JP5893270B2 - Electromagnetic shielding performance measurement room and electromagnetic shielding performance measurement method - Google Patents
Electromagnetic shielding performance measurement room and electromagnetic shielding performance measurement method Download PDFInfo
- Publication number
- JP5893270B2 JP5893270B2 JP2011128136A JP2011128136A JP5893270B2 JP 5893270 B2 JP5893270 B2 JP 5893270B2 JP 2011128136 A JP2011128136 A JP 2011128136A JP 2011128136 A JP2011128136 A JP 2011128136A JP 5893270 B2 JP5893270 B2 JP 5893270B2
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic wave
- absorber
- measurement
- shielding performance
- floor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 title claims description 87
- 238000000691 measurement method Methods 0.000 title claims description 4
- 239000006096 absorbing agent Substances 0.000 claims description 102
- 239000000463 material Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 description 13
- 230000002745 absorbent Effects 0.000 description 5
- 239000002250 absorbent Substances 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 230000009545 invasion Effects 0.000 description 5
- 239000006260 foam Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Landscapes
- Building Environments (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Description
本発明は、電磁波シールド性能測定室と電磁波シールド性能測定方法に関するものである。 The present invention relates to an electromagnetic wave shielding performance measurement chamber and an electromagnetic wave shielding performance measurement method.
携帯端末などの各種通信機器や電子機器などが発生する電磁波は、生活空間にも侵入し、各種機器、計器類にノイズや誤動作の原因となっていることが知られている。
そのような個別の機器、装置から生じる電磁波の測定方法として例えば特許文献1に記載するような電磁波暗室が知られている。
この暗室は、その内部に電磁波を発信する電子機器を設置し、一定の位置に受信アンテナを設置し、電子機器からの電磁波を受信アンテナで受信して電気機器からの電磁波放射特性の評価を行う構成である。
It is known that electromagnetic waves generated by various communication devices such as portable terminals, electronic devices, etc., enter living spaces, causing noise and malfunctions in various devices and instruments.
As a method for measuring electromagnetic waves generated from such individual devices and apparatuses, an electromagnetic wave darkroom as described in
In this darkroom, an electronic device that transmits electromagnetic waves is installed, a receiving antenna is installed at a fixed position, and the electromagnetic wave from the electronic device is received by the receiving antenna to evaluate the electromagnetic radiation characteristics from the electric device. It is a configuration.
前記したような従来の電磁波暗室を、建材のような大型部材の電磁波シールド性能の測定に利用しようとすると、次のような問題点が存在した。
<1> 電磁波暗室は、比較的高価なフェライトタイルや角錐状の発泡体などからなる電磁波吸収体で壁面の全面を覆う必要があり、電磁波暗室自体の建設費、設備費が高価であって不経済なものであった。
<2> 測定の対象が電子レンジのような小型、軽量の物であれば問題がないが、コンクリート壁体のような重量物であると暗室内への搬入や搬出の作業に専用の運搬装置と多数の作業員を必要とし、採用しにくいものであった。
<3> 電磁波暗室に搬入できる物体の寸法、重量には限度があるためにコンクリート壁面などを対象とする場合には、実際に設置する壁面の一部を切り出したサンプルを用意して暗室に持ち込むことになり、効率の悪いものであった。
<4> 実際の建物の壁体の厚さは一様ではなく窓や扉などの開口部もあるために、開口部の切欠き位置の異なる多数のサンプルを準備して電磁波暗室に搬入して測定することが要求されてさらに不経済なものであった。
<5> 測定済みのサンプルの処分も産業廃棄物である場合も多いため、その処理にも手数と費用を要するものであった。
<6> 以上のような問題を解決する方法として、MIL−STD−285と称する米軍規格が知られている。この方法は別個に電磁波暗室を設けるのではなく、既存物をそのまま利用して測定する方法であって、フェライトタイルや四角錐の電磁波吸収体が不要で低コストでもあるため現在も簡便な方法として利用されている。
<7> しかしこの規格に基づく方法は、サンプルを透過した電磁波以外の多くの反射波の混在が避けられず、これが不要なノイズとなって受信されるために再現性に問題があり、信頼性の低いものであった。
<8> サンプルを透過した電磁波以外の反射波の混在を避けるように、導波管と呼ばれる筒状の金属の中にサンプルを入れる方法も知られているが、サンプルは均質な材料でなければならず、また導波管の断面の寸法を電磁波の波長に応じて変更する必要があるため、鉄筋コンクリート壁などの大型複合建材には適用できないという問題があった。
When the conventional electromagnetic anechoic chamber as described above is used for measuring the electromagnetic shielding performance of a large member such as a building material, there are the following problems.
