[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5884717B2 - Cured silicone resin containing sulfide phosphor particles with coating film and method for producing the same - Google Patents

Cured silicone resin containing sulfide phosphor particles with coating film and method for producing the same Download PDF

Info

Publication number
JP5884717B2
JP5884717B2 JP2012276651A JP2012276651A JP5884717B2 JP 5884717 B2 JP5884717 B2 JP 5884717B2 JP 2012276651 A JP2012276651 A JP 2012276651A JP 2012276651 A JP2012276651 A JP 2012276651A JP 5884717 B2 JP5884717 B2 JP 5884717B2
Authority
JP
Japan
Prior art keywords
coating film
phosphor particles
sulfide phosphor
silicone resin
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012276651A
Other languages
Japanese (ja)
Other versions
JP2014118529A (en
Inventor
高梨 昌二
昌二 高梨
高塚 裕二
裕二 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012276651A priority Critical patent/JP5884717B2/en
Publication of JP2014118529A publication Critical patent/JP2014118529A/en
Application granted granted Critical
Publication of JP5884717B2 publication Critical patent/JP5884717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Polymers (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、優れた発光特性と共に、極めて高い耐水性と耐湿性を備え、発光ダイオード(LED)デバイスとして好適な、被覆膜付き硫化物蛍光体粒子を含有するシリコーン樹脂の硬化体及びその製造方法に関する。   The present invention relates to a cured product of a silicone resin containing coated phosphor sulfide particles, which has excellent light-emitting properties, has extremely high water resistance and moisture resistance, and is suitable as a light-emitting diode (LED) device, and production thereof Regarding the method.

発光材料としてよく知られている酸化物蛍光体や硫化物蛍光体としては、組成式でSrSiO:Euや、SrS:Eu、SrGa:Euで表される化合物相からなるものがある。その中でもSrS:EuやSrGa:Euの硫化物蛍光体は高演色型白色LED用蛍光体に用いられ、青色LEDからの青色励起光と、その青色光を吸収することで発光する赤色光や緑色光とが混ざることで、演色性の高い白色光を得ることができる。 Oxide phosphors and sulfide phosphors well known as light-emitting materials are composed of a compound phase represented by a composition formula of Sr 3 SiO 5 : Eu, SrS: Eu, SrGa 2 S 4 : Eu. There is. Among them, sulfide phosphors such as SrS: Eu and SrGa 2 S 4 : Eu are used for phosphors for high color rendering white LEDs, and emit red light by absorbing blue excitation light from the blue LEDs and the blue light. White light with high color rendering can be obtained by mixing light and green light.

しかし、これらの硫化物蛍光体は耐水性や耐湿性が低く、空気中の水蒸気又は水によって表面に水和物、硫酸化物あるいは炭酸塩が生成して劣化し、輝度の低下及び色調の変化を起こしやすいという問題がある。更に空気中の水蒸気又は水によって劣化する際には、硫化物蛍光体と水分が反応して硫化水素などの有毒で腐食性のガスが発生するという問題がある。   However, these sulfide phosphors have low water resistance and moisture resistance, and are deteriorated by the formation of hydrates, sulfates or carbonates on the surface by water vapor or water in the air, resulting in a decrease in luminance and a change in color tone. There is a problem that it is easy to wake up. Further, when it is deteriorated by water vapor or water in the air, there is a problem that a toxic and corrosive gas such as hydrogen sulfide is generated due to a reaction between the sulfide phosphor and moisture.

特にLED素子に蛍光体と封止樹脂を組み合わせたLED発光デバイスでは、腐食性ガスが生じるとデバイスに設けた銀電極が変色を起こしやすい。銀電極はLED素子や蛍光体からの光を効率的に反射させる役割も担っているため、変色によって反射率が低下し、更にはLED発光デバイス自体の輝度の低下を招くという大きな問題を引き起こしてしまう。   In particular, in an LED light emitting device in which a phosphor and a sealing resin are combined with an LED element, when a corrosive gas is generated, a silver electrode provided on the device is likely to be discolored. Since the silver electrode also plays a role of efficiently reflecting the light from the LED element and the phosphor, the reflectance decreases due to the discoloration, and further causes a great problem that the brightness of the LED light emitting device itself is decreased. End up.

このような問題を解決するため、硫化物蛍光体と水分の接触を防ぐ方法が提案されている。例えば特許文献1には、シラン有機金属化合物のアルコキシシランを用い、厚さ20nm以上の非連続のガラス膜を硫化物蛍光体粒子表面に設ける方法が記載されている。しかし、この方法では、硫化物蛍光体粒子にアルコキシシランと共に加水分解用の水を同時に加えるため、水分の影響で硫化物蛍光体粒子そのものの劣化が起こり、加熱温度を高くすると劣化が更に激しくなり、甚だしい場合には蛍光体粒子が溶解してしまうという欠点がある。   In order to solve such a problem, a method for preventing contact between the sulfide phosphor and moisture has been proposed. For example, Patent Document 1 describes a method in which a discontinuous glass film having a thickness of 20 nm or more is provided on the surface of sulfide phosphor particles using alkoxysilane, a silane organometallic compound. However, in this method, since water for hydrolysis is simultaneously added to the sulfide phosphor particles together with alkoxysilane, the sulfide phosphor particles themselves deteriorate due to the influence of moisture, and the deterioration becomes more severe when the heating temperature is increased. In a severe case, there is a drawback that the phosphor particles are dissolved.

また、特許文献2には、有機シラン化合物を用いて硫化物蛍光体粉末の粒子表面にシリコーンが含まれた有機高分子被膜を形成し、この有機高分子被膜を熱処理してシリコーン酸化膜を得る方法が提案されている。しかし、この方法では、反応触媒として加えたアンモニアが有機シラン化合物の加水分解反応を促進させるが、その一方で蛍光体粒子表面を被覆する前に有機シラン化合物同士が縮合反応を起こして、有機シラン化合物の縮合体微粒子を生成してしまう。この微粒子が堆積した硫化物蛍光体粉末を熱処理しても、形成される被膜は緻密なものとならず、耐水性や耐湿性の向上は得られない。   In Patent Document 2, an organic polymer film containing silicone is formed on the surface of sulfide phosphor powder using an organosilane compound, and the organic polymer film is heat-treated to obtain a silicone oxide film. A method has been proposed. However, in this method, ammonia added as a reaction catalyst promotes the hydrolysis reaction of the organic silane compound. On the other hand, the organic silane compounds undergo a condensation reaction before coating the phosphor particle surface, and the organic silane Condensate fine particles of the compound are produced. Even if the sulfide phosphor powder on which the fine particles are deposited is heat-treated, the formed film does not become dense, and improvement in water resistance and moisture resistance cannot be obtained.

一方、蛍光体粒子表面に厚い被覆膜を設けて水分との反応を完全に遮断しようとする試みもある。例えば特許文献3には、シリコーン樹脂、テトラエトキシシラン、シリカ、ケイ酸亜鉛、ケイ酸アルミニウム、シリコーンオイル、シリコーングリース等の被覆材を用いて、蛍光体粒子表面に被覆膜を設ける方法が提案されている。この方法は簡便な方法ではあるが、上記被覆材で微細な蛍光体粒子の全表面を均一に被覆すること、あるいは被覆膜の厚さを制御することは容易でない。   On the other hand, there is an attempt to completely block reaction with moisture by providing a thick coating film on the surface of the phosphor particles. For example, Patent Document 3 proposes a method of providing a coating film on the surface of phosphor particles using a coating material such as silicone resin, tetraethoxysilane, silica, zinc silicate, aluminum silicate, silicone oil, silicone grease, and the like. Has been. Although this method is a simple method, it is not easy to uniformly cover the entire surface of the fine phosphor particles with the coating material or to control the thickness of the coating film.

上記特許文献1〜3に記載の耐湿性及び耐水性改善策を用いた硫化物蛍光体粒子の場合、得られる被覆膜付き硫化物蛍光体粒子の耐湿性及び耐水性を評価すると十分でないことが分った。例えば、上記被覆膜付硫化物蛍光体を高温加湿雰囲気中に投入すると、湿度の影響で蛍光体粒子表面が侵され、水和物や硫酸化物又は炭酸塩が生成して発光特性が大きく低下した。更に、上記被覆膜付硫化物蛍光体粒子をシリコーン樹脂で練り込み、加熱硬化後に高温の水中に投入すると、水分と硫化物の反応により著しい量のガスが発生した。発生したガスを銀板の変色で評価すると、樹脂に練り込んだ蛍光体を水中に投入した直後から銀板の変色が始まり、短時間で銀板表面の反射率は激減した。   In the case of sulfide phosphor particles using the moisture resistance and water resistance improvement measures described in Patent Documents 1 to 3 above, it is not sufficient to evaluate the moisture resistance and water resistance of the obtained sulfide phosphor particles with a coating film. I found out. For example, if the above-mentioned sulfide phosphor with a coating film is placed in a high-temperature humidified atmosphere, the surface of the phosphor particles is affected by the influence of humidity, and hydrates, sulfates or carbonates are generated, resulting in a significant decrease in light emission characteristics. did. Furthermore, when the above-mentioned sulfide phosphor particles with a coating film were kneaded with a silicone resin and put into high-temperature water after heat curing, a significant amount of gas was generated due to the reaction between moisture and sulfide. When the generated gas was evaluated by the discoloration of the silver plate, the discoloration of the silver plate started immediately after the phosphor kneaded in the resin was put into water, and the reflectance on the surface of the silver plate decreased drastically in a short time.

更に、特許文献4には、硫化物蛍光体をハイドロアルコキシシラン又はそのオリゴマーで表面処理した後、オルガノポリシロキサンからなる付加硬化型シリコーン樹脂と混合した硬化性シリコーン樹脂組成物が提案されている。この方法によれば、シリコーン樹脂組成物の硬化物により封止されたLEDチップは、長期的な耐湿性が改善されるとされている。   Further, Patent Document 4 proposes a curable silicone resin composition in which a sulfide phosphor is surface-treated with hydroalkoxysilane or an oligomer thereof and then mixed with an addition-curable silicone resin made of an organopolysiloxane. According to this method, it is said that the LED chip sealed with the cured product of the silicone resin composition has improved long-term moisture resistance.

しかしながら、特許文献4に記載の方法では、硫化物蛍光体とハイドロアルコキシシラン又はそのオリゴマーを直接接触させた後に熱処理すると、発光特性が大幅に低下することが分った。また、耐湿性を長期的に評価したところ発光特性に低下が認められ、湿度対策においても不完全であった。更に、上記シリコーン樹脂組成物の硬化物により封止されたLEDチップでは、熱硬化型シリコーン樹脂でも耐湿性に違いがあるため、特に硫化物蛍光体を用いて銀板の変色評価を行うと樹脂によって大きな差が生じてしまうことが分った。   However, in the method described in Patent Document 4, it has been found that when the sulfide phosphor and the hydroalkoxysilane or oligomer thereof are brought into direct contact and then heat-treated, the light emission characteristics are significantly reduced. In addition, when the moisture resistance was evaluated over a long period of time, a decrease in the light emission characteristics was observed, and the humidity countermeasures were incomplete. Furthermore, in LED chips sealed with a cured product of the above silicone resin composition, there is a difference in moisture resistance even with a thermosetting silicone resin. Therefore, when a discoloration evaluation of a silver plate is performed using a sulfide phosphor, the resin It turned out that a big difference arises by.

特開2005−187797号公報JP 2005-187797 A 特開2007−308537号公報JP 2007-308537 A 特開2006−188700号公報JP 2006-188700 A 特開2010−248411号公報JP 2010-248411 A

本発明は、上記した従来の問題点に鑑み、硫化物蛍光体の粒子表面に発光特性を低下させることなく被覆膜を形成した後、更に封止樹脂と混合して硬化させることにより、硫化物蛍光体本来の発光特性を保持すると共に、長期間にわたり高い耐湿性及び耐水性を保持することができる、被覆膜を備えた硫化物蛍光体粒子を含有するシリコーン樹脂の硬化体並びにその製造方法を提供することを目的とする。   In view of the above-mentioned conventional problems, the present invention forms a coating film on the surface of sulfide phosphor particles without deteriorating the light emission characteristics, and then mixes with a sealing resin and cures to form a sulfide. Cured silicone resin containing sulfide phosphor particles with a coating film and its production capable of maintaining the original light emission characteristics of the phosphor and maintaining high moisture resistance and water resistance over a long period of time It aims to provide a method.

上記目的を達成するため、本発明者らは鋭意検討を重ねた結果、まず被覆処理において、硫化物蛍光体の粒子表面にメルカプト基含有シラン有機金属化合物から調製した被覆材を結合又は吸着させて下地層を形成すること、その上にシラン有機金属化合物から調製した被覆材を結合又は吸着させて被覆膜を積層形成すること、その後この積層被覆膜を大気中で熱処理して非晶質無機酸化物の被覆膜とすることによって、発光強度を低下させることなく、優れた耐湿性と耐水性を有し且つ密着性の高い被覆膜を備えた硫化物蛍光体粒子が得られることを確認した。   In order to achieve the above object, as a result of intensive investigations, the present inventors first bonded or adsorbed a coating material prepared from a mercapto group-containing silane organometallic compound on the surface of the sulfide phosphor particles in the coating treatment. Forming a base layer, bonding or adsorbing a coating material prepared from a silane organometallic compound thereon to form a coating film, and then heat-treating the laminated coating film in the atmosphere to form an amorphous layer By using a coating film of an inorganic oxide, sulfide phosphor particles having a coating film having excellent moisture resistance and water resistance and high adhesion can be obtained without reducing the emission intensity. It was confirmed.

更に、この被覆膜を備えた硫化物蛍光体粒子を樹脂封止してLED発光デバイスに使用する際に、水分との反応による硫化水素ガスの発生を抑えて銀電極の変色をなくすためには、樹脂成分であるジメチルフェニルシロキサンとポリメチルヒドロキシシロキサンの混合体と脂肪酸基を含む硬化触媒とを配合し、硬化後の酸素透過率が600cm・cm/m・24hr・atm以下で、引張強度が1MPa〜10MPaの熱硬化型シリコーン樹脂を用いることが有効であるとの知見を得て、本発明を完成するに至った。 Furthermore, in order to eliminate the discoloration of the silver electrode by suppressing the generation of hydrogen sulfide gas due to the reaction with moisture when the sulfide phosphor particles provided with this coating film are resin-sealed and used in LED light-emitting devices. Is a blend of a resin component dimethylphenylsiloxane and polymethylhydroxysiloxane and a curing catalyst containing a fatty acid group, and the oxygen permeability after curing is 600 cm 3 · cm / m 2 · 24 hr · atm or less, Obtaining knowledge that it is effective to use a thermosetting silicone resin having a tensile strength of 1 MPa to 10 MPa, the present invention has been completed.

