[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5895366B2 - Non-asbestos friction material composition - Google Patents

Non-asbestos friction material composition Download PDF

Info

Publication number
JP5895366B2
JP5895366B2 JP2011127571A JP2011127571A JP5895366B2 JP 5895366 B2 JP5895366 B2 JP 5895366B2 JP 2011127571 A JP2011127571 A JP 2011127571A JP 2011127571 A JP2011127571 A JP 2011127571A JP 5895366 B2 JP5895366 B2 JP 5895366B2
Authority
JP
Japan
Prior art keywords
friction material
titanate
material composition
copper
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011127571A
Other languages
Japanese (ja)
Other versions
JP2012255051A (en
Inventor
光朗 海野
光朗 海野
一也 馬場
一也 馬場
高史 菊留
高史 菊留
真理 光本
真理 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2011127571A priority Critical patent/JP5895366B2/en
Priority to US14/124,382 priority patent/US9470283B2/en
Priority to PCT/JP2012/064587 priority patent/WO2012169545A1/en
Publication of JP2012255051A publication Critical patent/JP2012255051A/en
Application granted granted Critical
Publication of JP5895366B2 publication Critical patent/JP5895366B2/en
Priority to US15/161,308 priority patent/US10316918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Braking Arrangements (AREA)

Description

本発明は、ノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材に関する。詳しくは、自動車等の制動に用いられるディスクブレーキパッドやブレーキライニング等の摩擦材に適しており、銅の含有量が少ないため環境に優しく、高温における耐摩耗性に優れ、かつメタルキャッチの生成が少ないノンアスベスト摩擦材組成物、さらに該ノンアスベスト摩擦材組成物を用いた摩擦材及び摩擦部材に関する。   The present invention relates to a non-asbestos friction material composition, a friction material using the same, and a friction member. Specifically, it is suitable for friction materials such as disc brake pads and brake linings used for braking in automobiles, etc., and has a low copper content, so it is environmentally friendly, has excellent wear resistance at high temperatures, and generates metal catches. The present invention relates to a small amount of non-asbestos friction material composition, and further relates to a friction material and a friction member using the non-asbestos friction material composition.

自動車等には、その制動のためにディスクブレーキパッドやブレーキライニング等の摩擦材が使用されている。摩擦材は、ディスクローターやブレーキドラム等の対面材と摩擦することにより、制動の役割を果たしている。そのため、摩擦材には、高い摩擦係数と摩擦係数の安定性が求められるだけでなく、低温から高温にかかる広いブレーキ使用温度域において、パッド寿命が長いこと(耐摩耗性)が要求される。   In automobiles and the like, friction materials such as disc brake pads and brake linings are used for braking. The friction material plays a role of braking by friction with facing materials such as a disk rotor and a brake drum. Therefore, the friction material is required not only to have a high coefficient of friction and stability of the coefficient of friction, but also to have a long pad life (wear resistance) in a wide brake operating temperature range from low temperature to high temperature.

また、高温のブレーキ使用温度域では、摩擦材表面にメタルキャッチと呼ばれる金属摩耗粉の塊が生成し、ディスクローター及び摩擦材の摩耗量の増大、並びにブレーキの鳴きが発生することがある。そこで、高温での耐摩耗性向上及びメタルキャッチの抑制のために、金属硫化物を配合することが提案されている(特許文献1参照)。   Further, in a high temperature range where the brake is used, metal wear powder lumps called metal catches are generated on the surface of the friction material, and the wear amount of the disk rotor and the friction material may increase, and the brake may squeal. Then, in order to improve wear resistance at high temperatures and suppress metal catches, it has been proposed to blend metal sulfides (see Patent Document 1).

一方、摩擦材には、結合材、繊維基材、無機充填材及び有機充填材等が含まれ、前記特性を発現させるために、一般的に、それぞれ1種もしくは2種以上を組み合わせたものが含まれる。繊維基材としては、有機繊維、金属繊維、無機繊維等が用いられ、耐摩耗性を向上させるために、金属繊維として銅及び銅合金の繊維が用いられている。また、摩擦材として、ノンアスベスト摩擦材が主流となっており、このノンアスベスト摩擦材には銅や銅合金等が多量に使用されている。   On the other hand, the friction material includes a binder, a fiber base material, an inorganic filler, an organic filler, and the like, and in general, a combination of one or two or more of them in order to develop the above characteristics. included. Organic fibers, metal fibers, inorganic fibers, and the like are used as the fiber base material, and copper and copper alloy fibers are used as the metal fibers in order to improve wear resistance. Further, as the friction material, non-asbestos friction material has become the mainstream, and copper, copper alloy, and the like are used in a large amount for this non-asbestos friction material.

しかし、銅や銅合金を含有する摩擦材は、制動時に生成する摩耗粉に銅を含み、河川、湖や海洋汚染等の原因となる可能性が示唆されているため、使用を制限する動きが高まっている。そこで、銅や銅合金等の金属を含有せず、酸化マグネシウムと黒鉛を摩擦材中に45〜80体積%含有し、酸化マグネシウムと黒鉛の比を1/1〜4/1とする方法が提案されている(特許文献2参照)。   However, friction materials containing copper and copper alloys contain copper in the wear powder generated during braking, and it has been suggested that it may cause river, lake and marine pollution. It is growing. Therefore, a method is proposed in which magnesium oxide and graphite are contained in a friction material in an amount of 45 to 80% by volume and the ratio of magnesium oxide and graphite is 1/1 to 4/1 without containing metal such as copper or copper alloy. (See Patent Document 2).

特開2003−313312号公報JP 2003-313312 A 特開2002−138273号公報JP 2002-138273 A

しかし、これまで開発されてきた銅及び銅合金の含有量が少ない摩擦材では、高温での耐摩耗性及びメタルキャッチの抑制を両立させることは困難であった。   However, it has been difficult to achieve both high-temperature wear resistance and suppression of metal catches with friction materials that have been developed so far with a low copper and copper alloy content.

そこで、本発明は、銅及び銅合金の含有量が少なくても、高温での耐摩耗性に優れ、かつメタルキャッチの生成が少ない摩擦材を与えることができるノンアスベスト摩擦材組成物、さらに該ノンアスベスト摩擦材組成物を用いた摩擦材及び摩擦部材を提供することを目的とする。   Accordingly, the present invention provides a non-asbestos friction material composition that can provide a friction material that is excellent in wear resistance at high temperatures and generates little metal catch even when the content of copper and copper alloy is small, and It aims at providing the friction material and friction member using a non-asbestos friction material composition.

本発明者らは、鋭意検討を重ねた結果、ノンアスベスト摩擦材組成物において、元素としての銅の含有量を一定以下とし、銅及び銅合金以外の金属繊維の含有量を一定以下とし、チタン酸塩を特定量含有し、さらに三硫化アンチモンを含有することで、上記課題を解決できることを見出し、本発明を完成した。
すなわち、本発明は、下記のとおりである。
As a result of intensive studies, the present inventors have determined that the content of copper as an element is not more than a certain level in a non-asbestos friction material composition, the content of metal fibers other than copper and copper alloys is not more than a certain value, and titanium. It has been found that the above-mentioned problems can be solved by containing a specific amount of an acid salt and further containing antimony trisulfide, and the present invention has been completed.
That is, the present invention is as follows.