<1> The anechoic chamber needs to cover the entire surface of the wall with an electromagnetic wave absorber made of a relatively expensive ferrite tile, pyramidal foam, etc., and the construction cost and equipment cost of the anechoic chamber itself are expensive. It was economic.
<2> There is no problem if the object to be measured is a small and lightweight object such as a microwave oven, but if it is a heavy object such as a concrete wall, it is a dedicated transport device for carrying in and out of the darkroom. And a large number of workers, it was difficult to employ.
<3> When there is a limit to the size and weight of objects that can be carried into the anechoic chamber, if a concrete wall surface is the target, prepare a sample of a part of the actual wall surface and bring it into the dark room. As a result, it was inefficient.
<4> Since the wall thickness of the actual building is not uniform and there are openings such as windows and doors, prepare a large number of samples with different notch positions in the openings and bring them into the anechoic chamber. It was more uneconomical to be required to measure.
<5> Disposal of the measured sample is often industrial waste, so that the processing requires labor and cost.
<6> As a method for solving the above problems, a US military standard called MIL-STD-285 is known. This method is not a separate electromagnetic anechoic chamber, but is a method that uses existing materials as they are, and it is a simple method even today because it does not require ferrite tiles or square pyramid electromagnetic absorbers and is low in cost. It's being used.
<7> However, the method based on this standard has a problem in reproducibility because a lot of reflected waves other than the electromagnetic wave that has passed through the sample cannot be avoided. Was low.
<8> In order to avoid mixing of reflected waves other than electromagnetic waves that have passed through the sample, a method of placing the sample in a cylindrical metal called a waveguide is also known, but if the sample is not a homogeneous material In addition, since it is necessary to change the cross-sectional dimension of the waveguide according to the wavelength of the electromagnetic wave, there is a problem that it cannot be applied to large composite building materials such as reinforced concrete walls.
本発明は上記のような課題を解決するためになされたものであり、本発明の電磁波シールド性能測定室は、移動可能な台車に立設した板体の表面に電磁波吸収体を設けた移動電磁波吸収体で構成した3壁面と、対立して配置した移動電磁波吸収体の間に配置する支持部材と、床面に敷設する面材であって、その表面に電磁波吸収体を設けた床面吸収体と、前記の支持部材の上に敷設する面材であって、その表面に電磁波吸収体を設けた天井面吸収体と、測定対象物である構築済みの建物の壁面を測定室の一壁面として利用して構成したことを特徴とするものである。 The present invention has been made to solve the above problems, and the electromagnetic wave shielding performance measurement chamber of the present invention is a moving electromagnetic wave in which an electromagnetic wave absorber is provided on the surface of a plate body standing on a movable carriage. Floor surface absorption comprising three wall surfaces composed of absorbers, a supporting member disposed between mobile electromagnetic wave absorbers arranged in opposition, and a floor material laid on the floor surface, the electromagnetic wave absorber being provided on the surface And a wall surface of a built-up building, which is a measurement object, is a wall surface of a measurement room. It is characterized by having been used as
また本発明の電磁波シールド性能測定方法は、上記の電磁波シールド性能測定室を、測定対象物である構築済みの建物の壁面の両側に設置し、一側の測定室の内部に電磁波発信機を設置し、他側の測定室の内部に電磁波受信機を設置して行うことを特徴とするものである。 Further, the electromagnetic shielding performance measuring method of the present invention is the above electromagnetic shielding performance measuring chamber is installed on both sides of a wall of a built building that is a measurement object, and an electromagnetic wave transmitter is installed inside the measuring chamber on one side. In addition, an electromagnetic wave receiver is installed inside the measurement chamber on the other side.
本発明の電磁波シールド性能測定室と電磁波シールド性能測定方法は以上説明したようになるから次のような効果の少なくともひとつを得ることができる。
<1> 測定対象物を電磁波暗室に搬入するのではなく、測定対象物の両側に、移動電磁波吸収体と床面吸収体と天井面吸収体とで直方体状の測定室を組み立てて測定を行うものであるから、対象物の搬入や搬出が不要であるか、近距離であって、特に大型の部材を対象とした場合にきわめて経済的に測定を行うことができる。
<2> 直方体である測定室の5面を電磁波吸収体で構成してあるから、電磁波の反射や回り込みを抑制して高精度の測定を行うことができる。
<3> 床面吸収体を構成する電磁波吸収体の下面、天井面吸収体を構成する電磁波吸収体の上面に電波反射材を取り付けるか敷設すれば、外部からの電波の侵入も阻止することができ、さらに信頼性の高い測定を行うことができる。
Since the electromagnetic wave shielding performance measuring chamber and the electromagnetic wave shielding performance measuring method of the present invention are as described above, at least one of the following effects can be obtained.