即ち、本発明による被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体は、2液型の熱硬化型シリコーン樹脂の混合体脂肪酸基を含む硬化触媒との配合物が硬化したシリコーン樹脂と、その中に含まれ、有機金属加水分解縮合物由来のSi、Al、Oを主成分とする非晶質無機酸化物の2層の被覆膜で表面が被覆された被覆膜付き硫化物蛍光体粒子を含有するシリコーン樹脂の硬化体であって、前記硬化したシリコーン樹脂の酸素透過率が600cm・cm/m・24hr・atm以下で且つ引張強度が1MPa〜10MPaであり、前記硫化物蛍光体粒子表面に被覆された2層の被覆膜のうちの第1層目の被覆膜は重量平均分子量1,000〜10,000のメルカプト基含有シラン有機金属加水分解縮合物由来の非晶質無機酸化物であって、前記硫化物蛍光体粒子表面に被覆された2層の被覆膜のうちの第2層目の被覆膜は重量平均分子量5,000〜20,000の均一なシラン有機金属加水分解縮合物由来の非晶質無機酸化物であることを特徴とする。 That is, the coating film with sulphide phosphor particle-containing silicone resin cured product according to the present invention, a silicone resin formulation is cured with a curing catalyst comprising a mixture and a fatty acid radical of two-liquid type thermosetting silicone resin , contained therein, organometallic hydrolytic condensate derived from Si, Al, coating with a sulfide whose surface is coated with a coating film of two layers of amorphous inorganic oxide composed mainly of O a cured product of the silicone resin containing the phosphor particles, the cured oxygen permeability of the silicone resin is 600cm 3 · cm / m and the tensile strength at 2 · 24hr · atm or less is 1MPa~10MPa, the sulfide phosphor mercapto-containing silane organometallic hydrolysis condensation of the first layer of the coating film weight average molecular weight of 1,000 to 10,000 of the coating film of the particle surface to be coated two-layer Amorphous inorganic acid derived from products A product, homogeneous silane organic of said sulfide phosphor second layer of the coating film of the coating film of the particle surface to be coated two-layer heavy weight average molecular weight 5,000 to 20,000 It is an amorphous inorganic oxide derived from a metal hydrolysis condensate.

また、本発明による被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体の製造方法は、下記(1)〜(4)の各工程を含むことを特徴とするものである。(1)メルカプト基含有シラン有機金属化合物を触媒のアルミニウム有機金属化合物と有機溶媒及び水により加水分解して重量平均分子量1,000〜10,000のメルカプト基含有シラン有機金属加水分解縮合物の被覆材を調製し、この被覆材と硫化物蛍光体粒子を容器内で撹拌混合することにより硫化物蛍光体粒子表面に第1層目の被覆膜を形成する第1工程。
(2)シラン有機金属化合物を触媒のアルミニウム有機金属化合物と有機溶媒及び水により加水分解して重量平均分子量5,000〜20,000のシラン有機金属加水分解縮合物の被覆材を調整し、この被覆材と第1工程で得られた第1層目の被覆膜を有する硫化物蛍光体粒子を容器内で撹拌混合することにより硫化物蛍光体粒子表面に均一な第2層目の被覆膜を形成する第2工程。
(3)第2工程で得られた第1層目及び第2層目の被覆膜を有する硫化物蛍光体粒子を大気中で加熱処理して、硫化物蛍光体粒子表面にSi、Al、Oを主成分とする非晶質無機酸化物の被覆膜を有する被覆膜付き硫化物蛍光体粒子を得る第3工程。
(4)第3工程で得られた被覆膜付き硫化物蛍光体粒子を、2液型の熱硬化型シリコーン樹脂の混合体に脂肪酸基を含む硬化触媒を配合し、硬化後の酸素透過率が600cm・cm/m・24hr・atm以下で且つ引張強度が1MPa〜10MPaの熱硬化型シリコーン樹脂に添加混合して練り込み、大気中において110〜150℃で加熱硬化させることにより、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を得る第4工程。
Moreover, the manufacturing method of the sulfide fluorescent substance particle containing silicone resin hardening body with a coating film by this invention includes each process of following (1)-(4), It is characterized by the above-mentioned. (1) Coating a mercapto group-containing silane organometallic compound having a weight average molecular weight of 1,000 to 10,000 by hydrolyzing a mercapto group-containing silane organometallic compound with an aluminum organometallic compound as a catalyst, an organic solvent and water. A first step of preparing a first coating film on the surface of the sulfide phosphor particles by preparing a material and stirring and mixing the coating material and the sulfide phosphor particles in a container;
(2) A silane organometallic compound is hydrolyzed with an aluminum organometallic compound as a catalyst, an organic solvent and water to prepare a coating material for a silane organometallic hydrolyzed condensate having a weight average molecular weight of 5,000 to 20,000. Uniform coating of the second layer on the surface of the sulfide phosphor particles by stirring and mixing the coating material and the sulfide phosphor particles having the coating film of the first layer obtained in the first step in a container Second step of forming a film.
(3) The sulfide phosphor particles having the first layer and the second layer coating film obtained in the second step are heat-treated in the atmosphere, and Si, Al, A third step of obtaining sulfide phosphor particles with a coating film having a coating film of an amorphous inorganic oxide mainly containing O.
(4) The sulfide phosphor particles with a coating film obtained in the third step are blended with a curing catalyst containing a fatty acid group in a mixture of two-component thermosetting silicone resin , and the oxygen permeability after curing There 600cm 3 · cm / m 2 · 24hr · atm or less and a tensile strength kneading was admixed with the thermosetting silicone resin of 1MPa~10MPa, by heat curing at 110 to 150 ° C. in air, the A fourth step of obtaining a cured silicone resin-containing sulfide phosphor particle-containing film.

上記本発明による被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体及びその製造方法において、上記メルカプト基含有シラン有機金属化合物は、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランから選ばれた少なくとも1種であることが好ましい。また、上記シラン有機金属化合物は、メチルトリエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシランから選ばれた少なくとも1種であることが好ましい。更に、上記アルミニウム有機金属化合物は、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、オクチルアセトアセテートアルミニウムジイソプロプレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)から選ばれた少なくとも1種であることが好ましい。   In the cured silicone resin containing sulfide phosphor particles having a coating film according to the present invention and the method for producing the same, the mercapto group-containing silane organometallic compound is selected from 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane. It is preferable that at least one selected. The silane organometallic compound is preferably at least one selected from methyltriethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and n-propyltrimethoxysilane. Further, the aluminum organometallic compound is at least one selected from ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), octyl acetoacetate aluminum diisopropylate, and aluminum monoacetylacetonate bis (ethyl acetoacetate). Preferably it is a seed.

本発明によれば、下地層である第1層目の被覆膜により高い被覆性と同時に優れた密着性が得られ、その上に更に第2層目の被覆膜を積層して加熱処理することによって、SiとAlとOとを主成分とする非晶質無機酸化物からなり、緻密且つ均一で欠陥がほとんどなく密着性の高い被覆膜を形成でき、硫化物蛍光体粒子本来の発光特性を保持すると同時に、優れた耐湿性及び耐水性を有する被覆膜付き硫化物蛍光体粒子を得ることができる。   According to the present invention, the first coating film as a base layer provides high coverage and excellent adhesion, and a second coating film is further laminated thereon to heat treatment. By doing so, it is possible to form a dense and uniform coating film having almost no defects and having high adhesion with an amorphous inorganic oxide mainly composed of Si, Al and O. It is possible to obtain a coated phosphor sulfide particle having excellent moisture resistance and water resistance while maintaining the light emission characteristics.

また、この被覆膜付き硫化物蛍光体粒子をシリコーン樹脂中に添加混合して加熱硬化させることで、高い耐湿性及び耐水性を有し、発光特性に優れた被覆膜付き硫化物蛍光体を含有するシリコーン樹脂の硬化体を提供することができる。しかも、この被覆膜付き硫化物蛍光体含有シリコーン樹脂硬化体は、長期間にわたり優れた耐湿性と発光特性を維持できるだけでなく、樹脂の透光度が高いため硫化物蛍光体の発光強度が低下することがない。   In addition, the coated phosphor sulfide particles with high moisture resistance and water resistance and excellent light emitting properties are obtained by adding and mixing the sulfide phosphor particles with a coating film in a silicone resin and curing by heating. A cured product of a silicone resin containing can be provided. In addition, the cured silicone resin containing a sulfide phosphor with a coating film can not only maintain excellent moisture resistance and light emission characteristics over a long period of time, but also has a high translucency of the resin, so the emission intensity of the sulfide phosphor is high. There is no decline.

従って、本発明による被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体は、耐湿性及び耐水性が極めて高く、蛍光体本来の発光強度を維持でき並びに水蒸気や水分との反応による腐食性の硫化水素ガスの発生を抑制できるため、LED発光デバイスに用いる硫化物蛍光体を含有したシリコーン樹脂硬化体として極めて優れている。また、本発明による被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体の製造方法は、各工程の操作や使用する装置に特殊なものはなく、簡単且つ効率的に製造できるため、コスト的にも極めて優れている。   Accordingly, the cured silicone resin containing sulfide phosphor particles with a coating film according to the present invention has extremely high moisture resistance and water resistance, can maintain the original emission intensity of the phosphor, and is corrosive due to reaction with water vapor and moisture. Since generation of hydrogen sulfide gas can be suppressed, it is extremely excellent as a cured silicone resin containing a sulfide phosphor used in LED light emitting devices. In addition, the method for producing a cured silicone resin containing a sulfide phosphor particle with a coating film according to the present invention has no special operation in each step and equipment to be used, and can be produced easily and efficiently. It is also very good.

本発明の被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体は、樹脂成分のジメチルフェニルシロキサンとポリメチルヒドロキシシロキサンの混合体に脂肪酸基を含む硬化触媒を配合して硬化させたシリコーン樹脂中に、粒子表面に形成した第1層目と第2層目の有機金属加水分解縮合物の被覆膜を大気中で熱処理して、Si、Al、Oを主成分とする非晶質無機酸化物の被覆膜を設けた被覆膜付き硫化物蛍光体粒子を含有しているシリコーン樹脂の硬化体である。   The cured silicone resin containing sulfide phosphor particles with a coating film according to the present invention is a silicone resin in which a curing catalyst containing a fatty acid group is blended with a mixture of resin components dimethylphenylsiloxane and polymethylhydroxysiloxane and cured. In addition, the first and second layer organometallic hydrolyzed condensate coating films formed on the particle surface are heat-treated in the atmosphere to form amorphous inorganic oxides mainly composed of Si, Al, and O. This is a cured body of a silicone resin containing sulfide phosphor particles with a coating film provided with a coating film of the product.

被覆膜付き硫化物蛍光体粒子の芯材として用いる硫化物蛍光体粒子は、その構成元素としてイオウ(S)、カルシウム(Ca)、ストロンチウム(Sr)、ガリウム(Ga)及びユーロピウム(Eu)から選ばれる少なくとも1種の元素を含むものであればよく、好ましくは、その組成式がCaS:Eu、SrS:Eu、(Ca、Sr)S:Eu、SrGa:Euで表される化合物相を含む蛍光体粒子から選ばれた少なくとも1種を用いることができる。また、硫化物蛍光体粒子の平均粒径(D50)は、1μmから50μmの範囲が好ましい。 The sulfide phosphor particles used as the core material of the sulfide phosphor particles with a coating film are composed of sulfur (S), calcium (Ca), strontium (Sr), gallium (Ga) and europium (Eu) as constituent elements. Any compound may be used as long as it contains at least one selected element. Preferably, the compound is represented by a composition formula of CaS: Eu, SrS: Eu, (Ca, Sr) S: Eu, SrGa 2 S 4 : Eu. At least one selected from phosphor particles containing a phase can be used. The average particle diameter (D50) of the sulfide phosphor particles is preferably in the range of 1 μm to 50 μm.

上記硫化物蛍光体粒子の表面に形成する第1層目の被覆膜は、メルカプト基含有シラン有機金属化合物を触媒のアルミニウム有機金属化合物と有機溶媒及び水により加水分解して得られた重量平均分子量1,000〜10,000のメルカプト基含有シラン有機金属加水分解縮合物である。また、第2層目の被覆膜はシラン有機金属化合物を触媒のアルミニウム有機金属化合物と有機溶媒及び水により加水分解して得られた重量平均分子量5,000〜20,000のシラン有機金属加水分解縮合物である。   The coating film of the first layer formed on the surface of the sulfide phosphor particles is a weight average obtained by hydrolyzing a mercapto group-containing silane organometallic compound with an aluminum organometallic compound as a catalyst, an organic solvent and water. It is a mercapto group-containing silane organometallic hydrolysis condensate having a molecular weight of 1,000 to 10,000. The coating film of the second layer is a silane organometallic hydrolyzate having a weight average molecular weight of 5,000 to 20,000 obtained by hydrolyzing a silane organometallic compound with an aluminum organometallic compound as a catalyst, an organic solvent and water. It is a decomposition condensate.

上記第1層目と第2層目の有機金属加水分解縮合物の被覆膜を大気中で熱処理して得られるSi、Al、Oを主成分とする非晶質無機酸化物の被覆膜は、膜厚が50〜200nmの範囲であることが好ましい。非晶質無機酸化物の被覆膜の膜厚が50nm未満では、十分な耐湿性と耐水性を得ることが難しいからである。また、この膜厚が200nmを超えると、コスト的に不利となるばかりか、その蛍光体粒子で作製したLED発光デバイスの発光にばらつきが生じやすくなるため好ましくない。   Amorphous inorganic oxide coating film comprising Si, Al, and O as main components obtained by heat-treating the coating films of the first layer and the second layer organometallic hydrolysis condensate in the air Is preferably in the range of 50 to 200 nm. This is because it is difficult to obtain sufficient moisture resistance and water resistance when the film thickness of the amorphous inorganic oxide coating film is less than 50 nm. In addition, when the film thickness exceeds 200 nm, not only is it disadvantageous in terms of cost, but also light emission of LED light-emitting devices produced with the phosphor particles tends to occur, which is not preferable.

一方、被覆膜付き硫化物蛍光体粒子を分散含有するシリコーン樹脂は、樹脂成分のジメチルフェニルシロキサンとポリメチルヒドロキシシロキサンの混合体に脂肪酸基を含む硬化触媒を配合した熱硬化型のシリコーン樹脂であって、その硬化後の酸素透過率が600cm・cm/m・24hr・atm以下であり且つ引張強度が1MPa〜10MPaであることが必要である。硬化したシリコーン樹脂の酸素透過率が低いことは外気からの湿気の侵入の抑制に有効であり、また引張強度が1MPa〜10MPaであることは蛍光体粒子との適度な密着性と柔軟性を示している。そのため、上記特性を有するシリコーン樹脂の採用によって、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体の耐湿性と耐水性を従来に比べて飛躍的に高めることができる。 On the other hand, silicone resin containing dispersed phosphor phosphor particles with a coating film is a thermosetting silicone resin in which a curing catalyst containing a fatty acid group is blended with a mixture of resin components dimethylphenylsiloxane and polymethylhydroxysiloxane. Thus, it is necessary that the oxygen permeability after the curing is 600 cm 3 · cm / m 2 · 24 hr · atm or less and the tensile strength is 1 MPa to 10 MPa. The low oxygen permeability of the cured silicone resin is effective in suppressing moisture intrusion from the outside air, and the tensile strength of 1 MPa to 10 MPa indicates appropriate adhesion and flexibility with the phosphor particles. ing. Therefore, by adopting the silicone resin having the above characteristics, it is possible to dramatically improve the moisture resistance and water resistance of the cured silicone resin containing sulfide phosphor particles with a coating film as compared with the conventional one.

上記した本発明の被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体は、以下の(1)から(4)の工程を備える方法により製造することができる。   The above-described sulfide phosphor particle-containing silicone resin cured body with a coating film of the present invention can be produced by a method comprising the following steps (1) to (4).