1.結合材、有機充填材、無機充填材及び繊維基材を含む摩擦材組成物であって、該摩擦材組成物中の銅の含有量が銅元素として5質量%以下であり、銅及び銅合金以外の金属繊維の含有量が0.5質量%以下であり、チタン酸塩及び三硫化アンチモンを含有し、該チタン酸塩の含有量が10〜35質量%であるノンアスベスト摩擦材組成物。
2.前記チタン酸塩が、燐片状、板状又は柱状である上記1に記載のノンアスベスト摩擦材組成物。
3.前記チタン酸塩が、チタン酸リチウムカリウム又はチタン酸マグネシウムカリウムである上記1又は2に記載のノンアスベスト摩擦材組成物。
4.前記三硫化アンチモンの含有量が、1〜10質量%である上記1〜3のいずれかに記載のノンアスベスト摩擦材組成物。
5.上記1〜4のいずれかに記載のノンアスベスト摩擦材組成物を成形してなる摩擦材。
6.上記1〜4のいずれかに記載のノンアスベスト摩擦材組成物を成形してなる摩擦材と裏金とを用いて形成される摩擦部材。
1. A friction material composition comprising a binder, an organic filler, an inorganic filler, and a fiber base material, wherein the copper content in the friction material composition is 5% by mass or less as a copper element, and copper and a copper alloy A non-asbestos friction material composition containing 0.5% by mass or less of metal fibers other than the above, containing titanate and antimony trisulfide, and containing 10 to 35% by mass of the titanate.
2. 2. The non-asbestos friction material composition according to 1 above, wherein the titanate has a flake shape, a plate shape, or a column shape.
3. 3. The non-asbestos friction material composition according to 1 or 2 above, wherein the titanate is lithium potassium titanate or magnesium potassium titanate.
4). The non-asbestos friction material composition according to any one of 1 to 3, wherein the content of the antimony trisulfide is 1 to 10% by mass.
5. 5. A friction material formed by molding the non-asbestos friction material composition according to any one of 1 to 4 above.
6). 5. A friction member formed using a friction material formed by molding the non-asbestos friction material composition according to any one of 1 to 4 and a back metal.

本発明のノンアスベスト摩擦材組成物は、自動車用ディスクブレーキパッドやブレーキライニング等の摩擦材に用いた際に、制動時に生成する摩耗粉中の銅が少ないことから環境に優しく、高温での耐摩耗性に優れ、かつメタルキャッチを抑制することができる。また、本発明のノンアスベスト摩擦材組成物を用いることにより、上記特性を有する摩擦材及び摩擦部材を提供できる。   The non-asbestos friction material composition of the present invention is environmentally friendly because it has less copper in the wear powder produced during braking when used in friction materials such as automotive disc brake pads and brake linings. It is excellent in wear and can suppress metal catch. Moreover, the friction material and friction member which have the said characteristic can be provided by using the non-asbestos friction material composition of this invention.

以下、本発明のノンアスベスト摩擦材組成物、これを用いた摩擦材及び摩擦部材について詳述する。
[ノンアスベスト摩擦材組成物]
本発明のノンアスベスト摩擦材組成物は、結合材、有機充填材、無機充填材及び繊維基材を含む摩擦材組成物であって、該摩擦材組成物中の銅の含有量が銅元素として5質量%以下であり、銅及び銅合金以外の金属繊維の含有量が0.5質量%以下であり、チタン酸塩及び三硫化アンチモンを含有し、該チタン酸塩の含有量が10〜35質量%であることを特徴とする。
上記構成により、従来品と比較して制動時に生成する摩耗粉中の銅が少ないことから環境に優しく、高温での耐摩耗性に優れ、かつメタルキャッチを抑制できるという効果を発現することができる。
Hereinafter, the non-asbestos friction material composition of the present invention, the friction material using the same, and the friction member will be described in detail.
[Non-asbestos friction material composition]
The non-asbestos friction material composition of the present invention is a friction material composition including a binder, an organic filler, an inorganic filler, and a fiber base material, and the copper content in the friction material composition is as a copper element. 5 mass% or less, the content of metal fibers other than copper and copper alloys is 0.5 mass% or less, contains titanate and antimony trisulfide, and the content of titanate is 10 to 35 It is characterized by mass%.
Due to the above configuration, the amount of copper in the wear powder generated during braking is less than that of conventional products, so that it is environmentally friendly, has excellent wear resistance at high temperatures, and can suppress the metal catch. .

(結合材)
結合材は、摩擦材組成物に含まれる有機充填材、無機充填材及び繊維基材等を一体化し、強度を与えるものである。本発明のノンアスベスト摩擦材組成物に含まれる結合材としては特に制限はなく、通常、摩擦材の結合材として用いられる熱硬化性樹脂を用いることができる。
上記熱硬化性樹脂としては、例えば、フェノール樹脂;アクリルエラストマー分散フェノール樹脂及びシリコーンエラストマー分散フェノール樹脂等の各種エラストマー分散フェノール樹脂;アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、カシュー変性フェノール樹脂、エポキシ変性フェノール樹脂及びアルキルベンゼン変性フェノール樹脂等の各種変性フェノール樹脂等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用することができる。特に、良好な耐熱性、成形性及び摩擦係数を与えることから、フェノール樹脂、アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂を用いることが好ましい。
(Binder)
The binding material integrates the organic filler, the inorganic filler, the fiber base, and the like contained in the friction material composition to give strength. There is no restriction | limiting in particular as a binder contained in the non-asbestos friction material composition of this invention, Usually, the thermosetting resin used as a binder of a friction material can be used.
Examples of the thermosetting resin include phenol resins; various elastomer-dispersed phenol resins such as acrylic elastomer-dispersed phenol resins and silicone elastomer-dispersed phenol resins; acrylic-modified phenol resins, silicone-modified phenol resins, cashew-modified phenol resins, and epoxy-modified phenols. Various modified phenol resins such as resins and alkylbenzene-modified phenol resins can be used, and these can be used alone or in combination of two or more. In particular, it is preferable to use a phenol resin, an acrylic-modified phenol resin, a silicone-modified phenol resin, or an alkylbenzene-modified phenol resin because good heat resistance, moldability, and friction coefficient are given.

本発明のノンアスベスト摩擦材組成物における、結合材の含有量は、5〜20質量%であることが好ましく、5〜10質量%であることがより好ましい。結合材の含有量を5〜20質量%の範囲とすることで、摩擦材の強度低下をより抑制でき、また、摩擦材の気孔率が減少し、弾性率が高くなることによる鳴き等の音振性能悪化を抑制できる。   The content of the binder in the non-asbestos friction material composition of the present invention is preferably 5 to 20% by mass, and more preferably 5 to 10% by mass. By setting the content of the binder in the range of 5 to 20% by mass, it is possible to further suppress the strength reduction of the friction material, reduce the porosity of the friction material, and increase the elastic modulus. Vibration performance deterioration can be suppressed.

(有機充填材)
有機充填材は、摩擦材の音振性能や耐摩耗性等を向上させるための摩擦調整剤として含まれるものである。本発明のノンアスベスト摩擦材組成物に含まれる有機充填材としては、上記性能を発揮できるものであれば特に制限はなく、通常、有機充填材として用いられる、カシューダストやゴム成分等を用いることができる。
上記カシューダストは、カシューナッツシェルオイルを硬化させたものを粉砕して得られる、通常、摩擦材に用いられるものであればよい。
上記ゴム成分としては、例えば、タイヤゴム、アクリルゴム、イソプレンゴム、NBR(ニトリルブタジエンゴム)、SBR(スチレンブタジエンゴム)等が挙げられ、これらを単独で又は2種類以上を組み合わせて使用される。
また、カシューダストとゴム成分とを併用してもよく、カシューダストをゴム成分で被覆したものを用いてもよいが、音振性能の観点から、カシューダストとゴム成分とを併用することが好ましい。
(Organic filler)
The organic filler is included as a friction modifier for improving the sound vibration performance and wear resistance of the friction material. The organic filler contained in the non-asbestos friction material composition of the present invention is not particularly limited as long as it can exhibit the above performance, and usually uses cashew dust, a rubber component, etc., used as an organic filler. Can do.
The cashew dust is not particularly limited as long as it is obtained by pulverizing a hardened cashew nut shell oil and is usually used for a friction material.
Examples of the rubber component include tire rubber, acrylic rubber, isoprene rubber, NBR (nitrile butadiene rubber), SBR (styrene butadiene rubber) and the like, and these are used alone or in combination of two or more.
In addition, cashew dust and a rubber component may be used in combination, or cashew dust coated with a rubber component may be used, but from the viewpoint of sound vibration performance, it is preferable to use cashew dust and a rubber component in combination. .

本発明のノンアスベスト摩擦材組成物中における、有機充填材の含有量は、1〜20質量%であることが好ましく、1〜10質量%であることがより好ましく、3〜8質量%であることがさらに好ましい。有機充填材の含有量を1〜20質量%の範囲とすることで、摩擦材の弾性率が高くなることによる鳴き等の音振性能の悪化を避けることができ、また耐熱性の悪化、熱履歴による強度低下を避けることができる。また、カシューダストとゴム成分とを併用する場合、カシューダストとゴム成分とは、質量比で2:1〜10:1の割合であることが好ましく、3:1〜9:1であることがより好ましく、3:1〜8:1であることがさらに好ましい。   The content of the organic filler in the non-asbestos friction material composition of the present invention is preferably 1 to 20% by mass, more preferably 1 to 10% by mass, and 3 to 8% by mass. More preferably. By setting the content of the organic filler in the range of 1 to 20% by mass, it is possible to avoid deterioration of sound vibration performance such as squeal due to an increase in the elastic modulus of the friction material, deterioration of heat resistance, heat It is possible to avoid a decrease in strength due to history. Moreover, when using cashew dust and a rubber component together, it is preferable that cashew dust and a rubber component are the ratio of 2: 1-10: 1 by mass ratio, and it is 3: 1-9: 1. More preferably, it is 3: 1 to 8: 1.

(無機充填材)
無機充填材は、摩擦材の耐熱性の悪化を避けるための摩擦調整剤として含まれるものであり、本発明において無機充填剤としてチタン酸塩及び三硫化アンチモンを必須とする。
チタン酸塩としては、チタン酸カリウム、チタン酸リチウムカリウム、チタン酸マグネシウムカリウム等を用いることができる。チタン酸カリウムとしては、例えば、K2O・6TiO2、K2O・8TiO2等が挙げられる。チタン酸リチウムカリウムとしては、例えば、チタン源とリチウム源とカリウム源とを混合して製造したK0.3-0.7Li0.27Ti1.733.8-3.95で表される組成のものなどが挙げられる。チタン酸マグネシウムカリウムとしては、例えば、チタン源とマグネシウム源とカリウム源とを混合して製造したK0.2-0.7Mg0.4Ti1.63.7-3.95で表される組成のものなどが挙げられる。
これらは単独で又は2種類以上を組み合わせて使用することができる。中でも、高温での耐摩耗性をより向上させることから、チタン酸リチウムカリウム、チタン酸マグネシウムカリウムが好ましい。
(Inorganic filler)
The inorganic filler is included as a friction modifier for avoiding deterioration of the heat resistance of the friction material. In the present invention, titanate and antimony trisulfide are essential as the inorganic filler.
As the titanate, potassium titanate, lithium potassium titanate, magnesium potassium titanate, or the like can be used. Examples of potassium titanate include K 2 O · 6TiO 2 and K 2 O · 8TiO 2 . Examples of the lithium potassium titanate include those having a composition represented by K 0.3-0.7 Li 0.27 Ti 1.73 O 3.8-3.95 produced by mixing a titanium source, a lithium source, and a potassium source. The titanate magnesium potassium, for example, those having a composition represented by K 0.2-0.7 Mg 0.4 Ti 1.6 O 3.7-3.95 prepared by mixing a titanium source and a magnesium source and potassium source.
These can be used alone or in combination of two or more. Among these, lithium potassium titanate and magnesium potassium titanate are preferable because they further improve the wear resistance at high temperatures.

チタン酸塩の形状としては、繊維状、柱状、板状、粒子状又は鱗片状のものを用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。
チタン酸塩の形状は、例えば走査型電子顕微鏡(Scanning Electron Microscope;SEM)観察から解析することができる。
ここで、チタン酸塩の形状についての定義の一例を記載する。チタン酸塩に外接する直方体のうち最小の体積をもつ直方体(外接直方体)の最も長い辺を長径L、次に長い辺を短径B、最も短い辺を厚さTとして(B>Tとする)、チタン酸塩の形状をアスペクト比(L/T、L/B)で定義する。
繊維状のチタン酸塩とは、L/Tが10よりも大きく、L/Bが10よりも大きいチタン酸塩である。例えば、ティスモD、ティスモN(いずれも、大塚化学株式会社製)等が挙げられる。
柱状のチタン酸塩とは、L/T=2〜10、L/B=2〜10であるチタン酸塩である。TOFIX−S(東邦マテリアル株式会社製)などが挙げられる。
板状のチタン酸塩とは、L/Tが10よりも大きく、L/Bが10よりも小さいチタン酸塩である。例えば、TXAX−A、TXAX−MA、TXAX−KA、TXAX−CT(いずれも、株式会社クボタ製)等が挙げられる。
As the shape of the titanate, a fiber, a column, a plate, a particle or a scale can be used, and these can be used alone or in combination of two or more.
The shape of the titanate can be analyzed, for example, by observation with a scanning electron microscope (SEM).
Here, an example of the definition about the shape of titanate will be described. Of the rectangular parallelepipeds circumscribing the titanate, the longest side of the rectangular parallelepiped having the smallest volume (the circumscribed rectangular parallelepiped) is the major axis L, the next longest side is the minor axis B, and the shortest side is the thickness T (B> T). ), And the shape of titanate is defined by the aspect ratio (L / T, L / B).
The fibrous titanate is a titanate having an L / T larger than 10 and an L / B larger than 10. For example, Tismo D, Tismo N (both manufactured by Otsuka Chemical Co., Ltd.) and the like can be mentioned.
The columnar titanate is a titanate having L / T = 2 to 10 and L / B = 2 to 10. And TOFIX-S (manufactured by Toho Material Co., Ltd.).
The plate-like titanate is a titanate having L / T larger than 10 and L / B smaller than 10. For example, TXAX-A, TXAX-MA, TXAX-KA, TXAX-CT (all manufactured by Kubota Corporation) and the like can be mentioned.

粒子状のチタン酸塩とは、L/Tが10よりも小さく、L/Bが2よりも小さいチタン酸塩である。例えば、TOFIX−SGL(東邦マテリアル株式会社製)、GTX−C(株式会社クボタ製)等が挙げられる。
また、粒子状のチタン酸塩のうち、鱗のような薄板状の形状のものを鱗片状のチタン酸塩といい、例えば、テラセスPS、テラセスPM、テラセスL、テラセスTF−S(いずれも、大塚化学株式会社製)等が挙げられる。
上記形状の中でも、高温の耐摩耗性をより向上させるために、燐片状、柱状又は板状のものを用いることが好ましい。
また、平均粒子径が1〜50μm、比表面積が0.5〜10m2/gのものが好ましい。なお、平均粒子径はメジアン径で表され、メジアン径とは、レーザー回折法の体積分布から求めた50%径をいう。また、比表面積は吸着ガスとして窒素ガスを用いたBET法等により求めることができる。
The particulate titanate is a titanate having an L / T smaller than 10 and an L / B smaller than 2. For example, TOFIX-SGL (manufactured by Toho Material Co., Ltd.), GTX-C (manufactured by Kubota Co., Ltd.) and the like can be mentioned.
Further, among the particulate titanates, those having a thin plate shape such as a scale are referred to as scaly titanates. For example, Terraces PS, Terraces PM, Terraces L, Terraces TF-S (both are Otsuka Chemical Co., Ltd.).
Among the above shapes, in order to further improve the high temperature wear resistance, it is preferable to use a scaly, columnar, or plate-shaped one.
Moreover, an average particle diameter of 1-50 micrometers and a specific surface area of 0.5-10 m < 2 > / g are preferable. In addition, an average particle diameter is represented by a median diameter, and a median diameter means the 50% diameter calculated | required from the volume distribution of the laser diffraction method. The specific surface area can be determined by a BET method using nitrogen gas as an adsorption gas.

本発明のノンアスベスト摩擦材組成物におけるチタン酸塩の含有量は、高温での耐摩耗性の向上、及びメタルキャッチの抑制の観点から、10〜35質量%であり、13〜24質量%であることが好ましく、14〜20質量%であることがより好ましい。チタン酸塩の含有量が10質量%未満の場合、耐摩耗性が悪化し、メタルキャッチが生成しやすい傾向がある。また、含有量が35質量%を超える場合、耐摩耗性の悪化及び摩擦係数の低下、さらにメタルキャッチが生成しやすい傾向がある。   The content of titanate in the non-asbestos friction material composition of the present invention is 10 to 35% by mass and 13 to 24% by mass from the viewpoint of improvement of wear resistance at high temperature and suppression of metal catch. It is preferable that it is 14 to 20% by mass. When the content of titanate is less than 10% by mass, the wear resistance tends to deteriorate and metal catches tend to be generated. Moreover, when content exceeds 35 mass%, there exists a tendency for abrasion resistance to deteriorate, a friction coefficient to fall, and also a metal catch to be easy to produce | generate.

三硫化アンチモンとしては、摩擦調整材として一般的に用いられているものであれば特に制限することなく使用することができる。
本発明のノンアスベスト摩擦材組成物における三硫化アンチモンの含有量は、0.5〜12質量%であることが好ましく、1〜10質量%であることがより好ましく、1〜6質量であることがさらに好ましく、2〜5質量%であることが特に好ましい。三硫化アンチモンの含有量を0.5〜12質量%、好ましくは1〜10質量%とすることで優れた耐摩耗性を示し、メタルキャッチの生成を避けることができる。
Any antimony trisulfide can be used without particular limitation as long as it is generally used as a friction modifier.
The content of antimony trisulfide in the non-asbestos friction material composition of the present invention is preferably 0.5 to 12% by mass, more preferably 1 to 10% by mass, and 1 to 6% by mass. Is more preferable, and it is especially preferable that it is 2-5 mass%. By setting the content of antimony trisulfide to 0.5 to 12% by mass, preferably 1 to 10% by mass, excellent wear resistance is exhibited, and generation of a metal catch can be avoided.

本発明のノンアスベスト摩擦材組成物は、上記チタン酸塩及び三硫化アンチモン以外の無機充填材をさらに含有することができる。含有することができる無機充填剤としては、通常摩擦材に用いられるものであれば特に制限はない。
上記無機充填材としては、例えば、硫化錫、二硫化モリブデン、硫化鉄、硫化ビスマス、硫化亜鉛、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、ドロマイト、コークス、黒鉛、マイカ、酸化鉄、バーミキュライト、硫酸カルシウム、タルク、クレー、ゼオライト、ケイ酸ジルコニウム、酸化ジルコニウム、ムライト、クロマイト、酸化チタン、酸化マグネシウム、シリカ、酸化鉄、γ−アルミナ等の活性アルミナ等を用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。これらの中でも、対面材への攻撃性低下の観点から、黒鉛、硫酸バリウムを含有することが好ましく、摩擦係数向上の観点から、酸化ジルコニウムを含有することが好ましい。
The non-asbestos friction material composition of the present invention can further contain an inorganic filler other than the titanate and antimony trisulfide. The inorganic filler that can be contained is not particularly limited as long as it is normally used for a friction material.
Examples of the inorganic filler include tin sulfide, molybdenum disulfide, iron sulfide, bismuth sulfide, zinc sulfide, calcium hydroxide, calcium oxide, sodium carbonate, calcium carbonate, magnesium carbonate, barium sulfate, dolomite, coke, graphite, Use active alumina such as mica, iron oxide, vermiculite, calcium sulfate, talc, clay, zeolite, zirconium silicate, zirconium oxide, mullite, chromite, titanium oxide, magnesium oxide, silica, iron oxide, γ-alumina, etc. These can be used alone or in combination of two or more. Among these, it is preferable to contain graphite and barium sulfate from the viewpoint of reducing the aggressiveness to the facing material, and it is preferable to contain zirconium oxide from the viewpoint of improving the friction coefficient.

本発明のノンアスベスト摩擦材組成物における無機充填材の含有量は、30〜80質量%であることが好ましく、40〜80質量%であることがより好ましく、60〜80質量%であることがさらに好ましい。無機充填材の含有量を30〜80質量%の範囲とすることで、耐熱性の悪化を避けることができる。なお、上記無機充填材の含有量には、前記チタン酸塩及び三硫化アンチモンの含有量が含まれる。   The content of the inorganic filler in the non-asbestos friction material composition of the present invention is preferably 30 to 80% by mass, more preferably 40 to 80% by mass, and 60 to 80% by mass. Further preferred. By making content of an inorganic filler into the range of 30-80 mass%, deterioration of heat resistance can be avoided. In addition, content of the said inorganic filler contains content of the said titanate and antimony trisulfide.

(繊維基材)
繊維基材は、摩擦材において補強作用を示すものである。
本発明のノンアスベスト摩擦材組成物に含まれる繊維基材としては、通常、繊維基材として用いられる、無機繊維、金属繊維、有機繊維、炭素系繊維等を用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。なお、ここでいう繊維基材には上述したチタン酸塩の繊維状のものは含まれない。
(Fiber substrate)
The fiber base material exhibits a reinforcing action in the friction material.
As the fiber base material contained in the non-asbestos friction material composition of the present invention, inorganic fibers, metal fibers, organic fibers, carbon fibers, etc., which are usually used as fiber base materials, can be used alone. Alternatively, two or more types can be used in combination. In addition, the fibrous base material here does not include the above-described fibrous form of titanate.

上記無機繊維としては、セラミック繊維、生分解性セラミック繊維、鉱物繊維、ガラス繊維、シリケート繊維等を用いることができ、1種又は2種以上を組み合わせて用いることができる。
なお、ここでいう鉱物繊維とは、スラグウール等の高炉スラグ、バサルトファイバー等の玄武岩、その他の天然岩石等を主成分として溶融紡糸した人造無機繊維であり、Al元素を含む天然鉱物であることがより好ましい。具体的には、SiO2、Al23、CaO、MgO、FeO、Na2O等が含まれるもの、又はこれら化合物が1種又は2種以上含有されるものを用いることができ、より好ましくはこれらのうちAl元素を含むものが、鉱物繊維として用いることができる。摩擦材組成物中に含まれる鉱物繊維全体の平均繊維長が大きくなるほど摩擦組成物中の各成分との接着強度が低下する傾向があるため、鉱物繊維全体の平均繊維長は500μm以下が好ましく、より好ましくは100〜400μmである。ここで、平均繊維長とは、該当する全ての繊維の長さの平均値を示した数平均繊維長のことをいう。例えば200μmの平均繊維長とは、摩擦材組成物原料として用いる鉱物繊維を無作為に50個選択し、光学顕微鏡で繊維長を測定し、その平均値が200μmであることを示す。
As said inorganic fiber, a ceramic fiber, a biodegradable ceramic fiber, a mineral fiber, glass fiber, a silicate fiber etc. can be used, It can use 1 type or in combination of 2 or more types.
The mineral fiber referred to here is a man-made inorganic fiber melt-spun mainly composed of blast furnace slag such as slag wool, basalt such as basalt fiber, and other natural rocks, and is a natural mineral containing Al element. Is more preferable. Specifically, those containing SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na 2 O, etc., or those containing one or more of these compounds can be used, more preferably. Of these, those containing Al element can be used as mineral fibers. Since the adhesive strength with each component in the friction composition tends to decrease as the average fiber length of the entire mineral fiber contained in the friction material composition increases, the average fiber length of the entire mineral fiber is preferably 500 μm or less, More preferably, it is 100-400 micrometers. Here, the average fiber length refers to a number average fiber length indicating an average value of the lengths of all corresponding fibers. For example, the average fiber length of 200 μm indicates that 50 mineral fibers used as a friction material composition raw material are randomly selected, the fiber length is measured with an optical microscope, and the average value is 200 μm.

本発明で用いられる鉱物繊維は、人体有害性の観点で生体溶解性であることが好ましい。ここでいう生体溶解性の鉱物繊維とは、人体内に取り込まれた場合でも短時間で一部分解され体外に排出される特徴を有する鉱物繊維である。具体的には、化学組成がアルカリ酸化物、アルカリ土類酸化物総量(ナトリウム、カリウム、カルシウム、マグネシウム、バリウムの酸化物の総量)が18質量%以上で、かつ呼吸による短期バイオ永続試験で、20μm以上の繊維の質量半減期が40日以内又は腹膜内試験で過度の発癌性の証拠がないか又は長期呼吸試験で関連の病原性や腫瘍発生がないことを満たす繊維を示す(EU指令97/69/ECのNota Q(発癌性適用除外))。このような生体分解性鉱物繊維としては、SiO2−Al23−CaO−MgO−FeO−Na2O系繊維等が挙げられ、SiO2、Al23、CaO、MgO、FeO、Na2O等を任意の組み合わせで含有した繊維が挙げられる。市販品としてはLAPINUS FIBERS B.V製のRoxulシリーズなどが挙げられる。「Roxul」は、SiO2、Al23、CaO、MgO、FeO、Na2O等が含まれる。 The mineral fiber used in the present invention is preferably biosoluble from the viewpoint of human harm. The term “biosoluble mineral fiber” as used herein refers to a mineral fiber having a characteristic that even if it is taken into the human body, it is partially decomposed and discharged outside the body in a short time. Specifically, the chemical composition is alkali oxide, alkaline earth oxide total amount (total amount of oxides of sodium, potassium, calcium, magnesium, barium) is 18% by mass or more, and in a short-term biopermanent test by respiration, A fiber that has a mass half-life of 20 μm or more within 40 days or no evidence of excessive carcinogenicity in an intraperitoneal test or that has no associated pathogenicity or tumor development in a long-term respiratory test (EU Directive 97 / 69 / EC Nota Q (carcinogenic exclusion)). Examples of such biodegradable mineral fibers include SiO 2 —Al 2 O 3 —CaO—MgO—FeO—Na 2 O fibers and the like, and include SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na. Examples thereof include fibers containing 2 O or the like in any combination. As a commercial item, LAPINUS FIBERS B.M. For example, V Roxul series. “Roxul” includes SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na 2 O and the like.

上記金属繊維としては、耐クラック性や耐摩耗性の向上のため、銅又は銅合金の繊維を用いることができる。ただし、銅又は銅合金の繊維を含有させる場合、環境への優しさを考慮すると、該摩擦材組成物中における銅全体の含有量は、銅元素として5質量%以下の範囲であることを要する。
銅又は銅合金の繊維としては、銅繊維、黄銅繊維、青銅繊維等を用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。
As the metal fibers, copper or copper alloy fibers can be used to improve crack resistance and wear resistance. However, when the copper or copper alloy fiber is contained, considering the environmental friendliness, the total content of copper in the friction material composition needs to be in the range of 5% by mass or less as the copper element. .
As the fiber of copper or copper alloy, copper fiber, brass fiber, bronze fiber, or the like can be used, and these can be used alone or in combination of two or more.

また、上記金属繊維として、摩擦係数向上、耐クラック性の観点から銅及び銅合金以外の金属繊維を用いてもよいが、耐摩耗性の向上及びメタルキャッチの抑制の観点から含有量が0.5質量%以下であることを要する。好ましくは、摩擦係数の向上の割には耐摩耗性の悪化及びメタルキャッチの発生がしやすいため、銅及び銅合金以外の金属繊維を含有しないこと(含有量0質量%)である。
銅及び銅合金以外の金属繊維としては、例えば、アルミニウム、鉄、亜鉛、錫、チタン、ニッケル、マグネシウム、シリコン等の金属単体又は合金形態の繊維や、鋳鉄繊維等の金属を主成分とする繊維が挙げられ、これらを単独で又は2種類以上を組み合わせて使用することができる。
Moreover, as said metal fiber, you may use metal fibers other than copper and a copper alloy from a viewpoint of friction coefficient improvement and crack resistance, but content is 0. from a viewpoint of improvement of wear resistance and suppression of a metal catch. It needs to be 5% by mass or less. Preferably, the wear resistance is deteriorated and metal catches are easily generated for the improvement of the friction coefficient, and therefore metal fibers other than copper and copper alloy are not contained (content 0 mass%).
Examples of metal fibers other than copper and copper alloys include, for example, fibers in the form of single metals or alloys such as aluminum, iron, zinc, tin, titanium, nickel, magnesium, and silicon, and fibers mainly composed of metals such as cast iron fibers. These can be used alone or in combination of two or more.

上記有機繊維としては、アラミド繊維、セルロース繊維、アクリル繊維、フェノール樹脂繊維(架橋構造を有する)等を用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができ、耐摩耗性の観点からアラミド繊維を用いることが好ましい。
上記炭素系繊維としては、耐炎化繊維、ピッチ系炭素繊維、PAN系炭素繊維、活性炭繊維等を用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。
As the organic fiber, an aramid fiber, a cellulose fiber, an acrylic fiber, a phenol resin fiber (having a cross-linked structure) and the like can be used, and these can be used alone or in combination of two or more, and have an abrasion resistance. From the viewpoint of properties, it is preferable to use an aramid fiber.
As the carbon-based fiber, flame-resistant fiber, pitch-based carbon fiber, PAN-based carbon fiber, activated carbon fiber, or the like can be used, and these can be used alone or in combination of two or more.

本発明のノンアスベスト摩擦材組成物中における繊維基材の含有量は、5〜40質量%であることが好ましく、5〜20質量%であることがより好ましく、5〜18質量%であることがさらに好ましい。繊維基材の含有量を5〜40質量%の範囲とすることで、摩擦材としての最適な気孔率が得られ、鳴き防止ができ、適正な材料強度が得られ、耐摩耗性を発現し、成形性をよくすることができる。なお、上記繊維基材の含有量には、銅又は銅合金の金属繊維の含有量が含まれる。   The content of the fiber base material in the non-asbestos friction material composition of the present invention is preferably 5 to 40% by mass, more preferably 5 to 20% by mass, and 5 to 18% by mass. Is more preferable. By setting the content of the fiber base in the range of 5 to 40% by mass, an optimum porosity as a friction material can be obtained, squeal can be prevented, an appropriate material strength can be obtained, and wear resistance can be exhibited. The moldability can be improved. In addition, content of the metal fiber of copper or a copper alloy is contained in content of the said fiber base material.

(その他の材料)
本発明のノンアスベスト摩擦材組成物は、前記の結合材、有機充填材、無機充填材、繊維基材以外に、必要に応じてその他の材料を配合することができる。
例えば、本発明のノンアスベスト摩擦材組成物中における、銅全体の含有量が、銅元素として5質量%以下となる範囲で、銅粉、黄銅粉、青銅粉等の金属粉末等を配合することができる。また、耐摩耗性の観点から、PTFE(ポリテトラフルオロエチレン)等のフッ素系ポリマー等の有機添加剤等を配合することができる。
(Other materials)
The non-asbestos friction material composition of this invention can mix | blend other materials as needed other than the said binder, an organic filler, an inorganic filler, and a fiber base material.
For example, in the non-asbestos friction material composition of the present invention, the total copper content is 5% by mass or less as a copper element, and metal powder such as copper powder, brass powder, bronze powder, etc. is blended. Can do. In addition, from the viewpoint of wear resistance, an organic additive such as a fluorine-based polymer such as PTFE (polytetrafluoroethylene) can be blended.

[摩擦材及び摩擦部材]
また、本発明は、上述のノンアスベスト摩擦材組成物を用いた摩擦材及び摩擦部材を提供する。
本発明のノンアスベスト摩擦材組成物は、これを成形することにより、自動車等のディスクブレーキパッドやブレーキライニング等の摩擦材として使用することができる。本発明の摩擦材は高温での耐摩耗性及びメタルキャッチ制御に優れるため、制動時に負荷の大きいディスクブレーキパッドの摩擦材に好適である。
さらに、上記摩擦材を用いることにより、該摩擦材を摩擦面となるように形成した摩擦部材を得ることができる。摩擦材を用いて形成することができる摩擦部材としては、例えば、下記の構成等が挙げられる。
[Friction material and friction member]
The present invention also provides a friction material and a friction member using the above-described non-asbestos friction material composition.
The non-asbestos friction material composition of the present invention can be used as a friction material for disc brake pads and brake linings of automobiles and the like by molding the composition. Since the friction material of the present invention is excellent in wear resistance at high temperatures and metal catch control, it is suitable for a friction material of a disc brake pad having a large load during braking.
Furthermore, by using the friction material, it is possible to obtain a friction member in which the friction material is formed to be a friction surface. Examples of the friction member that can be formed using the friction material include the following configurations.

(1)摩擦材のみの構成。
(2)裏金と、該裏金の上に摩擦面となる本発明の摩擦材組成物からなる摩擦材とを有する構成。
(3)上記(2)の構成において、裏金と摩擦材との間に、裏金の接着効果を高めるための表面改質を目的としたプライマー層、及び、裏金と摩擦材との接着を目的とした接着層をさらに介在させた構成。
上記裏金は、摩擦部材の機械的強度の向上のために、通常、摩擦部材として用いるものであり、材質としては、金属または繊維強化プラスチック等を用いることができ、例えば、鉄、ステンレス、無機繊維強化プラスチック、炭素繊維強化プラスチック等が挙げられる。プライマー層及び接着層としては、通常、ブレーキシュー等の摩擦部材に用いられるものであればよい。
(1) Configuration of friction material only.
(2) The structure which has a back metal and the friction material which consists of a friction material composition of this invention used as a friction surface on this back metal.
(3) In the configuration of (2) above, between the back metal and the friction material, a primer layer for the purpose of surface modification for enhancing the adhesion effect of the back metal, and for the purpose of bonding the back metal and the friction material A configuration in which an adhesive layer is further interposed.
The backing metal is usually used as a friction member in order to improve the mechanical strength of the friction member. As the material, metal or fiber reinforced plastic can be used. For example, iron, stainless steel, inorganic fiber Examples thereof include reinforced plastic and carbon fiber reinforced plastic. The primer layer and the adhesive layer may be those used for friction members such as brake shoes.

本発明の摩擦材は、一般に使用されている方法を用いて製造することができ、本発明のノンアスベスト摩擦材組成物を成形して、好ましくは加熱加圧成形して製造される。
具体的には、本発明のノンアスベスト摩擦材組成物を、レディーゲミキサー、加圧ニーダー、アイリッヒミキサー等の混合機を用いて均一に混合し、この混合物を成形金型にて予備成形し、得られた予備成形物を成形温度130℃〜160℃、成形圧力20〜50MPaの条件で2〜10分間で成形し、得られた成形物を150〜250℃で2〜10時間熱処理する。必要に応じて塗装、スコーチ処理、研磨処理を行うことによって摩擦材を製造することができる。
The friction material of the present invention can be produced by a generally used method, and is produced by molding the non-asbestos friction material composition of the present invention, preferably by hot pressing.
Specifically, the non-asbestos friction material composition of the present invention is uniformly mixed using a mixer such as a Readyge mixer, a pressure kneader, or an Eirich mixer, and this mixture is preformed in a molding die. The obtained preform is molded for 2 to 10 minutes under the conditions of a molding temperature of 130 ° C. to 160 ° C. and a molding pressure of 20 to 50 MPa, and the obtained molded product is heat-treated at 150 to 250 ° C. for 2 to 10 hours. A friction material can be manufactured by performing coating, scorch treatment, and polishing treatment as necessary.

本発明のノンアスベスト摩擦材組成物は、高温での耐摩耗性やメタルキャッチ抑制などに優れるため、ディスクブレーキパッドやブレーキライニング等の摩擦部材の「上張り材」として有用であり、さらに摩擦部材の「下張り材」として成形して用いることもできる。
なお、「上張り材」とは、摩擦部材の摩擦面となる摩擦材であり、「下張り材」とは、摩擦部材の摩擦面となる摩擦材と裏金との間に介在する、摩擦材と裏金との接着部付近の剪断強度、耐クラック性向上を目的とした層のことである。
Since the non-asbestos friction material composition of the present invention is excellent in wear resistance at high temperatures and suppression of metal catch, it is useful as a “upholstery material” for friction members such as disc brake pads and brake linings. It can also be molded and used as an “underlaying material”.
The “upper material” is a friction material that becomes the friction surface of the friction member, and the “underlay material” is a friction material that is interposed between the friction material that becomes the friction surface of the friction member and the back metal. It is a layer for the purpose of improving the shear strength and crack resistance in the vicinity of the adhesion part with the back metal.

本発明を実施例によりさらに詳細に説明するが、本発明によって何ら制限を受けるものではない。
なお、実施例及び比較例に示す評価は次のように行った。
The present invention will be described in more detail by way of examples, but is not limited by the present invention.
In addition, evaluation shown to an Example and a comparative example was performed as follows.

(1)高温での耐摩耗性の評価
耐摩耗性は、制動前ブレーキ温度500℃、制動前速度60km/h、減速度0.3Gで1000回制動を行い、試験前後の摩擦材厚みから、摩擦材の摩耗量を算出した。
(2)メタルキャッチ生成の評価
メタルキャッチ生成の評価では、制動前速度60km/h、制動条件1.96m/s2、2.94m/s2、3.92m/s2でそれぞれ2回ずつ、制動前温度を50℃から300℃まで50℃間隔で昇温する計36回の制動を行った後、250℃から50℃まで50℃間隔で降温し、かつ上記同様の制動条件による計30回の制動を行った。試験完了後、摩擦材摺動面に生成したメタルキャッチの大きさと数を、以下の基準で評価した。
A:メタルキャッチの生成無し
B:長径2mm未満のメタルキャッチが1個〜2個生成
C:長径2mm未満のメタルキャッチが3個以上生成
D:長径2mm以上のメタルキャッチが1個以上生成
(3)摩擦係数の評価
摩擦係数は、自動車技術会規格JASO C406に基づき測定し、第2効力試験における摩擦係数の平均値を算出した。
(1) Evaluation of wear resistance at high temperature Wear resistance is determined by braking 1000 times at a brake temperature before braking of 500 ° C., a speed before braking of 60 km / h, and a deceleration of 0.3 G. From the thickness of the friction material before and after the test, The wear amount of the friction material was calculated.
(2) Evaluation of metal catch generation In the evaluation of metal catch generation, the speed before braking is 60 km / h, the braking conditions are 1.96 m / s 2 , 2.94 m / s 2 , 3.92 m / s 2 , twice each. After braking a total of 36 times to increase the temperature before braking from 50 ° C. to 300 ° C. at intervals of 50 ° C., the temperature is decreased from 250 ° C. to 50 ° C. at intervals of 50 ° C., and a total of 30 times under the same braking conditions as above Brake was performed. After the test was completed, the size and number of metal catches generated on the friction material sliding surface were evaluated according to the following criteria.
A: No generation of metal catch B: 1 to 2 metal catches with a major axis of less than 2 mm C: Three or more metal catches with a major axis of less than 2 mm D: One or more metal catches with a major axis of 2 mm or more (3 ) Evaluation of friction coefficient The friction coefficient was measured based on the Japan Society of Automotive Engineers standard JASO C406, and the average value of the friction coefficient in the second efficacy test was calculated.

なお、上記耐摩耗性の評価、メタルキャッチ生成及び摩擦係数の評価は、ダイナモメータを用い、イナーシャ7kgf・m・s2で評価を行った。また、ベンチレーテッドディスクロータ(株式会社キリウ製、材質FC190)、一般的なピンスライド式のコレットタイプのキャリパを用いて実施した。 The wear resistance, metal catch generation and friction coefficient were evaluated using a dynamometer at an inertia of 7 kgf · m · s 2 . Further, a ventilated disc rotor (manufactured by Kiriu Co., Ltd., material FC190) and a general pin slide type collet type caliper were used.

[実施例1〜12及び比較例1〜5]
ディスクブレーキパッドの作製
表1に示す配合比率に従って材料を配合し、実施例及び比較例の摩擦材組成物を得た。なお、表1の各成分の配合量の単位は、摩擦材組成物中の質量%である。
この摩擦材組成物をレディーゲミキサー(株式会社マツボー社製、商品名:レディーゲミキサーM20)で混合し、この混合物を成形プレス(王子機械工業株式会社製)で予備成形し、得られた予備成形物を成形温度145℃、成形圧力30MPaの条件で5分間成形プレス(三起精工株式会社製)を用いて日立オートモティブシステムズ株式会社製の裏金と共に加熱加圧成形し、得られた成形品を200℃で4.5時間熱処理し、ロータリー研磨機を用いて研磨し、500℃のスコーチ処理を行って、ディスクブレーキパッド(摩擦材の厚さ11mm、摩擦材投影面積52cm2)を得た。
作製したディスクブレーキパッドについて、前記の評価を行った結果を表1に示す。
[Examples 1 to 12 and Comparative Examples 1 to 5]
Preparation of Disc Brake Pads Materials were blended according to the blending ratio shown in Table 1, and friction material compositions of Examples and Comparative Examples were obtained. In addition, the unit of the compounding quantity of each component of Table 1 is the mass% in a friction material composition.
This friction material composition was mixed with a ladyge mixer (manufactured by Matsubo Co., Ltd., trade name: ladyge mixer M20), and this mixture was preformed with a molding press (manufactured by Oji Kikai Kogyo Co., Ltd.). The molded product was heated and pressure-molded with a backing metal manufactured by Hitachi Automotive Systems, Ltd. using a molding press (manufactured by Sanki Seiko Co., Ltd.) for 5 minutes at a molding temperature of 145 ° C. and a molding pressure of 30 MPa. It heat-processed at 200 degreeC for 4.5 hours, grind | polished using the rotary grinder, and performed the scorch process of 500 degreeC, and obtained the disk brake pad (thickness of friction material 11mm, friction material projected area 52cm < 2 >).
Table 1 shows the results of the above evaluations on the manufactured disc brake pads.

なお、実施例及び比較例において使用した各種材料は次のとおりである。
(結合材)
・フェノール樹脂:日立化成工業株式会社製(商品名:HP491UP)
(有機充填剤)
・カシューダスト:東北化工株式会社製(商品名:FF−1090)
(無機充填剤)
・チタン酸塩1:大塚化学株式会社製 (商品名:テラセスL)
成分:チタン酸リチウムカリウム、形状:燐片状
メジアン径:25μm、比表面積:0.6m2/g
・チタン酸塩2:大塚化学株式会社製 (商品名:テラセスPS)
成分:チタン酸マグネシウムカリウム、形状:燐片状
メジアン径:4μm、比表面積:2.5m2/g
・チタン酸塩3:大塚化学株式会社製 (商品名:テラセスTF−S)
成分:チタン酸カリウム、形状:燐片状
メジアン径:7μm、比表面積:3.5m2/g
・チタン酸塩4:株式会社クボタ製 (商品名:TXAX−MA)
成分:チタン酸カリウム、形状:板状
比表面積:1.5m2/g
・チタン酸塩5:東邦マテリアル株式会社製 (商品名:TOFIX−S)
成分:チタン酸カリウム、形状:柱状
メジアン径:6μm、比表面積:0.9m2/g
・チタン酸塩6:大塚化学株式会社製 (商品名:ティスモD)
成分:チタン酸カリウム、形状:繊維状
比表面積:7.0m2/g
・黒鉛:TIMCAL社製(商品名:KS75)
・三硫化アンチモン:日本精鉱株式会社製(商品名:P3)
(繊維基材)
・アラミド繊維(有機繊維):東レ・デュポン株式会社製(商品名:1F538)
・鉄繊維(金属繊維):GMT社製(商品名:#0)
・銅繊維(金属繊維):Sunny Metal社製(商品名:SCA−1070)
・鉱物繊維(無機繊維):LAPINUS FIBERS B.V製(商品名:RB240 Roxul 1000、平均繊維長300μm)
The various materials used in the examples and comparative examples are as follows.
(Binder)
・ Phenolic resin: manufactured by Hitachi Chemical Co., Ltd. (trade name: HP491UP)
(Organic filler)
・ Cashew dust: Tohoku Kako Co., Ltd. (trade name: FF-1090)
(Inorganic filler)
・ Titanate 1: Otsuka Chemical Co., Ltd. (trade name: Terrases L)
Ingredients: Lithium potassium titanate, shape: flake shaped
Median diameter: 25 μm, specific surface area: 0.6 m 2 / g
・ Titanate 2: Otsuka Chemical Co., Ltd. (trade name: Terrases PS)
Ingredients: Magnesium potassium titanate, shape: flake shaped
Median diameter: 4 μm, specific surface area: 2.5 m 2 / g
・ Titanate 3: manufactured by Otsuka Chemical Co., Ltd. (trade name: Terrases TF-S)
Ingredients: Potassium titanate, shape: flake
Median diameter: 7 μm, specific surface area: 3.5 m 2 / g
・ Titanate 4: Made by Kubota Corporation (trade name: TXAX-MA)
Ingredient: Potassium titanate, Shape: Plate
Specific surface area: 1.5 m 2 / g
・ Titanate 5: manufactured by Toho Material Co., Ltd. (trade name: TOFIX-S)
Ingredients: Potassium titanate, Shape: Columnar
Median diameter: 6 μm, specific surface area: 0.9 m 2 / g
・ Titanate 6: Otsuka Chemical Co., Ltd. (trade name: Tismo D)
Ingredient: Potassium titanate, Shape: Fibrous
Specific surface area: 7.0 m 2 / g
・ Graphite: manufactured by TIMCAL (trade name: KS75)
-Antimony trisulfide: manufactured by Nippon Seiko Co., Ltd. (trade name: P3)
(Fiber substrate)
・ Aramid fiber (organic fiber): manufactured by Toray DuPont Co., Ltd. (trade name: 1F538)
・ Iron fiber (metal fiber): manufactured by GMT (trade name: # 0)
Copper fiber (metal fiber): manufactured by Sunny Metal (trade name: SCA-1070)
Mineral fiber (inorganic fiber): LAPINUS FIBERS B. Product made in V (trade name: RB240 Roxul 1000, average fiber length 300 μm)

Figure 0005895366
Figure 0005895366

実施例1〜12は500℃での摩擦材摩耗量が少なく、優れた耐摩耗性を示し、メタルキャッチを抑制することができ、かつ高い摩擦係数を発現した。三硫化アンチモンを含有しない比較例1及び2、チタン酸塩の含有量が10質量%より少ない比較例3、チタン酸塩の含有量が35質量%より多い比較例4、並びに鉄繊維を1質量%含有する比較例5では、十分な耐摩耗性が得られず、またメタルキャッチの抑制をすることができなかった。   Examples 1 to 12 exhibited a low friction material wear amount at 500 ° C., showed excellent wear resistance, were able to suppress metal catches, and exhibited a high coefficient of friction. Comparative Examples 1 and 2 not containing antimony trisulfide, Comparative Example 3 having a titanate content of less than 10% by mass, Comparative Example 4 having a titanate content of more than 35% by mass, and 1 mass of iron fiber In Comparative Example 5 containing 5%, sufficient wear resistance was not obtained, and metal catch could not be suppressed.

本発明のノンアスベスト摩擦材組成物は、従来品と比較して制動時に生成する摩耗粉中の銅が少ないことから環境に優しく、高温での耐摩耗性に優れ、かつ、メタルキャッチ生成を抑制できるため、自動車のディスクブレーキパッドやブレーキライニングなどの摩擦材及び摩擦部材に有用である。   The non-asbestos friction material composition of the present invention is environmentally friendly, has excellent wear resistance at high temperatures, and suppresses the formation of metal catches because there is less copper in the wear powder generated during braking compared to conventional products. Therefore, it is useful for friction materials and friction members such as disc brake pads and brake linings of automobiles.

Claims (4)

結合材、有機充填材、無機充填材及び繊維基材を含む摩擦材組成物であって、該摩擦材組成物中の銅の含有量が銅元素として5質量%以下であり、銅及び銅合金以外の金属繊維の含有量が0.5質量%以下であり、チタン酸塩及び三硫化アンチモンを含有し、該チタン酸塩が、チタン酸リチウムカリウム又はチタン酸マグネシウムカリウムであり、該チタン酸塩の含有量が14〜20質量%であり、該三硫化アンチモンの含有量が2〜6質量%であり、銅又は銅合金の繊維を含有する、ノンアスベスト摩擦材組成物。 A friction material composition comprising a binder, an organic filler, an inorganic filler, and a fiber base material, wherein the copper content in the friction material composition is 5% by mass or less as a copper element, and copper and a copper alloy The content of the metal fiber other than is 0.5% by mass or less, contains titanate and antimony trisulfide, and the titanate is lithium potassium titanate or magnesium potassium titanate, and the titanate content is 14 to 20 wt%, the three content antimony sulfide is Ri 2-6% by mass, containing fibers of copper or a copper alloy, non-asbestos friction material composition. 前記チタン酸塩が、燐片状、板状又は柱状である請求項1に記載のノンアスベスト摩擦材組成物。   The non-asbestos friction material composition according to claim 1, wherein the titanate has a flake shape, a plate shape, or a column shape. 請求項1又は2に記載のノンアスベスト摩擦材組成物を成形してなる摩擦材。 Friction material made by molding the non-asbestos friction material composition according to claim 1 or 2. 請求項1又は2に記載のノンアスベスト摩擦材組成物を成形してなる摩擦材と裏金とを用いて形成される摩擦部材。 The friction member formed using the friction material formed by shape | molding the non-asbestos friction material composition of Claim 1 or 2 , and a back metal.
JP2011127571A 2011-06-07 2011-06-07 Non-asbestos friction material composition Expired - Fee Related JP5895366B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011127571A JP5895366B2 (en) 2011-06-07 2011-06-07 Non-asbestos friction material composition
US14/124,382 US9470283B2 (en) 2011-06-07 2012-06-06 Non-asbestos friction material composition
PCT/JP2012/064587 WO2012169545A1 (en) 2011-06-07 2012-06-06 Non-asbestos friction material composition
US15/161,308 US10316918B2 (en) 2011-06-07 2016-05-23 Non-asbestos friction material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011127571A JP5895366B2 (en) 2011-06-07 2011-06-07 Non-asbestos friction material composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015159814A Division JP5958623B2 (en) 2015-08-13 2015-08-13 Non-asbestos friction material composition

Publications (2)

Publication Number Publication Date
JP2012255051A JP2012255051A (en) 2012-12-27
JP5895366B2 true JP5895366B2 (en) 2016-03-30

Family

ID=47526917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011127571A Expired - Fee Related JP5895366B2 (en) 2011-06-07 2011-06-07 Non-asbestos friction material composition

Country Status (1)

Country Link
JP (1) JP5895366B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6211282B2 (en) 2013-03-27 2017-10-11 大塚化学株式会社 Resin composition, friction material, and production method thereof
JP6290598B2 (en) 2013-11-12 2018-03-07 曙ブレーキ工業株式会社 Friction material composition and friction material
JP6425894B2 (en) * 2014-02-10 2018-11-21 日本ブレーキ工業株式会社 Friction material composition, friction material using friction material composition and friction member
WO2016013078A1 (en) * 2014-07-24 2016-01-28 日清紡ブレーキ株式会社 Friction material
JP6425333B2 (en) * 2014-08-22 2018-11-21 日立オートモティブシステムズ株式会社 Brake friction material
JP2020029490A (en) * 2018-08-21 2020-02-27 大塚化学株式会社 Friction material composition, friction material, and friction member
JP6629412B2 (en) * 2018-10-23 2020-01-15 日本ブレーキ工業株式会社 Friction material composition, friction material using friction material composition, and friction member
JP6629411B2 (en) * 2018-10-23 2020-01-15 日本ブレーキ工業株式会社 Friction material composition, friction material using friction material composition, and friction member

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2602369B2 (en) * 1991-03-18 1997-04-23 株式会社クボタ Heat resistant friction material
JPH0826303B2 (en) * 1991-04-02 1996-03-13 アイシン化工株式会社 Friction material
JPH06306185A (en) * 1993-04-22 1994-11-01 Aisin Chem Co Ltd Friction material
JPH08128480A (en) * 1994-10-28 1996-05-21 Toyota Motor Corp Frictional member
JPH08291223A (en) * 1995-04-24 1996-11-05 Aisin Chem Co Ltd Frictional material
JPH09144792A (en) * 1995-11-24 1997-06-03 Aisin Chem Co Ltd Friction material
JP4246813B2 (en) * 1998-05-18 2009-04-02 日産自動車株式会社 Non-asbestos disc brake pads for automobiles
JP2000154371A (en) * 1998-11-20 2000-06-06 Hitachi Chem Co Ltd Non-asbestos disc brake pad for automobile
JP3027577B1 (en) * 1999-02-09 2000-04-04 大塚化学株式会社 Friction material
BR0112812B1 (en) * 2000-07-31 2010-11-03 lepidocrocitic potassium and magnesium titanate, process to manufacture it, friction controlling agent and friction material.
JP2002097451A (en) * 2000-09-20 2002-04-02 Aisin Chem Co Ltd Friction material for aluminum disk rotor
JP2002097285A (en) * 2000-09-20 2002-04-02 Aisin Chem Co Ltd Friction material
JP4071434B2 (en) * 2000-10-31 2008-04-02 株式会社曙ブレーキ中央技術研究所 Friction material for brake
JP2002266915A (en) * 2001-03-06 2002-09-18 Hitachi Chem Co Ltd Automobile non-asbestos disc brake pad
JP2003082331A (en) * 2001-07-02 2003-03-19 Nisshinbo Ind Inc Non-asbestos friction lining
DE60238931D1 (en) * 2001-10-29 2011-02-24 Otsuka Chemical Co Ltd LITHIUM CALIUM TITANATE OF THE LEPIDOCROCITE TYPE, METHOD OF MANUFACTURING THEREOF AND FRICTION MATERIAL
JP2004169222A (en) * 2002-11-20 2004-06-17 Gun Ei Chem Ind Co Ltd Processed product of phenol resin-based fiber
JP2004352738A (en) * 2003-05-27 2004-12-16 Gun Ei Chem Ind Co Ltd Friction material obtained using fine phenolic resin fiber
JP4040552B2 (en) * 2003-07-18 2008-01-30 曙ブレーキ工業株式会社 Friction material
DE102007061459B4 (en) * 2006-12-27 2020-10-08 Akebono Brake Industry Co., Ltd. Asbestos-free friction material
EP2138461B1 (en) * 2007-03-29 2019-01-09 Toho Titanium CO., LTD. Method for production of alkali titanate, method for production of hollow powder of alkali titanate, alkali titanate and hollow powder thereof produced by the methods, and friction material comprising the alkali titanate or the hollow powder thereof
US8172051B2 (en) * 2008-10-03 2012-05-08 Federal-Mogul Products, Inc. Friction material for brakes
JP5756103B2 (en) * 2010-06-18 2015-07-29 曙ブレーキ工業株式会社 Friction material

Also Published As

Publication number Publication date
JP2012255051A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5970749B2 (en) Non-asbestos friction material composition
JP6558465B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5051330B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5979003B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
WO2012169545A1 (en) Non-asbestos friction material composition
JP5895367B2 (en) Non-asbestos friction material composition
JP5071604B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5790175B2 (en) Non-asbestos friction material composition
JP5895366B2 (en) Non-asbestos friction material composition
WO2017183155A1 (en) Friction material composition, and friction material and friction member each obtained therefrom
JP2016222931A (en) Non-asbestos friction material composition, friction material using the same and friction member
WO2012066966A1 (en) Non-asbestos friction material composition, friction material using same, and friction member
JP5263454B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP6596956B2 (en) Friction material composition, and friction material and friction member using the same
JP5958623B2 (en) Non-asbestos friction material composition
JP6570167B2 (en) Friction material composition, and friction material and friction member using the same
JP5958624B2 (en) Non-asbestos friction material composition
JP6233461B2 (en) Non-asbestos friction material composition
JP7020506B2 (en) Friction materials and friction members
JP6699785B2 (en) Friction material and friction member
JP6531807B2 (en) Non-asbestos friction material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R151 Written notification of patent or utility model registration

Ref document number: 5895366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees