総電流に対する溶接部に流れる電流の比率の範囲は、重ね合わせた金属板の種類、厚さによって相違するので、溶接部以外の箇所に設けられた通電経路の抵抗値は、前記した電流の比率が好適な範囲となるよう制御することが好ましい。また、この溶接部以外の箇所に設けられた通電経路は、複数とすることができる。   Specifically, when the ratio of the current flowing through the welded portion relative to the total current supplied from the current control device is reduced, resistance heat generation at the adhesion surface of the welded portion is suppressed, while the metal around which the electrodes around the electrode are in contact In the plate, since the total of the currents applied at the portions other than the welded portion and the welded portion is concentrated, resistance heat generation becomes significant. Therefore, the molten nugget tends to be formed on the side of the metal plate in contact with the electrode, and the bias of the molten nugget to the metal plate on the side where the electrode is not in contact with the plate thickness direction can be adjusted. Suitable for adjusting the position of the molten nugget in the sheet thickness direction to a position that sufficiently spans between the metal sheets, the range of the ratio of the current flowing through the weld to the total current depends on the type and thickness of the stacked metal sheets Since they are different, it is preferable to control the resistance value of the energization path provided at a place other than the welded portion so that the ratio of the current is within a suitable range. Moreover, the electricity supply path | route provided in locations other than this welding part can be made into multiple.

図3(a)に、本発明に従い、金属板間の重合面に絶縁性の粘稠な物質を介在させることに加え、さらに溶接部以外に通電経路を設けてインダイレクトスポット溶接を行う場合の溶接要領を示す。構成の骨子は、前掲図2と共通するので、同一の番号を付して示し、図中番号27が通電端子、28が抵抗である。
図3(a)に示したように、重ね合わせた金属板に通電可能な接触端子27を取り付け、かかる通電端子27を抵抗器など所定の電気抵抗値を有する伝導体を介して結線することによって、重ね合わせた金属板の重合部とは別の箇所に通電経路を設けることができる。
また、図3(b)、(c)に示すように、重ね合わせた金属板間の重合面に、溶接を実施する領域以外に通電箇所を設ける方法が考えられる。図3(b)は、重ね合わせた金属板間の重合面に予め溶接部29を設けて通電経路とする場合であり、図3(c)は、重ね合わせた金属板間の重合面の一部を加圧し、この加圧箇所から粘稠な物質26を押し退かせて金属板を密着させ、この密着箇所30を通電経路とする場合である。
FIG. 3 (a) shows a case where indirect spot welding is performed in addition to a welded portion in addition to interposing an insulating viscous substance between the overlapping surfaces between metal plates according to the present invention. Shows the welding procedure. Since the structure is the same as that shown in FIG. 2, the same reference numerals are used. In the figure, reference numeral 27 denotes an energizing terminal and 28 denotes a resistor.
As shown in FIG. 3A, by attaching a contact terminal 27 that can be energized to the overlapped metal plates, and connecting the energization terminal 27 via a conductor having a predetermined electric resistance value such as a resistor. The energization path can be provided at a location different from the overlapped portion of the stacked metal plates.
Further, as shown in FIGS. 3B and 3C, a method is conceivable in which an energized portion is provided on the overlapping surface between the stacked metal plates in addition to the region where welding is performed. FIG. 3B shows a case where a welding portion 29 is provided in advance on the overlapping surface between the overlapped metal plates to form an energization path, and FIG. 3C shows one of the overlapping surfaces between the overlapped metal plates. This is a case where the portion is pressurized, the viscous material 26 is pushed away from the pressurization location, the metal plate is brought into close contact, and the close contact location 30 is used as an energization path.

このようにして得られた通電経路に流れる電流を制御するにあたり、電流制御装置に結線された給電端子、電極および上記した通電箇所の位置を調整することにより、通電経路の抵抗値を相対的に調整することができ、これにより、前記したように、電極直下に形成される溶融ナゲットの板厚方向の位置を変化させ、溶融ナゲットの板厚方向の位置を金属板間を十分に跨ぐ位置に調整し、金属板の密着面で十分な溶融ナゲットの径を得ることができる。なお、この溶接部以外の箇所に設ける通電経路は、必ずしも一ヶ所に限られるわけではなく、複数箇所とすることもできる。   In controlling the current flowing through the energization path obtained in this way, the resistance value of the energization path is relatively adjusted by adjusting the positions of the power supply terminals, electrodes, and the energization points connected to the current control device. Thus, as described above, the position of the molten nugget formed immediately below the electrode is changed in the thickness direction, and the position of the molten nugget in the thickness direction is sufficiently crossed between the metal plates. By adjusting, it is possible to obtain a sufficient melt nugget diameter at the contact surface of the metal plate. In addition, the electricity supply path | route provided in places other than this welding part is not necessarily restricted to one place, It can also be made into multiple places.

また、本発明のインダイレクトスポット溶接の実施に際しては、図2,3に示した方法の他、図4に示すような方法を用いてもよい。
図4(a)に示す方法は、溶接部を挟んで、その下部から重ね合わせた鋼板を支持する凹形状の金属製治具31を設けたもので、重ね合わせた鋼板において、溶接部を除く鋼鈑間の重合面を粘稠な物質26によって電気的に絶縁した状態でインダイレクトスポット溶接を行う方法であり、図2(a)〜(c)と同様の段階を経て実施することができる。
また、図4(b)は、溶接部を除く鋼鈑間の重合面を粘稠な物質26によって電気的に絶縁し、さらに溶接部以外に通電経路を、鋼板間の重合面とは別の箇所に設けて、インダイレクトスポット溶接を行う方法である。
さらに、図4(c)は、溶接部を除く鋼鈑間の重合面を粘稠な物質26によって電気的に絶縁し、さらに重ね合わせた鋼板間の重合面に予め設けた溶接部29を通電経路として、インダイレクトスポット溶接を行う方法である。
Moreover, when performing the indirect spot welding of this invention, you may use the method as shown in FIG. 4 other than the method shown in FIG.2, 3. FIG.
In the method shown in FIG. 4 (a), a concave metal jig 31 is provided to support the steel plates stacked from below the welded portion, and the welded portions are excluded from the stacked steel plates. This is a method of performing indirect spot welding in a state where the superposed surface between steel plates is electrically insulated by a viscous material 26, and can be carried out through the same steps as in FIGS. 2 (a) to 2 (c). .
Moreover, FIG. 4B shows that the superposed surface between the steel plates excluding the welded portion is electrically insulated by the viscous material 26, and the energization path other than the welded portion is different from the superposed surface between the steel plates. This is a method of providing indirect spot welding at a location.
Further, FIG. 4 (c) shows that the overlapping surface between the steel plates excluding the welded portion is electrically insulated by the viscous material 26, and the welded portion 29 provided in advance on the overlapping surface between the stacked steel plates is energized. This is a method of performing indirect spot welding as a route.

本発明に従うインダイレクトスポット溶接法を、重ね合わせた2枚の鋼板に対して実施した。鋼板は、板厚が0.65mmで、表1に示す化学成分になる引張強さ:270 N/mm2以上の冷延鋼板(SPC270)と、板厚が1.2mmで同じく表1に示す化学成分になる引張強さ:270 N/mm2以上のSPC270鋼板を使用した。粘稠な物質としては、液加熱硬化型エポキシ系の有機樹脂を用いた。 The indirect spot welding method according to the present invention was performed on two superposed steel plates. The steel sheet has a thickness of 0.65mm and the chemical composition shown in Table 1. Tensile strength: 270 N / mm 2 or more cold-rolled steel sheet (SPC270) and the thickness of 1.2mm and the chemical composition shown in Table 1 A tensile strength of 270 N / mm 2 or more SPC270 steel plate was used. As the viscous substance, a liquid heat curable epoxy organic resin was used.

Figure 0005803116
Figure 0005803116

図4(a)に示したような凹形状の金属製治具の上に、重ね合わせた2枚の鋼板を配置し、支持間隔を30mmとし、治具下部に給電端子を取付け、上方から電極で加圧し、クロム銅合金製で先端にR40mmの曲面を持つ形状の電極および直流インバータ式の電源を使用して、溶接を行った。   On the concave metal jig as shown in Fig. 4 (a), two superposed steel plates are placed, the support interval is set to 30 mm, the power supply terminal is attached to the lower part of the jig, and the electrode is viewed from above. Welding was performed using a chrome-copper alloy electrode having a curved surface of R40 mm at the tip and a DC inverter type power source.

また、図4(b)および図4(c)に示した要領での溶接も実施した。なお、図4(c)において、溶接を実施する領域の中心は、2箇所の既存の溶接部の中心を結ぶ線分の中間点とした。また、溶接を実施する領域の中心からいずれかの既存の溶接部の中心までの距離を、40mm,80mm,120mmとした。   Also, welding was performed in the manner shown in FIGS. 4 (b) and 4 (c). In FIG. 4C, the center of the region to be welded is the midpoint of the line segment connecting the centers of the two existing welds. In addition, the distance from the center of the welding area to the center of any existing weld was set to 40 mm, 80 mm, and 120 mm.

SPC270鋼板からなる上鋼板および下鋼板の板厚、電極の加圧力、電流値、鋼板重合面における粘稠な物質の有無を表2に示す。通電経路の区別において、図4(a)に示すように溶接部以外の箇所の通電経路のなしの場合は「なし」、図4(b)に示すように溶接部以外の箇所の通電経路があり、それが重ね合わせた鋼板の重合面以外の箇所に設置された導電体である場合は「導電体」、図4(c)に示すように溶接部以外の箇所の通電経路が、重ね合わせた鋼板の重合面に予め設けた溶接部である場合であり、溶接を実施する領域の中心からいずれかの既存の溶接部の中心までの距離が40mmの場合は「既溶接部:40mm」、80mmの場合は「既溶接部:80mm」、120mmの場合は「既溶接部:120mm」、と表記した。なお、全ての条件において、通電開始から終了までの時間は0.30秒とした。   Table 2 shows the thicknesses of the upper and lower steel plates made of SPC270 steel plates, the pressure applied to the electrodes, the current value, and the presence or absence of a viscous substance on the superposed surface of the steel plates. As shown in FIG. 4 (a), when there is no energization path other than the welded portion as shown in FIG. 4 (a), “None”, and as shown in FIG. Yes, if it is a conductor installed at a place other than the overlapped surface of the superposed steel plates, “conductor”, as shown in FIG. When the distance from the center of the area where the welding is performed to the center of any existing welded portion is 40 mm, the “existing welded portion: 40 mm” In the case of 80 mm, “existing welded part: 80 mm”, and in the case of 120 mm, “existing welded part: 120 mm”. In all conditions, the time from the start to the end of energization was set to 0.30 seconds.

表2中、発明例1〜3は、上鋼板、下鋼板を板厚:1.2mmのSPC270鋼板とし、重合部に粘稠な物質を介在させて、溶接を行った。
発明例4〜6は、上鋼板を板厚:0.65mmのSPC270鋼板、下鋼板を板厚:1.2mmのSPC270鋼板とし、重合部に粘稠な物質を介在させて、溶接を行った。
発明例7〜9は、上鋼板を板厚:0.65mmのSPC270鋼板、下鋼板を板厚:1.2mmのSPC270鋼板として、重合部に粘稠な物質を介在させ、上、下鋼板の重合面以外の箇所に導電体を設置して溶接部以外の通電経路を設け、溶接を行った。
発明例10〜14は、上鋼板を板厚:0.65mmのSPC270鋼板、下鋼板を板厚:1.2mmのSPC270鋼板として、重合部に粘稠な物質を介在させ、上、下鋼板の重合面の既溶接部を溶接部以外の通電経路として、溶接を行った。
これに対し、比較例1〜3は上鋼板、下鋼板を板厚:1.2mmのSPC270鋼板として、比較例4〜6は上鋼板を板厚:0.65mmのSPC270鋼板、下鋼板を板厚:1.2mmのSPC270鋼板とし、重合部に粘稠な物質を介在させず、溶接を行った。
In Table 2, Invention Examples 1 to 3 were welded by using an upper steel plate and a lower steel plate as an SPC270 steel plate having a thickness of 1.2 mm and interposing a viscous substance in the overlapped portion.
In Invention Examples 4 to 6, the upper steel plate was an SPC270 steel plate having a thickness of 0.65 mm, the lower steel plate was an SPC270 steel plate having a thickness of 1.2 mm, and welding was performed with a viscous substance interposed in the overlapped portion.
Inventive Examples 7 to 9 are such that the upper steel plate is an SPC270 steel plate having a thickness of 0.65 mm and the lower steel plate is an SPC270 steel plate having a thickness of 1.2 mm, and a viscous substance is interposed in the overlapping portion, and the upper and lower steel plates are superposed. Conductors were installed at other locations to provide an energization path other than the welded portion, and welding was performed.
Invention Examples 10 to 14 are such that the upper steel plate is a SPC270 steel plate having a thickness of 0.65 mm, the lower steel plate is a plate thickness: 1.2 mm SPC270 steel plate, a viscous substance is interposed in the superposition part, and the upper and lower steel plates are superposed. Welding was performed using the already-welded part as an energizing path other than the welded part.
On the other hand, in Comparative Examples 1 to 3, the upper steel plate and the lower steel plate are SPC270 steel plates having a plate thickness of 1.2 mm, and in Comparative Examples 4 to 6, the upper steel plate is a plate thickness: 0.65 mm SPC270 steel plates and the lower steel plate are plate thicknesses: A 1.2 mm SPC270 steel plate was used, and welding was carried out without interposing a viscous substance in the overlapped portion.

表3に、表2に示す条件で溶接したときの溶接部のナゲット径、ナゲット厚さ、ナゲット厚さ/径、後述する1.5Tの値および外観不具合について調べた結果を示す。
なお、表3においてナゲット径は、溶接部を中心で切断した断面において、上鋼板、下鋼板間の重合面上での長さとした。ナゲット厚さは、溶接部を中心で切断した断面において、上鋼板、下鋼板間に跨って形成される溶融部の最大厚さとした。重合面から上鋼板側の厚さを「上板」、重合面から下鋼板側の厚さを「下板」、上鋼板から下鋼板に跨る総厚さを「合計」として、記載した。また、ナゲット厚さ/径は、上述したナゲット厚さをナゲット径で除したものである。
ここに、ナゲット径NDが次式(1)を満たし、かつ、ナゲット厚さ/径が0.22以上であり、重合面から上、下鋼板側の厚さがそれぞれ0.2mm以上であれば、溶融した状態で形成された碁石形の好適なナゲットが上、下鋼板間を十分に跨ぐ位置に形成された、と判断することができる。
ND ≧ 1.5 T ・・・(1)
ただし、ND:ナゲット径(mm)
T:重ね合わせた金属板の総板厚(mm)
Table 3 shows the results of investigating the nugget diameter, nugget thickness, nugget thickness / diameter, 1.5T value described below, and appearance defects when welding was performed under the conditions shown in Table 2.
In Table 3, the nugget diameter is the length on the overlapping surface between the upper steel plate and the lower steel plate in the cross section cut around the weld. The nugget thickness was the maximum thickness of the melted portion formed between the upper steel plate and the lower steel plate in the cross section cut at the welded portion. The thickness from the superposed surface to the upper steel plate side was described as “upper plate”, the thickness from the superposed surface to the lower steel plate side as “lower plate”, and the total thickness from the upper steel plate to the lower steel plate as “total”. The nugget thickness / diameter is obtained by dividing the above-described nugget thickness by the nugget diameter.
Here, if the nugget diameter ND satisfies the following formula (1), the nugget thickness / diameter is 0.22 or more, and the thickness on the upper and lower steel plate side from the superposition surface is 0.2 mm or more, it is melted. It can be judged that the meteorite-shaped suitable nugget formed in the state is formed at a position sufficiently straddling the upper and lower steel plates.
ND ≧ 1.5 T (1)
However, ND: Nugget diameter (mm)
T: Total thickness of superposed metal plates (mm)

Figure 0005803116
Figure 0005803116

Figure 0005803116
Figure 0005803116

表3に示したとおり、本発明に従いインダイレクトスポット溶接を行った発明例1〜14はいずれも、十分なナゲット径と、この径に対して十分な厚さを有する溶融ナゲットを得ることができ、さらに、溶融ナゲットが上、下鋼板間を十分に跨ぐ位置に形成されていた。また、外観不具合は全く観察されなかった。
これに対し、比較例5はナゲット径が2.1mmとなったが、十分なナゲット厚さが得られず、ナゲット厚さ/径が0.22より小さくなった。その他の比較例1〜4,6では、ナゲットの形成は観察されなかった。
As shown in Table 3, all of Inventive Examples 1 to 14 that were subjected to indirect spot welding according to the present invention can obtain a molten nugget having a sufficient nugget diameter and a sufficient thickness with respect to this diameter. In addition, the molten nugget was formed at a position sufficiently straddling between the upper and lower steel plates. In addition, no appearance defects were observed.
In contrast, in Comparative Example 5, the nugget diameter was 2.1 mm, but a sufficient nugget thickness was not obtained, and the nugget thickness / diameter was smaller than 0.22. In other Comparative Examples 1 to 4 and 6, nugget formation was not observed.

本発明によれば、重ね合わせた金属板を一方向からのみ電極で加圧し、その反対側は支持の無い中空の状態で行うインダイレクトスポット溶接において、金属板間の重合面全面に絶縁性の粘稠な物質を介在させて溶接を行うことにより、簡便な溶接前工程によって、十分なナゲット径と、この径に対して十分な厚さを有する溶融ナゲットを安定して形成することができる。   According to the present invention, in indirect spot welding in which the stacked metal plates are pressed with an electrode only from one direction and the opposite side is in an unsupported hollow state, the entire overlapping surface between the metal plates is insulated. By performing welding with a viscous substance interposed, a sufficient nugget diameter and a molten nugget having a sufficient thickness with respect to this diameter can be stably formed by a simple pre-welding process.

1,2 金属板
3,4 電極
5 点状の溶接部
6,7 加圧制御装置
8 電流制御装置
11,12 金属板
13,14 電極
15-1,15-2 点状の溶接部
21,22 金属板
23 電極
24 給電端子
25 溶接部
26 粘稠な物質
27 通電端子
28 抵抗
29 溶接部
30 除去箇所
31 凹形状の金属製治具
DESCRIPTION OF SYMBOLS 1, 2 Metal plate 3, 4 Electrode 5 Point-like welding part 6, 7 Pressurization control apparatus 8 Current control apparatus
11, 12 Metal plate
13, 14 electrodes
15-1, 15-2 Spot welds
21,22 Metal plate
23 electrodes
24 Power supply terminal
25 welds
26 viscous material
27 Power terminal
28 resistance
29 welds
30 Removal points
31 Recessed metal jig

Claims (3)

少なくとも2枚の金属板を重ね合わせた部材に対し、一方の面側から金属板に溶接電極を加圧しながら押し当て、他方の面側の金属板には該溶接電極と離隔した位置に給電端子を取り付け、該溶接電極と該給電端子との間で通電して溶接を行うインダイレクトスポット溶接において、
金属板間の重ね合わせ面全面を、厚み0.5mm〜2.0mmの絶縁性を有する粘度0.7Pa・s〜20Pa・sの粘稠な物質を介在させた状態とし、その状態で該溶接電極を加圧し、粘稠な物質が押し退けられて金属板と接触した状態としたのちに通電を開始して溶接を行うことを特徴とするインダイレクトスポット溶接方法。
Pressing the welding electrode against the metal plate from one side while pressing the welding electrode against a member on which at least two metal plates are overlapped, and feeding the terminal on the other side of the metal plate at a position separated from the welding electrode In indirect spot welding in which welding is performed by energizing between the welding electrode and the power supply terminal,
The entire overlapping surface between the metal plates is in a state where a viscous material having a thickness of 0.5 mm to 2.0 mm and an insulating property of 0.7 Pa · s to 20 Pa · s is interposed , and the welding electrode is added in this state. An indirect spot welding method characterized in that welding is performed by starting energization after pressing and pressing the viscous material into contact with the metal plate .
請求項1において、前記絶縁性を有する粘稠な物質は接着剤であり、該接着剤を未固化状態で金属板間の重ね合わせ面全面に介在させて溶接を行った後、該接着剤を固化させることを特徴とするインダイレクトスポット溶接方法。   The adhesive viscous material according to claim 1, wherein the insulating viscous material is an adhesive, and welding is performed by interposing the adhesive on the entire overlapping surface between the metal plates in an unsolidified state. An indirect spot welding method characterized by solidifying. 請求項1または2において、重ね合わせた金属板の溶接部以外の箇所に通電経路を設け、該通電経路に流れる電流を調整して、給電される総電流に対する溶接部に流れる電流の比率を制御することにより、該溶接部に形成される溶融ナゲットの板厚方向の位置を調整することを特徴とするインダイレクトスポット溶接方法。   In Claim 1 or 2, an energization path is provided in places other than the welding part of the metal plate which overlap | superposed, the electric current which flows into this energization path is adjusted, and the ratio of the electric current which flows into a welding part with respect to the total electric current supplied is controlled. By adjusting the position of the molten nugget formed in the welded portion in the plate thickness direction, an indirect spot welding method is characterized.
JP2011019130A 2011-01-31 2011-01-31 Indirect spot welding method Active JP5803116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011019130A JP5803116B2 (en) 2011-01-31 2011-01-31 Indirect spot welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011019130A JP5803116B2 (en) 2011-01-31 2011-01-31 Indirect spot welding method

Publications (2)

Publication Number Publication Date
JP2012157888A JP2012157888A (en) 2012-08-23
JP5803116B2 true JP5803116B2 (en) 2015-11-04

Family

ID=46838871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011019130A Active JP5803116B2 (en) 2011-01-31 2011-01-31 Indirect spot welding method

Country Status (1)

Country Link
JP (1) JP5803116B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5906618B2 (en) * 2011-09-05 2016-04-20 Jfeスチール株式会社 Resistance spot welding method
JP6060579B2 (en) * 2012-09-18 2017-01-18 Jfeスチール株式会社 Resistance spot welding method
KR101735234B1 (en) * 2013-04-09 2017-05-12 제이에프이 스틸 가부시키가이샤 Indirect spot welding method
JP5949930B2 (en) * 2013-06-26 2016-07-13 Jfeスチール株式会社 Indirect spot welding method
MX2016002833A (en) * 2013-09-04 2016-06-17 Jfe Steel Corp Indirect spot welding device.
JP6112035B2 (en) * 2014-02-17 2017-04-12 Jfeスチール株式会社 Indirect spot welding equipment
EP3254796B1 (en) * 2015-02-02 2024-04-24 JFE Steel Corporation Joined body of steel sheets, method for manufacturing joined body of steel sheets, and spot welding method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117296A (en) * 1968-05-08 1978-09-26 Otto Alfred Becker Process and apparatus for welding sheet metal coated with layers
US4009362A (en) * 1968-05-08 1977-02-22 Otto Alfred Becker Process and apparatus for welding sheet metal coated with layers
US3798407A (en) * 1969-05-08 1974-03-19 O Becker Process for welding sheet metal coated with layers
JPS558332A (en) * 1978-07-04 1980-01-21 Rinnai Corp Bonding of coated steel plate
JPH0288684A (en) * 1988-09-27 1990-03-28 Nitto Denko Corp Bonding and liquid adhesive used therefor
JPH09216069A (en) * 1996-02-08 1997-08-19 Nippon Steel Corp Joining method of precoat metal plate
US7392929B1 (en) * 2004-07-26 2008-07-01 Zephyros, Inc. Weldable synthetic material

Also Published As

Publication number Publication date
JP2012157888A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5803116B2 (en) Indirect spot welding method
CN102602072B (en) Resistance spot welding manufacture and method of forming same
JP4494496B2 (en) Resistance welding method and welded structure
JP5415896B2 (en) Indirect spot welding method
JP5549153B2 (en) Indirect spot welding method
JP5949930B2 (en) Indirect spot welding method
JP5315207B2 (en) Dissimilar material joined body and dissimilar material resistance spot welding method
JP5261984B2 (en) Resistance spot welding method
JP2009241136A (en) Series spot or indirect spot welding method for high tensile strength steel sheet
JP5625597B2 (en) Indirect spot welding method
JP6094079B2 (en) Resistance spot welding method
JP2008290098A (en) Resistance spot welding method
JP2012187616A (en) Resistance welding apparatus and resistance welding method
JP2013078806A (en) Resistance spot welding method
JP2023013804A (en) Joining device and joining method for friction stir joining and resistance welding
JP6519510B2 (en) Method of manufacturing spot welds and manufacturing apparatus therefor
JP6060579B2 (en) Resistance spot welding method
JP5906618B2 (en) Resistance spot welding method
JP5928508B2 (en) Indirect spot welding method
US20170326677A1 (en) Method and apparatus for resistance welding of steel sandwich sheets
JP5082249B2 (en) Resistance spot welding method
JP2012135775A (en) Spot welding apparatus
WO2015037432A1 (en) Resistance spot welding method and welded structure
JP5873402B2 (en) Spot welding electrode tips
JP5787302B2 (en) Resistance welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150501

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5803116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250