(1)メルカプト基含有シラン有機金属化合物を触媒のアルミニウム有機金属化合物と有機溶媒及び水により加水分解して重量平均分子量(Mw)が1,000〜10,000のメルカプト基含有シラン有機金属加水分解縮合物の被覆材を調製し、この被覆材と硫化物蛍光体粒子を容器内で撹拌混合することにより硫化物蛍光体粒子表面に第1層目の被覆膜を形成する第1工程。   (1) Mercapto group-containing silane organometallic compound is hydrolyzed with a catalyst aluminum organometallic compound, an organic solvent, and water to hydrolyze a mercapto group-containing silane organometallic compound having a weight average molecular weight (Mw) of 1,000 to 10,000. A first step of preparing a condensate coating material, and stirring and mixing the coating material and sulfide phosphor particles in a container to form a first layer coating film on the surface of the sulfide phosphor particles.

(2)シラン有機金属化合物を触媒のアルミニウム有機金属化合物と有機溶媒及び水により加水分解して重量平均分子量(Mw)が5,000〜20,000のシラン有機金属加水分解縮合物の被覆材を調整し、この被覆材と第1工程で得られた第1層目の被覆膜を有する硫化物蛍光体粒子を容器内で撹拌混合することにより硫化物蛍光体粒子表面に第2層目の被覆膜を形成する第2工程。   (2) A coating material of a silane organometallic hydrolysis condensate having a weight average molecular weight (Mw) of 5,000 to 20,000 by hydrolyzing a silane organometallic compound with an aluminum organometallic compound as a catalyst, an organic solvent and water. By adjusting and mixing the covering phosphor and the sulfide phosphor particles having the first layer coating film obtained in the first step in the container, the second layer is formed on the surface of the sulfide phosphor particles. Second step of forming a coating film.

(3)第2工程で得られた第1層目及び第2層目の被覆膜を有する硫化物蛍光体粒子を大気中で加熱処理して、硫化物蛍光体粒子表面にSi、Al、Oを主成分とする非晶質無機酸化物の被覆膜を有する被覆膜付き硫化物蛍光体粒子を得る第3工程。   (3) The sulfide phosphor particles having the first layer and the second layer coating film obtained in the second step are heat-treated in the atmosphere, and Si, Al, A third step of obtaining sulfide phosphor particles with a coating film having a coating film of an amorphous inorganic oxide mainly containing O.

(4)第3工程で得られた被覆膜付き硫化物蛍光体粒子を、樹脂成分のジメチルフェニルシロキサンとポリメチルヒドロキシシロキサンの混合体に脂肪酸基を含む硬化触媒を配合し、硬化後の酸素透過率が600cm・cm/m・24hr・atm以下で且つ引張強度が1MPa〜10MPaの熱硬化型シリコーン樹脂に添加混合して練り込み、大気中において110〜150℃で加熱硬化させることにより、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を得る第4工程。 (4) The coating-coated sulfide phosphor particles obtained in the third step are blended with a curing catalyst containing a fatty acid group in a mixture of resin components dimethylphenylsiloxane and polymethylhydroxysiloxane, and oxygen after curing. By adding and kneading to a thermosetting silicone resin having a transmittance of 600 cm 3 · cm / m 2 · 24 hr · atm or less and a tensile strength of 1 MPa to 10 MPa, and heat-curing at 110 to 150 ° C. in the atmosphere. And a fourth step of obtaining a cured silicone resin containing sulfide phosphor particles with a coating film.

次に、上記被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体の製造方法について、工程ごとに更に詳しく説明する。   Next, the method for producing the above-described coated phosphor-containing sulfide phosphor particle-containing cured silicone resin will be described in more detail for each step.

(1)第1工程においては、メルカプト基含有シラン有機金属化合物を、アルミニウム有機金属化合物と有機溶媒及び水により加水分解して重量平均分子量1,000〜10,000のメルカプト基含有シラン有機金属加水分解縮合物の被覆材を調製し、この被覆材と硫化物蛍光体粒子を容器内で撹拌混合することにより硫化物蛍光体粒子表面に第1層目の被覆膜を形成する。   (1) In the first step, a mercapto group-containing silane organometallic compound having a weight average molecular weight of 1,000 to 10,000 is hydrolyzed with an aluminum organometallic compound, an organic solvent, and water. A coating material of the decomposition condensate is prepared, and this coating material and sulfide phosphor particles are stirred and mixed in a container to form a first layer coating film on the surface of the sulfide phosphor particles.

まず、有機溶媒中に、メルカプト基含有シラン有機金属化合物と、触媒として作用するアルミニウム有機金属化合物と、加水分解用の水とを添加し、加水分解して重量平均分子量1,000〜10,000のメルカプト基含有シラン有機金属加水分解縮合物の被覆材を調製する。   First, a mercapto group-containing silane organometallic compound, an aluminum organometallic compound that acts as a catalyst, and water for hydrolysis are added to an organic solvent and hydrolyzed to obtain a weight average molecular weight of 1,000 to 10,000. The coating material of the mercapto group-containing silane organometallic hydrolysis condensate is prepared.

メルカプト基含有シラン有機金属化合物は、触媒として作用するアルミニウム有機金属化合物と加水分解用の水の作用により、時間の経過と共に徐々に加水分解と縮合が進行して分子量が次第に増加するので、時間を調整制御して重量平均分子量が1,000〜10,000に達するように調製する。被覆材の重量平均分子量が1,000より小さいと、粒子表面への吸着性が低下して下地層が得られず、逆に重量平均分子量が10,000を超えても吸着性が低下してしまう。下地層の形成が不十分である場合、積層する被覆膜の被覆性が低下し、耐湿性及び耐水性が向上しなくなるので、重量平均分子量を1,000〜10,000とすることは重要である。   Mercapto group-containing silane organometallic compounds have a molecular weight gradually increasing with the progress of hydrolysis and condensation over time due to the action of aluminum organometallic compound acting as a catalyst and water for hydrolysis. The weight average molecular weight is adjusted and controlled to reach 1,000 to 10,000. If the weight average molecular weight of the coating material is less than 1,000, the adsorptivity to the particle surface is lowered and an undercoat layer cannot be obtained. Conversely, even if the weight average molecular weight exceeds 10,000, the adsorptivity decreases. End up. When the formation of the underlayer is insufficient, the covering properties of the coating film to be laminated are lowered and the moisture resistance and water resistance are not improved. Therefore, it is important to set the weight average molecular weight to 1,000 to 10,000. It is.

メルカプト基含有シラン有機金属化合物としては、使用する有機溶媒に対して相溶性があり、硫化物蛍光体粒子表面への吸着力が高いものが望ましい。具体的なメルカプト基含有シラン有機金属化合物としては、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランから選ばれる少なくとも1種を用いることが好ましい。また、有機溶媒としては、エタノール、イソプロピルアルコールなどのアルコール溶媒が好ましい。アルコール溶媒中の1部にトルエン、ヘプタンなどを混合することもできる。   As the mercapto group-containing silane organometallic compound, those having compatibility with the organic solvent to be used and having a high adsorptive power to the surface of the sulfide phosphor particles are desirable. As a specific mercapto group-containing silane organometallic compound, it is preferable to use at least one selected from 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane. Moreover, as an organic solvent, alcohol solvents, such as ethanol and isopropyl alcohol, are preferable. Toluene, heptane, or the like can be mixed with 1 part of the alcohol solvent.

アルミニウム有機金属化合物としては、アルキル基を有するアルミニウムキレート化合物が好ましく、具体的には、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、オクチルアセトアセテートアルミニウムジイソプロプレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)から選ばれる少なくとも1種があげられる。特に、有機溶媒との相溶性が高いエチルアセトアセテートアルミニウムジイソプロピレートがより好ましい。   As the aluminum organometallic compound, an aluminum chelate compound having an alkyl group is preferable. Specifically, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), octyl acetoacetate aluminum diisopropylate, aluminum monoacetylacetate There is at least one selected from bis (ethyl acetoacetate). In particular, ethyl acetoacetate aluminum diisopropylate having high compatibility with an organic solvent is more preferable.

メルカプト基含有シラン有機金属化合物、アルミニウム有機金属化合物、有機溶媒及び水の配合割合は、メルカプト基含有シラン有機金属化合物1質量部に対して、有機溶媒が0.2〜1質量部、アルミニウム有機金属化合物が0.0125〜0.05質量部、水が0.005〜0.2質量部であることが好ましい。有機溶媒が1質量部より多いと濃縮時間が長くなり、0.2質量部より少ないと混合が不均一となる。また、アルミニウム有機金属化合物が0.0125質量部未満では触媒作用が不十分になりやすく、逆に0.05質量部を超えると反応が活発化しすぎ、シラン有機金属化合物の加水分解縮合物同士が凝集して溶媒中で粗大な沈殿を形成しやすくなるため好ましくない。水が0.005質量部未満では加水分解反応が進行し難く、0.2質量部を超えると蛍光体粒子の劣化の恐れがあるため好ましくない。   The compounding ratio of the mercapto group-containing silane organometallic compound, aluminum organometallic compound, organic solvent and water is 0.2 to 1 part by mass of organic solvent and aluminum organometallic with respect to 1 part by mass of mercapto group-containing silane organometallic compound. It is preferable that the compound is 0.0125 to 0.05 parts by mass and the water is 0.005 to 0.2 parts by mass. When the amount of the organic solvent is more than 1 part by mass, the concentration time becomes longer, and when the amount is less than 0.2 part by mass, the mixing becomes uneven. Further, when the amount of the aluminum organometallic compound is less than 0.0125 parts by mass, the catalytic action tends to be insufficient. It is not preferable because it tends to aggregate and form a coarse precipitate in the solvent. If the amount of water is less than 0.005 parts by mass, the hydrolysis reaction hardly proceeds, and if it exceeds 0.2 parts by mass, phosphor particles may be deteriorated, which is not preferable.

具体的な操作としては、メルカプト基シラン有機金属化合物と、アルミニウム有機金属化合物と、有機溶媒及び水を配合し、密封状態下において1〜6時間撹拌することにより加水分解縮合物を作製する。撹拌混合の条件としては、温度を好ましくは18〜80℃、更に好ましくは18〜60℃、特に好ましくは20〜40℃とする。温度が18℃よりも低いと反応が不十分となり、80℃より高くなると反応が激しくなり過ぎ、白濁や沈殿が形成されるため避けるべきである。尚、撹拌混合の手段には特に制限はなく、撹拌羽やスターラ等の撹拌機による方法、あるいは超音波ホモジナイザー等を用いる方法などにより行うことができる。   As a specific operation, a mercapto group silane organometallic compound, an aluminum organometallic compound, an organic solvent and water are blended, and a hydrolysis condensate is produced by stirring for 1 to 6 hours in a sealed state. As conditions for stirring and mixing, the temperature is preferably 18 to 80 ° C, more preferably 18 to 60 ° C, and particularly preferably 20 to 40 ° C. If the temperature is lower than 18 ° C., the reaction becomes insufficient. If the temperature is higher than 80 ° C., the reaction becomes too vigorous and white turbidity or precipitate is formed. In addition, there is no restriction | limiting in particular in the means of stirring mixing, It can carry out by the method using stirring machines, such as a stirring blade and a stirrer, or the method using an ultrasonic homogenizer.

第1工程で得られる下地層形成用の被覆材は、重量平均分子量(Mw)が1,000〜10,000のメルカプト基含有シラン有機金属加水分解縮合物である。尚、重量平均分子量の測定は、ゲル浸透クロマトグラフ分析(GPC分析)法にて行うことができる。具体的には、測定試料として被覆材2ccを採取し、この中にテトラヒドロフラン18ccを加えて撹拌し、濾過して調製した後、重量平均分子量を測定することで評価した。   The coating material for forming the underlayer obtained in the first step is a mercapto group-containing silane organometallic hydrolysis condensate having a weight average molecular weight (Mw) of 1,000 to 10,000. The weight average molecular weight can be measured by gel permeation chromatography analysis (GPC analysis). Specifically, 2 cc of a covering material was collected as a measurement sample, 18 cc of tetrahydrofuran was added to the sample, and the mixture was stirred and filtered, and then evaluated by measuring the weight average molecular weight.

次に、上記のごとく調製した重量平均分子量1,000〜10,000のメルカプト基含有シラン有機金属加水分解縮合物の被覆材を、硫化物蛍光体粒子と容器内で撹拌混合することにより、硫化物蛍光体粒子の表面に第1層目の被覆膜を形成する。   Next, the coating material of the mercapto group-containing silane organometallic hydrolysis condensate having a weight average molecular weight of 1,000 to 10,000 prepared as described above is agitated and mixed with sulfide phosphor particles in a container, thereby sulfiding. A first coating layer is formed on the surface of the phosphor particles.

一般に、メルカプト基含有シラン有機金属化合物及びその加水分解縮合物は、分子末端にメルカプト基とアルコキシ基を有している。このメルカプト基が硫化物蛍光体粒子表面にあるイオウ成分と結合することで、第1層目のメルカプト基含有シラン有機金属加水分解縮合物による下地層が形成される。このとき、下地層の内側(粒子表面側)にはメルカプト基が配置され、外側にはアルコキシ基が配向している。そして、この第1層目である下地層の上に第2層目の被覆膜を積層するが、その際に第2層目の被覆膜はシラン有機金属加水分解縮合物の水酸基の結合により堆積させて形成するため、下地層表面にアルコキシ基が存在していることで結合が容易に行われる。   In general, a mercapto group-containing silane organometallic compound and a hydrolysis-condensation product thereof have a mercapto group and an alkoxy group at the molecular ends. By combining the mercapto group with the sulfur component on the surface of the sulfide phosphor particle, a first layer of a mercapto group-containing silane organometallic hydrolysis condensate of the first layer is formed. At this time, mercapto groups are arranged on the inner side (particle surface side) of the underlayer, and alkoxy groups are oriented on the outer side. Then, a second layer coating film is laminated on the first layer, which is the first layer. At this time, the second layer coating film is bonded to the hydroxyl group of the silane organometallic hydrolysis condensate. Therefore, the bonding is easily performed due to the presence of an alkoxy group on the surface of the base layer.

硫化物蛍光体粒子とメルカプト基含有シラン有機金属加水分解縮合物の配合割合は、特に限定されるものではないが、硫化物蛍光体粒子1質量部に対して0.01〜1質量部のメルカプト基含有シラン有機金属加水分解縮合物を配合することが好ましい。1質量部を超えてメルカプト基含有シラン有機金属化合物を配合すると、有機溶媒の分離時に蛍光体粒子の凝集が起こりやすくなるため好ましくない。また、メルカプト基含有シラン有機金属加水分解縮合物が0.01質量部より少ないと、下地層としての効果が不十分となるため好ましくない。   The blending ratio of the sulfide phosphor particles and the mercapto group-containing silane organometallic hydrolysis condensate is not particularly limited, but is 0.01 to 1 part by mass of mercapto with respect to 1 part by mass of the sulfide phosphor particles. It is preferable to mix a group-containing silane organometallic hydrolysis condensate. When the amount of the mercapto group-containing silane organometallic compound exceeds 1 part by mass, aggregation of the phosphor particles tends to occur during the separation of the organic solvent, which is not preferable. On the other hand, if the mercapto group-containing silane organometallic hydrolysis condensate is less than 0.01 parts by mass, the effect as the underlayer becomes insufficient, such being undesirable.

具体的な操作としては、上記のごとく調製した重量平均分子量1,000〜10,000のメルカプト基含有シラン有機金属加水分解縮合物の被覆材を、エタノール、イソプロピルアルコール、1−ブタノールのアルコール溶媒、もしくはヘプタンやトルエンの炭化水素系溶媒などの有機溶媒に混合し、更に硫化物蛍光体粒子を添加して、28〜48kHzの超音波振動を5〜30分加えて分散させる。引き続き、密封状態下において、18〜80℃の温度で0.5〜24時間撹拌混合する。その後、真空濾過して有機溶媒を分離し、下地層である第1層目の被覆膜が形成された硫化物蛍光体粒子を得ることができる。   As a specific operation, a coating material of a mercapto group-containing silane organometallic hydrolysis condensate having a weight average molecular weight of 1,000 to 10,000 prepared as described above, ethanol, isopropyl alcohol, 1-butanol alcohol solvent, Alternatively, the mixture is mixed with an organic solvent such as a hydrocarbon solvent such as heptane or toluene, and further, sulfide phosphor particles are added, and 28 to 48 kHz ultrasonic vibration is added for 5 to 30 minutes to disperse. Subsequently, the mixture is stirred and mixed at a temperature of 18 to 80 ° C. for 0.5 to 24 hours in a sealed state. Thereafter, the organic solvent is separated by vacuum filtration to obtain sulfide phosphor particles on which a first layer coating film as a base layer is formed.

(2)第2工程では、シラン有機金属化合物をアルミニウム有機金属化合物と有機溶媒及び水により加水分解して重量平均分子量5,000〜20,000のシラン有機金属化合物加水分解縮合物の被覆材を調製し、この被覆材で第1層目の被覆膜を有する硫化物蛍光体粒子表面に第2層目の被覆膜を形成する。   (2) In the second step, a silane organometallic compound is hydrolyzed with an aluminum organometallic compound, an organic solvent, and water to obtain a coating material of a silane organometallic compound hydrolyzed condensate having a weight average molecular weight of 5,000 to 20,000. The second layer coating film is formed on the surface of the sulfide phosphor particle having the first layer coating film by using this coating material.

まず、有機溶媒中に、シラン有機金属化合物と、触媒として作用するアルミニウム有機金属化合物と、加水分解用の水とを配合し、加水分解して重量平均分子量5,000〜20,000のシラン有機金属加水分解縮合物を得る。   First, a silane organometallic compound, an aluminum organometallic compound that acts as a catalyst, and water for hydrolysis are blended in an organic solvent and hydrolyzed to give a silane organic compound having a weight average molecular weight of 5,000 to 20,000. A metal hydrolysis condensate is obtained.

シラン有機金属化合物はアルミニウム有機金属化合物と水の作用により加水分解・縮合反応を起こし、時間の経過と共に徐々に縮合が進行して分子量が次第に増加するので、時間を調整制御して重量平均分子量を5,000〜20,000の範囲、好ましくは7,000〜12,000の範囲とする。重量平均分子量が5,000より小さいと、加熱処理時の飛散量が大きくなるため緻密な被覆膜が得られない。逆に重量平均分子量が20,000を超えると、蛍光体粒子表面への被覆性が低下し、耐湿性及び耐水性が向上しなくなる。   Silane organometallic compounds undergo hydrolysis and condensation reactions with the action of aluminum organometallic compounds and water, and condensation gradually progresses over time, and the molecular weight gradually increases. The range is from 5,000 to 20,000, preferably from 7,000 to 12,000. When the weight average molecular weight is less than 5,000, the amount of scattering during the heat treatment increases, and thus a dense coating film cannot be obtained. On the other hand, when the weight average molecular weight exceeds 20,000, the coating property on the surface of the phosphor particles is lowered, and the moisture resistance and water resistance are not improved.

第2層目の被覆材の調製に用いるシラン有機金属化合物としては、加水分解縮合物の安定性、被覆性及び膜質の観点から、トリアルコキシシランを好適に使用することができる。具体的には、メチル−、エチル−、i−プロピル−、i−ブチル−、n−プロピル−、n−ブチル−等のトリアルコキシシランがあげられる。その中でも、メチルトリエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシランが好ましく、メチルトリメトキシシラン又はメチルトリエトキシシランが特に好ましい。メチルトリメトキシシラン及びメチルトリエトキシシランは適度な反応速度であるため、長時間にわたる加水分解縮合物の作製においても急激に粘度が上昇することがなく、沈殿物の生成又は白濁化といった不安定さが生じることもなく、所望の分子量に制御することが容易なためである。   As the silane organometallic compound used for the preparation of the coating material for the second layer, trialkoxysilane can be suitably used from the viewpoints of stability of the hydrolyzed condensate, coating properties and film quality. Specific examples include trialkoxysilanes such as methyl-, ethyl-, i-propyl-, i-butyl-, n-propyl-, n-butyl-. Among these, methyltriethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and n-propyltrimethoxysilane are preferable, and methyltrimethoxysilane or methyltriethoxysilane is particularly preferable. Since methyltrimethoxysilane and methyltriethoxysilane have an appropriate reaction rate, the viscosity does not increase suddenly even in the production of hydrolysis condensates over a long period of time, and instability such as the formation of precipitates or clouding occurs. This is because it is easy to control the molecular weight to a desired level.

第2層目の被覆材の調製に用いるアルミニウム有機金属化合物しては、第1工程であげたアルミニウム有機金属化合物が好適に使用でき、その中でも有機溶媒との相溶性が高いエチルアセトアセテートアルミニウムジイソプロピレートが特に好ましい。また、有機溶媒としては、エタノール、イソプロピルアルコールなどのアルコール溶媒が好ましい。   As the aluminum organometallic compound used for the preparation of the coating material for the second layer, the aluminum organometallic compound mentioned in the first step can be preferably used, and among them, ethyl acetoacetate aluminum dihydrate having high compatibility with the organic solvent. Isopropylate is particularly preferred. Moreover, as an organic solvent, alcohol solvents, such as ethanol and isopropyl alcohol, are preferable.

シラン有機金属化合物、アルミニウム有機金属化合物、有機溶媒及び水の配合割合は、シラン有機金属化合物1質量部に対して、有機溶媒は0.5〜1質量部、アルミニウム有機金属化合物は0.0125〜0.05質量部、水は0.2〜0.5質量部であることが好ましい。有機溶媒が1質量部より多いと濃縮時間が長くなり、0.5質量部より少ないと混合が不均一となる。また、アルミニウム有機金属化合物が0.0125質量部未満では触媒作用が不十分になりやすく、逆に0.05質量部を超えると反応が活発化しすぎ、生成したシラン有機金属加水分解縮合物同士が凝集して、溶媒中で粗大な沈殿を形成しやすくなる。水が0.2質量部未満であるか若しくは0.5質量部を超えると、加水分解反応が不安定となるため好ましくない。   The mixing ratio of the silane organometallic compound, the aluminum organometallic compound, the organic solvent and water is 0.5 to 1 part by mass for the organic solvent and 0.0125 for the aluminum organometallic compound with respect to 1 part by mass of the silane organometallic compound. It is preferable that 0.05 mass part and water are 0.2-0.5 mass part. When the amount of the organic solvent is more than 1 part by mass, the concentration time becomes longer, and when the amount is less than 0.5 part by mass, the mixing becomes uneven. Further, when the aluminum organometallic compound is less than 0.0125 parts by mass, the catalytic action tends to be insufficient. Conversely, when the aluminum organometallic compound exceeds 0.05 parts by mass, the reaction becomes too active, and the produced silane organometallic hydrolyzed condensates are in contact with each other. Aggregates and tends to form coarse precipitates in the solvent. If the water content is less than 0.2 parts by mass or exceeds 0.5 parts by mass, the hydrolysis reaction becomes unstable, which is not preferable.

具体的な操作方法としては、シラン有機金属化合物と、アルミニウム有機金属化合物と、有機溶媒及び水を配合し、密封状態において18〜96時間撹拌してシラン有機金属加水分解縮合物を作製する。得られたシラン有機金属加水分解縮合物の溶液は、開封した容器に入れ、強撹拌を加えて余分な溶媒や水分、未反応物を揮発させることにより、液量が元の質量に対して80〜60%になるまで濃縮する。濃縮の終了後、0.05〜0.1MPaの真空度で真空濾過して、シラン有機金属加水分解縮合物の第2層目の被覆材が得られる。   As a specific operation method, a silane organometallic compound, an aluminum organometallic compound, an organic solvent and water are blended and stirred for 18 to 96 hours in a sealed state to produce a silane organometallic hydrolysis condensate. The solution of the obtained silane organometallic hydrolysis condensate is put into an opened container, and the amount of liquid is 80% of the original mass by vigorous evaporation of excess solvent, moisture and unreacted substances. Concentrate to ~ 60%. After the concentration is completed, vacuum filtration is performed at a vacuum degree of 0.05 to 0.1 MPa to obtain a coating material for the second layer of the silane organometallic hydrolysis condensate.

上記加水分解縮合の際の撹拌混合条件としては、特に限定されるものではないが、密封状態下において、温度を好ましくは18〜40℃とする。温度が18℃よりも低いと反応が不十分となり、40℃より高くなると反応が激しくなり過ぎ、白濁や沈殿が形成されるため避けるべきである。   Although it does not specifically limit as stirring and mixing conditions in the case of the said hydrolysis condensation, Temperature is preferably 18-40 degreeC under a sealing state. If the temperature is lower than 18 ° C., the reaction becomes insufficient. If the temperature is higher than 40 ° C., the reaction becomes too vigorous and white turbidity or precipitate is formed.

また、撹拌時間は18〜96時間とすることが好ましい。撹拌時間が18時間未満では、加水分解縮合反応が不十分であり、加水分解縮合物中に多くの低分子を含むことになるため、熱又は水に対する耐性が劣り、良好な被覆膜として機能しない場合がある。一方、撹拌時間が96時間を超えると、被覆膜を形成する際の吸着性に劣り、局部的に未被覆部が生じやすい。尚、撹拌混合の手段としては、撹拌羽やスターラ等の撹拌機による方法、あるいは超音波ホモジナイザー等公知の方法で行うことができる。   The stirring time is preferably 18 to 96 hours. If the stirring time is less than 18 hours, the hydrolysis condensation reaction is insufficient, and the hydrolysis condensate contains many low molecules, so the resistance to heat or water is poor and it functions as a good coating film. May not. On the other hand, when the stirring time exceeds 96 hours, the adsorptivity at the time of forming the coating film is inferior, and an uncoated portion tends to be locally generated. As a means for stirring and mixing, a method using a stirring machine such as a stirring blade or a stirrer, or a known method such as an ultrasonic homogenizer can be used.

次に、上記のごとく調製したシラン有機金属加水分解縮合物である第2層目の被覆材を、上記第1工程において下地層である第1層目の被覆膜を形成した硫化物蛍光体粒子と容器内で撹拌混合することにより、硫化物蛍光体粒子表面の第1層目の被覆膜上に第2層目の被覆膜を積層して形成する。   Next, the second layer coating material that is the silane organometallic hydrolysis condensate prepared as described above is used as the sulfide phosphor in which the first layer coating film that is the base layer is formed in the first step. By stirring and mixing the particles in the container, a second coating film is laminated on the first coating film on the surface of the sulfide phosphor particles.

硫化物蛍光体粒子と第2層目の被覆材の配合割合は、蛍光体粒子1質量部に対してシラン有機金属加水分解縮合物の被覆材1〜6質量部が好ましい。シラン有機金属加水分解縮合物の被覆材が1質量部より少ないと、濾過量が多くなるだけで無駄が多くなる。逆にシラン有機金属加水分解縮合物の被覆材が6質量部よりも多くなると、撹拌が不十分となりやすく、良好な被覆膜の形成が難しくなるため好ましくない。   The blending ratio of the sulfide phosphor particles and the coating material of the second layer is preferably 1 to 6 parts by mass of the coating material of the silane organometallic hydrolysis condensate with respect to 1 part by mass of the phosphor particles. If the coating material of the silane organometallic hydrolysis-condensation product is less than 1 part by mass, the amount of filtration increases and waste is increased. On the contrary, when the coating material of the silane organometallic hydrolysis condensate is more than 6 parts by mass, the agitation tends to be insufficient and it becomes difficult to form a good coating film, which is not preferable.

具体的な操作としては、シラン有機金属加水分解縮合物である第2層目の被覆材と第1層目の被覆膜を形成した硫化物蛍光体粒子と容器内で混合し、得られた混合物に超音波振動を与えて再分散させた後、温度18〜100℃で0.2〜24時間撹拌混合する。その後、真空濾過し、大気中において100〜120℃で乾燥することにより、下地層である第1層目の被覆膜の上に第2層目の被覆膜を有する硫化物蛍光体粒子が得られる。   Specifically, the second layer coating material, which is a silane organometallic hydrolysis condensate, and the sulfide phosphor particles on which the first layer coating film was formed were mixed in a container and obtained. The mixture is subjected to ultrasonic vibration and redispersed, and then stirred and mixed at a temperature of 18 to 100 ° C. for 0.2 to 24 hours. Thereafter, vacuum filtration and drying at 100 to 120 ° C. in the atmosphere allows the sulfide phosphor particles having the second coating film on the first coating film as the underlayer. can get.

(3)第3工程においては、上記第2工程で得られた第1層目及び第2層目の被覆膜を有する硫化物蛍光体粒子を大気中で加熱処理することにより、硫化物蛍光体粒子表面にSi、Al、Oを主成分とする非晶質無機酸化物の被覆膜を有する被覆膜付き硫化物蛍光体粒子を得る。   (3) In the third step, the sulfide phosphor particles having the first layer and the second layer coating film obtained in the second step are heat-treated in the atmosphere, thereby producing sulfide fluorescence. A sulfide phosphor particle with a coating film having a coating film of an amorphous inorganic oxide mainly containing Si, Al, and O on the body particle surface is obtained.

即ち、上記第2工程で得られた硫化物蛍光体粒子を大気中で加熱処理することによって、硫化物蛍光体粒子表面に積層されているメルカプト基含有シラン有機金属加水分解縮合物の第1層目の被覆膜とシラン有機金属加水分解縮合物の第2層目の被覆膜は、その中に含まれている有機物が熱分解して無機質化することによりSi、Al、Oを主成分とする非晶質無機酸化物となり、得られる非晶質無機酸化物の被覆膜の緻密性を高めることができる。   That is, the first layer of the mercapto group-containing silane organometallic hydrolysis condensate laminated on the surface of the sulfide phosphor particles by heat-treating the sulfide phosphor particles obtained in the second step in the air. The coating film of the eye and the second coating film of the silane organometallic hydrolysis condensate are mainly composed of Si, Al, and O when the organic matter contained therein is thermally decomposed to become inorganic. Thus, the denseness of the resulting amorphous inorganic oxide coating film can be improved.

加熱処理の雰囲気としては、特に限定されるものではなく、大気雰囲気のほか、不活性ガス、真空、若しくは、これらを組み合わせた雰囲気であってよい。加熱処理の温度としては、加熱温度が高いほど非晶質無機酸化物の被覆膜が緻密且つ強固となり、耐湿性が向上する傾向にあるが、硫化物蛍光体粒子の耐熱性にも影響するため、200〜300℃の範囲が好ましい。また、加熱時間としては0.5〜2時間が好ましい。   The atmosphere for the heat treatment is not particularly limited, and may be an air atmosphere, an inert gas, a vacuum, or a combination of these. As the temperature of the heat treatment, the higher the heating temperature, the denser and stronger the coating film of the amorphous inorganic oxide tends to improve the moisture resistance, but it also affects the heat resistance of the sulfide phosphor particles. Therefore, the range of 200 to 300 ° C. is preferable. The heating time is preferably 0.5 to 2 hours.