<1> The measurement object is not carried into the anechoic chamber, but measurement is performed by assembling a rectangular parallelepiped measurement chamber with a moving electromagnetic wave absorber, a floor surface absorber, and a ceiling surface absorber on both sides of the measurement object. Therefore, it is not necessary to carry in or carry out the object, or it is possible to perform measurement extremely economically when the object is a short distance and particularly a large member.
<2> Since the five surfaces of the measurement chamber, which is a rectangular parallelepiped, are composed of an electromagnetic wave absorber, reflection and wraparound of electromagnetic waves can be suppressed and highly accurate measurement can be performed.
<3> If a radio wave reflector is attached or laid on the lower surface of the electromagnetic wave absorber constituting the floor surface absorber and the upper surface of the electromagnetic wave absorber constituting the ceiling surface absorber, the invasion of radio waves from the outside can be prevented. It is possible to perform measurement with higher reliability.
以下図面を参照にしながら本発明の好適な実施の形態を詳細に説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
<1>基本的構成。
本発明の電磁波シールド性能測定室5、上側測定室5uまたは下側測定室5dは直方体の空間であり、測定室の壁を構成する移動電磁波吸収体1と、床を構成する床面吸収体2と、天井を構成する天井面吸収体3によって構成する。
測定対象が壁等の場合にあっては、3面の壁を構成する移動電磁波吸収体1と、床を構成する1面の床面吸収体2と、天井を構成する1面の天井面吸収体3の5面で電磁波測定室5を構成し、測定対象物の両側に電磁波シールド性能測定室5を設けて当該壁の電磁波シールド性能を測定する。
測定対象物が、床または天井等である場合は、4面の壁を構成する移動電磁波吸収体1と天井を構成する1面の天井面吸収体3の5面で上側測定室5uを構成し、4面の壁を構成する移動電磁波吸収体1と床を構成する1面の床面吸収体3の5面で下側測定室5dを構成し、上側測定室5uと下側測定室5dとで測定対象を挟むように設けて床または天井等の電磁波シールド性能を測定する。
ただし構築済みの建物の壁面、床面などの既設面を測定対象物とする場合には、その既設面を直方体の一面として利用する。
<1> Basic configuration.
The electromagnetic wave shielding performance measuring chamber 5, the upper measuring chamber 5u, or the lower measuring chamber 5d of the present invention is a rectangular parallelepiped space, and the moving electromagnetic wave absorber 1 constituting the wall of the measuring chamber and the floor surface absorber 2 constituting the floor. And the ceiling surface absorber 3 constituting the ceiling.
When the object to be measured is a wall or the like, the mobile electromagnetic wave absorber 1 constituting the three walls, the one floor surface absorber 2 constituting the floor, and the one ceiling surface absorption constituting the ceiling. The electromagnetic wave measurement chamber 5 is constituted by five surfaces of the
When the object to be measured is a floor or a ceiling, the upper measurement chamber 5u is constituted by five surfaces of the moving electromagnetic wave absorber 1 constituting the four walls and the one ceiling surface absorber 3 constituting the ceiling. The lower measurement chamber 5d is constituted by five surfaces of the moving electromagnetic wave absorber 1 constituting the four walls and the one floor absorber 3 constituting the floor, and the upper measurement chamber 5u and the lower measurement chamber 5d In order to measure the electromagnetic wave shielding performance of the floor or ceiling, etc., so as to sandwich the object to be measured.
However, when an existing surface such as a wall surface or a floor surface of a built building is used as a measurement object, the existing surface is used as one surface of a rectangular parallelepiped.
<2>移動電磁波吸収体。
移動電磁波吸収体1は、車輪11を備えた台車12と、その台車12に壁状の板体を垂直に設置して構成する。
台車12に立設した板体の表面には、公知の電磁波吸収体aを設ける。
電磁波吸収体aとして、例えば公知の角錐状の発泡体などからなる電磁波吸収体aを使用する。
移動電磁波吸収体1は人力での運搬、移動が容易なように、幅の狭い壁板に分割して構成することができる。
この移動電磁波吸収体1が、後述する測定室5の壁の3面、あるいは4面を構成する。
<2> A moving electromagnetic wave absorber.
The moving
A known electromagnetic wave absorber a is provided on the surface of the plate body standing on the carriage 12.
As the electromagnetic wave absorber a, for example, an electromagnetic wave absorber a made of a known pyramidal foam or the like is used.
The moving
This moving electromagnetic wave absorber 1 constitutes three or four surfaces of the wall of the measurement chamber 5 described later.
<3>電波反射材。
本発明の移動電磁波吸収体や電磁波吸収体にはその裏面、表面などに重複して電波反射材を取り付ける場合がある。
ここで使用する電波反射材bは、例えば鉄板、亜鉛鋼板、アルミシート、銅箔、鉄箔などを含んだ金属箔や不織布などで構成した面状体である。
この電波反射材を使用すると、外部から測定室への電波の侵入を阻止することができる。
この電波反射材を、移動電磁波吸収体や電磁波吸収体に重ねて敷設したり、裏面に取り付ける構造は、説明は煩雑となるので省略するが、すべての部材において重複して利用することが可能である。
さらに、隣接する移動電磁波吸収体の間に隙間が発生したら、その外部に電波反射材bを取り付けて隙間を被覆し、隙間からの電波の侵入を阻止することも可能であり、個別の説明は省略する。
<3> Radio wave reflecting material.
The mobile electromagnetic wave absorber or electromagnetic wave absorber of the present invention may be attached with a radio wave reflecting material on the back surface, the front surface, or the like.
The radio wave reflecting material b used here is a planar body made of, for example, a metal foil or a nonwoven fabric containing an iron plate, a galvanized steel plate, an aluminum sheet, a copper foil, an iron foil, or the like.
When this radio wave reflecting material is used, it is possible to prevent radio waves from entering the measurement chamber from the outside.
The structure of laying the radio wave reflector on the moving electromagnetic wave absorber or the electromagnetic wave absorber or attaching it to the back surface will be omitted because it is complicated to explain, but it can be used redundantly in all members. is there.
Furthermore, if a gap is generated between adjacent mobile electromagnetic wave absorbers, it is possible to cover the gap by attaching a radio wave reflecting material b outside thereof, and to prevent the invasion of radio waves from the gap. Omitted.
<4>支持部材。
測定室5を形成する場合に、移動電磁波吸収体1を対立して配置するが、そのように対立して配置した移動電磁波吸収体1の間に、支持部材4を張り渡す。
この支持部材4は単なる棒状の長尺部材でもよく、あるいはロープのような線状部材でもよい。
ただしこの支持部材4は、電磁波に影響を与えない素材で構成する。
支持部材4は、天井面吸収体の下側になるように配置し、上に天井面吸収体を載せた場合に天井面吸収体を支持できるだけの耐力・強度を持った素材で構成する。
例えば棒状の支持部材4の材料としてはポリスチレン、ポリプロピレン、ポリエチレンなどの発泡体、ポリ塩化ビニル、ベークライトなどの合成樹脂または木材などがある。
線状の支持部材4として、布、紙、ビニール、ガラス繊維、アラミド繊維などの樹脂繊維を編んだひもやロープなどがある。
支持部材4は、上に載せる天井面吸収体3を安定して設置できるように、支持部材4の上側の表面形状を、天井面吸収体3下側の接触する部分と同じ表面形状とし、支持部材4の上側が天井面吸収体3と可能な限り広い面積で接触して天井面吸収体3の荷重を広く分散させるように断面形状を構成することが望ましい。
例えば、天井面吸収体3を角錐群で構成した場合には、支持部材4が角錐と角錐の間に密着して位置するように、支持部材4の上部の断面形状を三角形や二等辺三角形、台形、または円、楕円などに近い形状にするとよい。
支持部材4は、上に載せる天井面吸収体3が自らの荷重で支持部材にくいこみ損傷をうけることのないように、適切な太さや丸味を持つ支持部材にするとよい。
例えば、天井面吸収体3がポリプロピレンなどの発泡体の場合には、支持部材を5mm程度以上の太さに構成することができる。
<4> Support member.
When the measurement chamber 5 is formed, the moving
The
However, the
The
For example, the material of the rod-shaped
Examples of the
The
For example, when the
The
For example, when the ceiling surface
<5>床面吸収体。
床面吸収体2は測定室5の床面に敷設する面材である。
例えば面状の電波反射材bの表面に、公知の電磁波吸収体aを設けて構成する。
前記したように電波反射材bを配置すれば外部からの電波の侵入を阻止することができる。
<5> Floor surface absorber.
The
For example, a known electromagnetic wave absorber a is provided on the surface of the planar radio wave reflector b.
If the radio wave reflector b is arranged as described above, it is possible to prevent the invasion of radio waves from the outside.
<6>天井面吸収体。
天井面吸収体3は、測定室5の天井面を形成する面部材である。
例えば面状の電波反射材bの表面に、公知の電磁波吸収体aを設けて構成する。
この天井面吸収体3を設置するには、面部材である天井面吸収体3を前記の支持部材4の上に敷設する。
天井面吸収体3を角錐群で構成した場合には、角錐と角錐の間に支持部材4が位置するように配置すると安定した設置が可能となる。
そのためには支持部材4を断面が三角形の棒状体を使用すると便利であるがそれに限定されるものではない。
天井吸収体3の上面に電波反射材bを取り付けるか、あるいは重ねて敷設することができる。
すると、外部からの電波の侵入も阻止することができる。
<6> Ceiling surface absorber.
The
For example, a known electromagnetic wave absorber a is provided on the surface of the planar radio wave reflector b.
In order to install the
When the ceiling surface
For this purpose, it is convenient to use a rod-shaped body having a triangular cross section for the
The radio wave reflecting material b can be attached to the upper surface of the
Then, invasion of radio waves from the outside can be prevented.
<7>測定室の形成。
次に上記の部材を使用して、測定対象物の両側に測定室5を形成する方法を説明する。
<7> Formation of a measurement chamber.
Next, a method for forming the measurement chambers 5 on both sides of the measurement object using the above-described member will be described.
<8>測定対象物。
本発明の測定方法で、電磁波のシールド性能を測定する対象物は、電子レンジや携帯電話のような小型の部材ではない。そのよう小型の部材を対象とした測定方法は、前記したようにすでに開発され利用されている。
本発明の装置、方法の測定対象物cは、大型の面部材、例えば建築物の壁面、床面、天井面部材などである。
これは、現場へ設置する直前のプレハブ壁体(図1)でもよく、あるいはすでに構築した建物壁面そのもの(図4)、天井、床スラブそのもの(図5)などを対象としている。
これらの対象物cを測定室5の壁、床、天井の1面として利用するので、図1に示すような独立した部材を利用する場合は、転倒しないようになんらかの部材で支持してその姿勢を固定する。
<8> Measurement object.
An object whose electromagnetic shielding performance is measured by the measurement method of the present invention is not a small member such as a microwave oven or a mobile phone. A measuring method for such a small member has already been developed and used as described above.
The measurement object c of the apparatus and method of the present invention is a large surface member such as a wall surface, floor surface, or ceiling surface member of a building.
This may be a prefabricated wall body (FIG. 1) immediately before installation at the site, or a building wall surface already constructed (FIG. 4), a ceiling, a floor slab itself (FIG. 5), and the like.
Since these objects c are used as one surface of the wall, floor, and ceiling of the measurement chamber 5, when using an independent member as shown in FIG. 1, the posture is supported by some member so as not to fall. To fix.
<9>測定室の形状。
まず、測定室5を測定対象物cの両側に設置する場合を説明する。
本発明の測定室5のひとつは、測定対象物cを1面とし、他の5面を、3壁面の移動電磁波吸収体1と、床面吸収体2と天井面吸収体3とで構成した直方体状の測定室5である。
この測定室5を、測定対象物cを挟んでその両側に構成する。
<9> The shape of the measurement chamber.
First, the case where the measurement chamber 5 is installed on both sides of the measurement object c will be described.
One of the measurement chambers 5 of the present invention has a measurement object c as one surface, and the other five surfaces are composed of a moving
The measurement chamber 5 is configured on both sides of the measurement object c.
<10>測定室の床面。
以下、対象物cの片側に設置する測定室5の構築に説明を行うが、実際には対象物cの両側で同様の作業がなされることになる。
まず測定室5を設置する範囲の床に、上記した面部材である床面吸収体2を敷設する。
床面吸収体2は、その表面に公知の電磁波吸収体aを設けてある。
床面吸収体2の敷設に先立って、床面にアルミシートなどで構成した電波反射材bを敷設しておくことも可能である。
あるいは床面吸収体2の下面に電波反射材bを一体に張り付けておけば、床面吸収体2の敷設と同時に両者を重ねて敷設することができ、外部からの電波の侵入も阻止することができる。
<10> Floor of measurement room.
Hereinafter, the construction of the measurement chamber 5 to be installed on one side of the object c will be described, but actually, the same operation is performed on both sides of the object c.
First, the
The
Prior to laying the
Alternatively, if the radio wave reflector b is integrally attached to the lower surface of the
<11>測定室の壁面。
次に、ほぼ鉛直に設置してある測定対象物cに対して、平面視でほぼ直角に位置するように2枚の移動電磁波吸収体1を、距離を離して設置する。
移動電磁波吸収体1は車輪11付きの台車12に鉛直の壁体が搭載してあるから、移動、設置が容易である。
他の1枚の移動電磁波吸収体1は、測定対象物cに対してほぼ平行に位置するように移動して、対象物から距離を離して設置する。
以上の3枚の移動電磁波吸収体1と測定対象物cの面によって、平面視が四角形の区画を構成することができる。
移動電磁波吸収体1の端面は、測定対象物cに密着させて、わずかな電磁波でもその回り込みや誤差が生じないように構成する。
なお、前記したように1枚の移動電磁波吸収体1を複数に分割して、小型軽量に構成すれば壁面の形成もさらに迅速で容易である。
<11> Wall surface of the measurement chamber.
Next, the two moving
The moving
The other moving
The three moving
The end face of the moving
As described above, if the single moving
<12>支持部材の設置。
対象物cに対して平面視で直角方向に配置した両側の移動電磁波吸収体1の上に、棒状体やロープで構成した支持部材4を張り渡す。
この支持部材4は、天井面吸収体3の柔軟性の程度によって設置する本数を決定する。
支持部材4が棒状体の場合には、移動電磁波吸収体1間の距離よりも十分に長い部材としておけば、移動電磁波吸収体1の上端から外方に突出した状態で支持できるから設置、解体が容易である。
<12> Installation of a support member.
A
The number of
In the case where the
<13>測定室の天井面。
支持部材4の上に天井面吸収体3を敷設する。
天井面吸収体3を角錐群で構成した場合には、角錐と角錐の間に支持部材4が位置するように配置すると安定した設置が可能となる。
そのためには、上記したように支持部材4を断面が三角形の棒状体を使用すると便利であるがそれに限定されるものではない。
天井面吸収体3の上面に、面状の電波反射材bを取り付けるか、あるいは重ねて敷設することができる。
さらに壁面を構成する移動電磁波吸収体1と天井面吸収体3との隙間は、柔軟なシート状の電波反射材bで被覆しておく。
このように構成すると外部からの電波の侵入も阻止することができる。
こうして測定対象物cの両側に、測定対象物cの表面を1面とし、他の5面を移動電磁波吸収体1の3壁面と、床面吸収体2と天井面吸収体3とで構成した直方体状の測定室5が完成する。
<13> Ceiling surface of the measurement room.
The
When the ceiling surface
For this purpose, as described above, it is convenient to use a rod-shaped body having a triangular cross section as the
A planar radio wave reflecting material b can be attached or laid on the top surface of the
Further, the gap between the moving
If comprised in this way, the penetration | invasion of the electromagnetic wave from the outside can also be blocked | prevented.
In this way, the surface of the measurement object c is one surface on both sides of the measurement object c, and the other five surfaces are composed of the three wall surfaces of the moving
<14>測定。
測定対象物cの一側の測定室5の内部に市販の電磁波発信機dを設置する。
同時に他側の測定室5の内部に電磁波受信機eを設置する。
上記の一側の測定室5の内部に配置する電磁波発信機dと、他側の測定室5の内部に配置する電磁波受信機eは、測定対象物cを中心として面対称となるように配置することが好ましい。
この一側の測定室5の電磁波発信機dからの電磁波を、他側の測定室5内の電磁波受信機eで受信して電磁波を測定する。
その際に本願発明の直方体の測定室5の5面のすべてが電磁波吸収体aで構成してあるから、電磁波の回り込みや反射を抑制でき、高い精度で電磁波シールド性能を測定することができる。
<14> Measurement.
A commercially available electromagnetic wave transmitter d is installed inside the measurement chamber 5 on one side of the measurement object c.
At the same time, an electromagnetic wave receiver e is installed inside the measurement chamber 5 on the other side.
The electromagnetic wave transmitter d arranged inside the measurement chamber 5 on the one side and the electromagnetic wave receiver e arranged inside the measurement chamber 5 on the other side are arranged so as to be symmetrical with respect to the measurement object c. It is preferable to do.
The electromagnetic wave from the electromagnetic wave transmitter d in the measurement chamber 5 on one side is received by the electromagnetic wave receiver e in the measurement chamber 5 on the other side, and the electromagnetic wave is measured.
In that case, since all five surfaces of the rectangular parallelepiped measurement chamber 5 of the present invention are configured by the electromagnetic wave absorber a, the electromagnetic wave can be prevented from being sneak and reflected, and the electromagnetic wave shielding performance can be measured with high accuracy.
<15>上下に設置する場合。(図5)
次に測定室を測定対象物cの上下に設置する場合を説明する。
その場合に測定室5のひとつである上側測定室5uは、測定対象物cを床面とし、他の5面を、4壁面の移動電磁波吸収体1と天井面吸収体3とで構成する。
測定室5の他のひとつである下側測定室5dは、測定対象物cを天井面とし、他の5面を、4壁面の移動電磁波吸収体1と床面吸収体2とで構成する。
その際に、下側測定室5dでは、壁面を構成する移動電磁波吸収体1の高さが不足する場合がある。
その場合には移動電磁波吸収体1の上端面と天井面との間の空間を埋める面積と形状を備えた補助電磁波吸収体13を設置して隙間をふさぐ。
この補助電磁波吸収体13は、移動電磁波吸収体1の上端面と天井面との間の空間を埋める面積と形状を備えた板体の一面に電磁波吸収体aを取り付けたものであり、支保工などで外側から支持して設置する。
上側測定室5uの天井面の形成、下側測定室5dの床面の形成などは、前記の実施例と同様である。
その後の測定過程などもまた前記の実施例と同様である。
<15> When installing vertically. (Fig. 5)
Next, the case where the measurement chambers are installed above and below the measurement object c will be described.
In this case, the upper measurement chamber 5u, which is one of the measurement chambers 5, has a measurement object c as a floor surface, and the other five surfaces are composed of a moving
The lower measurement chamber 5d, which is another one of the measurement chambers 5, has a measurement object c as a ceiling surface, and the other five surfaces are constituted by a moving
At that time, in the lower measurement chamber 5d, the height of the mobile
In that case, the auxiliary
This auxiliary
The formation of the ceiling surface of the upper measurement chamber 5u, the formation of the floor surface of the lower measurement chamber 5d, and the like are the same as in the previous embodiment.
The subsequent measurement process and the like are also the same as in the above-described embodiment.
1:移動電磁波吸収体
2:床面吸収体
3:天井面吸収体
4:支持部材
5:測定室
5u:上側測定室
5d:下側測定室
a:電磁波吸収体
b:電波反射材
c:測定対象物
1: Moving electromagnetic wave absorber 2: Floor surface absorber 3: Ceiling surface absorber 4: Support member 5: Measurement chamber 5u: Upper measurement chamber 5d: Lower measurement chamber a: Electromagnetic wave absorber b: Radio wave reflector c: Measurement Object
Claims (2)
対立して配置した移動電磁波吸収体の間に配置する支持部材と、
床面に敷設する面材であって、その表面に電磁波吸収体を設けた床面吸収体と、
前記の支持部材の上に敷設する面材であって、その表面に電磁波吸収体を設けた天井面吸収体と、
測定対象物である構築済みの建物の壁面を測定室の一壁面として利用して構成した、
電磁波シールド性能測定室。 Three wall surfaces composed of a moving electromagnetic wave absorber provided with an electromagnetic wave absorber on the surface of a plate body standing on a movable carriage;
A support member disposed between the moving electromagnetic wave absorbers disposed in opposition,
A floor material laid on the floor surface, the floor surface absorber provided with an electromagnetic wave absorber on the surface,
A surface material laid on the support member, a ceiling surface absorber provided with an electromagnetic wave absorber on the surface thereof, and
Constructed using the wall of a built building that is the measurement object as one wall of the measurement room.
Electromagnetic shielding performance measurement room.
測定対象物である構築済みの建物の壁面の両側に設置し、
一側の測定室の内部に電磁波発信機を設置し、
他側の測定室の内部に電磁波受信機を設置して行う、
電磁波シールド性能測定方法。 The electromagnetic shielding performance measuring chamber according to claim 1,
Installed on both sides of the wall of the built building that is the measurement object,
Install an electromagnetic wave transmitter inside the measurement chamber on one side,
Performed by installing an electromagnetic wave receiver inside the measurement chamber on the other side,
Electromagnetic shielding performance measurement method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011128136A JP5893270B2 (en) | 2011-06-08 | 2011-06-08 | Electromagnetic shielding performance measurement room and electromagnetic shielding performance measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011128136A JP5893270B2 (en) | 2011-06-08 | 2011-06-08 | Electromagnetic shielding performance measurement room and electromagnetic shielding performance measurement method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015179608A Division JP5977410B2 (en) | 2015-09-11 | 2015-09-11 | Electromagnetic shielding performance measurement room and electromagnetic shielding performance measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012256673A JP2012256673A (en) | 2012-12-27 |
JP5893270B2 true JP5893270B2 (en) | 2016-03-23 |
Family
ID=47528003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011128136A Active JP5893270B2 (en) | 2011-06-08 | 2011-06-08 | Electromagnetic shielding performance measurement room and electromagnetic shielding performance measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5893270B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2545340C1 (en) * | 2013-09-04 | 2015-03-27 | Закрытое акционерное общество "Научно-производственная фирма "Микран" | Unit and method for measurement of screen attenuation |
CN108468449B (en) * | 2018-04-23 | 2019-09-24 | 北京环境特性研究所 | A kind of overturning cover board for microwave dark room melt pit |
KR101969146B1 (en) * | 2018-09-20 | 2019-04-16 | 국방과학연구소 | Apparatus and method for supporting design of electromagnetic wave absorber |
CN109521458B (en) * | 2018-11-21 | 2023-11-24 | 中国标准化研究院 | Device and method for testing radiation protection performance |
CN110658411A (en) * | 2019-10-17 | 2020-01-07 | 芮锋射频技术(上海)有限公司 | Darkroom arrangement method with ground lifting function |
CN111781429B (en) * | 2020-06-19 | 2022-03-22 | 无锡市立达屏蔽机房成套有限公司 | Anechoic chamber special for information electromagnetic compatibility system and installation process thereof |
JP7280583B1 (en) * | 2022-04-13 | 2023-05-24 | 俊宏 南 | RF tag reader |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07105612B2 (en) * | 1987-05-15 | 1995-11-13 | 大成建設株式会社 | Radio shield performance measurement device |
JPH06237091A (en) * | 1993-02-08 | 1994-08-23 | Hitachi Eng Co Ltd | Radio frequency anechoic enclosure |
JP2722313B2 (en) * | 1993-10-26 | 1998-03-04 | 富士電気化学株式会社 | Anechoic box |
JPH10239365A (en) * | 1997-02-21 | 1998-09-11 | Tomoe Corp | Method of and apparatus for inspecting shielding performance of electromagnetic wave shielding room |
JP2000234403A (en) * | 1999-02-17 | 2000-08-29 | Shimizu Corp | Electromagnetic wave shield building prepared for radio lan |
JP4543416B2 (en) * | 2001-03-22 | 2010-09-15 | Tdk株式会社 | Apparatus and method for preventing fall of electromagnetic wave anechoic chamber and electromagnetic wave absorber |
US6784670B1 (en) * | 2002-08-21 | 2004-08-31 | The United States Of America As Represented By The Secretary Of The Navy | Dual chambered anechoic chamber |
-
2011
- 2011-06-08 JP JP2011128136A patent/JP5893270B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012256673A (en) | 2012-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5893270B2 (en) | Electromagnetic shielding performance measurement room and electromagnetic shielding performance measurement method | |
Yang et al. | A ray-tracing method for modeling indoor wave propagation and penetration | |
CN105352978A (en) | Handheld wave-absorbing material reflectivity measuring device | |
US20100109957A1 (en) | Apparatus for measuring antenna radiation performance and method of designing the same | |
US20120324811A1 (en) | Reinforced concrete partition body | |
JP5977410B2 (en) | Electromagnetic shielding performance measurement room and electromagnetic shielding performance measurement method | |
CN105929254A (en) | Microwave darkroom | |
JP5448261B2 (en) | Electromagnetic shield performance measuring apparatus and method | |
CN107918703B (en) | Design method for wide-band radio frequency receiving satellite unintentional radiation emission limit value | |
Son et al. | Prediction and validation of electromagnetic performance of curved radar-absorbing structures based on equivalent circuit model and ray tracking method | |
KR101744131B1 (en) | Method for Designing and Evaluating Electromagnetic Anechoic Chamber in Virtual Space | |
Qasem | Enhancing wireless communication system performance through modified indoor environments | |
JP2014165808A (en) | Metal plate lens and performance evaluation method of radio wave absorber using the same | |
US11747380B2 (en) | Electromagnetic wave evaluation apparatus with adjustable quality factor | |
JP2011226802A (en) | Method for specifying electromagnetic shield performance of electromagnetic shield room | |
JP2022103118A (en) | Sound insulation reinforcing material | |
EP1195848A1 (en) | Microwave absorber wall | |
RU143511U1 (en) | SMALL ANCHOROUS CAMERA | |
Piippo et al. | The characteristics of acoustic line array prototypes for scale model experiments | |
Leao et al. | Effect of metal studs on the reflection properties of gyproc walls, and on the statistics of the electric field strength | |
JPH0242799A (en) | Radio wave anechoic room | |
JP3711729B2 (en) | Ground plane and open site | |
JP3180029B2 (en) | Detecting apparatus and detecting method for reinforced paragraph section | |
KR102053914B1 (en) | Interior test apparatus for performance of wireless telecommunication system | |
RU2309495C2 (en) | Electromagnetic wave absorber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160216 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5893270 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |