[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5899302B2 - Automatic analyzer - Google Patents

Automatic analyzer Download PDF

Info

Publication number
JP5899302B2
JP5899302B2 JP2014258302A JP2014258302A JP5899302B2 JP 5899302 B2 JP5899302 B2 JP 5899302B2 JP 2014258302 A JP2014258302 A JP 2014258302A JP 2014258302 A JP2014258302 A JP 2014258302A JP 5899302 B2 JP5899302 B2 JP 5899302B2
Authority
JP
Japan
Prior art keywords
dispensing nozzle
nozzle
liquid
reagent
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014258302A
Other languages
Japanese (ja)
Other versions
JP2015057614A (en
Inventor
裕一 小磯
裕一 小磯
中村 和弘
和弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2014258302A priority Critical patent/JP5899302B2/en
Publication of JP2015057614A publication Critical patent/JP2015057614A/en
Application granted granted Critical
Publication of JP5899302B2 publication Critical patent/JP5899302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は血液,尿等の生体サンプルの定性・定量分析を行う自動分析装置に係り、特に穿孔方式の液体容器を用いる自動分析装置の改良に関する。   The present invention relates to an automatic analyzer that performs qualitative and quantitative analysis of biological samples such as blood and urine, and more particularly to an improvement of an automatic analyzer that uses a perforated liquid container.

血液や尿の生体試料について複数の項目を分析する自動分析装置は、試料と混合し、反応を行わせるための第1試薬及び第3試薬を収容する試薬容器を複数個設置可能としたものが一般的である。近年は、分析項目が飛躍的に増加しており、それに対応して多くの種類の試薬も市販されるようになってきている。   An automatic analyzer that analyzes a plurality of items of a biological sample of blood or urine is capable of installing a plurality of reagent containers that contain a first reagent and a third reagent for mixing with the sample and causing a reaction. It is common. In recent years, the number of analysis items has increased dramatically, and in response to this, many types of reagents have become commercially available.

それに伴い、試薬が収容される試薬容器も複数の形状のものが市販されるようになり、蒸発による試薬の濃縮などを防止するために、試薬容器に蓋を設けて試薬の劣化を防ぐ穿孔方式の試薬容器も増加する傾向にある。   Along with this, there are several types of reagent containers that contain reagents, and a perforation method that prevents reagent deterioration by providing a lid on the reagent container to prevent reagent concentration due to evaporation. The number of reagent containers tends to increase.

このような穿孔方式の試薬容器を用いた自動分析装置として、例えば特許文献1がある。この特許文献1では、穿孔方式の試薬容器を用いた場合に、蓋と接触する分注ノズル部分が多くなることに着目し、分注ノズルの洗浄範囲を調整することで、ノズルの洗浄液及び洗浄時間を低減することが提案されている。   As an automatic analyzer using such a perforated reagent container, for example, there is Patent Document 1. In this Patent Document 1, when a perforated reagent container is used, attention is paid to the fact that the portion of the dispensing nozzle that comes into contact with the lid increases. By adjusting the cleaning range of the dispensing nozzle, the cleaning liquid and cleaning of the nozzle are adjusted. It has been proposed to reduce time.

特開2002−162403号公報JP 2002-162403 A

ところで、試薬分注時に試薬容器の穿孔された穿孔蓋に分注ノズルが浸入する際、試薬容器穿孔蓋と分注ノズルが接触するが、その際に分注ノズルの下降速度や、蓋の材質、形状などに起因して分注ノズルの異常下降検知が作動する可能性がある。分注ノズル異常下降検知とは、分注ノズル下降時に分注ノズル先端が装置上面カバーなどの異物にぶつかった際に、分注ノズルの下降を停止させて、分注ノズルの破損や、オペレータの怪我を防止するための機能である。   By the way, when the dispensing nozzle enters the perforated lid of the reagent container during reagent dispensing, the reagent container perforated lid comes into contact with the dispensing nozzle. At that time, the lowering speed of the dispensing nozzle and the material of the lid There is a possibility that the abnormal lowering detection of the dispensing nozzle is activated due to the shape or the like. Dispensing nozzle abnormal drop detection means that when the tip of the dispensing nozzle hits a foreign object such as the top cover of the device when the dispensing nozzle descends, the dispensing nozzle stops descending, causing damage to the dispensing nozzle, This is a function to prevent injury.

また、分注ノズルが試薬容器から上昇する際にも、分注ノズル上昇用モータの脱調、上死点異常、更には分注ノズルが穿孔蓋を出る瞬間に分注ノズル先端に付着した試薬が許容量を超えて飛び散るおそれがあることが解った。このような問題は試薬容器に限らず、液体試料を収容する試料容器であっても、同様な問題が生じるものと考えられる。   Also, when the dispensing nozzle rises from the reagent container, the dispensing nozzle raising motor steps out, the top dead center is abnormal, and the reagent attached to the tip of the dispensing nozzle at the moment the dispensing nozzle exits the perforation lid It has been found that there is a risk of flying over the allowable amount. Such a problem is not limited to a reagent container, and it is considered that a similar problem occurs even in a sample container that contains a liquid sample.

自動分析装置はこれらの問題が発生しないよう安全率を見積もって設計されているが、それでも、蓋材質の変質、ノズル先端の変形などの予期せぬ事態に対しても、更に安全な設計とすることが好ましい。   The automatic analyzer is designed with a safety factor estimated so that these problems do not occur, but it is still designed to be safer in the event of unexpected situations such as deterioration of the lid material and deformation of the nozzle tip. It is preferable.

そこで本発明は、穿孔方式の液体容器を用いる自動分析装置において、その目的とするところは蓋材質の変質、ノズル先端の変形などの予期せぬ事態が発生したとしても、分注ノズルのアラームや試薬の飛び散り等による分析性能への影響を抑え、信頼性の高い自動分析装置を提供することにある。   Therefore, the present invention provides an automatic analyzer that uses a perforated liquid container. The purpose of the automatic analyzer is that even if an unexpected situation such as deterioration of the lid material or deformation of the nozzle tip occurs, An object of the present invention is to provide a highly reliable automatic analyzer that suppresses the influence on the analysis performance due to scattering of reagents and the like.

上記目的を達成するための本発明の特徴は、液体を収容する穿孔方式の蓋を有する液体容器と、該蓋を貫通して該液体容器に収容された液体を吸引する分注ノズルと、該分注ノズルを上下動するノズル上下動機構と、を備えた自動分析装置において、前記分注ノズルの先端が前記蓋を貫通する区間で、前記分注ノズルの移動速度を低下するノズル上下動機構の制御装置を有し、前記制御装置は、設置された複数の液体容器の位置に応じて、前記分注ノズルの移動速度を低下する低速領域の開始値及び終了値を記憶する手段を備え、前記制御装置は、前記分注ノズルの下降時、前記液体容器の位置に応じた前記開始値及び前記終了値に基づき前記分注ノズルの移動速度を低下するよう前記ノズル上下動機構を制御すると共に、前記分注ノズルが前記終了値を通過後に通常の速度で下降するよう前記ノズル上下動機構を制御するよう構成しことにある。
また、本発明の他の特徴は、液体を収容する穿孔方式の蓋を有する液体容器と、該蓋を貫通して該液体容器に収容された液体を吸引する分注ノズルと、該分注ノズルを上下動するノズル上下動機構と、を備えた自動分析装置において、前記分注ノズルの先端が前記蓋を貫通する区間で、前記分注ノズルの移動速度を低下するノズル上下動機構の制御装置を有し、前記制御装置は、設置された複数の液体容器の位置に応じて、前記分注ノズルの移動速度を低下する低速領域の開始値及び終了値を記憶する手段を備え、前記制御装置は、前記分注ノズルの上昇時、前記液体容器の位置に応じた前記開始値及び前記終了値に基づき前記分注ノズルの移動速度を低下するよう前記ノズル上下動機構を制御すると共に、前記分注ノズルを液面から上昇させる場合に、前記分注ノズルが、液面から前記終了値までは通常の速度で上昇し、前記終了値から前記開始値までは移動速度を低下し、前記開始値を通過後に通常の速度で上昇するよう前記ノズル上下動機構を制御するよう構成したことにある。
In order to achieve the above object, the present invention is characterized in that a liquid container having a perforated lid that stores liquid, a dispensing nozzle that passes through the lid and sucks the liquid stored in the liquid container, A nozzle vertical movement mechanism for lowering a moving speed of the dispensing nozzle in a section in which a tip of the dispensing nozzle penetrates the lid in an automatic analyzer having a nozzle vertical movement mechanism for moving the dispensing nozzle up and down The control device comprises means for storing a start value and an end value of a low speed region that reduces the moving speed of the dispensing nozzle according to the positions of the plurality of liquid containers installed, The control device controls the nozzle vertical movement mechanism to lower the moving speed of the dispensing nozzle based on the start value and the end value according to the position of the liquid container when the dispensing nozzle is lowered. The dispensing nozzle Serial after passing through the exit value lies in the configured power sale by controlling the nozzle vertical movement mechanism to descend at a normal speed.
Another feature of the present invention is that a liquid container having a perforated lid that stores liquid, a dispensing nozzle that passes through the lid and sucks the liquid stored in the liquid container, and the dispensing nozzle And a nozzle vertical movement mechanism that moves up and down the nozzle, and a control device for a nozzle vertical movement mechanism that reduces the movement speed of the dispensing nozzle in a section where the tip of the dispensing nozzle penetrates the lid And the control device comprises means for storing a start value and an end value of a low speed region in which the moving speed of the dispensing nozzle is decreased according to the positions of the plurality of liquid containers installed, and the control device Controls the nozzle vertical movement mechanism so as to reduce the moving speed of the dispensing nozzle based on the start value and the end value according to the position of the liquid container when the dispensing nozzle is raised. Note: The nozzle is raised from the liquid level. The dispensing nozzle rises at a normal speed from the liquid level to the end value, decreases the moving speed from the end value to the start value, and passes through the start value at a normal speed. The nozzle vertical movement mechanism is controlled to rise.

前記目的を達成するための本発明の更なる特徴については、以下述べる実施の形態で明らかにする。   Further features of the present invention for achieving the above object will be clarified in the embodiments described below.

穿孔方式の液体容器を用いる自動分析装置において、蓋材質の変質、ノズル先端の変形などの予期せぬ事態が発生したとしても、分注ノズルが蓋を貫通する速度を抑えることができるので、サンプリング機構の分注ノズルアラームや試薬の飛び散り等による分析性能への影響を抑え、信頼性の高い自動分析装置を実現することができる。   In an automatic analyzer that uses a perforated liquid container, sampling speed can be reduced because the dispensing nozzle can reduce the speed at which the dispensing nozzle penetrates the lid even if an unexpected situation such as deterioration of the lid material or deformation of the nozzle tip occurs. A highly reliable automatic analyzer can be realized by suppressing the influence on the analysis performance due to the dispensing nozzle alarm of the mechanism and the scattering of the reagent.

本発明を適用する自動分析装置の概略構成図Schematic configuration diagram of an automatic analyzer to which the present invention is applied 本発明の一実施例に係る試薬サンプリング機構の構成図1 is a configuration diagram of a reagent sampling mechanism according to an embodiment of the present invention. 本発明の一実施例に係る試薬サンプリング機構の可動域説明図Range of operation of reagent sampling mechanism according to one embodiment of the present invention 本発明の一実施例に係る分注ノズルの制御位置関係説明図Explanatory drawing of control position relationship of dispensing nozzle according to one embodiment of the present invention 本発明の一実施例に係る分注ノズルの制御位置測定フロー図FIG. 3 is a flow chart for measuring a control position of a dispensing nozzle according to an embodiment of the present invention. 本発明の一実施例に係る分注ノズルの制御位置データマップ図Dispensing nozzle control position data map according to one embodiment of the present invention

以下、本発明の実施の形態を図示する一実施例を用いて詳細に説明する。尚、以下述べる実施例では、液体を収容する穿孔方式の液体容器として試薬を収容する試薬容器を例に挙げて説明するが、試薬に限らず試料(サンプル)を収容した穿孔式の試料容器であっても同様に実施することができる。   Hereinafter, an embodiment of the present invention will be described in detail with reference to an example. In the embodiment described below, a reagent container that contains a reagent is described as an example of a perforated liquid container that contains a liquid. However, the present invention is not limited to a reagent, but a perforated sample container that contains a sample (sample). Even if it exists, it can implement similarly.

図1は本発明を適用する自動分析装置の一例であって、その全体の概略構成図である。本実施例では、分析対象となる試料(サンプル)を入れたサンプル容器1がセットされるサンプルディスク2、サンプルディスク2よりサンプルを吸引し、反応および測光を行うための反応セル3を複数保持する反応ディスク4へとサンプルを分注するための検体サンプリング機構5、サンプルと混合し、反応を行わせるための第1、2、3の試薬を充填してある穿孔方式の試薬容器6、試薬容器6を複数保管,保冷を行うための試薬ディスク7、試薬容器6から反応ディスク4へと試薬の分注を行う第1試薬用のR1試薬サンプリング機構8、第3試薬用のR2/3試薬サンプリング機構9、反応ディスク4上にて反応しているサンプルおよび試薬の混合液を測光するための測光部10から構成されている。また各テーブル,機構の動作制御は図示しないコンピュータ等からなる制御装置により行われる。   FIG. 1 is an example of an automatic analyzer to which the present invention is applied, and is a schematic configuration diagram of the whole. In this embodiment, a sample disk 2 in which a sample container 1 containing a sample (sample) to be analyzed is set, a sample is sucked from the sample disk 2, and a plurality of reaction cells 3 for performing reaction and photometry are held. Specimen sampling mechanism 5 for dispensing the sample to the reaction disk 4, a perforated reagent container 6 filled with the first, second, and third reagents for mixing and reacting with the sample, a reagent container A reagent disk 7 for storing and cooling a plurality of reagents 6, a R1 reagent sampling mechanism 8 for dispensing reagents from the reagent container 6 to the reaction disk 4, and an R2 / 3 reagent sampling for the third reagent It comprises a mechanism 9 and a photometric unit 10 for photometric measurement of the sample and reagent mixture reacted on the reaction disk 4. The operation control of each table and mechanism is performed by a control device including a computer (not shown).

図2は本発明の一実施例に係る試薬サンプリング機構の構成図である。試薬サンプリング機構8、9に備えられた分注ノズル31は水平方向と上下方向の動作の組み合わせで動作する。   FIG. 2 is a configuration diagram of a reagent sampling mechanism according to an embodiment of the present invention. The dispensing nozzle 31 provided in the reagent sampling mechanisms 8 and 9 operates by a combination of horizontal and vertical operations.

水平方向の動作は第1アーム29と第2アーム30の回転の組み合わせで動作する。第1アーム29は第1アーム駆動モータ20の回転駆動力が第1アーム用ベルト21により第1アームシャフト32及び第1アーム29に伝達されることで回転動作が行われる。   The horizontal operation is performed by a combination of the rotation of the first arm 29 and the second arm 30. The first arm 29 is rotated when the rotational driving force of the first arm drive motor 20 is transmitted to the first arm shaft 32 and the first arm 29 by the first arm belt 21.

第2アーム30は第2アーム駆動モータ22の回転駆動力が第2アームシャフト33に伝達され、さらに第2アーム用ベルト26を介して第1アーム内にあって第2アーム回転中心となるシャフト27に伝達されることで行われる。
図3は試薬サンプリング機構の可動域を示しており、試薬分注ノズル31のアクセス域35は第1アーム可動域36と第2アーム可動域37とを合わせた広範囲な領域となる。
In the second arm 30, the rotational driving force of the second arm drive motor 22 is transmitted to the second arm shaft 33, and further, the second arm 30 is located in the first arm via the second arm belt 26 and serves as the second arm rotation center. It is performed by being transmitted to 27.
FIG. 3 shows the movable range of the reagent sampling mechanism, and the access area 35 of the reagent dispensing nozzle 31 is a wide area including the first arm movable area 36 and the second arm movable area 37.

上下動作は、上下動作駆動モータ23の回転を上下動作用ベルト24及びスライダ25を介して第1アームシャフト32に伝えることで、第1アーム29及び第2アーム30を同時に上下する機構となっている。   In the vertical movement, the rotation of the vertical movement driving motor 23 is transmitted to the first arm shaft 32 via the vertical movement belt 24 and the slider 25, thereby moving up and down the first arm 29 and the second arm 30 simultaneously. Yes.

また、穿孔方式の試薬容器6の穿孔蓋34には、分注ノズル31が試薬分注を行う際に試薬容器穿孔蓋34を通過する開口部を、開口ノズル28によって形成することができる。   In addition, an opening through which the reagent container perforation lid 34 passes when the dispensing nozzle 31 performs reagent dispensing can be formed in the perforation lid 34 of the perforation type reagent container 6.

試薬サンプリング機構8、9は、試薬分注ノズル31が下降動作時に異物に衝突したことを検知する異常下降検知機構を備えている。この異常下降検知機構は、分注ノズル31の先端が異物に衝突した際に、本来の位置より上方に移動したことをフォトカップラー(フォトインタラプタ)などで検知するものである。   The reagent sampling mechanisms 8 and 9 include an abnormal lowering detection mechanism that detects that the reagent dispensing nozzle 31 has collided with a foreign object during the lowering operation. This abnormal lowering detection mechanism detects that the tip of the dispensing nozzle 31 has moved upward from its original position with a photo coupler (photo interrupter) or the like when the tip of the dispensing nozzle 31 collides with a foreign object.

異常下降検知機構が作動したことに伴い、ノズルの下降動作を停止することで、ノズルの破損、オペレータの怪我などを防ぐことができる。また、異常下降検知が検出された時点のノズル高さは、駆動モータ23にパルスモータ等を用いることで、そのパルス数から算出することができる。   By stopping the lowering operation of the nozzle accompanying the operation of the abnormal lowering detection mechanism, it is possible to prevent damage to the nozzle, injury to the operator, and the like. Further, the nozzle height at the time when the abnormal lowering detection is detected can be calculated from the number of pulses by using a pulse motor or the like for the drive motor 23.

駆動モータ23として直流モータを用いる場合は、その駆動軸にパルスエンコーダを設け、その発生パルスを計数することで同様に算出することができる。
その他、分注ノズル31が試薬容器6内の試薬液面に接触したことを電気伝導度、静電容量変化などに基づいて検出する、通常の液面センサも備えている。
When a direct current motor is used as the drive motor 23, it can be similarly calculated by providing a pulse encoder on the drive shaft and counting the generated pulses.
In addition, a normal liquid level sensor that detects that the dispensing nozzle 31 has contacted the reagent liquid level in the reagent container 6 on the basis of electric conductivity, capacitance change, and the like is also provided.

試薬容器6の穿孔蓋34の高さは、試薬ディスク7への設置面の高さ寸法及び穿孔蓋34の高さ寸法、および試薬サンプリング機構8、9に備えられた分注ノズル31の先端が穿孔蓋34に接触するまでの分注ノズル31の下降量から求めることができる。   The height of the perforation lid 34 of the reagent container 6 is determined by the height of the installation surface on the reagent disk 7 and the height of the perforation lid 34, and the tip of the dispensing nozzle 31 provided in the reagent sampling mechanisms 8 and 9. It can be determined from the amount by which the dispensing nozzle 31 is lowered until it comes into contact with the perforated lid 34.

しかし、試薬ディスク7の円周上に配置された試薬容器6の穿孔蓋34や試薬液面の高さは、個々の部品の寸法精度や組立誤差、試薬容器6の重さによる歪み等により、個々の試薬容器ごとに異なることが考えられる。   However, the height of the perforation lid 34 and the reagent liquid surface of the reagent container 6 arranged on the circumference of the reagent disk 7 depends on the dimensional accuracy of individual parts, assembly errors, distortion due to the weight of the reagent container 6, etc. It may be different for each reagent container.

図4に本実施例に係る分注ノズル制御のための位置関係を示す。図において、Zは分注ノズル最大移動寸法、AおよびBは低速領域、Xは穿孔蓋−試薬液面寸法、αは突っ込み量、Cは試薬容器穿孔蓋までの下降量、Dは穿孔蓋−試薬液面寸法を示す。分注ノズル31を下降制御するには、これらの位置・寸法を分注ノズル31の下降量との関係で求める必要があるが、その位置関係は前記した理由で個々の試薬容器ごとに異なることになる。   FIG. 4 shows a positional relationship for dispensing nozzle control according to the present embodiment. In the figure, Z is the maximum movement size of the dispensing nozzle, A and B are the low speed region, X is the perforation lid-reagent liquid level, α is the amount of protrusion, C is the amount of descent to the reagent container perforation lid, D is the perforation lid— The reagent liquid surface dimensions are shown. In order to control the lowering of the dispensing nozzle 31, it is necessary to obtain these positions and dimensions in relation to the amount of lowering of the dispensing nozzle 31, but the positional relationship differs for each reagent container for the reason described above. become.

そこで先ず、これらの位置関係を試薬容器ごとに測定し、記憶する実施例を図5の分注ノズルの制御位置測定フロー、および図6の制御位置データマップを用いて説明する。   First, an embodiment in which these positional relationships are measured for each reagent container and stored will be described with reference to the dispensing nozzle control position measurement flow of FIG. 5 and the control position data map of FIG.

自動分析装置を立ち上げ、分析を開始する前に試薬容器を試薬ディスクに設置(ステップ51)した後に、円周上に配置された試薬容器の穿孔蓋の高さを、分注ノズル31を下降させ異常下降検知を使用し、試薬容器に対してセンサの入る位置(下降パルス数C)を全ての試薬容器について測定し、図6の制御位置データマップに記憶させる(ステップ52)。   After starting the automatic analyzer and installing the reagent container on the reagent disk before starting the analysis (step 51), the dispensing nozzle 31 is lowered with the height of the perforated lid of the reagent container arranged on the circumference. Then, the abnormal descent detection is used, and the position (number of descending pulses C) where the sensor enters the reagent container is measured for all the reagent containers and stored in the control position data map of FIG. 6 (step 52).

次に、分注ノズル31を下降させ試薬容器内の試薬液面の高さを静電容量方式の液面センサを使用して液面高さ(下降パルス数D)を測定し、図6の制御位置データマップに記憶させる(ステップ53)。このパルス数Dに分注ノズルの液面からの突っ込み量αの固定パルス数を加えたパルス数が最大下降パルス数Zとなり、図6の制御位置データマップに記憶する(ステップ54)。   Next, the dispensing nozzle 31 is lowered, and the height of the reagent liquid level in the reagent container is measured using a capacitance type liquid level sensor to measure the liquid level height (number of descending pulses D) as shown in FIG. The control position data map is stored (step 53). The number of pulses obtained by adding the number of pulses D to the fixed pulse number of the amount of thrust α from the liquid level of the dispensing nozzle is the maximum descending pulse number Z, which is stored in the control position data map of FIG. 6 (step 54).

また、穿孔蓋付近での分注ノズル下降速度の低速域を決めるため、穿孔蓋までのパルス数から固定パルス数を引いたパルスを低速開始パルス数Vとし、逆に穿孔蓋までのパルス数から固定パルス数を加えたパルスを低速終了パルス数Yとして夫々算出し、図6の制御位置データマップに記憶する(ステップ55,56)。このようにして全ての試薬容器の位置情報(制御パルス数)を求め、低速領域を確定すること(ステップ57)で、以後の試薬分注ノズル31の上下動作を図6の制御位置データマップに記憶したデータに基づいて制御する。   Also, in order to determine the low speed range of the dispensing nozzle descending speed near the perforation lid, the pulse obtained by subtracting the fixed pulse number from the number of pulses until the perforation lid is set as the low speed start pulse number V, and conversely from the number of pulses until the perforation lid. The pulse with the fixed pulse number added is calculated as the low-speed end pulse number Y, and stored in the control position data map of FIG. 6 (steps 55 and 56). In this way, the position information (number of control pulses) of all the reagent containers is obtained, and the low speed region is determined (step 57), so that the subsequent vertical movement of the reagent dispensing nozzle 31 is shown in the control position data map of FIG. Control based on the stored data.

ここで突っ込み量αは、確実に試薬を吸引するために、分注ノズル31の先端部を試薬液中に浸入させるために必要な距離である。液面センサは分注ノズル31が液体に接触することで検知信号を発生するため、穿孔方式の試薬容器6を使用した場合、穿孔蓋34に付着した液体に接触した際にも検知信号を発生する。この場合には、本来の液面は穿孔蓋34よりも下方にあることから、試薬サンプリング機構8、9の下降動作において、穿孔蓋34までの下降中は検知信号を無視するように制御を行う。   Here, the thrust amount α is a distance necessary for allowing the tip of the dispensing nozzle 31 to enter the reagent solution in order to suck the reagent reliably. Since the liquid level sensor generates a detection signal when the dispensing nozzle 31 comes into contact with the liquid, when the perforated reagent container 6 is used, a detection signal is also generated when the liquid adheres to the perforated lid 34 To do. In this case, since the original liquid level is below the perforation lid 34, in the descending operation of the reagent sampling mechanisms 8 and 9, control is performed so as to ignore the detection signal while descending to the perforation lid 34. .

また、分注ノズル31を最下降点まで下降させるためにパルスモータへ送る総パルス数から、液面を検知するまでにパルスモータへ送ったパルス数を差し引いた残パルス数を、試薬容器毎に記憶しておくことにより、次に同じ試薬の分注を行う際には、記憶しておいた残パルス数までの分注ノズル31の下降動作を高速に制御することができる。   Further, the number of remaining pulses obtained by subtracting the number of pulses sent to the pulse motor until the liquid level is detected from the total number of pulses sent to the pulse motor to lower the dispensing nozzle 31 to the lowest point is determined for each reagent container. By storing the same, when the same reagent is dispensed next time, the downward movement of the dispensing nozzle 31 up to the stored number of remaining pulses can be controlled at high speed.

ここで、試薬サンプリング機構8、9が試薬分注動作を行う際に、分注ノズル31が下降し穿孔蓋34を通過する前後の特定領域A及びBにおいて、分注ノズル31の下降速度を一時的に低速(速度:0.02m/s)に制御し、その領域を越えたら通常の速度(速度:0.04m/s)に制御する。このような分注ノズル31の高速動作及び低速動作は、上下動作駆動モータ23をパルスモータとすれば、その駆動パルスレートをルーチン動作内の動作内容に応じ変更することで実現できる。   Here, when the reagent sampling mechanisms 8 and 9 perform the reagent dispensing operation, the lowering speed of the dispensing nozzle 31 is temporarily set in the specific areas A and B before and after the dispensing nozzle 31 descends and passes through the perforation lid 34. Therefore, the speed is controlled to a low speed (speed: 0.02 m / s), and when the range is exceeded, the speed is controlled to a normal speed (speed: 0.04 m / s). Such a high-speed operation and low-speed operation of the dispensing nozzle 31 can be realized by changing the drive pulse rate according to the operation content in the routine operation if the vertical operation drive motor 23 is a pulse motor.

上記の例では、特定領域A及びBの速度を通常速度の50%に設定することで、分注ノズル31が穿孔蓋34に接触する際の摩擦力を大幅に低減することを優先したが、処理効率を優先する場合には通常速度の70%程度までで十分な効果があることが判った。   In the above example, priority was given to significantly reducing the frictional force when the dispensing nozzle 31 contacts the perforated lid 34 by setting the speed of the specific areas A and B to 50% of the normal speed. In the case where priority is given to the processing efficiency, it has been found that there is a sufficient effect up to about 70% of the normal speed.

以上述べたように、分注ノズル31が下降し穿孔蓋34を通過する際は、低速領域Aで低速にし、穿孔蓋34通過後の低速領域Bまで低速を維持し、その後液面までの距離X(図4の低速領域−試薬液面寸法X)を通常の速度で下降させることができる。従って、分注ノズル31が穿孔蓋34に接触する際に発生する摩擦力を低減し、異常下降検知の誤動作を低減できると共に、試薬サンプリング機構8、9に対する負荷を低減することができる。   As described above, when the dispensing nozzle 31 descends and passes through the perforation lid 34, the speed is reduced in the low speed region A, the low speed is maintained until the low speed region B after passing through the perforation lid 34, and the distance to the liquid level thereafter. X (low speed region in FIG. 4-reagent liquid level X) can be lowered at a normal speed. Therefore, the frictional force generated when the dispensing nozzle 31 comes into contact with the perforated lid 34 can be reduced, the malfunction of the abnormal lowering detection can be reduced, and the load on the reagent sampling mechanisms 8 and 9 can be reduced.

また、分注ノズル31を液面から上昇させる場合も同様に、液面から穿孔蓋34に接触する前までの距離Xは通常の速度で上昇し、穿孔蓋34に接触する前の距離Bで低速にした状態で穿孔蓋34を通過し、距離Aを通過後に通常の上昇速度に戻す。   Similarly, when the dispensing nozzle 31 is raised from the liquid level, the distance X from the liquid level to the point before contacting the perforated lid 34 is increased at a normal speed and is the distance B before contacting the perforated lid 34. After passing through the perforated lid 34 in a state of low speed, after passing the distance A, the normal ascent speed is returned.

これにより、分注ノズル31の上昇にも、分注ノズル31が穿孔蓋34に接触することで発生する摩擦力を低減し、上下動作駆動モータ23の脱調や試薬サンプリング機構8、9の上死点検知異常を低減することができると共に、分注ノズル31が穿孔蓋34との接触により生じる分注ノズル31先端に付着した試薬液滴の試薬容器外への飛び散りも低減することができる。   As a result, the friction force generated by the dispensing nozzle 31 coming into contact with the perforated lid 34 can be reduced even when the dispensing nozzle 31 is raised, and the step-up operation of the vertical movement drive motor 23 and the top of the reagent sampling mechanisms 8 and 9 are reduced. It is possible to reduce the dead point detection abnormality and to reduce the scattering of the reagent droplets adhering to the tip of the dispensing nozzle 31 caused by the contact of the dispensing nozzle 31 with the perforated lid 34 to the outside of the reagent container.

また、以上述べた実施例は試薬を収容する試薬容器に対する分注方式を例に挙げて説明しているが、試薬容器に限らず、試料を収容した穿孔式の試料容器であっても同様に実施することができることは明らかである。   In the above-described embodiment, the dispensing method for the reagent container containing the reagent is described as an example. However, the present invention is not limited to the reagent container, and the same applies to a perforated sample container containing a sample. Obviously, it can be implemented.

1・・・サンプル容器、2・・・サンプルディスク、3・・・反応セル、4・・・反応ディスク、5・・・検体サンプリング機構、6・・・試薬容器、7・・・試薬ディスク、8・・・R1試薬サンプリング機構、9・・・R2/3試薬サンプリング機構、10・・・測光部、20・・・第1アーム駆動モータ、21・・・第1アーム用ベルト、22・・・第2アーム駆動モータ、23・・・上下動作駆動モータ、24・・・上下動作用ベルト、25・・・スライダ、26・・・第2アーム用ベルト、27・・・シャフト、28・・・開口ノズル、29・・・第1アーム、30・・・第2アーム、31・・・分注ノズル、32・・・第1アームシャフト、33・・・第2アームシャフト、34・・・穿孔蓋、35・・・試薬分注ノズルアクセス域、36・・・第1アーム可動域、37・・・第2アーム可動域   DESCRIPTION OF SYMBOLS 1 ... Sample container, 2 ... Sample disc, 3 ... Reaction cell, 4 ... Reaction disc, 5 ... Sample sampling mechanism, 6 ... Reagent container, 7 ... Reagent disc, 8 ... R1 reagent sampling mechanism, 9 ... R2 / 3 reagent sampling mechanism, 10 ... photometry unit, 20 ... first arm drive motor, 21 ... first arm belt, 22 ...・ Second arm drive motor, 23... Vertical motion drive motor, 24... Vertical motion belt, 25... Slider, 26. Open nozzle, 29 ... first arm, 30 ... second arm, 31 ... dispensing nozzle, 32 ... first arm shaft, 33 ... second arm shaft, 34 ... Perforated lid, 35 ... Reagent dispensing nozzle access Frequency, 36 ... first arm excursion, 37 ... second arm excursion

Claims (4)

液体を収容する穿孔方式の蓋を有する液体容器と、該蓋を貫通して該液体容器に収容された液体を吸引する分注ノズルと、該分注ノズルを上下動するノズル上下動機構と、を備えた自動分析装置において、
前記分注ノズルの先端が前記蓋を貫通する区間で、前記分注ノズルの移動速度を低下するノズル上下動機構の制御装置を有し、
前記制御装置は、設置された複数の液体容器の位置に応じて、前記分注ノズルの移動速度を低下する低速領域の開始値及び終了値を記憶する手段を備え、
前記制御装置は、前記分注ノズルの下降時、前記液体容器の位置に応じた前記開始値及び前記終了値に基づき前記分注ノズルの移動速度を低下するよう前記ノズル上下動機構を制御すると共に、前記分注ノズルが前記終了値を通過後に通常の速度で下降するよう前記ノズル上下動機構を制御することを特徴とする自動分析装置。
A liquid container having a perforated lid that contains liquid, a dispensing nozzle that passes through the lid and sucks the liquid contained in the liquid container, and a nozzle up-and-down moving mechanism that moves the dispensing nozzle up and down, In an automatic analyzer equipped with
In a section where the tip of the dispensing nozzle penetrates the lid, a control device for a nozzle vertical movement mechanism that lowers the moving speed of the dispensing nozzle,
The control device includes means for storing a start value and an end value of a low speed region in which the moving speed of the dispensing nozzle is lowered according to the positions of a plurality of installed liquid containers,
The control device, the dispensing under nozzle Futoki, the nozzle vertical movement mechanism to reduce the start value and the moving speed of the based-out before Symbol dispensing nozzle to the end value corresponding to a position of the liquid container And controlling the nozzle vertical movement mechanism so that the dispensing nozzle descends at a normal speed after passing the end value .
液体を収容する穿孔方式の蓋を有する液体容器と、該蓋を貫通して該液体容器に収容された液体を吸引する分注ノズルと、該分注ノズルを上下動するノズル上下動機構と、を備えた自動分析装置において、
前記分注ノズルの先端が前記蓋を貫通する区間で、前記分注ノズルの移動速度を低下するノズル上下動機構の制御装置を有し
前記制御装置は、設置された複数の液体容器の位置に応じて、前記分注ノズルの移動速度を低下する低速領域の開始値及び終了値を記憶する手段を備え、
前記制御装置は、前記分注ノズルの上昇時、前記液体容器の位置に応じた前記開始値及び前記終了値に基づき前記分注ノズルの移動速度を低下するよう前記ノズル上下動機構を制御すると共に、前記分注ノズルを液面から上昇させる場合に、前記分注ノズルが、液面から前記終了値までは通常の速度で上昇し、前記終了値から前記開始値までは移動速度を低下し、前記開始値を通過後に通常の速度で上昇するよう前記ノズル上下動機構を制御することを特徴とする自動分析装置。
A liquid container having a perforated lid that contains liquid, a dispensing nozzle that passes through the lid and sucks the liquid contained in the liquid container, and a nozzle up-and-down moving mechanism that moves the dispensing nozzle up and down, In an automatic analyzer equipped with
In a section where the tip of the dispensing nozzle penetrates the lid, a control device for a nozzle vertical movement mechanism that lowers the moving speed of the dispensing nozzle ,
The control device includes means for storing a start value and an end value of a low speed region in which the moving speed of the dispensing nozzle is lowered according to the positions of a plurality of installed liquid containers,
The control device controls the nozzle vertical movement mechanism to lower the moving speed of the dispensing nozzle based on the start value and the end value corresponding to the position of the liquid container when the dispensing nozzle is raised. When the dispensing nozzle is raised from the liquid level, the dispensing nozzle rises at a normal speed from the liquid level to the end value, and decreases the moving speed from the end value to the start value. An automatic analyzer that controls the nozzle vertical movement mechanism to increase at a normal speed after passing the start value .
請求項1に記載の自動分析装置において、
前記制御装置は、前記分注ノズルの上昇時、前記液体容器の位置に応じた前記開始値及び前記終了値に基づき前記分注ノズルの移動速度を低下するよう前記ノズル上下動機構を制御すると共に、前記分注ノズルを液面から上昇させる場合に、前記分注ノズルが、液面から前記終了値までは通常の速度で上昇し、前記終了値から前記開始値までは移動速度を低下し、前記開始値を通過後に通常の速度で上昇するよう前記ノズル上下動機構を制御することを特徴とする自動分析装置。
The automatic analyzer according to claim 1 ,
The control device controls the nozzle vertical movement mechanism to lower the moving speed of the dispensing nozzle based on the start value and the end value corresponding to the position of the liquid container when the dispensing nozzle is raised. When the dispensing nozzle is raised from the liquid level, the dispensing nozzle rises at a normal speed from the liquid level to the end value, and decreases the moving speed from the end value to the start value. An automatic analyzer that controls the nozzle vertical movement mechanism to increase at a normal speed after passing the start value .
請求項1〜3のうち、いずれか1項に記載の自動分析装置において、
前記液体容器は試薬容器であることを特徴とする自動分析装置。
The automatic analyzer according to any one of claims 1 to 3 ,
The automatic analyzer according to claim 1, wherein the liquid container is a reagent container .
JP2014258302A 2014-12-22 2014-12-22 Automatic analyzer Active JP5899302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014258302A JP5899302B2 (en) 2014-12-22 2014-12-22 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014258302A JP5899302B2 (en) 2014-12-22 2014-12-22 Automatic analyzer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010267937A Division JP5674440B2 (en) 2010-12-01 2010-12-01 Automatic analyzer

Publications (2)

Publication Number Publication Date
JP2015057614A JP2015057614A (en) 2015-03-26
JP5899302B2 true JP5899302B2 (en) 2016-04-06

Family

ID=52815721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258302A Active JP5899302B2 (en) 2014-12-22 2014-12-22 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP5899302B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115267219A (en) * 2021-04-29 2022-11-01 深圳市帝迈生物技术有限公司 Sample warehousing control method and device, sample transfer assembly, analyzer and medium
EP4394386A1 (en) 2021-12-09 2024-07-03 Sekisui Medical Co., Ltd. Automatic analysis device and reagent amount display method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529754A (en) * 1994-05-02 1996-06-25 Hoffmann-La Roche Inc. Apparatus for capacitatively determining the position of a pipetting needle within an automated analyzer
US5512247A (en) * 1994-05-02 1996-04-30 Hoffmann-La Roche Inc. Apparatus for testing pipetting needle linearity in an automated analyzer
JPH08313535A (en) * 1995-05-24 1996-11-29 Nissho Corp Reagent container
JP3771380B2 (en) * 1998-08-31 2006-04-26 シスメックス株式会社 Liquid suction device
JP3660148B2 (en) * 1998-12-07 2005-06-15 株式会社日立製作所 Automatic analyzer
JP3908438B2 (en) * 2000-04-25 2007-04-25 大和製罐株式会社 Continuous pH measurement device for container contents
JP2002162403A (en) * 2000-11-22 2002-06-07 Hitachi Ltd Autoanalyzer
US8557359B2 (en) * 2006-04-12 2013-10-15 Abbott Laboratories Closure for container
JP2009180605A (en) * 2008-01-30 2009-08-13 Olympus Corp Dispensing device
CN102066949B (en) * 2008-06-17 2013-06-12 株式会社日立高新技术 Automatic analyzer
EP2193847A1 (en) * 2008-12-04 2010-06-09 EMBL (European Molecular Biology Laboratory) Coaxial needle and pipette device
JP5674440B2 (en) * 2010-12-01 2015-02-25 株式会社日立ハイテクノロジーズ Automatic analyzer

Also Published As

Publication number Publication date
JP2015057614A (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP5674440B2 (en) Automatic analyzer
JP5686744B2 (en) Automatic analyzer
JP5752545B2 (en) Automatic analyzer
JP6854292B2 (en) Automatic analyzer
WO2017033910A1 (en) Automatic analysis device, dispensing method, and liquid surface detection method
US6890761B2 (en) Automatic analyzer
JP2013064673A (en) Automatic analyzer
JP5899302B2 (en) Automatic analyzer
JP5210902B2 (en) Automatic analyzer and analysis method using automatic analyzer
JP2015175707A (en) Dispenser and analyzer including the same
JP3660148B2 (en) Automatic analyzer
JP6381917B2 (en) Automatic analyzer and reagent dispensing method
JP2008298493A (en) Autoanalyzer
JP6249653B2 (en) Automatic analyzer
JP7105577B2 (en) automatic analyzer
WO2023132156A1 (en) Automated analyzing device, and dispensing method
JPH04186165A (en) Sampling method
WO2022176556A1 (en) Automatic analysis device and method for suctioning sample in automatic analysis device
JPH0145870B2 (en)
CN112986590B (en) Sample analysis apparatus and control method thereof
JP2000346853A (en) Automatic analysis device using input signal discrimination circuit
JP2010181292A (en) Dispensing device, automatic analyzer, and maintenance method of the dispensing device
WO2024154417A1 (en) Automatic analysis device and gripping device
JP2885446B2 (en) Automatic analyzer
JP6449008B2 (en) Automatic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5899302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350