以上の第1工程〜第3工程により、本発明に係わる被覆膜付き硫化物蛍光体粒子を製造することができる。非晶質無機酸化物からなる被覆膜の膜厚は50〜200nmであることが好ましい。被覆膜の膜厚が50nm未満では、十分な耐湿性と耐水性を得ることが難しい。また、被覆膜の膜厚が200nmを超える場合には、コスト的に不利であるばかりか、得られた被覆膜付き硫化物蛍光体粒子で作製したLED発光デバイスの発光にばらつきが生じやすくなるため好ましくない。   Through the above first to third steps, the coated phosphor-coated sulfide phosphor particles according to the present invention can be produced. The film thickness of the coating film made of an amorphous inorganic oxide is preferably 50 to 200 nm. If the film thickness of the coating film is less than 50 nm, it is difficult to obtain sufficient moisture resistance and water resistance. Moreover, when the film thickness of the coating film exceeds 200 nm, not only is it disadvantageous in cost, but also the light emission of the LED light-emitting device produced from the obtained sulfide phosphor particles with a coating film tends to vary. Therefore, it is not preferable.

(4)最後の第4工程では、上記第3工程で得られた被覆膜付き硫化物蛍光体粒子を、熱硬化型シリコーン樹脂に添加混合して練り込み、大気中において加熱硬化させることにより、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を得る。   (4) In the final fourth step, the coated phosphor-coated sulfide phosphor particles obtained in the third step are added and mixed into a thermosetting silicone resin, kneaded, and heated and cured in the atmosphere. Then, a cured silicone resin containing sulfide phosphor particles with a coating film is obtained.

この第4工程で使用する熱硬化型シリコーン樹脂は、既に述べたように、樹脂成分であるジメチルフェニルシロキサンとポリメチルヒドロキシシロキサンの混合体に脂肪酸基を含む硬化触媒を配合した熱硬化型のシリコーン樹脂であって、その硬化後の酸素透過率が600cm・cm/m・24hr・atm以下であり且つ引張強度が1MPa〜10MPaであることが必要である。尚、脂肪酸基を含む硬化触媒としては、例えば、脂肪酸亜鉛や脂肪酸錫などを使用することができる。 As already described, the thermosetting silicone resin used in the fourth step is a thermosetting silicone in which a mixture of dimethylphenylsiloxane and polymethylhydroxysiloxane, which are resin components, is blended with a curing catalyst containing a fatty acid group. The resin is required to have an oxygen permeability after curing of 600 cm 3 · cm / m 2 · 24 hr · atm or less and a tensile strength of 1 MPa to 10 MPa. In addition, as a curing catalyst containing a fatty acid group, for example, fatty acid zinc or fatty acid tin can be used.

この第4工程で好適に使用できる熱硬化型シリコーン樹脂としては、例えば、東レダウコーニング(株)製のOE−6665(酸素透過率:500cm・cm/m・24hr・atm、引張強度:8.9MPa)、信越化学(株)製のASP−1010(酸素透過率:200cm・cm/m・24hr・atm、引張強度:6.2MPa)やASP−1020A/B(酸素透過率320cm・cm/m・24hr・atm:引張強度:2.5MPa)などがある。 Examples of the thermosetting silicone resin that can be suitably used in the fourth step include OE-6665 (oxygen permeability: 500 cm 3 · cm / m 2 · 24 hr · atm, manufactured by Toray Dow Corning Co., Ltd., tensile strength: 8.9 MPa), ASP-1010 manufactured by Shin-Etsu Chemical Co., Ltd. (oxygen permeability: 200 cm 3 · cm / m 2 · 24 hr · atm, tensile strength: 6.2 MPa) and ASP-1020 A / B (oxygen permeability 320 cm) 3 · cm / m 2 · 24 hr · atm: tensile strength: 2.5 MPa).

また、被覆膜付き硫化物蛍光体粒子と熱硬化型シリコーン樹脂の配合割合は、熱硬化型シリコーン樹脂100質量部に対して、被覆膜付き硫化物蛍光体粒子を5〜50質量部配合することが好ましい。被覆膜付き硫化物蛍光体粒子の配合量が5質量部未満では樹脂中の蛍光体粒子の配合割合が低いため、発光強度が低下し、逆に50質量部を超えると樹脂強度が低下し、樹脂による耐湿性や耐水性の効果が低下するため好ましくない。   Further, the blending ratio of the sulfide phosphor particles with a coating film and the thermosetting silicone resin is 5 to 50 parts by mass of the sulfide phosphor particles with a coating film with respect to 100 parts by mass of the thermosetting silicone resin. It is preferable to do. If the blending amount of the sulfide phosphor particles with a coating film is less than 5 parts by mass, the blending ratio of the phosphor particles in the resin is low. , Since the effect of moisture resistance and water resistance by the resin is lowered, it is not preferable.

具体的な操作としては、まず、第3工程で得られた被覆膜付き硫化物蛍光体を熱硬化型シリコーン樹脂100質量部に対して5〜50質量部の割合で配合した後、真空脱泡しながら混合と練り込みを行う。被覆膜付き硫化物蛍光体粒子とシリコーン樹脂の混合と練り込みは、通常の樹脂混合機、例えばシンキー社製のARV−3101EDなどを用いて、1〜10分撹拌することで行う。   As a specific operation, first, the sulfide fluorescent substance with a coating film obtained in the third step is blended at a ratio of 5 to 50 parts by mass with respect to 100 parts by mass of the thermosetting silicone resin, and then vacuum desorption is performed. Mix and knead while foaming. The mixing and kneading of the sulfide phosphor particles with a coating film and the silicone resin are performed by stirring for 1 to 10 minutes using an ordinary resin mixer such as ARV-3101ED manufactured by Shinky Corporation.

被覆膜付き硫化物蛍光体粒子と混合する際のシリコーン樹脂の液粘度は、400〜5,000mPa・sの範囲が好ましい。400Pa・s未満の粘度では樹脂を練り込んだ直後から被覆膜付き硫化物蛍光体粒子の沈降が発生する。また5,000mPa・sを超える粘度になると、練り込みに長時間を要したり、練り込み時に過度な力を加えたりする必要が生じるため、重要な被覆膜の剥離が懸念される。尚、シリコーン樹脂の粘度が上記範囲を外れる場合には、粘度調製剤を添加して粘度を調整することが望ましい。   The liquid viscosity of the silicone resin when mixed with the sulfide phosphor particles with a coating film is preferably in the range of 400 to 5,000 mPa · s. When the viscosity is less than 400 Pa · s, sedimentation of the sulfide phosphor particles with a coating film occurs immediately after kneading the resin. Further, when the viscosity exceeds 5,000 mPa · s, it takes a long time for kneading or an excessive force needs to be applied at the time of kneading. When the viscosity of the silicone resin is out of the above range, it is desirable to adjust the viscosity by adding a viscosity adjusting agent.

被覆膜付き硫化物蛍光体と熱硬化型シリコーン樹脂の混合と練り込みを行った後、得られた適量の練り込み樹脂をガラス製又は金属製の型にキャストし、大気中において110〜150℃で加熱硬化させる。加熱硬化温度が110℃未満では、樹脂の硬化不足により、樹脂強度が低くなる。逆に150℃を超えると、樹脂の分解劣化が起こるため好ましくない。   After mixing and kneading the sulfide phosphor with a coating film and the thermosetting silicone resin, an appropriate amount of the kneaded resin obtained was cast into a glass or metal mold and 110 to 150 in the atmosphere. Heat cure at ℃. When the heat curing temperature is less than 110 ° C., the resin strength is lowered due to insufficient curing of the resin. On the other hand, if it exceeds 150 ° C., the resin is degraded and deteriorated, which is not preferable.

上記した第1工程〜第4工程により、本発明の被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を得ることができる。このようにして得られた本発明の被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体では、耐湿性と耐水性に優れた被覆膜付き硫化物蛍光体粒子と厳選したシリコーン樹脂との組み合わせによって、外気からの湿気の侵入を抑制すると同時に硫化物蛍光体粒子とシリコーン樹脂の適度な密着性と柔軟性とが得られ、全体としての耐湿性及び耐水性を飛躍的に高めることができる。   By the first to fourth steps described above, the cured silicone resin-containing sulfide phosphor particles with a coating film of the present invention can be obtained. In the cured silicone resin containing a sulfide phosphor particle with a coating film of the present invention thus obtained, the sulfide phosphor particle with a coating film excellent in moisture resistance and water resistance and a carefully selected silicone resin are used. The combination suppresses moisture intrusion from the outside air, and at the same time, provides appropriate adhesion and flexibility between the sulfide phosphor particles and the silicone resin, and can drastically improve the overall moisture resistance and water resistance. .

本発明の被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体においては、その効果を十分発揮させるために以下の点についても注意する必要がある。(a)下地層である第1層目の被覆膜の形成が不均一であると、その上に積層する第2層目の被覆膜の形成が不十分となり耐水性が向上しない。(b)被覆膜が加熱処理により緻密化されていないと、樹脂への練り込み時に被覆膜が剥離し、樹脂の加熱硬化時に蛍光体粒子が反応を起こして発光特性が低下する。(c)シリコーン樹脂成分の中にはSi−H基を有するものがあるが、反応性の強いSi−H基が加熱硬化の際に蛍光体粒子と反応することがあり、粒子表面を分析すると異相として確認できる。また、下地層や被覆膜を形成せずに硫化物蛍光体粒子をシリコーン樹脂に練り込んで加熱すると、樹脂が硬化しない場合も生じる。   In the cured silicone resin containing sulfide phosphor particles with a coating film according to the present invention, it is necessary to pay attention to the following points in order to sufficiently exhibit the effect. (A) If the formation of the first coating film as the underlayer is not uniform, the formation of the second coating film laminated thereon is insufficient and the water resistance is not improved. (B) If the coating film is not densified by heat treatment, the coating film is peeled off when kneaded into the resin, and the phosphor particles undergo a reaction when the resin is heat-cured to deteriorate the light emission characteristics. (C) Some silicone resin components have Si-H groups, but highly reactive Si-H groups may react with phosphor particles during heat curing, and the particle surface is analyzed. It can be confirmed as a different phase. Further, when sulfide phosphor particles are kneaded into a silicone resin and heated without forming an underlayer or a coating film, the resin may not be cured.

以下の実施例及び比較例によって、本発明を更に詳しく説明する。尚、各実施例及び比較例では、いずれも芯材となる硫化物蛍光体粒子としてSrGa:Eu粒子(高純度化学(株)製、平均粒径D50=5.6μm)を用いた。また、実施例及び比較例において、被覆膜付き蛍光体粒子の被覆膜の膜厚、密着性、及び発光特性(被覆前後の発光強度の変化)、被覆膜付き蛍光体粒子の耐湿性(耐湿試験前後での発光強度の変化)、被覆膜付き蛍光体粒子含有樹脂硬化体の耐水性(銀板反射率の変化)については、以下の方法により評価した。 The following examples and comparative examples illustrate the present invention in more detail. In each of the examples and comparative examples, SrGa 2 S 4 : Eu particles (manufactured by High-Purity Chemical Co., Ltd., average particle size D50 = 5.6 μm) were used as sulfide phosphor particles serving as a core material. . In Examples and Comparative Examples, the film thickness, adhesion, and light emission characteristics (change in emission intensity before and after coating) of the phosphor particles with coating film, and moisture resistance of the phosphor particles with coating film The water resistance (change in silver plate reflectivity) of the cured resin containing phosphor particles with a coating film (change in emission intensity before and after the moisture resistance test) was evaluated by the following method.

<被覆膜の膜厚評価>
被覆膜付き蛍光体粒子を一部取り出してエポキシ樹脂中に埋め込み、硬化後に断面を加工して、SEM又はTEMにより断面を観察する。得られた画像から被覆膜(n=5)の寸法を測定し、平均膜厚を求めた。その際、被覆膜は組成差によるコントラストに濃淡ができるため、2次電子像及び反射電子像で鮮明に観察できる。尚、被覆膜をSEM−EDXで分析するとSiとOが検出されるため、濃淡によって観察される膜が被覆によるものであると確認することができる。
<Evaluation of coating film thickness>
A part of the phosphor particles with a coating film is taken out and embedded in an epoxy resin, the cross section is processed after curing, and the cross section is observed by SEM or TEM. The dimension of the coating film (n = 5) was measured from the obtained image, and the average film thickness was obtained. At that time, since the contrast of the coating film can be changed due to the difference in composition, it can be clearly observed in the secondary electron image and the reflected electron image. In addition, since Si and O are detected when the coating film is analyzed by SEM-EDX, it can be confirmed that the film observed by shading is due to the coating.

<被覆膜の密着性評価>
被覆膜付き蛍光体粒子10gをシリコーン樹脂20〜90g(実施例又は比較例により相違)に添加し、撹拌混合機(シンキー社製、ARV310−LED)で真空脱泡を行いながら1200rpm×10分の真空撹拌を行った。得られた練り込み樹脂を1gづつ計量して直径40mmのガラス製の型20個にキャストした。150℃×2時間の条件で硬化させ、得られた被覆膜付き蛍光体粒子含有樹脂硬化体の一部を断面加工してTEMでの断面観察を行い、被覆膜の膜割れや剥離などの無いものは「○」、膜割れや剥離などが有るものは「×」で示した。
<Evaluation of coating film adhesion>
10 g of phosphor particles with a coating film are added to 20 to 90 g of silicone resin (differs depending on examples or comparative examples), and 1200 rpm × 10 minutes while performing vacuum defoaming with a stirring mixer (ARV310-LED, manufactured by Sinky Corporation) Was vacuum stirred. The obtained kneaded resin was weighed by 1 g and cast into 20 glass molds having a diameter of 40 mm. Curing is performed at 150 ° C. for 2 hours, and a part of the obtained coated resin-coated phosphor particle-containing resin cured product is subjected to cross-sectional processing and cross-sectional observation with TEM is performed, film cracking or peeling of the coating film Those with no mark are indicated with “◯”, and those with film cracking or peeling are indicated with “x”.

<被覆膜付き蛍光体粒子の発光特性評価>
蛍光体粒子の被覆膜形成前後でのPL(Photo Luminescence)発光強度を測定し、被覆膜の形成前後でのPL発光強度の変化(被覆後のPL発光強度/被覆前のPL発光強度)を確認した。被覆処理前後でのPL発光強度を比較することで、被覆処理中の水分の影響によるPL発光強度の低下や、被膜形成又は粒子表面の浄化効果等によるPL発光強度の上昇などの変化を見ることができる。尚、PL発光強度は日本分光株式会社製の分光蛍光光度計FP6500により、450nmの励起光で発光スペクトルの強度から求めた。
<Emission characteristic evaluation of phosphor particles with coating film>
PL (Photo Luminescence) emission intensity before and after the formation of the coating film of phosphor particles was measured, and the change in PL emission intensity before and after the formation of the coating film (PL emission intensity after coating / PL emission intensity before coating) It was confirmed. By comparing the PL emission intensity before and after the coating process, you can see changes such as a decrease in PL emission intensity due to the influence of moisture during the coating process, and an increase in PL emission intensity due to film formation or particle surface purification effects, etc. Can do. In addition, PL emission intensity was calculated | required from the intensity | strength of the emission spectrum with the excitation light of 450 nm with the spectrofluorimeter FP6500 by JASCO Corporation.

<被覆膜付き蛍光体粒子の耐湿性評価>
被覆膜付き蛍光体粒子の耐湿試験の前後でのPL発光強度を測定し、その変化(耐湿試験後のPL発光強度/初期のPL発光強度)を求めた。耐湿試験は、上記被覆膜の密着性評価と同様に作製した被覆膜付き蛍光体粒子含有樹脂硬化体を用い、85℃×85%RHの雰囲気下に250時間保持して行った。尚、PL発光強度は日本分光株式会社製の分光蛍光光度計FP6500により、450nmの励起光で発光スペクトルの強度から求めた。
<Moisture resistance evaluation of phosphor particles with coating film>
The PL emission intensity before and after the moisture resistance test of the phosphor particles with the coating film was measured, and the change (PL emission intensity after the moisture resistance test / initial PL emission intensity) was determined. The moisture resistance test was carried out by using a phosphor-containing resin-cured resin particle with a coating film produced in the same manner as in the evaluation of the adhesiveness of the coating film, and holding it in an atmosphere of 85 ° C. × 85% RH for 250 hours. In addition, PL emission intensity was calculated | required from the intensity | strength of the emission spectrum with the excitation light of 450 nm with the spectrofluorimeter FP6500 by JASCO Corporation.

<被覆膜付き蛍光体粒子含有樹脂硬化体の耐水性評価>
上記被覆膜の密着性評価と同様に作製した被覆膜付き蛍光体粒子含有樹脂硬化体を用いて評価した。被覆膜付き蛍光体粒子含有樹脂硬化体を開口径8cmの瓶の中に水100mlと共に入れ、内側に3cm角の純銀の板を貼った蓋で密封して80℃に加熱した。40分経過後に銀板表面の反射率を測定して、蛍光体粒子と水分の反応による硫化水素ガスの発生度合いを評価した。反射率の変化は、加熱処理前の銀板の反射率を1とし、加熱処理後の反射率を相対値で評価した。尚、反射率は島津製作所株式会社の分光光度計UV2450により拡散反射率を求め、波長450nmでの測定時の数値を比較した。
<Water resistance evaluation of the cured resin containing phosphor particles with coating film>
Evaluation was carried out using a coated resin-coated phosphor particle-containing resin cured body prepared in the same manner as the evaluation of the adhesion of the coating film. The cured resin containing phosphor particles with a coating film was placed in a bottle with an opening diameter of 8 cm together with 100 ml of water, sealed with a lid with a 3 cm square pure silver plate on the inside, and heated to 80 ° C. After 40 minutes, the reflectance of the silver plate surface was measured to evaluate the degree of generation of hydrogen sulfide gas due to the reaction between the phosphor particles and moisture. For the change in reflectance, the reflectance of the silver plate before the heat treatment was taken as 1, and the reflectance after the heat treatment was evaluated as a relative value. In addition, the reflectance calculated | required the diffuse reflectance with Shimadzu Corporation spectrophotometer UV2450, and compared the numerical value at the time of the measurement in wavelength 450nm.

[実施例1]
以下の第1工程〜第4工程に従って、被覆膜付き硫化物蛍光体粒子含有樹脂硬化体を作製した。
[Example 1]
According to the following 1st process-4th process, the sulfide fluorescent substance particle containing resin hardening body with a coating film was produced.

(第1工程)
イソプロピルアルコール(IPA;関東化学(株)製、試薬特級)180gに、3−メルカプトプロピルトリメトキシシラン(モメンティブ(株)製、A189)200gを添加して混合した。更に、エチルアセトアセテートアルミニウムジイソプロピレート(川研ファインケミカル(株)製、ALCH S75P:濃度75質量%)5gを加え、30℃の温度に保持しながらスターラで撹拌した。別に混合しておいたIPA(関東化学(株)製、試薬特級)20gとイオン交換水20gを滴下し、撹拌混合を2時間続けて加水分解することにより、メルカプト基含有シラン有機金属加水分解縮合物(Mw7,600)の第1層目の被覆材を得た。
(First step)
To 180 g of isopropyl alcohol (IPA; manufactured by Kanto Chemical Co., Ltd., reagent special grade), 200 g of 3-mercaptopropyltrimethoxysilane (M189, A189) was added and mixed. Furthermore, 5 g of ethyl acetoacetate aluminum diisopropylate (manufactured by Kawaken Fine Chemicals Co., Ltd., ALCH S75P: concentration 75% by mass) was added and stirred with a stirrer while maintaining the temperature at 30 ° C. Separately, 20 g of IPA (manufactured by Kanto Chemical Co., Ltd., special grade reagent) and 20 g of ion-exchanged water were added dropwise, and the mixture was stirred and mixed for 2 hours to hydrolyze. A covering material for the first layer of the product (Mw 7,600) was obtained.

次に、イソプロピルアルコール(IPA;関東化学(株)製、試薬特級)200gに、上記メルカプト基含有シラン有機金属加水分解縮合物の被覆材を全量添加して混合した。この溶液中に硫化物蛍光体粒子(SrGa:Eu、高純度化学(株)製、平均粒径D50=5.6μm)200gを添加し、超音波により28kHzで5分間の処理を3回行って分散させた。この分散液を60℃で3時間撹拌混合した後、室温に戻して14時間放置した。分散液を真空濾過して、下地層として第1層目のメルカプト基含有シラン有機金属加水分解縮合物を吸着させた硫化物蛍光体粒子を得た。 Next, the total amount of the mercapto group-containing silane organometallic hydrolysis condensate coating material was added to and mixed with 200 g of isopropyl alcohol (IPA; manufactured by Kanto Chemical Co., Inc., reagent special grade). To this solution, 200 g of sulfide phosphor particles (SrGa 2 S 4 : Eu, manufactured by High Purity Chemical Co., Ltd., average particle diameter D50 = 5.6 μm) was added, and the treatment with ultrasonic waves at 28 kHz for 5 minutes was performed 3 Dispersed once. The dispersion was stirred and mixed at 60 ° C. for 3 hours, then returned to room temperature and allowed to stand for 14 hours. The dispersion was vacuum filtered to obtain sulfide phosphor particles adsorbing the first layer mercapto group-containing silane organometallic hydrolysis condensate as an underlayer.

(第2工程)
メチルトリメトキシシラン(東レダウコーニング(株)製、Z−6366)1000gに、エタノール(関東化学(株)製、試薬特級)680gと、エチルアセトアセテートアルミニウムジイソプロピレート(川研ファインケミカル(株)製、ALCH S75P:濃度75質量%)25gと、イオン交換水320gとを添加し、23℃の温度に保持しながらスターラで撹拌した。この撹拌混合を72時間続け、シラン有機金属加水分解縮合物の有機溶液(粘度は6mPa・S)を得た。シラン有機金属加水分解縮合物の有機溶液500gを取り出し、開封状態下にスターラで撹拌して液量が元の質量に対し70%になるまで濃縮し、シラン有機金属加水分解縮合物(Mw12,000)の第2層目の被覆材を得た。
(Second step)
1000 g of methyltrimethoxysilane (manufactured by Toray Dow Corning Co., Ltd., Z-6366), 680 g of ethanol (manufactured by Kanto Chemical Co., Ltd., special grade reagent), and ethyl acetoacetate aluminum diisopropylate (manufactured by Kawaken Fine Chemical Co., Ltd.) , ALCH S75P (concentration: 75% by mass)) and 320 g of ion-exchanged water were added and stirred with a stirrer while maintaining the temperature at 23 ° C. This stirring and mixing was continued for 72 hours to obtain an organic solution (viscosity of 6 mPa · S) of the silane organometallic hydrolysis condensate. 500 g of an organic solution of silane organometallic hydrolysis condensate is taken out, stirred with a stirrer in an opened state and concentrated until the liquid volume becomes 70% of the original mass, and silane organometallic hydrolysis condensate (Mw 12,000) ) Of the second layer was obtained.

次に、このシラン有機金属加水分解縮合物の被覆材350gと、第1工程で得た下地層として第1層目のメルカプト基含有シラン有機金属加水分解縮合物を吸着させた硫化物蛍光体粒子100gとを混合し、混合物に48kHzの超音波振動を5分間与えて再分散させた。この再分散液を60℃で3時間撹拌混合した後、室温に戻して14時間放置した。再分散液を真空濾過した後、110℃の温度で1時間加熱乾燥して、第1層目と第2層目の被覆膜を積層形成した硫化物蛍光体粒子を得た。   Next, 350 g of this silane organometallic hydrolysis condensate coating material and sulfide phosphor particles adsorbing the first layer mercapto group-containing silane organometallic hydrolysis condensate as the underlayer obtained in the first step 100 g was mixed, and the mixture was redispersed by applying 48 kHz ultrasonic vibration for 5 minutes. The redispersed liquid was stirred and mixed at 60 ° C. for 3 hours, then returned to room temperature and allowed to stand for 14 hours. The re-dispersed liquid was vacuum filtered, and then heated and dried at a temperature of 110 ° C. for 1 hour to obtain sulfide phosphor particles in which a first layer and a second layer coating film were laminated.

(第3工程)
上記第2工程で得た第1層目と第2層目の被覆膜を積層形成した硫化物蛍光体粒子を、大気中において250℃の温度で1時間加熱処理することにより、Si、Al、Oを主成分とする非晶質無機酸化物の被覆膜を有する被覆膜付き硫化物蛍光体粒子を得た。
(Third step)
The sulfide phosphor particles obtained by laminating the first layer and the second layer coating film obtained in the second step are heat-treated in the atmosphere at a temperature of 250 ° C. for 1 hour to obtain Si, Al Thus, a sulfide phosphor particle with a coating film having a coating film of an amorphous inorganic oxide mainly containing O was obtained.

(第4工程)
上記第3工程で得た被覆膜付き硫化物蛍光体粒子10gと、シリコーン樹脂(信越化学(株)製、ASP−1020)90gを、混合機(シンキー(株)製、ARV−310LED)で3分間練り込んだ。得られた練り込み樹脂を1gづつ計量して、10個のガラス製の型にそれぞれキャストした。得られた各キャスト材を150℃×2時間の条件で硬化させることにより、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を作製した。
(4th process)
10 g of sulfide phosphor particles with coating film obtained in the third step and 90 g of silicone resin (ASP-1020, manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed with a mixer (ARV-310LED, manufactured by Shinky Corporation). Kneaded for 3 minutes. The obtained kneaded resin was weighed in units of 1 g and cast into 10 glass molds. Each obtained cast material was cured under the conditions of 150 ° C. × 2 hours to prepare a cured silicone resin containing sulfide phosphor particles with a coating film.

得られた実施例1の被覆膜付き硫化物蛍光体粒子について、被覆膜の膜厚と密着性、及び被覆前後の発光強度の変化、また被覆膜付き蛍光体粒子の耐湿試験前後の発光強度の変化による耐湿性、並びに被覆膜付き蛍光体粒子含有樹脂硬化体の銀板反射率による耐水性を評価し、その結果を下記表1に示した。   Regarding the obtained sulfide phosphor particles with a coating film of Example 1, the film thickness and adhesion of the coating film, the change in emission intensity before and after coating, and before and after the moisture resistance test of the phosphor particles with coating film The moisture resistance due to the change in the emission intensity and the water resistance due to the reflectance of the silver plate of the coated resin-coated phosphor particle-containing resin cured body were evaluated, and the results are shown in Table 1 below.

[実施例2]
第1工程において、下地層形成用の第1層目の被覆材と硫化物蛍光体粒子とを撹拌混合する際の条件を85℃で2時間とした以外は上記実施例1と同様にして、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を作製した。
[Example 2]
In the first step, in the same manner as in Example 1 except that the conditions for stirring and mixing the first layer coating material for forming the underlayer and the sulfide phosphor particles were set at 85 ° C. for 2 hours, A cured cured silicone resin containing sulfide phosphor particles with a coating film was prepared.

得られた実施例2の被覆膜付き硫化物蛍光体粒子について、上記実施例1と同様に評価し、その結果を下記表1に示した。   The obtained sulfide phosphor particles with a coating film of Example 2 were evaluated in the same manner as in Example 1, and the results are shown in Table 1 below.

[実施例3]
第2工程において、第1工程で得た下地層として第1層目のメルカプト基含有シラン有機金属加水分解縮合物を吸着させた硫化物蛍光体粒子と、シラン有機金属加水分解縮合物の被覆材とを再分散する際の撹拌混合条件の条件を85℃で2時間とした以外は上記実施例1と同様にして、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を作製した。
[Example 3]
In the second step, sulfide phosphor particles adsorbing the first layer of mercapto group-containing silane organometallic hydrolysis condensate as the underlayer obtained in the first step, and a coating material for the silane organometallic hydrolysis condensate A cured silicone resin containing sulfide phosphor particles with a coating film was prepared in the same manner as in Example 1 except that the stirring and mixing conditions for redispersing were changed to 85 ° C. for 2 hours.

得られた実施例3の被覆膜付き硫化物蛍光体粒子について、上記実施例1と同様に評価し、その結果を下記表1に示した。   The obtained sulfide phosphor particles with a coating film of Example 3 were evaluated in the same manner as in Example 1, and the results are shown in Table 1 below.

[実施例4]
第4工程において、被覆膜付き硫化物蛍光体粒子とシリコーン樹脂を練り込む際に、被覆膜付き硫化物蛍光体粒子を10gとし、シリコーン樹脂を東レダウコーニング(株)製のOE−6665を90gとした以外は上記実施例1と同様にして、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を作製した。
[Example 4]
In the fourth step, the sulfide phosphor particles with coating film and the silicone resin are kneaded with 10 g of the sulfide phosphor particles with coating film, and OE-6665 made by Toray Dow Corning Co., Ltd. A cured cured silicone resin containing sulfide phosphor particles with a coating film was prepared in the same manner as in Example 1 except that the amount was 90 g.

得られた実施例4の被覆膜付き硫化物蛍光体粒子について、上記実施例1と同様に評価し、その結果を下記表1に示した。   The obtained sulfide phosphor particles with a coating film of Example 4 were evaluated in the same manner as in Example 1 above, and the results are shown in Table 1 below.

[実施例5]
第4工程において、被覆膜付き硫化物蛍光体粒子とシリコーン樹脂を練り込む際に、シリコーン樹脂を信越化学(株)製のASP−1020を20gとした以外は上記実施例1と同様にして、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を作製した。
[Example 5]
In the fourth step, the same procedure as in Example 1 was performed except that 20 g of ASP-1020 manufactured by Shin-Etsu Chemical Co., Ltd. was used when kneading the sulfide phosphor particles with a coating film and the silicone resin. A cured cured silicone resin containing sulfide phosphor particles with a coating film was prepared.

得られた実施例5の被覆膜付き硫化物蛍光体粒子について、上記実施例1と同様に評価し、その結果を下記表1に示した。   The obtained sulfide phosphor particles with a coating film of Example 5 were evaluated in the same manner as in Example 1, and the results are shown in Table 1 below.

[比較例1]
IPA(関東化学(株)製、試薬特級)180gに、3−メルカプトプロピルトリメトキシシラン(モメンティブ(株)製、A189)200gと、アンモニア水1ccを添加し、2時間撹拌混合してメルカプト基含有シラン有機金属加水分解縮合物の被覆材を得た。
[Comparative Example 1]
200 g of 3-mercaptopropyltrimethoxysilane (A189, manufactured by Momentive Co., Ltd.) and 1 cc of aqueous ammonia are added to 180 g of IPA (manufactured by Kanto Chemical Co., Ltd., reagent special grade) and mixed for 2 hours with stirring to contain a mercapto group. A coating material of silane organometallic hydrolysis condensate was obtained.

このメルカプト基含有シラン有機金属加水分解縮合物をIPA(関東化学(株)製、試薬特級)200gに全量添加して混合した後、硫化物蛍光体粒子200gを添加し、28kHzの超音波振動を5分間加える処理を3回行って分散させた。この分散液を23℃で1時間撹拌混合した後、分散液を真空濾過して、メルカプト基含有シラン有機金属加水分解縮合物を吸着させた蛍光体粒子を回収した。   This mercapto group-containing silane organometallic hydrolyzed condensate is added to and mixed in total 200 g of IPA (Kanto Chemical Co., Ltd., reagent grade), and then 200 g of sulfide phosphor particles are added, and an ultrasonic vibration of 28 kHz is applied. The treatment for 5 minutes was performed 3 times to disperse. After this dispersion was stirred and mixed at 23 ° C. for 1 hour, the dispersion was vacuum filtered to collect phosphor particles adsorbed with a mercapto group-containing silane organometallic hydrolysis condensate.

得られたメルカプト基含有シラン有機金属加水分解縮合物を吸着させた硫化物蛍光体粒子を、大気中において250℃の温度で1時間加熱処理することにより、非晶質無機酸化物の被覆膜を有する被覆膜付き硫化物蛍光体粒子を作製した。   The resulting sulfide phosphor particles adsorbed with the mercapto group-containing silane organometallic hydrolysis condensate are heat-treated in the atmosphere at a temperature of 250 ° C. for 1 hour, whereby a coating film of amorphous inorganic oxide is obtained. A sulfide-coated phosphor particle with a coating film was prepared.

得られた非晶質無機酸化物の被覆膜を有する被覆膜付き硫化物蛍光体粒子を、上記実施例1と同様に、シリコーン樹脂(信越化学(株)製、ASP−1020)に練り込み、練り込み樹脂を1gづつ計量して、10個のガラス製の型にそれぞれキャストした。得られた各キャスト材を250℃×2時間の条件で硬化させることにより、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を作製した。   The obtained sulfide phosphor particles with a coating film having a coating film of an amorphous inorganic oxide were kneaded into a silicone resin (ASP-1020, manufactured by Shin-Etsu Chemical Co., Ltd.) in the same manner as in Example 1 above. 1 g each of the kneaded resin was weighed and cast into 10 glass molds. Each obtained cast material was cured under the conditions of 250 ° C. × 2 hours to prepare a cured silicone resin containing sulfide phosphor particles with a coating film.

得られた比較例1の被覆膜付き硫化物蛍光体粒子について、上記実施例1と同様に評価し、その結果を下記表1に示した。   The obtained coated phosphor-coated sulfide phosphor particles of Comparative Example 1 were evaluated in the same manner as in Example 1, and the results are shown in Table 1 below.

[比較例2]
メチルトリメトキシシラン(東レダウコーニング(株)製、Z−6366)1000gに、エタノール(関東化学(株)製、試薬特級)680gと、アンモニア水6ccと、イオン交換水320gを添加して、23℃の温度に保持しながらスターラで2時間強撹拌して、シラン有機金属加水分解縮合物を含む有機溶液の被覆材を得た。
[Comparative Example 2]
To 1000 g of methyltrimethoxysilane (manufactured by Toray Dow Corning Co., Ltd., Z-6366), 680 g of ethanol (manufactured by Kanto Chemical Co., Ltd., special grade reagent), 6 cc of ammonia water, and 320 g of ion-exchanged water were added. The mixture was vigorously stirred with a stirrer for 2 hours while maintaining a temperature of 0 ° C. to obtain a coating material for an organic solution containing a silane organometallic hydrolysis condensate.

得られた被覆材350gに硫化物蛍光体粒子100gを混合し、48kHzの超音波振動を5分間与えて分散させた。この分散液を23℃で1時間撹拌混合し、再分散液を真空濾過した後110℃の温度で1時間加熱乾燥し、更に大気中において250℃の温度で1時間熱処理することにより、非晶質無機酸化物の被覆膜を有する被覆膜付き硫化物蛍光体粒子を作製した。   100 g of sulfide phosphor particles were mixed with 350 g of the obtained coating material, and dispersed by applying 48 kHz ultrasonic vibration for 5 minutes. The dispersion is stirred and mixed at 23 ° C. for 1 hour, the re-dispersion is vacuum filtered, heated and dried at a temperature of 110 ° C. for 1 hour, and further heat-treated at 250 ° C. for 1 hour in the atmosphere to produce an amorphous material. Coated sulfide phosphor particles having a porous inorganic oxide coating film were prepared.

得られた非晶質無機酸化物の被覆膜を有する被覆膜付き硫化物蛍光体粒子を、上記実施例1と同様に、シリコーン樹脂(信越化学(株)製、ASP−1020)に練り込み、練り込み樹脂を1gづつ計量して、10個のガラス製の型にそれぞれキャストした。得られた各キャスト材を250℃×2時間の条件で硬化させることにより、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を作製した。   The obtained sulfide phosphor particles with a coating film having a coating film of an amorphous inorganic oxide were kneaded into a silicone resin (ASP-1020, manufactured by Shin-Etsu Chemical Co., Ltd.) in the same manner as in Example 1 above. 1 g each of the kneaded resin was weighed and cast into 10 glass molds. Each obtained cast material was cured under the conditions of 250 ° C. × 2 hours to prepare a cured silicone resin containing sulfide phosphor particles with a coating film.

得られた比較例2の被覆膜付き硫化物蛍光体粒子について、上記実施例1と同様に評価し、その結果を下記表1に示した。   The obtained coated phosphor-coated sulfide phosphor particles of Comparative Example 2 were evaluated in the same manner as in Example 1, and the results are shown in Table 1 below.

[比較例3]
IPA(関東化学(株)製、試薬特級)180gに、3−メルカプトプロピルトリメトキシシラン(モメンティブ(株)製、A189)200gと、アンモニア水1ccを添加して、2時間撹拌混合を続けることにより、メルカプト基含有シラン有機金属加水分解縮合物を得た。
[Comparative Example 3]
By adding 200 g of 3-mercaptopropyltrimethoxysilane (A189, manufactured by Momentive Co., Ltd.) and 1 cc of aqueous ammonia to 180 g of IPA (manufactured by Kanto Chemical Co., Ltd., reagent special grade) and continuing stirring and mixing for 2 hours A mercapto group-containing silane organometallic hydrolysis condensate was obtained.

得られたメルカプト基含有シラン有機金属加水分解縮合物の全量を、IPA(関東化学(株)製、試薬特級)200gに添加して混合した。この溶液中にSrGa:Eu粒子(平均粒径D50=5.6μm)200gを添加し、28kHzの超音波振動を5分間加える処理を3回行って分散させた。この分散液を23℃で1時間撹拌混合した後、真空濾過して、下地層としてメルカプト基含有シラン有機金属加水分解縮合物を吸着させた硫化物蛍光体粒子を回収した。 The total amount of the resulting mercapto group-containing silane organometallic hydrolysis condensate was added to and mixed with 200 g of IPA (manufactured by Kanto Chemical Co., Ltd., reagent special grade). In this solution, 200 g of SrGa 2 S 4 : Eu particles (average particle diameter D50 = 5.6 μm) was added, and a treatment of applying 28 kHz ultrasonic vibration for 5 minutes was performed three times to be dispersed. This dispersion was stirred and mixed at 23 ° C. for 1 hour and then vacuum filtered to recover sulfide phosphor particles adsorbed with a mercapto group-containing silane organometallic hydrolysis condensate as an underlayer.

別に、メチルトリメトキシシラン(東レダウコーニング(株)製、Z−6366)1000gに、エタノール(関東化学(株)製、試薬特級)680gと、アンモニア水6ccと、イオン交換水320gを添加して、23℃の温度に保持しながらスターラで強く撹拌した。この撹拌混合を2時間続けて、シラン有機金属加水分解縮合物の被覆材を得た。   Separately, 680 g of ethanol (manufactured by Kanto Chemical Co., Ltd., reagent grade), 6 cc of ammonia water, and 320 g of ion-exchanged water were added to 1000 g of methyltrimethoxysilane (manufactured by Toray Dow Corning Co., Ltd., Z-6366). While stirring at a temperature of 23 ° C., the mixture was vigorously stirred with a stirrer. This stirring and mixing was continued for 2 hours to obtain a coating material of a silane organometallic hydrolysis condensate.

この被覆材350gに、上記のごとくメルカプト基含有シラン有機金属加水分解縮合物を吸着させた硫化物蛍光体粒子100gを混合し、48kHzの超音波振動を5分間与えて分散させた後、23℃で1時間撹拌混合した。分散液を真空濾過し、110℃の温度で1時間加熱乾燥した後、大気中において250℃の温度で1時間熱処理することにより、非晶質無機酸化物の被覆膜を有する被覆膜付き硫化物蛍光体粒子を作製した。   This coating material 350g was mixed with 100g of sulfide phosphor particles adsorbed with the mercapto group-containing silane organometallic hydrolysis condensate as described above, and dispersed by applying 48kHz ultrasonic vibration for 5 minutes. And stirred for 1 hour. The dispersion is vacuum filtered, heat-dried at a temperature of 110 ° C. for 1 hour, and then heat-treated in the atmosphere at a temperature of 250 ° C. for 1 hour to provide a coating film having an amorphous inorganic oxide coating film Sulfide phosphor particles were prepared.

得られた非晶質無機酸化物の被覆膜を有する被覆膜付き硫化物蛍光体粒子を、上記実施例1と同様に、シリコーン樹脂(信越化学(株)製、ASP−1020)に練り込み、練り込み樹脂を1gづつ計量して、10個のガラス製の型にそれぞれキャストした。得られた各キャスト材を250℃×2時間の条件で硬化させることにより、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を作製した。   The obtained sulfide phosphor particles with a coating film having a coating film of an amorphous inorganic oxide were kneaded into a silicone resin (ASP-1020, manufactured by Shin-Etsu Chemical Co., Ltd.) in the same manner as in Example 1 above. 1 g each of the kneaded resin was weighed and cast into 10 glass molds. Each obtained cast material was cured under the conditions of 250 ° C. × 2 hours to prepare a cured silicone resin containing sulfide phosphor particles with a coating film.

得られた比較例3の被覆膜付き硫化物蛍光体粒子について、上記実施例1と同様に評価し、その結果を下記表1に示した。   The obtained sulfide phosphor particles with a coating film of Comparative Example 3 were evaluated in the same manner as in Example 1, and the results are shown in Table 1 below.

[比較例4]
上記実施例1と同様にして被覆膜付き硫化物蛍光体粒子を得た。得られた被覆膜付き硫化物蛍光体粒子10gと、シリコーン樹脂(東レダウコーニング(株)製、JCR6122)90gを混合機で3分間練り込んだ。尚、上記シリコーン樹脂JCR6122の酸素透過率は20,000cm・cm/m・24hr・atm、引張強度は0.8MPaである。
[Comparative Example 4]
In the same manner as in Example 1, sulfide phosphor particles with a coating film were obtained. 10 g of the obtained sulfide phosphor particles with a coating film and 90 g of a silicone resin (manufactured by Toray Dow Corning Co., Ltd., JCR6122) were kneaded with a mixer for 3 minutes. The silicone resin JCR6122 has an oxygen permeability of 20,000 cm 3 · cm / m 2 · 24 hr · atm, and a tensile strength of 0.8 MPa.

得られた練り込み樹脂を1gづつ計量して、10個のガラス製の型にそれぞれキャストした。得られた各キャスト材を150℃×2時間の条件で硬化させることにより、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を作製した。   The obtained kneaded resin was weighed in units of 1 g and cast into 10 glass molds. Each obtained cast material was cured under the conditions of 150 ° C. × 2 hours to prepare a cured silicone resin containing sulfide phosphor particles with a coating film.

得られた比較例4の被覆膜付き硫化物蛍光体粒子について、上記実施例1と同様に評価し、その結果を下記表1に示した。   The obtained sulfide phosphor particles with a coating film of Comparative Example 4 were evaluated in the same manner as in Example 1, and the results are shown in Table 1 below.

[比較例5]
上記実施例1と同様にして被覆膜付き硫化物蛍光体粒子を得た。得られた被覆膜付き硫化物蛍光体粒子10gと、シリコーン樹脂(東レダウコーニング(株)製、JCR6175)90gを混合機で3分間練り込んだ。尚、上記シリコーン樹脂JCR6175の酸素透過率は1,000cm・cm/m・24hr・atm、引張強度は0.3MPaである。
[Comparative Example 5]
In the same manner as in Example 1, sulfide phosphor particles with a coating film were obtained. 10 g of the obtained sulfide phosphor particles with a coating film and 90 g of silicone resin (manufactured by Toray Dow Corning Co., Ltd., JCR6175) were kneaded with a mixer for 3 minutes. The oxygen permeability of the silicone resin JCR6175 is 1,000 cm 3 · cm / m 2 · 24 hr · atm, and the tensile strength is 0.3 MPa.

得られた練り込み樹脂を1gづつ計量して、10個のガラス製の型にそれぞれキャストした。得られた各キャスト材を150℃×2時間の条件で硬化させることにより、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を作製した。   The obtained kneaded resin was weighed in units of 1 g and cast into 10 glass molds. Each obtained cast material was cured under the conditions of 150 ° C. × 2 hours to prepare a cured silicone resin containing sulfide phosphor particles with a coating film.

得られた比較例5の被覆膜付き硫化物蛍光体粒子について、上記実施例1と同様に評価し、その結果を下記表1に示した。   The obtained sulfide phosphor particles with a coating film of Comparative Example 5 were evaluated in the same manner as in Example 1, and the results are shown in Table 1 below.

[比較例6]
上記実施例1と同様にして被覆膜付き硫化物蛍光体粒子を得た。得られた被覆膜付き硫化物蛍光体粒子100gと、シリコーン樹脂(東レダウコーニング(株)製、OE6630)90gを混合機で3分間練り込んだ。尚、上記シリコーン樹脂OE6630の酸素透過率は800cm・cm/m・24hr・atm、引張強度は0.7MPaである。
[Comparative Example 6]
In the same manner as in Example 1, sulfide phosphor particles with a coating film were obtained. 100 g of the obtained sulfide phosphor particles with a coating film and 90 g of a silicone resin (manufactured by Toray Dow Corning Co., Ltd., OE6630) were kneaded with a mixer for 3 minutes. The silicone resin OE6630 has an oxygen permeability of 800 cm 3 · cm / m 2 · 24 hr · atm, and a tensile strength of 0.7 MPa.

得た練り込み樹脂を1gづつ計量して、10個のガラス製の型にそれぞれキャストした。各キャスト材を150℃×2時間の条件で硬化させることにより、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を作製した。   The obtained kneaded resin was weighed in units of 1 g and cast into 10 glass molds. Each cast material was cured under conditions of 150 ° C. × 2 hours to prepare a cured silicone resin containing sulfide phosphor particles with a coating film.

得られた比較例6の被覆膜付き硫化物蛍光体粒子について、上記実施例1と同様に評価し、その結果を下記表1に示した。
尚、下記表1には、上記の各実施例及び各比較例で用いたシリコーン樹脂の種類、シリコーン樹脂と被覆膜付き硫化物蛍光体粒子の配合割合(樹脂:粒子)も併せて示した。
The obtained sulfide phosphor particles with a coating film of Comparative Example 6 were evaluated in the same manner as in Example 1, and the results are shown in Table 1 below.
Table 1 below also shows the types of silicone resins used in each of the above Examples and Comparative Examples, and the blending ratio (resin: particles) of the silicone resin and sulfide phosphor particles with a coating film. .

Figure 0005884717
Figure 0005884717

上記表1の結果から分るように、本発明による実施例1〜5では全ての評価項目において良好な結果が得られた。特に、硫化物蛍光体粒子表面に緻密且つ均一で欠陥のない被覆膜を形成できるうえ、被覆膜形成後に硫化物蛍光体粒子の発光強度が若干上昇する。しかも、被覆膜付き硫化物蛍光体粒子及びその硫化物蛍光体含有シリコーン樹脂硬化体は優れた耐水性を有し、LED発光デバイス用として優れていることが分る。   As can be seen from the results in Table 1 above, in Examples 1 to 5 according to the present invention, good results were obtained for all the evaluation items. In particular, a dense, uniform and defect-free coating film can be formed on the surface of the sulfide phosphor particles, and the emission intensity of the sulfide phosphor particles slightly increases after the coating film is formed. And it turns out that the sulfide fluorescent substance particle with a coating film and its sulfide fluorescent substance containing silicone resin hardening body have the outstanding water resistance, and are excellent for LED light emitting devices.

一方、本発明の第1工程から第4工程の条件により処理されていない比較例1〜6では、被覆膜の密着性が悪い場合や被覆前後の発光特性の低下する場合があり、発光強度の変化による耐湿試験及び銀板反射率による蛍光体粒子含有樹脂硬化体の耐湿性と耐水性の評価においても、本発明の実施例に比べて明らかに劣ることが認められる。   On the other hand, in Comparative Examples 1 to 6 that are not treated according to the conditions of the first step to the fourth step of the present invention, the adhesion of the coating film may be poor or the light emission characteristics before and after the coating may be deteriorated. It is recognized that the moisture resistance test by the change in water resistance and the evaluation of the moisture resistance and water resistance of the phosphor particle-containing resin cured body by the silver plate reflectance are clearly inferior to the examples of the present invention.

Claims (7)

2液型の熱硬化型シリコーン樹脂の混合体脂肪酸基を含む硬化触媒との配合物が硬化したシリコーン樹脂と、その中に含まれ、有機金属加水分解縮合物由来のSi、Al、Oを主成分とする非晶質無機酸化物の2層の被覆膜で表面が被覆された被覆膜付き硫化物蛍光体粒子を含有するシリコーン樹脂の硬化体であって、
前記硬化したシリコーン樹脂の酸素透過率が600cm・cm/m・24hr・atm以下で且つ引張強度が1MPa〜10MPaであり、前記硫化物蛍光体粒子表面に被覆された2層の被覆膜のうちの第1層目の被覆膜は重量平均分子量1,000〜10,000のメルカプト基含有シラン有機金属加水分解縮合物由来の非晶質無機酸化物であって、前記硫化物蛍光体粒子表面に被覆された2層の被覆膜のうちの第2層目の被覆膜は重量平均分子量5,000〜20,000の均一なシラン有機金属加水分解縮合物由来の非晶質無機酸化物であることを特徴とする被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体。
A silicone resin blend of a curing catalyst is cured containing mixture with a fatty acid group having 2 liquid type thermosetting silicone resin, contained therein, Si derived from the organic metal hydrolytic condensate, Al, and O a cured product of the silicone resin whose surface a two-layer coating film of amorphous inorganic oxide as a main component containing a coated coating film with sulfide phosphor particles,
The cured oxygen permeability of the silicone resin is 600cm 3 · cm / m 2 · 24hr · atm and below the tensile strength is 1MPa~10MPa, coating of two layers coated on the sulfide phosphor particle surface a first layer of the coating film is amorphous inorganic oxide from the mercapto group-containing silane organometallic hydrolytic condensate of weight-average molecular weight of 1,000 to 10,000 of the film, the sulfide the second layer of the coating film weight average molecular weight 5,000 to 20,000 of uniform silane organometallic hydrolytic condensate from a non-of of the coating film of two layers coated on the surfaces of phosphor particles A cured cured silicone resin containing sulfide phosphor particles with a coating film , which is a crystalline inorganic oxide .
前記Si、Al、Oを主成分とする非晶質無機酸化物の2層の被覆膜の膜厚が50〜200nmであるであることを特徴とする、請求項1に記載の被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体。 2. The coating film according to claim 1, wherein a film thickness of the two-layer coating film of the amorphous inorganic oxide mainly containing Si, Al, and O is 50 to 200 nm. A cured silicone resin containing sulfide phosphor particles. 下記(1)〜(4)の各工程を含むことを特徴とする被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体の製造方法。
(1)メルカプト基含有シラン有機金属化合物を触媒のアルミニウム有機金属化合物と有機溶媒及び水により加水分解して重量平均分子量1,000〜10,000のメルカプト基含有シラン有機金属加水分解縮合物の被覆材を調製し、この被覆材と硫化物蛍光体粒子を容器内で撹拌混合することにより硫化物蛍光体粒子表面に第1層目の被覆膜を形成する第1工程。
(2)シラン有機金属化合物を触媒のアルミニウム有機金属化合物と有機溶媒及び水により加水分解して重量平均分子量5,000〜20,000のシラン有機金属加水分解縮合物の被覆材を調整し、この被覆材と第1工程で得られた第1層目の被覆膜を有する硫化物蛍光体粒子を容器内で撹拌混合することにより硫化物蛍光体粒子表面に均一な第2層目の被覆膜を形成する第2工程。
(3)第2工程で得られた第1層目及び第2層目の被覆膜を有する硫化物蛍光体粒子を大気中で加熱処理して、硫化物蛍光体粒子表面にSi、Al、Oを主成分とする非晶質無機酸化物の被覆膜を有する被覆膜付き硫化物蛍光体粒子を得る第3工程。
(4)第3工程で得られた被覆膜付き硫化物蛍光体粒子を、2液型の熱硬化型シリコーン樹脂の混合体に脂肪酸基を含む硬化触媒を配合し、硬化後の酸素透過率が600cm・cm/m・24hr・atm以下で且つ引張強度が1MPa〜10MPaの熱硬化型シリコーン樹脂に添加混合して練り込み、大気中において110〜150℃で加熱硬化させることにより、被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体を得る第4工程。
The manufacturing method of the silicone resin hardening body containing a sulfide fluorescent substance particle with a coating film characterized by including each process of following (1)-(4).
(1) Coating a mercapto group-containing silane organometallic compound having a weight average molecular weight of 1,000 to 10,000 by hydrolyzing a mercapto group-containing silane organometallic compound with an aluminum organometallic compound as a catalyst, an organic solvent and water. A first step of preparing a first coating film on the surface of the sulfide phosphor particles by preparing a material and stirring and mixing the coating material and the sulfide phosphor particles in a container;
(2) A silane organometallic compound is hydrolyzed with an aluminum organometallic compound as a catalyst, an organic solvent and water to prepare a coating material for a silane organometallic hydrolyzed condensate having a weight average molecular weight of 5,000 to 20,000. Uniform coating of the second layer on the surface of the sulfide phosphor particles by stirring and mixing the coating material and the sulfide phosphor particles having the coating film of the first layer obtained in the first step in a container Second step of forming a film.
(3) The sulfide phosphor particles having the first layer and the second layer coating film obtained in the second step are heat-treated in the atmosphere, and Si, Al, A third step of obtaining sulfide phosphor particles with a coating film having a coating film of an amorphous inorganic oxide mainly containing O.
(4) The sulfide phosphor particles with a coating film obtained in the third step are blended with a curing catalyst containing a fatty acid group in a mixture of two-component thermosetting silicone resin , and the oxygen permeability after curing There 600cm 3 · cm / m 2 · 24hr · atm or less and a tensile strength kneading was admixed with the thermosetting silicone resin of 1MPa~10MPa, by heat curing at 110 to 150 ° C. in air, the A fourth step of obtaining a cured silicone resin-containing sulfide phosphor particle-containing film.
前記第1工程のメルカプト基含有シラン有機金属化合物が、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランから選ばれた少なくとも1種であることを特徴とする、請求項3に記載の被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体の製造方法。   The mercapto group-containing silane organometallic compound in the first step is at least one selected from 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane. A method for producing a cured cured silicone resin containing sulfide phosphor particles with a coating film. 前記第2工程のシラン有機金属化合物が、メチルトリエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシランから選ばれた少なくとも1種であることを特徴とする、請求項3又は4に記載の被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体の製造方法。   The silane organometallic compound in the second step is at least one selected from methyltriethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and n-propyltrimethoxysilane. The manufacturing method of the cured silicone resin containing sulfide phosphor particles with a coating film according to claim 3 or 4. 前記第1工程及び第2工程のアルミニウム有機金属化合物が、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、オクチルアセトアセテートアルミニウムジイソプロプレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)から選ばれた少なくとも1種であることを特徴とする、請求項3〜5のいずれかに記載の被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体の製造方法。   The aluminum organometallic compound in the first step and the second step is ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), octyl acetoacetate aluminum diisopropylate, aluminum monoacetylacetonate bis (ethyl acetoacetate) The method for producing a cured silicone resin-containing sulfide phosphor particle with a coating film according to any one of claims 3 to 5, which is at least one selected from the group consisting of: 前記第4工程で被覆膜付き硫化物蛍光体粒子を添加混合する際の熱硬化型シリコーン樹脂の粘度が400〜5,000mPa・sであるであることを特徴とする、請求項3〜6のいずれかに記載の被覆膜付き硫化物蛍光体粒子含有シリコーン樹脂硬化体の製造方法。   The viscosity of the thermosetting silicone resin when adding and mixing the sulfide phosphor particles with a coating film in the fourth step is 400 to 5,000 mPa · s. The manufacturing method of the sulfide fluorescent substance particle containing silicone resin hardening body with a coating film in any one of these.
JP2012276651A 2012-12-19 2012-12-19 Cured silicone resin containing sulfide phosphor particles with coating film and method for producing the same Expired - Fee Related JP5884717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012276651A JP5884717B2 (en) 2012-12-19 2012-12-19 Cured silicone resin containing sulfide phosphor particles with coating film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012276651A JP5884717B2 (en) 2012-12-19 2012-12-19 Cured silicone resin containing sulfide phosphor particles with coating film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014118529A JP2014118529A (en) 2014-06-30
JP5884717B2 true JP5884717B2 (en) 2016-03-15

Family

ID=51173655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012276651A Expired - Fee Related JP5884717B2 (en) 2012-12-19 2012-12-19 Cured silicone resin containing sulfide phosphor particles with coating film and method for producing the same

Country Status (1)

Country Link
JP (1) JP5884717B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254864B2 (en) 2020-04-14 2022-02-22 General Electric Company Films with narrow band emission phosphor materials
US11261375B2 (en) 2019-05-22 2022-03-01 General Electric Company Method to enhance phosphor robustness and dispersability and resulting phosphors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110785473B (en) * 2017-06-23 2022-12-16 住友化学株式会社 Composition, film, laminated structure, light-emitting device, and display
CN110467913B (en) * 2019-07-23 2023-04-11 英特美光电(苏州)有限公司 Coating method of large-particle-size LED fluorescent powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275196A (en) * 2008-05-19 2009-11-26 Sony Corp Curable resin material composition, optical material, light emitting device, method for producing the same, and electronic device
JP5375758B2 (en) * 2010-06-25 2013-12-25 住友金属鉱山株式会社 Method for producing sulfide phosphor particles with coating film excellent in moisture resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11261375B2 (en) 2019-05-22 2022-03-01 General Electric Company Method to enhance phosphor robustness and dispersability and resulting phosphors
US11746288B2 (en) 2019-05-22 2023-09-05 General Electric Company Method to enhance phosphor robustness and dispersability and resulting phosphors
US11254864B2 (en) 2020-04-14 2022-02-22 General Electric Company Films with narrow band emission phosphor materials
US11312876B2 (en) 2020-04-14 2022-04-26 General Electric Company Ink compositions with narrow band emission phosphor materials
US11578225B2 (en) 2020-04-14 2023-02-14 General Electric Company Films with narrow band emission phosphor materials
US11781028B2 (en) 2020-04-14 2023-10-10 General Electric Company Ink compositions with narrow band emission phosphor materials

Also Published As

Publication number Publication date
JP2014118529A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP5407068B2 (en) Phosphor particles with coating film and method for producing the same
JP5915557B2 (en) Coated phosphor particles, method for producing the same, and LED device using the same
JP5034314B2 (en) High refractive index transparent particle manufacturing method, high refractive index transparent particle, high refractive index transparent composite, and light emitting device
JP5250520B2 (en) Coated phosphor and LED light emitting device
JP7413881B2 (en) Dispersion liquid, composition, sealing member, light emitting device, lighting equipment, display device, and method for producing dispersion liquid
KR101436876B1 (en) Method for porducing coated alkaline earth metal silicate phosphor particles
JP7439824B2 (en) Dispersion liquid, composition, sealing member, light emitting device, lighting equipment, display device, and method for producing dispersion liquid
JP5375733B2 (en) Method for producing oxide phosphor particles with coating film having excellent moisture resistance
TW201136998A (en) Casting composition as diffusion barrier for water molecules
JP5884717B2 (en) Cured silicone resin containing sulfide phosphor particles with coating film and method for producing the same
JP5443662B2 (en) Method for producing moisture-resistant phosphor particle powder and LED element or dispersion-type EL element using moisture-resistant phosphor particle powder obtained by the production method
JP2011068791A (en) Coated phosphor and led light-emitting device
JP5375758B2 (en) Method for producing sulfide phosphor particles with coating film excellent in moisture resistance
JP5589896B2 (en) Method for producing silicate phosphor particles with coating film
JP5396849B2 (en) SULFIDE PHOSPHOR PARTICLE HAVING SURFACE COATING LAYER AND METHOD FOR PRODUCING THE SAME
TWI504724B (en) Method for fabricating silicate phosphor particles with coated film
JP2021155261A (en) Dispersion liquid, composition, sealing member, light-emitting device, lighting device, and display device
JP7363634B2 (en) Dispersion liquid, composition, sealing member, light emitting device, lighting equipment, display device, and method for producing dispersion liquid
WO2023190493A1 (en) Dispersion liquid, composition, sealing member, light emitting device, lighting equipment, display device, and method for producing dispersion liquid
JP2010185041A (en) Method for forming surface coating layer of sulfide phosphor particle
TWI783112B (en) β-Sialon phosphor, manufacturing method thereof, and light-emitting device
WO2014006743A1 (en) Method for producing silicate phosphor particle with coating film
JP2021155248A (en) Dispersion liquid, composition, sealing member, light-emitting device, lighting device, display device, and method for producing dispersion liquid
JP2023149933A (en) Dispersion liquid, composition, sealing member, light-emitting device, lighting fixture, display device, and method for producing dispersion liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R150 Certificate of patent or registration of utility model

Ref document number: 5884717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees