[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5852388B2 - Wheel bearing device - Google Patents

Wheel bearing device Download PDF

Info

Publication number
JP5852388B2
JP5852388B2 JP2011214964A JP2011214964A JP5852388B2 JP 5852388 B2 JP5852388 B2 JP 5852388B2 JP 2011214964 A JP2011214964 A JP 2011214964A JP 2011214964 A JP2011214964 A JP 2011214964A JP 5852388 B2 JP5852388 B2 JP 5852388B2
Authority
JP
Japan
Prior art keywords
rolling
wheel
diameter
bearing device
rolling surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011214964A
Other languages
Japanese (ja)
Other versions
JP2013076424A5 (en
JP2013076424A (en
Inventor
小畑 卓也
卓也 小畑
田窪 孝康
孝康 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2011214964A priority Critical patent/JP5852388B2/en
Priority to PCT/JP2012/072650 priority patent/WO2013035756A1/en
Publication of JP2013076424A publication Critical patent/JP2013076424A/en
Publication of JP2013076424A5 publication Critical patent/JP2013076424A5/ja
Application granted granted Critical
Publication of JP5852388B2 publication Critical patent/JP5852388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、自動車等の車輪を懸架装置に対して回転自在に支承する車輪用軸受装置に関するものである。   The present invention relates to a wheel bearing device that rotatably supports a wheel of an automobile or the like with respect to a suspension device.

自動車等の車両の車輪用軸受装置には、駆動輪用のものと従動輪用のものとがある。特に、自動車の懸架装置に対して車輪を回転自在に支承する車輪用軸受装置は、低コスト化は言うまでもなく、燃費向上のための軽量化が進んでいる。   2. Description of the Related Art Wheel bearing devices for vehicles such as automobiles include those for driving wheels and those for driven wheels. In particular, a wheel bearing device that rotatably supports a wheel with respect to a suspension device of an automobile has been reduced in weight for improving fuel consumption, not to mention cost reduction.

従来の車輪用軸受装置では、外方部材の内周に複列の外側転走面が形成され、この複列の外側転走面間に肩部が形成されている。そして、車両の旋回走行時には、タイヤからのモーメント荷重により軸受内部で傾き、転動体が外側転走面の肩部を通過することがある。この種の外方部材は、例えば、S53C等の中炭素鋼で形成され、少なくとも複列の外側転走面が高周波焼入れによって所定の硬化層が形成されるが、高周波焼入れ時に焼き割れ等が発生しないように熱処理条件や面取り部の形状・寸法を充分管理しても、オーバーヒート気味になり結晶粒が粗粒化してしまう恐れがあった。組織が粗粒化すると、転動疲労寿命の低下に繋がる。また、肩乗り上げ時、エッジロードによる短寿命を肩部の形状等で対策をしようとしても限界があった。ここで、肩乗り上げとは、ボールの接触楕円が外側転走面から外れる現象を言い、また、エッジロードとは、角部等に発生する過大な応力集中のことで、早期剥離の要因の一つとなる現象を言う。   In a conventional wheel bearing device, a double row outer rolling surface is formed on the inner periphery of the outer member, and a shoulder is formed between the double row outer rolling surfaces. When the vehicle is turning, the rolling element may tilt inside the bearing due to the moment load from the tire, and the rolling element may pass through the shoulder of the outer rolling surface. This type of outer member is made of, for example, medium carbon steel such as S53C, and a predetermined hardened layer is formed by induction hardening on at least the double row outer raceway surface. Even if the heat treatment conditions and the shape / dimensions of the chamfered part are sufficiently controlled so as to prevent the crystal grains from being overheated, the crystal grains may be coarsened. When the structure becomes coarse, the rolling fatigue life is reduced. In addition, when riding on the shoulder, there was a limit in trying to take measures against the short life due to edge loading with the shape of the shoulder. Here, shoulder climbing refers to a phenomenon in which the contact ellipse of the ball deviates from the outer rolling surface, and edge load is an excessive stress concentration occurring at the corners, etc. Says the phenomenon that becomes one.

そこで、本出願人は、こうした問題を解決した車輪用軸受装置を提案している。この車輪用軸受装置の外方部材51は、図12(a)に示すように、複列の外側転走面51a、51b間に円筒状の肩部52が鍛造加工により形成され、これら複列の外側転走面51a、51bが旋削加工された後、高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化層53が形成されている(図中クロスハッチングにて示す)。そして、複列の外側転走面51a、51bから肩部52にかけて焼入鋼切削により環状の切欠き部54が形成されている。この切欠き部54は、(b)に示すように、少なくとも硬化層53の範囲が全て除去されるように所定の幅に形成されている(図中二点鎖線にて示す)。これにより、高周波焼入れによって複列の外側転走面51a、51bと肩部52とのエッジ部55がオーバーヒートし、結晶粒が粗粒化して悪化していても確実に除去することができ、焼割れによる亀裂や欠けによる軸受の短寿命を防止することができる(例えば、特許文献1参照。)。   Therefore, the present applicant has proposed a wheel bearing device that solves these problems. As shown in FIG. 12A, the outer member 51 of the wheel bearing device has a cylindrical shoulder portion 52 formed by forging between the double row outer rolling surfaces 51a and 51b. After the outer rolling surfaces 51a and 51b are turned, a hardened layer 53 is formed with a surface hardness in the range of 58 to 64 HRC by induction hardening (indicated by cross hatching in the figure). An annular notch 54 is formed by quenching steel cutting from the double row outer raceway surfaces 51 a and 51 b to the shoulder 52. As shown in (b), the notch 54 is formed to have a predetermined width so that at least the range of the hardened layer 53 is removed (indicated by a two-dot chain line in the figure). Thereby, even if the edge part 55 of the double row outer side rolling surfaces 51a and 51b and the shoulder part 52 overheats by induction hardening and a crystal grain coarsens and deteriorates, it can remove reliably, It is possible to prevent a short life of the bearing due to cracks and cracks (for example, see Patent Document 1).

特開2008−261384号公報JP 2008-261384 A

このように、従来の外方部材51では、切欠き部54が少なくとも硬化層53の範囲で全て除去されるように所定の幅に形成されているので、複列の外側転走面51a、51bと肩部52とのエッジ部55がオーバーヒートし、表面の結晶粒が粗粒化して悪化していても確実に除去することができ、焼割れによる亀裂や欠けによる軸受の短寿命を防止することができる。   Thus, in the conventional outer member 51, since the notch part 54 is formed in the predetermined width | variety so that all the removals in the range of the hardening layer 53 may be carried out, it is the double row outer side rolling surface 51a, 51b. Even if the edge portion 55 between the shoulder portion 52 and the shoulder portion 52 is overheated and the surface crystal grains are coarsened and deteriorated, the edge portion 55 can be surely removed, and the short life of the bearing due to cracks and chips due to burning cracks can be prevented. Can do.

然しながら、車両の旋回走行時によるモーメント荷重で、ボールが外側転走面51a、51bから乗り上げ、接触楕円の長径側頂点がエッジ部55から脱落するとエッジロードが発生し、極端な高面圧となって大きく寿命が低下する。自動車の燃費向上のため車輪用軸受装置のさらなる小型化と軽量化が要求されており、今後は特許文献1の手法ではエッジロード発生の対策としては不十分となることが考えられる。   However, when the ball rides on the outer rolling surfaces 51a and 51b due to the moment load during turning of the vehicle and the long-side vertex of the contact ellipse falls off the edge portion 55, an edge load is generated, resulting in an extremely high surface pressure. Life is greatly reduced. In order to improve the fuel consumption of automobiles, further downsizing and weight reduction of wheel bearing devices are required, and it is considered that the technique of Patent Document 1 will be insufficient as a countermeasure against the occurrence of edge load in the future.

また、粗粒化させないために、高周波焼入れ時に外側転走面51a、51bのエッジ部55付近が余り昇温しないようにするとしても、旋回走行時の高面圧に対応するためには、ある程度の深い硬化層が必要であり、粗粒化を防止しつつ、深い硬化層を形成することの両立は困難であった。さらに、焼入鋼切削によって硬化層を除去する必要があり、工程数が増加するため、コスト高になる。   Further, in order not to coarsen the grains, even if the vicinity of the edge portions 55 of the outer rolling surfaces 51a and 51b is not excessively heated during induction hardening, in order to cope with the high surface pressure during the turning, a certain degree A deep hardened layer is necessary, and it is difficult to form a deep hardened layer while preventing coarsening. Furthermore, it is necessary to remove the hardened layer by quenching steel cutting, and the number of processes increases, resulting in high costs.

ここで、焼入れ性の良い鋼種を選択することも考えられるが、材料規格が特殊となるため、他の材料との混入防止対策等でコストアップとなって好ましくない。したがって、現行の鋼種のままで、車両の旋回走行時のエッジ部55付近の高面圧による短寿命対策が求められている。   Here, it is conceivable to select a steel type with good hardenability, but since the material standard is special, it is not preferable because the cost increases due to the prevention of mixing with other materials. Therefore, there is a demand for a short life countermeasure due to a high surface pressure near the edge portion 55 when the vehicle is turning while keeping the current steel grade.

本発明は、このような従来の問題に鑑みてなされたもので、内方部材の熱処理時に、内側転走面の肩部の過熱を抑制し、結晶の粗粒化を防止すると共に、内側転走面から転動体がはみ出して転動する際にも極端なエッジロードとなることも防止して軸受の長寿命化を図った車輪用軸受装置を提供することを目的とする。   The present invention has been made in view of such conventional problems, and suppresses overheating of the shoulder portion of the inner rolling surface during the heat treatment of the inner member, prevents the coarsening of the crystal and prevents the inner rolling. An object of the present invention is to provide a wheel bearing device that prevents an extreme edge load even when a rolling element protrudes from a running surface and rolls, thereby extending the life of the bearing.

係る目的を達成すべく、本発明のうち請求項1に記載の発明は、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に前記複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面の他方に対向する内側転走面が形成された内輪または等速自在継手の外側継手部材からなる内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備えた車輪用軸受装置において、前記ハブ輪または外側継手部材が炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、この内側転走面の大径端に円筒状の肩部が形成され、前記転動体が転動する当該内側転走面の終端から前記肩部にかけてテーパ面が形成されると共に、前記内側転走面に表面硬さが58〜64HRCの範囲に硬化層が形成され、前記内側転走面の終端と前記テーパ面のエッジ部の角部が所定の曲率半径R1、R2からなる円弧状に形成され、前記終端側の曲率半径R1が前記テーパ面のエッジ部の曲率半径R2よりも大きく(R1>R2)設定され、前記内側転走面の終端部の硬化層の表面から1mm以内のオーステナイト結晶粒度が、前記テーパ面のエッジ部のオーステナイト結晶粒度よりも小さく設定されている。 In order to achieve such an object, the invention according to claim 1 of the present invention includes an outer member in which a double row outer rolling surface is integrally formed on the inner periphery, and a wheel for attaching a wheel to one end. A hub wheel integrally having a mounting flange, and formed on the outer periphery thereof with one inner rolling surface facing the outer rolling surface of the double row, and a small-diameter step portion extending in the axial direction from the inner rolling surface; and An inner member made of an inner ring or an outer joint member of a constant velocity universal joint, which is press-fitted into a small-diameter step portion of the hub ring and has an inner rolling surface facing the other of the outer rolling surfaces of the double row on the outer periphery; In the wheel bearing device comprising a double row rolling element that is rotatably accommodated via a cage between both rolling surfaces of the inner member and the outer member, the hub wheel or the outer joint The member is made of medium to high carbon steel containing 0.40 to 0.80 wt% carbon, Cylindrical shoulder is formed in the diameter end, said with rolling elements taper surface from the end of the inner raceway surface that rolls toward the shoulder portion is formed, the front surface hardness on the inner raceway surface A hardened layer is formed in the range of 58 to 64 HRC, the end of the inner rolling surface and the corner of the edge of the tapered surface are formed in an arc shape having predetermined curvature radii R1, R2, and the curvature on the end side The radius R1 is set to be larger than the radius of curvature R2 of the edge portion of the tapered surface (R1> R2) , and the austenite grain size within 1 mm from the surface of the hardened layer at the terminal portion of the inner rolling surface has a radius of the tapered surface. It is set smaller than the austenite grain size of the edge portion .

このように、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に複列の外側転走面の他方に対向する内側転走面が形成された内輪または等速自在継手の外側継手部材からなる内方部材を備えた車輪用軸受装置において、ハブ輪または外側継手部材が炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、この内側転走面の大径端に円筒状の肩部が形成され、転動体が転動する当該内側転走面の終端から肩部にかけてテーパ面が形成されると共に、内側転走面に表面硬さが58〜64HRCの範囲に硬化層が形成され、内側転走面の終端とテーパ面のエッジ部の角部が所定の曲率半径R1、R2からなる円弧状に形成され、終端側の曲率半径R1がテーパ面のエッジ部の曲率半径R2よりも大きく(R1>R2)設定され、内側転走面の終端部の硬化層の表面から1mm以内のオーステナイト結晶粒度が、テーパ面のエッジ部のオーステナイト結晶粒度よりも小さく設定されているので、テーパ面によって転動体が転動する内側転走面の終端から離れた位置にエッジ部を設け、高周波焼入れによって昇温される熱をこのエッジ部の方向へも逃がし、内側転走面の終端の近傍がオーバーヒートするのを防止することができる。すなわち、熱の影響で組織が粗粒化し易い部分をテーパ面に収め、内側転走面の終端の近傍の組織は粗粒化しないようにすることで、粗粒化した組織の高面圧による短寿命を防止することができる。 Thus, it has a wheel mounting flange for mounting the wheel at one end, and has one inner rolling surface facing the double row outer rolling surface on the outer periphery, and an axial direction from this inner rolling surface. A hub ring formed with an extended small-diameter step portion, and an inner ring or a constant velocity freely press-fitted into the small-diameter step portion of this hub ring and formed with an inner rolling surface facing the other of the double-row outer rolling surfaces on the outer periphery In a wheel bearing device including an inner member composed of an outer joint member of a joint, the hub wheel or the outer joint member is formed of medium-high carbon steel containing carbon of 0.40 to 0.80 wt%, and cylindrical shoulder is formed in the large-diameter end, the rolling element with a tapered surface toward the shoulder portion is formed from the end of the inner raceway surface of the rolling, the front surface hardness to inner raceway surface 58 to Hardened layer is formed in the range of 64HRC, the end of the inner rolling surface and the tapered surface Corners of the edge portion is formed in an arc shape having a predetermined radius of curvature R1, R2, the radius of curvature R1 of the end side is larger than the radius of curvature R2 of the edge portion of the tapered surface (R1> R2) is set, the inner rolling Since the austenite grain size within 1 mm from the surface of the hardened layer at the end of the running surface is set smaller than the austenite grain size at the edge of the tapered surface, the inner rolling surface on which the rolling elements roll by the tapered surface An edge portion is provided at a position away from the end of the steel plate, and the heat raised by induction hardening is also released in the direction of the edge portion, so that the vicinity of the end of the inner rolling surface can be prevented from overheating. That is, the portion where the structure is likely to coarsen due to heat is contained in the tapered surface, and the structure near the end of the inner rolling surface is not coarsened, so that the high surface pressure of the coarsened structure Short life can be prevented.

また、内側転走面の外径側の終端の溝底からの高さhが、車輪用軸受装置が適用される車両の旋回μ=0.6で転動体がはみ出して転動しない高さ以上、または、転動体の直径をDaとし、内側転走面の溝曲率半径Raを、2Ra=1.02〜1.08Daとした時、h≦0.50Daに設定されていれば、内側転走面の終端から転動体がはみ出して転動する際にも、その荷重を受ける体積を大きくとり、肩部のエッジ部に比べ内側転走面の終端の角部が極端にエッジロードとなるのを防止することができる。   Also, the height h from the groove bottom at the outer diameter side of the inner rolling surface is not less than the height at which the rolling element protrudes and does not roll at the turning μ = 0.6 of the vehicle to which the wheel bearing device is applied. Or, when the diameter of the rolling element is Da and the groove radius of curvature Ra of the inner rolling surface is 2Ra = 1.02 to 1.08 Da, and if h ≦ 0.50 Da is set, inner rolling Even when the rolling element rolls out from the end of the surface, it takes a larger volume to receive the load, and the end corner of the inner rolling surface becomes an edge load compared to the edge of the shoulder. Can be prevented.

また、請求項に記載の発明のように、前記内側転走面の外径側の終端の溝底からの高さhが、前記車輪用軸受装置が適用される車両の旋回μ=0.6で前記転動体がはみ出して転動しない高さ以上、かつ、前記転動体の直径をDaとし、前記内側転走面の溝曲率半径Raを、2Ra=1.02〜1.08Daとした時、h≦0.50Daに設定されていれば、内側転走面の研削加工において、研削焼けを起こすのを防止すると共に、転動体の肩乗り上げを防止し、軸受の長寿命化を図ることができる。 Further, as in the invention according to claim 2 , the height h from the groove bottom at the outer diameter side of the inner rolling surface is a turning μ = 0.0 of the vehicle to which the wheel bearing device is applied. 6 when the rolling element protrudes beyond the height where it does not roll, the diameter of the rolling element is Da, and the groove radius of curvature Ra of the inner rolling surface is 2Ra = 1.02 to 1.08 Da If h ≦ 0.50 Da is set, it is possible to prevent grinding burn in the grinding of the inner rolling surface and prevent the rolling element from climbing over the shoulder, thereby extending the life of the bearing. it can.

また、請求項に記載の発明のように、前記肩部の外径面の前記内側転走面の溝底からの高さHが、前記転動体の直径をDaとした時、H≦0.6Daに設定されていれば、アウター側のシールのスペースが制約されることなく、軽量化を図ることができる。 Further, as in the invention described in claim 3, when the height H of the outer diameter surface of the shoulder from the groove bottom of the inner rolling surface is H ≦ 0 when the diameter of the rolling element is Da. If it is set to .6 Da, it is possible to reduce the weight without restricting the outer seal space.

また、請求項に記載の発明のように、前記テーパ面の傾斜角が、前記内側転走面の終端位置での当該内側転走面の接線と前記肩部の外径面で作る角度よりも小さく、40°〜85°の範囲に設定されていれば、肩部の外径面と内側転走面の終端との距離が短くなって、結晶粒度が粗粒化されるのを防止し、エッジロードを低減させて軸受の長寿命化を図ることができると共に、肩部が大径になって質量が増加したり、シールの断面高さが減少したりするのを防止することができる。 Further, as in the invention described in claim 4 , an inclination angle of the tapered surface is an angle formed by a tangent line of the inner rolling surface at the terminal position of the inner rolling surface and an outer diameter surface of the shoulder portion. If it is set to a range of 40 ° to 85 °, the distance between the outer diameter surface of the shoulder and the end of the inner rolling surface is shortened, and the crystal grain size is prevented from becoming coarse. The edge load can be reduced to extend the life of the bearing, and the shoulder can have a large diameter, preventing an increase in mass and a reduction in the sectional height of the seal. .

また、請求項に記載の発明のように、前記テーパ面が研削面とされていれば、熱処理によって付着した酸化スケールを確実に除去でき、内側転走面への酸化スケールの侵入による音響、振動悪化、酸化スケールの噛み込み圧痕からの破損を防止することができる。 It is preferable as defined in claim 5, if it is with the tapered surface GaKen Kezumen, the oxide scale deposited by the heat treatment can reliably remove the acoustic by oxidation scale from entering the inner raceway surface, It is possible to prevent vibration deterioration and damage from the oxide scale biting indentation.

また、請求項に記載の発明のように、前記肩部の外径面が研削面とされれば、さらに加工工数を削減することができる。 Further, if the outer diameter surface of the shoulder portion is a grinding surface as in the invention described in claim 6 , the number of processing steps can be further reduced.

また、請求項に記載の発明のように、前記ハブ輪の内側転走面の硬化層の軸方向深さが、当該内側転走面の転動体との接触点位置から前記肩部にかけて軸方向に漸増するように形成されていれば、旋回走行時の高面圧に対応する充分な硬化層深さを確保することができ、軸受の長寿命化を図ることができる。 Further, as in the invention described in claim 7 , the axial depth of the hardened layer of the inner raceway surface of the hub wheel is an axis extending from the contact point position of the inner raceway surface with the rolling element to the shoulder portion. If it is formed so as to gradually increase in the direction, it is possible to secure a sufficient depth of the hardened layer corresponding to the high surface pressure at the time of turning, and it is possible to extend the life of the bearing.

また、請求項に記載の発明のように、前記複列の転動体のうちアウター側の転動体のピッチ円直径がインナー側の転動体のピッチ円直径よりも大径に設定されていれば、有効に軸受スペースを活用して外方部材の外径を大きくすることなく、アウター側の軸受列の剛性を高めると共に、負荷容量を増大せしめることができる。 Further, as in the invention according to claim 8 , if the pitch circle diameter of the outer side rolling elements of the double row rolling elements is set larger than the pitch circle diameter of the inner side rolling elements. The rigidity of the outer bearing row can be increased and the load capacity can be increased without effectively using the bearing space and increasing the outer diameter of the outer member.

また、請求項に記載の発明のように、前記複列の転動体のうちアウター側の転動体の外径がインナー側の転動体の外径よりも小径に形成されると共に、前記アウター側の転動体の個数が前記インナー側の転動体の個数よりも多く設定されていれば、アウター側の軸受列の剛性を高めることができると共に、インナー側の軸受列の負荷容量を増大させることができる。 Further, as in the invention according to claim 9 , the outer diameter of the outer side rolling elements of the double row rolling elements is formed to be smaller than the outer diameter of the inner side rolling elements, and the outer side If the number of rolling elements is set to be larger than the number of rolling elements on the inner side, the rigidity of the outer side bearing row can be increased and the load capacity of the inner side bearing row can be increased. it can.

本発明に係る車輪用軸受装置は、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に前記複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面の他方に対向する内側転走面が形成された内輪または等速自在継手の外側継手部材からなる内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備えた車輪用軸受装置において、前記ハブ輪または外側継手部材が炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、この内側転走面の大径端に円筒状の肩部が形成され、前記転動体が転動する当該内側転走面の終端から前記肩部にかけてテーパ面が形成されると共に、前記内側転走面に表面硬さが58〜64HRCの範囲に硬化層が形成され、前記内側転走面の終端と前記テーパ面のエッジ部の角部が所定の曲率半径R1、R2からなる円弧状に形成され、前記終端側の曲率半径R1が前記テーパ面のエッジ部の曲率半径R2よりも大きく(R1>R2)設定され、前記内側転走面の終端部の硬化層の表面から1mm以内のオーステナイト結晶粒度が、前記テーパ面のエッジ部のオーステナイト結晶粒度よりも小さく設定されているので、テーパ面によって転動体が転動する内側転走面の終端から離れた位置にエッジ部を設け、高周波焼入れによって昇温される熱をこのエッジ部の方向へも逃がし、内側転走面の終端の近傍がオーバーヒートするのを防止することができる。すなわち、熱の影響で組織が粗粒化し易い部分をテーパ面に収め、内側転走面の終端の近傍の組織は粗粒化しないようにすることで、粗粒化した組織の高面圧による短寿命を防止することができる。また、内側転走面の外径側の終端の溝底からの高さhが、車輪用軸受装置が適用される車両の旋回μ=0.6で転動体がはみ出して転動しない高さ以上、または、転動体の直径をDaとし、内側転走面の溝曲率半径Raを、2Ra=1.02〜1.08Daとした時、h≦0.50Daに設定されていれば、内側転走面の終端から転動体がはみ出して転動する際にも、その荷重を受ける体積を大きくとり、肩部のエッジ部に比べ内側転走面の終端の角部が極端にエッジロードとなるのを防止することができる。 The wheel bearing device according to the present invention integrally has an outer member integrally formed with a double row outer rolling surface on the inner periphery, and a wheel mounting flange for mounting the wheel on one end, and on the outer periphery. One inner rolling surface facing the outer rolling surface of the double row, a hub wheel formed with a small-diameter step portion extending in the axial direction from the inner rolling surface, and press-fitted into the small-diameter step portion of the hub wheel An inner member comprising an outer ring member of an inner ring or a constant velocity universal joint having an inner rolling surface facing the other of the outer surfaces of the double row on the outer periphery, and the inner member and the outer member In the wheel bearing device including a double row rolling element that is rotatably accommodated between both rolling surfaces via a cage, the hub wheel or the outer joint member is carbon 0.40 to 0.80 wt. %, And a cylindrical shoulder is formed at the large diameter end of this inner rolling surface. The with rolling elements taper surface from the end of the inner raceway surface that rolls toward the shoulder portion is formed, cured layer is formed front surface hardness on the inner raceway surface is in the range of 58~64HRC The end of the inner rolling surface and the corner of the edge portion of the tapered surface are formed in an arc shape having predetermined curvature radii R1 and R2, and the curvature radius R1 on the end side is the curvature of the edge portion of the tapered surface. The radius is set to be larger than R2 (R1> R2), and the austenite grain size within 1 mm from the surface of the hardened layer at the end of the inner rolling surface is set smaller than the austenite grain size at the edge of the tapered surface. since it is, the edge portion is provided at a position where the rolling element is separated from the end of the inner raceway surface of the rolling by the tapered surface, also escape the heat heated by high frequency induction quenching in the direction of the edge portion, the inner rolling Near the end of the surface can be prevented from overheating. That is, the portion where the structure is likely to coarsen due to heat is contained in the tapered surface, and the structure near the end of the inner rolling surface is not coarsened, so that the high surface pressure of the coarsened structure Short life can be prevented. Also, the height h from the groove bottom at the outer diameter side of the inner rolling surface is not less than the height at which the rolling element protrudes and does not roll at the turning μ = 0.6 of the vehicle to which the wheel bearing device is applied. Or, when the diameter of the rolling element is Da and the groove curvature radius Ra of the inner rolling surface is 2Ra = 1.02 to 1.08 Da, if h ≦ 0.50 Da, Even when the rolling element rolls out from the end of the running surface, the volume receiving the load is increased, and the corner of the end of the inner rolling surface becomes an extreme edge load compared to the edge of the shoulder. Can be prevented.

本発明に係る車輪用軸受装置の第1の実施形態を示す縦断面図である。It is a longitudinal section showing a 1st embodiment of a bearing device for wheels concerning the present invention. 図1のハブ輪単体を示す拡大断面図である。It is an expanded sectional view which shows the hub ring single-piece | unit of FIG. 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2. 図3の変形例を示す要部拡大図である。It is a principal part enlarged view which shows the modification of FIG. 図2のハブ輪の硬化層を示す説明図である。It is explanatory drawing which shows the hardened layer of the hub ring of FIG. 本発明に係る車輪用軸受装置の第2の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the wheel bearing apparatus which concerns on this invention. 本発明に係る車輪用軸受装置の第3の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 3rd Embodiment of the wheel bearing apparatus which concerns on this invention. 本発明に係る車輪用軸受装置の第4の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 4th Embodiment of the wheel bearing apparatus which concerns on this invention. 図8の内方部材単体を示す拡大断面図である。It is an expanded sectional view which shows the inner member single-piece | unit of FIG. 本発明に係る車輪用軸受装置の第5の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 5th Embodiment of the wheel bearing apparatus which concerns on this invention. 図10の内方部材単体を示す拡大断面図である。It is an expanded sectional view which shows the inner member single-piece | unit of FIG. (a)は、従来の車輪用軸受装置の外方部材単体を示す拡大断面図、(b)は、(a)の要部拡大図である。(A) is an expanded sectional view which shows the outer member single-piece | unit of the conventional wheel bearing apparatus, (b) is a principal part enlarged view of (a).

外周に車体に取り付けられるための車体取付フランジを一体に有し、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に前記複列の外側転走面の一方に対向する内側転走面と、この内側転走面から軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に所定のシメシロを介して圧入され、外周に前記複列の外側転走面の他方に対向する内側転走面が形成された内輪からなる内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列のボールとを備えた車輪用軸受装置において、前記ハブ輪の内側転走面の大径端に円筒状の肩部が形成され、前記転動体が転動する当該内側転走面の終端から前記肩部にかけてテーパ面が形成されると共に、前記内側転走面の終端と前記テーパ面のエッジ部の角部が所定の曲率半径R1、R2からなる円弧状に形成され、前記終端側の曲率半径R1が前記テーパ面のエッジ部の曲率半径R2よりも大きく(R1>R2)設定され、前記内側転走面が旋削加工された後、高周波焼入れ、もしくは加熱炉によってズブ焼入れによって所定の硬化層が形成され、その後、複列の内側転走面が、研削加工、そして超仕上げ加工により、所定の形状および面粗度に仕上げられる。   An outer member integrally having a vehicle body mounting flange to be attached to the vehicle body on the outer periphery, a double row outer rolling surface formed integrally on the inner periphery, and a wheel mounting flange for mounting a wheel on one end A hub wheel integrally formed and having an inner rolling surface facing one of the outer rolling surfaces of the double row on the outer periphery, and a small-diameter step portion extending in the axial direction from the inner rolling surface, and the hub wheel An inner member made of an inner ring that is press-fitted into a small-diameter step portion of the inner diameter through a predetermined squeeze and has an inner rolling surface that faces the other of the outer rolling surfaces of the double row on the outer periphery, and the inner member In a wheel bearing device comprising a double row ball accommodated in a freely rolling manner between both rolling surfaces of the outer member via a cage, a large diameter end of the inner rolling surface of the hub wheel A cylindrical shoulder is formed, and the shoulder from the end of the inner rolling surface on which the rolling element rolls And the end of the inner rolling surface and the corner of the edge of the taper surface are formed in an arc shape having predetermined curvature radii R1 and R2, and the curvature radius R1 on the end side is formed. Is set to be larger than the radius of curvature R2 of the edge of the tapered surface (R1> R2), and after turning the inner rolling surface, a predetermined hardened layer is formed by induction hardening or submerged hardening in a heating furnace. Thereafter, the double row inner rolling surfaces are finished to a predetermined shape and surface roughness by grinding and superfinishing.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明に係る車輪用軸受装置の第1の実施形態を示す縦断面図、図2は、図1のハブ輪単体を示す拡大断面図、図3は、図2の要部拡大図、図4は、図3の変形例を示す要部拡大図、図5は、図2のハブ輪の硬化層を示す説明図である。なお、以下の説明では、車両に組み付けた状態で車両の外側寄りとなる側をアウター側(図1の左側)、中央寄り側をインナー側(図1の右側)という。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a first embodiment of a wheel bearing device according to the present invention, FIG. 2 is an enlarged sectional view showing a single hub wheel of FIG. 1, and FIG. 3 is an enlarged view of a main part of FIG. 4 is an enlarged view of a main part showing a modification of FIG. 3, and FIG. 5 is an explanatory view showing a hardened layer of the hub wheel of FIG. In the following description, the side closer to the outer side of the vehicle when assembled to the vehicle is referred to as the outer side (left side in FIG. 1), and the side closer to the center is referred to as the inner side (right side in FIG. 1).

この車輪用軸受装置は従動輪用の第3世代と称され、内方部材1と外方部材2、および両部材1、2間に転動自在に収容された複列の転動体(ボール)3、3を備えている。内方部材1は、ハブ輪4と、このハブ輪4に所定のシメシロを介して圧入された内輪5とからなる。   This wheel bearing device is called the third generation for driven wheels, and is a double row rolling element (ball) accommodated between the inner member 1 and the outer member 2 and between the members 1 and 2 so as to roll freely. 3 and 3. The inner member 1 includes a hub ring 4 and an inner ring 5 press-fitted into the hub ring 4 through a predetermined shimiro.

ハブ輪4は、アウター側の端部に車輪(図示せず)を取り付けるための車輪取付フランジ6を一体に有し、この車輪取付フランジ6の円周等配位置に車輪を固定するためのハブボルト6aが植設されている。また、ハブ輪4の外周には一方(アウター側)の内側転走面4aが直接形成され、この内側転走面4aから軸方向に延びる小径段部4bが形成されている。そして、外周に他方(インナー側)の内側転走面5aが形成された内輪5がこの小径段部4bに圧入され、さらに、小径段部4bの端部を径方向外方に塑性変形させて形成した加締部4cにより所定の軸受予圧が付与された状態で、ハブ輪4に対して内輪5が軸方向に固定され、背面合せタイプの複列アンギュラ玉軸受を構成している。   The hub wheel 4 integrally has a wheel mounting flange 6 for attaching a wheel (not shown) to an end portion on the outer side, and a hub bolt for fixing the wheel at a circumferentially equidistant position of the wheel mounting flange 6. 6a is planted. Further, one (outer side) inner rolling surface 4a is directly formed on the outer periphery of the hub wheel 4, and a small-diameter step portion 4b extending in the axial direction from the inner rolling surface 4a is formed. And the inner ring | wheel 5 by which the inner side rolling surface 5a of the other (inner side) was formed in the outer periphery is press-fit in this small diameter step part 4b, and also the edge part of the small diameter step part 4b is plastically deformed to radial direction outward. The inner ring 5 is fixed to the hub wheel 4 in the axial direction in a state where a predetermined bearing preload is applied by the formed caulking portion 4c, thereby constituting a back-to-back type double row angular ball bearing.

ハブ輪4はS53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、アウター側の内側転走面4aをはじめ、後述するアウター側のシール8が摺接するシールランド部から小径段部4bに亙り高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理が施されている。なお、加締部4cは、鍛造後の素材表面硬さ25HRC以下の未焼入れ部としている。一方、内輪5および転動体3は、SUJ2等の高炭素クロム軸受鋼からなり、ズブ焼入れにより芯部まで58〜64HRCの範囲で硬化処理されている。これにより、シールランド部の耐摩耗性が向上するだけでなくハブ輪4の強度が向上すると共に、内輪5の嵌合面におけるフレッティング摩耗が抑制されて耐久性が向上する。また、加締部4cの加工性を向上させ、塑性変形によるクラック等の発生を防止することができる。   The hub wheel 4 is formed of medium-high carbon steel containing carbon of 0.40 to 0.80 wt% such as S53C, and includes a seal land portion on which an outer-side seal 8 to be described later comes into sliding contact with the outer-side inner rolling surface 4a. Curing treatment is applied to the surface hardness of 58 to 64 HRC by induction hardening over the small diameter step 4b. The caulking portion 4c is an unquenched portion having a surface hardness of 25HRC or less after forging. On the other hand, the inner ring 5 and the rolling element 3 are made of a high carbon chrome bearing steel such as SUJ2, and are hardened in the range of 58 to 64 HRC to the core portion by quenching. Thereby, not only the wear resistance of the seal land portion is improved, but also the strength of the hub wheel 4 is improved, and the fretting wear on the fitting surface of the inner ring 5 is suppressed, thereby improving the durability. Moreover, the workability of the caulking portion 4c can be improved, and the occurrence of cracks and the like due to plastic deformation can be prevented.

外方部材2は、外周に車体(図示せず)に取り付けるための車体取付フランジ2bを一体に有し、内周に前記内方部材1の複列の内側転走面4a、5aに対向する複列の外側転走面2a、2aが一体に形成されている。この外方部材2は、ハブ輪4と同様、S53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、それぞれの転走面2a、4aと2a、5a間に複列の転動体3、3が収容され、保持器7、7によりこれら複列の転動体3、3が転動自在に保持されている。また、外方部材2と内方部材1との間に形成される環状空間の開口部にはシール8、9が装着され、軸受内部に封入された潤滑グリースの漏洩と、外部から雨水やダスト等が軸受内部に侵入するのを防止している。   The outer member 2 integrally has a vehicle body mounting flange 2b for mounting to the vehicle body (not shown) on the outer periphery, and faces the double row inner rolling surfaces 4a, 5a of the inner member 1 on the inner periphery. Double row outer rolling surfaces 2a, 2a are integrally formed. This outer member 2 is formed of medium and high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, like the hub wheel 4, and double rows between the rolling surfaces 2 a, 4 a and 2 a, 5 a. The rolling elements 3 and 3 are accommodated, and the double-row rolling elements 3 and 3 are held by the cages 7 and 7 so as to freely roll. Seals 8 and 9 are attached to the opening of the annular space formed between the outer member 2 and the inner member 1, and leakage of lubricating grease sealed inside the bearing and rainwater and dust from the outside. Etc. are prevented from entering the inside of the bearing.

ここで、ハブ輪4は、図2に拡大して示すように、内側転走面4aの大径端に円筒状の肩部(基部)10が形成されると共に、この肩部10と内側転走面4aの大径端との交差部に環状の切欠き部11が形成されている。そして、内側転走面4aが旋削加工された後、高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化層12が形成されている(図中クロスハッチングにて示す)。その後、高周波焼入れ、もしくは加熱炉によってズブ焼入れされ、複列の内側転走面4a、5aが、研削加工、そして超仕上げ加工により、所定の形状および面粗度に仕上げられる。 Here, as shown in an enlarged view in FIG. 2, the hub wheel 4 has a cylindrical shoulder (base) 10 formed at the large-diameter end of the inner rolling surface 4 a, and the shoulder 10 and the inward rolling. An annular notch 11 is formed at the intersection with the large diameter end of the running surface 4a. And after the inner side rolling surface 4a is turned, the hardened layer 12 is formed in the range of the surface hardness of 58-64 HRC by induction hardening (indicated by cross hatching in the figure). After that, induction hardening or quenching is performed by a heating furnace, and the double-row inner rolling surfaces 4a and 5a are finished to a predetermined shape and surface roughness by grinding and superfinishing.

内側転走面4aの外径側の終端13の溝底からの高さ、所謂溝深さhは、この車輪用軸受装置が適用される車両の旋回μ=0.6で転動体3がはみ出して転動しない高さ以上、好ましくは、旋回μ=0.7で転動体3がはみ出して転動しない高さ以上、かつ、転動体3の直径をDaとした時、h≦0.50Daに設定されている。これにより、転動体3の肩乗り上げを防止し、軸受の長寿命化を図ることができる。ただし、内側転走面4aの溝曲率半径Raは、2Ra=1.02〜1.08Daとする。ここで、旋回μとは、車両が旋回運動をするときタイヤにはコーナリングフォース、すなわち、各車輪にその旋回運動円の中心に向いて働く力が発生するが、この時のタイヤと路面の間の摩擦係数を示している。   The height from the groove bottom of the end 13 on the outer diameter side of the inner rolling surface 4a, the so-called groove depth h is the turning μ = 0.6 of the vehicle to which the wheel bearing device is applied, and the rolling element 3 protrudes. Or more, preferably, when the turning μ = 0.7, the rolling element 3 protrudes beyond the height where it does not roll and the diameter of the rolling element 3 is Da, and h ≦ 0.50 Da. Is set. Thereby, it is possible to prevent the rolling element 3 from climbing over the shoulder and to extend the life of the bearing. However, the groove curvature radius Ra of the inner rolling surface 4a is 2Ra = 1.02 to 1.08Da. Here, turning μ means that when the vehicle makes a turning motion, the tire generates a cornering force, that is, a force that acts on each wheel toward the center of the turning motion circle. The coefficient of friction is shown.

旋回μ=0.6急旋回で充分発生する可能性のある旋回μの値であり、それに対応する必要がある。また、h≦0.50Daは、これ以上溝深さhが深くなると、内側転走面4aの研削加工を行う際、ハブ輪4と同軸で研削を行うと、肩部10付近が砥石の側面で加工する状態となり、研削焼けを起こし易くなるから好ましくないからである。また、内側転走面4aの接触角方向に砥石を傾斜させた状態で送りをかける、所謂アンギュラフィードで研削加工すれば、砥石の側面で加工する状態になり難いが、内側転走面4aの同軸度や溝ピッチ寸法(溝底と基準面の寸法)等の精度が悪化して好ましくない。   Turning μ = 0.6 is a value of turning μ that may occur sufficiently in sudden turning, and it is necessary to cope with it. Further, when h ≦ 0.50 Da, when the groove depth h becomes deeper than this, when grinding the inner rolling surface 4a, if the grinding is performed coaxially with the hub wheel 4, the vicinity of the shoulder 10 is the side surface of the grindstone. This is because it is not preferable because it becomes a state of being processed by the process, and grinding burn is likely to occur. In addition, if grinding is performed with a so-called angular feed that feeds in a state where the grindstone is inclined in the contact angle direction of the inner rolling surface 4a, it is difficult to form a state of machining on the side surface of the grindstone. Accuracy such as coaxiality and groove pitch dimension (groove bottom and reference surface dimensions) deteriorates, which is not preferable.

また、肩部10の外径面の溝底からの高さHは、H≦0.60Daに設定されている。これ以上、肩部10の外径面が大きくなると、アウター側のシール8のスペースが制約されて設計自由度がなくなると共に、重量が増して軽量化を阻害して好ましくない。   The height H of the outer diameter surface of the shoulder portion 10 from the groove bottom is set to H ≦ 0.60 Da. If the outer diameter surface of the shoulder portion 10 becomes larger than this, the space of the outer seal 8 is restricted, and the degree of freedom in design is lost.

切欠き部11は所定の傾斜角θからなるテーパ面に形成されている。このように、切欠き部11によって転動体3が転動する内側転走面4aの終端13から離れた位置にエッジ部11aを設け、高周波焼入れによって昇温される熱をこのエッジ部11aの方向へも逃がし、内側転走面4aの終端13の近傍がオーバーヒートするのを防止することができる。すなわち、熱の影響で組織が粗粒化し易い部分をテーパ面からなる切欠き部11に収め、外側転走面の終端の近傍の組織は粗粒化しないようにすることで、高面圧下での粗粒化した組織の短寿命を防止することができる。 The notch 11 is formed in a tapered surface having a predetermined inclination angle θ. Thus, the edge part 11a is provided in the position away from the termination | terminus 13 of the inner side rolling surface 4a where the rolling element 3 rolls by the notch part 11, and the heat | fever raised by induction hardening is the direction of this edge part 11a It is possible to prevent the overheating of the vicinity of the end 13 of the inner rolling surface 4a. That is, by storing the portion where the structure is likely to be coarsened due to the heat in the notch portion 11 made of a tapered surface, the structure in the vicinity of the end of the outer rolling surface is not coarsened , so It is possible to prevent the short life of the coarsened structure.

また、内側転走面の外径側の終端の溝底からの高さhが、車輪用軸受装置が適用される車両の旋回μ=0.6で転動体がはみ出して転動しない高さ以上、または、転動体の直径をDaとし、内側転走面の溝曲率半径Raを、2Ra=1.02〜1.08Daとした時、h≦0.50Daに設定されていれば、転動体3が転動する内側転走面41a、5aの終端13から肩部10にかけて切欠き部11がテーパ面に形成され、内側転走面41a、5aの終端13から転動体3がはみ出して転動する際にも、その荷重を受ける体積を大きくとり、肩部10のエッジ部11aに比べ内側転走面41a、5aの終端13の角部が極端にエッジロードとなるのを防止することができる。   Also, the height h from the groove bottom at the outer diameter side of the inner rolling surface is not less than the height at which the rolling element protrudes and does not roll at the turning μ = 0.6 of the vehicle to which the wheel bearing device is applied. Or, when the diameter of the rolling element is Da and the groove curvature radius Ra of the inner rolling surface is 2Ra = 1.02 to 1.08 Da, the rolling element 3 is set if h ≦ 0.50 Da. Is formed in a tapered surface from the end 13 of the inner rolling surfaces 41a, 5a to the shoulder 10, and the rolling element 3 protrudes from the end 13 of the inner rolling surfaces 41a, 5a and rolls. In particular, the volume receiving the load can be increased, and the corner portions of the terminal ends 13 of the inner rolling surfaces 41a and 5a can be prevented from becoming an edge load as compared with the edge portion 11a of the shoulder portion 10.

ここで、高周波焼入れによって硬化される硬化層12について、内側転走面41a、5aの終端13より外径側(図2中の細かいクロスハッチングの範囲)において表面から1mm以内、すなわち旋回μ=0.7で最大せん断応力深さを十分に許容できる深さ以内では、JIS−G0551で規定されるオーステナイト結晶粒度番号が、硬化層12の内側転走面41a,5aの終端13より内径側(図2中の粗いクロスハッチングの範囲)、すなわちエッジ部11a近傍、における表面から1mm以内の最も粗粒であるオーステナイト結晶粒度番号よりも、大きく設定されている。具体的には、硬化層12のエッジ部11aの表面から1mm以内の最も粗粒であるオーステナイト結晶粒度番号が2番(結晶粒の大きさが約150μm)に対し、内側転走面41a、5aの終端13より外径側における表面から1mm以内のオーステナイト結晶粒度番号が5番(結晶粒の大きさが略60μm)に細粒化されている。これにより、軸受の長寿命化を図ることができる。   Here, with respect to the hardened layer 12 hardened by induction hardening, it is within 1 mm from the surface on the outer diameter side (the range of fine cross-hatching in FIG. 2) from the end 13 of the inner rolling surfaces 41a, 5a, that is, the turning μ = 0. Within the depth where the maximum shear stress depth is sufficiently permissible at .7, the austenite grain size number specified in JIS-G0551 is on the inner diameter side from the end 13 of the inner rolling surfaces 41a, 5a of the hardened layer 12 (see FIG. 2 is set to be larger than the austenite grain size number which is the coarsest grain within 1 mm from the surface in the vicinity of the edge portion 11a). Specifically, for the austenite grain size number 2 (the crystal grain size is about 150 μm) which is the coarsest grain within 1 mm from the surface of the edge portion 11a of the hardened layer 12, the inner rolling surfaces 41a, 5a The austenite grain size number within 1 mm from the surface on the outer diameter side from the end 13 of the steel is refined to 5 (crystal grain size is approximately 60 μm). As a result, the life of the bearing can be extended.

切欠き部11の傾斜角θは、図3に拡大して示すように、内側転走面4aの終端13位置での内側転走面4aの接線14と基部10の外径面で作る角度αよりも小さく、θ=40°〜85°の範囲に設定されている。この傾斜角θが40°未満では、基部10の外径面と内側転走面4aの終端13との距離が短くなって、粗粒化防止効果が薄れると共に、エッジロード低減効果が低くなる。一方、傾斜角θが85°を超えると、基部10が大径になり、質量の増加やシール断面が小さくなって好ましくない。   As shown in an enlarged view in FIG. 3, the inclination angle θ of the notch 11 is an angle α formed by the tangent line 14 of the inner rolling surface 4 a and the outer diameter surface of the base 10 at the end 13 position of the inner rolling surface 4 a. And is set in a range of θ = 40 ° to 85 °. When the inclination angle θ is less than 40 °, the distance between the outer diameter surface of the base portion 10 and the terminal end 13 of the inner rolling surface 4a is shortened, and the effect of preventing coarsening is diminished and the edge load reducing effect is lowered. On the other hand, when the inclination angle θ exceeds 85 °, the base portion 10 has a large diameter, which is not preferable because of an increase in mass and a decrease in the seal cross section.

切欠き部11のテーパ面の面仕上げは、焼入れ前の旋削による旋削面、あるいは、焼入れ後の焼入れ鋼切削による旋削面であっても良いが、ここでは、焼入れ後の内側転走面4aと同時に総型砥石による研削面とされている。これにより、熱処理によって付着した酸化スケールを確実に除去でき、内側転走面4aへの酸化スケールの侵入による音響、振動悪化、酸化スケールの噛み込み圧痕からの破損を防止することができる。また、焼入れ鋼切削であれば、研削と同様、酸化スケールを除去できるが、その後に内側転走面4aの研削加工が必要となるため、研削工程も行なわなければならない作業効率を考えればそのメリットは少ない。さらに、基部10の外径面も前述した内側転走面4aと切欠き部11と同時に総型砥石によって研削されれば、酸化スケールをより確実に除去できる。   The surface finish of the tapered surface of the notch 11 may be a turning surface by turning before quenching, or a turning surface by quenching steel cutting after quenching, but here, the inner rolling surface 4a after quenching and At the same time, it is a ground surface with a total grinding wheel. Thereby, the oxide scale adhered by the heat treatment can be surely removed, and sound and vibration deterioration due to the invasion of the oxide scale into the inner rolling surface 4a and damage from the oxide scale biting indentation can be prevented. Further, in the case of hardened steel cutting, the oxidized scale can be removed as in the case of grinding, but since the inner rolling surface 4a must be ground after that, its merit is considered in consideration of the work efficiency in which the grinding process must be performed. There are few. Furthermore, if the outer diameter surface of the base portion 10 is ground by the total type grindstone simultaneously with the inner rolling surface 4a and the notch portion 11 described above, the oxide scale can be removed more reliably.

図4に、図3の変形例を示す。なお、この実施形態は、前述した実施形態と基本的には内側転走面4aの終端13aと基部10の切欠き部11’のエッジ部11bの形状が異なるだけで、その他同一部位には同じ符号を付して詳細な説明を省略する。   FIG. 4 shows a modification of FIG. Note that this embodiment is basically the same as the above-described embodiment except that the shape of the end portion 13a of the inner rolling surface 4a and the edge portion 11b of the notch portion 11 ′ of the base portion 10 are different. Reference numerals are assigned and detailed description is omitted.

転動体3が転動する内側転走面4aの終端13aから肩部10にかけて切欠き部11’がテーパ面に形成され、終端13aおよび切欠き部11’のエッジ部11bの角部が所定の曲率半径R1、R2からなる円弧状に形成されている。そして、終端13aの曲率半径R1が切欠き部11’のエッジ部11bの曲率半径R2よりも大きく(R1>R2)設定されている。これにより、前述した実施形態と同様、高周波焼入れによって昇温される熱をこのエッジ部11bの方向へも逃がし、内側転走面4aの終端13aの近傍がオーバーヒートするのを防止することができると共に、角部に高面圧がかかった時に、エッジロードが発生するのを防止することができる。   A notch 11 ′ is formed in a tapered surface from the end 13a of the inner rolling surface 4a on which the rolling element 3 rolls to the shoulder 10, and the corners of the end 13a and the edge 11b of the notch 11 ′ are predetermined. It is formed in a circular arc shape having the curvature radii R1 and R2. The curvature radius R1 of the terminal end 13a is set to be larger than the curvature radius R2 of the edge portion 11b of the notch portion 11 '(R1> R2). As a result, as in the above-described embodiment, the heat raised by induction hardening can be released in the direction of the edge portion 11b, and the vicinity of the end 13a of the inner rolling surface 4a can be prevented from overheating. The edge load can be prevented from occurring when a high surface pressure is applied to the corner.

ここで、内側転走面4aの終端13aおよび切欠き部11’のエッジ部11bの角部は、焼入れ前の旋削による旋削面、あるいは、焼入れ後の焼入れ鋼切削による旋削面であっても良いが、ここでは、焼入れ後の内側転走面4aと同時に総型砥石による研削面とされている。これにより、転動体3が内側転走面4aの終端13aを乗り越えて転動した際に、転動体3自体に傷が付くのを防止でき、また、エッジ部をなくすことで過大荷重が負荷された時、クラック発生の起点となるのを防止することができる。   Here, the end portion 13a of the inner rolling surface 4a and the corner portion of the edge portion 11b of the notch portion 11 ′ may be a turning surface by turning before quenching, or a turning surface by quenching steel cutting after quenching. However, here, the inner rolling surface 4a after quenching is used as a grinding surface by a general-purpose grindstone. As a result, when the rolling element 3 rolls over the end 13a of the inner rolling surface 4a, it is possible to prevent the rolling element 3 itself from being damaged, and an excessive load is applied by eliminating the edge portion. It is possible to prevent cracks from starting.

図5は、図2のハブ輪4の硬化層12を示す説明図である。本実施形態におけるハブ輪4の硬化層12は、その軸方向深さが内側転走面4aの転動体3との接触点P位置から基部10にかけて軸方向に漸増するように形成されている。すなわち、高周波焼入れする際の誘導加熱用のコイルを適切な形状とし、また、コイルに作用する電流を制御し、例えば、硬化層12の軸方向深さA〜Eが、A<B<C<D<Eの関係になるように設定されている。これにより、旋回走行時の高面圧に対応する充分な硬化層深さを確保することができ、軸受の長寿命化を図ることができる。   FIG. 5 is an explanatory view showing the hardened layer 12 of the hub wheel 4 of FIG. The hardened layer 12 of the hub wheel 4 in this embodiment is formed so that its axial depth gradually increases in the axial direction from the contact point P position with the rolling element 3 of the inner rolling surface 4a to the base 10. That is, the induction heating coil for induction hardening is formed into an appropriate shape, and the current acting on the coil is controlled. For example, the axial depths A to E of the hardened layer 12 are A <B <C <. It is set so that D <E. As a result, a sufficient hardened layer depth corresponding to the high surface pressure during turning can be ensured, and the life of the bearing can be extended.

図6は、本発明に係る車輪用軸受装置の第2の実施形態を示す縦断面図である。なお、この実施形態は、前述した第1の実施形態(図1)と基本的にはハブ輪の構成が異なるだけで、その他同一部品同一部位あるいは同様の機能を有する部品や部位には同じ符号を付して詳細な説明を省略する。   FIG. 6 is a longitudinal sectional view showing a second embodiment of the wheel bearing device according to the present invention. Note that this embodiment basically differs from the first embodiment (FIG. 1) described above only in the configuration of the hub wheel, and the same reference numerals are given to other parts and parts having the same function or the same function. The detailed description is omitted.

この車輪用軸受装置は駆動輪用の第3世代と称され、内方部材15と外方部材2、および両部材15、2間に転動自在に収容された複列の転動体3、3を備えている。内方部材15は、ハブ輪16と、このハブ輪16に所定のシメシロを介して圧入された内輪5とからなる。   This wheel bearing device is referred to as the third generation for driving wheels, and the inner member 15 and outer member 2, and the double row rolling elements 3, 3 accommodated between the members 15, 2 so as to roll freely. It has. The inner member 15 includes a hub ring 16 and an inner ring 5 that is press-fitted into the hub ring 16 via a predetermined scissors.

ハブ輪16は、アウター側の端部に車輪取付フランジ6を一体に有し、この車輪取付フランジ6の円周等配位置に車輪を固定するためのハブボルト6aが植設されている。また、ハブ輪16の外周には一方(アウター側)の内側転走面4aが直接形成され、この内側転走面4aから軸方向に延びる小径段部4bが形成され、内周にトルク伝達用のセレーション(またはスプライン)16aが形成されている。そして、外周に他方(インナー側)の内側転走面5aが形成された内輪5がこの小径段部4bに圧入され、この小径段部4bの端部を径方向外方に塑性変形させて形成した加締部4cにより所定の軸受予圧が付与された状態で、ハブ輪16に対して内輪5が軸方向に固定されている。   The hub wheel 16 integrally has a wheel mounting flange 6 at an end portion on the outer side, and a hub bolt 6 a for fixing the wheel at a circumferentially equidistant position of the wheel mounting flange 6 is implanted. Further, one (outer side) inner rolling surface 4a is directly formed on the outer periphery of the hub wheel 16, and a small-diameter step portion 4b extending in the axial direction from the inner rolling surface 4a is formed. Serrations (or splines) 16a are formed. The inner ring 5 having the outer (inner side) inner rolling surface 5a formed on the outer periphery is press-fitted into the small diameter step 4b, and the end of the small diameter step 4b is plastically deformed radially outward. The inner ring 5 is fixed to the hub ring 16 in the axial direction in a state where a predetermined bearing preload is applied by the crimped portion 4c.

ハブ輪16はS53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、アウター側の内側転走面4aをはじめ、アウター側のシール8が摺接するシールランド部から小径段部4bに亙り高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化層12が形成されている(図中クロスハッチングにて示す)。   The hub wheel 16 is formed of medium and high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and the small diameter step from the seal land portion where the outer side seal 8 is slidably contacted, including the inner side rolling surface 4a on the outer side. The hardened layer 12 is formed in the range of 58 to 64 HRC by induction hardening over the part 4b (indicated by cross hatching in the figure).

外方部材2は、外周に車体(図示せず)に取り付けるための車体取付フランジ2bを一体に有し、内周に前記内方部材1の複列の内側転走面4a、5aに対向する複列の外側転走面2a、2aが一体に形成されている。この外方部材2はS53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、複列の外側転走面2a、2aが旋削加工された後、高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理が施され、その後、複列の内側転走面41a、5aが、研削加工、そして超仕上げ加工により、所定の形状および面粗度に仕上げられる。   The outer member 2 integrally has a vehicle body mounting flange 2b for mounting to the vehicle body (not shown) on the outer periphery, and faces the double row inner rolling surfaces 4a, 5a of the inner member 1 on the inner periphery. Double row outer rolling surfaces 2a, 2a are integrally formed. This outer member 2 is made of medium-high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and the surface hardness is increased by induction hardening after the double row outer rolling surfaces 2a and 2a are turned. Is hardened in the range of 58 to 64 HRC, and then the double row inner rolling surfaces 41a and 5a are finished to a predetermined shape and surface roughness by grinding and superfinishing.

ここで、ハブ輪16は、内側転走面4aの大径端に円筒状の肩部10が形成されると共に、この肩部10と内側転走面4aの交差部に環状の切欠き部11が形成されている。切欠き部11は所定の傾斜角θからなるテーパ面に形成されている。これにより、高周波焼入れによって昇温される熱をこのエッジ部11aの方向へも逃がし、内側転走面41aの終端13の近傍がオーバーヒートするのを防止することができる。すなわち、熱の影響で組織が粗粒化し易い部分をテーパ面からなる切欠き部11に収め、内側転走面4aの終端13の近傍の組織は粗粒化しないようにすることで、高面圧下での粗粒化した組織の短寿命を防止することができる。 Here, the hub wheel 16 has a cylindrical shoulder 10 formed at the large diameter end of the inner rolling surface 4a, and an annular notch 11 at the intersection of the shoulder 10 and the inner rolling surface 4a. Is formed. The notch 11 is formed in a tapered surface having a predetermined inclination angle θ. Thereby, the heat raised by induction hardening can be released also in the direction of the edge portion 11a, and the vicinity of the end 13 of the inner rolling surface 41a can be prevented from overheating. That is, matches the notch 11 tissues under the influence of heat is a likely portion coarsened from the tapered surface, the tissue in the vicinity of the inner raceway surface 4a of the terminal 13 By not coarsened, high surface It is possible to prevent the short life of the coarsened structure under pressure .

また、内側転走面41aの外径側の終端13の溝底からの高さhが、車輪用軸受装置が適用される車両の旋回μ=0.6で転動体3がはみ出して転動しない高さ以上、または、転動体3の直径をDaとし、内側転走面41aの溝曲率半径Raを、2Ra=1.02〜1.08Daとした時、h≦0.50Daに設定されていれば、内側転走面41aの終端13から転動体3がはみ出して転動する際にも、その荷重を受ける体積を大きくとり、肩部10のエッジ部11aに比べ内側転走面41a、5aの終端13の角部が極端にエッジロードとなるのを防止することができる。   Further, the height h from the groove bottom of the terminal 13 on the outer diameter side of the inner rolling surface 41a is the turning μ = 0.6 of the vehicle to which the wheel bearing device is applied, and the rolling element 3 protrudes and does not roll. When the height is equal to or greater than or the diameter of the rolling element 3 is Da and the groove curvature radius Ra of the inner rolling surface 41a is 2Ra = 1.02 to 1.08Da, h ≦ 0.50Da is set. For example, even when the rolling element 3 protrudes from the terminal end 13 of the inner rolling surface 41a and rolls, the volume receiving the load is increased, and the inner rolling surfaces 41a and 5a of the shoulder portion 10 are larger than the edge portion 11a. It is possible to prevent the corner portion of the terminal end 13 from being extremely edge-loaded.

図7は、本発明に係る車輪用軸受装置の第3の実施形態を示す縦断面図である。なお、この実施形態は、前述した実施形態(図1、6)と基本的には軸受部の構成が異なるだけで、その他同一部品同一部位あるいは同様の機能を有する部品や部位には同じ符号を付して詳細な説明を省略する。   FIG. 7 is a longitudinal sectional view showing a third embodiment of the wheel bearing device according to the present invention. This embodiment basically differs from the above-described embodiment (FIGS. 1 and 6) only in the configuration of the bearing portion, and the same reference numerals are given to the same parts and parts having the same function or the same function. Detailed description will be omitted.

この車輪用軸受装置は第4世代と称され、内方部材17と外方部材2、および両部材17、2間に転動自在に収容された複列の転動体3、3を備えている。内方部材17は、ハブ輪18と、このハブ輪18に内嵌された後述する等速自在継手19を構成する外側継手部材20とを備えている。   This wheel bearing device is referred to as a fourth generation, and includes an inner member 17 and an outer member 2, and double row rolling elements 3 and 3 accommodated between the members 17 and 2 so as to roll freely. . The inner member 17 includes a hub wheel 18 and an outer joint member 20 that constitutes a constant velocity universal joint 19 to be described later that is fitted in the hub wheel 18.

ハブ輪18は、アウター側の端部に車輪取付フランジ6を一体に有し、外周に一方(アウター側)の内側転走面4aと、この内側転走面4aから軸方向に延びる円筒状の小径段部4bが形成されている。ハブ輪18はS53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、内側転走面4aをはじめ、車輪取付フランジ6の基部6bから小径段部4bに亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理されている。   The hub wheel 18 integrally has a wheel mounting flange 6 at an end portion on the outer side, and has one (outer side) inner rolling surface 4a on the outer periphery and a cylindrical shape extending in the axial direction from the inner rolling surface 4a. A small diameter step 4b is formed. The hub wheel 18 is made of medium and high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and has a high frequency from the inner rolling surface 4a to the small diameter step portion 4b from the base portion 6b of the wheel mounting flange 6. The surface hardness is hardened by quenching to a range of 58 to 64 HRC.

ここで、ハブ輪18の内周には高周波焼入れによって硬化された凹凸部21が形成されている。この凹凸部21はアヤメローレット状に形成され、旋削等により独立して形成された複数の環状溝と、ブローチ加工等により形成された複数の軸方向溝とを略直交させて構成した交叉溝、あるいは、互いに傾斜した螺旋溝で構成した交叉溝からなる。また、凹凸部21の凸部は良好な食い込み性を確保するために、その先端部が三角形状等の尖塔形状に形成されている。   Here, an uneven portion 21 that is hardened by induction hardening is formed on the inner periphery of the hub wheel 18. The concavo-convex portion 21 is formed in an iris knurl shape, and a plurality of annular grooves formed independently by turning or the like and a plurality of axial grooves formed by broaching or the like are crossed grooves configured to be substantially orthogonal, Or it consists of the crossing groove | channel comprised by the helical groove | channel inclined mutually. Moreover, the convex part of the uneven | corrugated | grooved part 21 is formed in the spire shape, such as triangular shape, in order to ensure favorable biting property.

等速自在継手19は、外側継手部材20と継手内輪22とケージ23およびトルク伝達ボール24とからなる。外側継手部材20は、カップ状のマウス部25と、このマウス部25の底部をなす肩部26と、この肩部26から軸方向に延びる中空状の軸部27が一体に形成されている。肩部26の外周には、前記外方部材2の複列の外側転走面2a、2aに対向する他方(インナー側)の内側転走面21aが形成されている。また、軸部27には、ハブ輪18の小径段部4bに所定のシメシロを介して円筒嵌合するインロウ部27aと、このインロウ部27aの端部に嵌合部27bがそれぞれ形成されている。   The constant velocity universal joint 19 includes an outer joint member 20, a joint inner ring 22, a cage 23 and a torque transmission ball 24. The outer joint member 20 is integrally formed with a cup-shaped mouth portion 25, a shoulder portion 26 that forms the bottom of the mouth portion 25, and a hollow shaft portion 27 that extends from the shoulder portion 26 in the axial direction. On the outer periphery of the shoulder portion 26, the other (inner side) inner rolling surface 21a facing the double row outer rolling surfaces 2a, 2a of the outer member 2 is formed. The shaft portion 27 is formed with an inrow portion 27a that is cylindrically fitted to the small-diameter step portion 4b of the hub wheel 18 via a predetermined shimiro, and a fitting portion 27b is formed at an end portion of the inrow portion 27a. .

外側継手部材20はS53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、内側転走面20aをはじめ、肩部26の外周から軸部27のインロウ部27aに亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理されている。なお、嵌合部27bは鍛造後の表面硬さの生のままとされている。   The outer joint member 20 is formed of medium and high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and extends from the outer periphery of the shoulder portion 26 to the inrow portion 27a of the shaft portion 27 including the inner rolling surface 20a. Thus, the surface hardness is set to a range of 58 to 64 HRC by induction hardening. In addition, the fitting part 27b is left with the raw surface hardness after forging.

外方部材2と内方部材17のそれぞれの転走面2a、4aと2a、20a間に複列の転動体3、3が収容され、保持器7、7によりこれら複列の転動体3、3が転動自在に保持されている。また、外方部材2と内方部材17との間に形成される環状空間の開口部にはシール8、9が装着され、軸受内部に封入した潤滑グリースの漏洩と、外部から雨水やダスト等が軸受内部に侵入するのを防止している。   Double row rolling elements 3, 3 are accommodated between the rolling surfaces 2a, 4a and 2a, 20a of the outer member 2 and the inner member 17, and these double row rolling elements 3, 3 is rotatably held. Further, seals 8 and 9 are attached to the opening of the annular space formed between the outer member 2 and the inner member 17, leakage of lubricating grease sealed inside the bearing, rainwater, dust, etc. from the outside Is prevented from entering the inside of the bearing.

ここで、ハブ輪18に外側継手部材20の軸部27が所定のシメシロで圧入され、小径段部4bの端面に外側継手部材20の肩部26が衝合されて所定の予圧が付与された状態で、嵌合部27bの内径にマンドレル等の拡径治具をアウター側に押し込んで嵌合部27bを拡径し、この嵌合部27bをハブ輪18の凹凸部21に食い込ませて加締め、ハブ輪18と外側継手部材20が一体に塑性結合されている。これにより、装置の軽量・コンパクト化を図ると共に、大きなモーメント荷重が負荷されても結合部の緩みを長期間に亘って防止し、耐久性を向上させることができる。符号28、29は、ハブ輪18の開口端部および外側継手部材20の肩部26に内嵌されたエンドキャップで、継手内部に封入された潤滑グリースの外部への漏洩と、外部から継手内部に雨水やダスト等の異物が侵入するのを防止している。   Here, the shaft portion 27 of the outer joint member 20 is press-fitted into the hub wheel 18 with a predetermined squeezing force, and the shoulder portion 26 of the outer joint member 20 is brought into contact with the end surface of the small-diameter stepped portion 4b to apply a predetermined preload. In this state, a diameter expanding jig such as a mandrel is pushed into the outer diameter of the fitting portion 27b to expand the fitting portion 27b, and the fitting portion 27b is bitten into the uneven portion 21 of the hub wheel 18 to be added. The hub wheel 18 and the outer joint member 20 are integrally plastically joined. As a result, the device can be reduced in weight and size, and even when a large moment load is applied, loosening of the coupling portion can be prevented over a long period of time, and durability can be improved. Reference numerals 28 and 29 are end caps fitted inside the open end of the hub wheel 18 and the shoulder 26 of the outer joint member 20. Leakage of the lubricating grease sealed inside the joint and the inside of the joint from the outside. This prevents foreign matter such as rainwater and dust from entering.

ここで、ハブ輪18は、内側転走面4aの大径端に円筒状の肩部10が鍛造加工により形成されると共に、この肩部10と内側転走面4aの交差部に環状の切欠き部11が形成されている。切欠き部11は所定の傾斜角θからなるテーパ面に形成されている。これにより、高周波焼入れによって昇温される熱をこのエッジ部11aに逃がし、内側転走面4aの終端13がオーバーヒートするのを防止することができる。すなわち、熱の影響で粗粒化し易い部分をテーパ面からなる切欠き部11に収め、内側転走面4aの終端13は粗粒化しないようにすることで、高面圧下での粗粒化による短寿命を防止することができる。   Here, the hub wheel 18 has a cylindrical shoulder 10 formed by forging at the large diameter end of the inner rolling surface 4a, and an annular cut portion at the intersection of the shoulder 10 and the inner rolling surface 4a. A notch portion 11 is formed. The notch 11 is formed in a tapered surface having a predetermined inclination angle θ. Thereby, the heat raised by induction hardening can be released to the edge portion 11a, and the end 13 of the inner rolling surface 4a can be prevented from overheating. That is, the portion that is likely to be coarsened due to the influence of heat is housed in the notch 11 formed of a tapered surface, and the end 13 of the inner rolling surface 4a is not coarsened, so that the coarsening under high surface pressure is achieved. It is possible to prevent a short life due to.

また、外側継手部材20もハブ輪18と同様、肩部26が形成されると共に、この肩部26と内側転走面20aの交差部に環状の切欠き部11が形成されている。切欠き部11は所定の傾斜角θからなるテーパ面に形成されている。これにより、高周波焼入れによって昇温される熱をこのエッジ部11aの方向へも逃がし、内側転走面20aの終端13の近傍がオーバーヒートするのを防止することができる。すなわち、熱の影響で組織が粗粒化し易い部分をテーパ面からなる切欠き部11に収め、内側転走面20aの終端13の近傍の組織は粗粒化しないようにすることで、粗粒化した組織の高面圧による短寿命を防止することができる。また、内側転走面20aの外径側の終端13の溝底からの高さhが、車輪用軸受装置が適用される車両の旋回μ=0.6で転動体3がはみ出して転動しない高さ以上、または、転動体3の直径をDaとし、内側転走面20aの溝曲率半径Raを、2Ra=1.02〜1.08Daとした時、h≦0.50Daに設定されていれば、内側転走面20aの終端13から転動体3がはみ出して転動する際にも、その荷重を受ける体積を大きくとり、肩部10のエッジ部11aに比べ内側転走面20a、5aの終端13の角部が極端にエッジロードとなるのを防止することができる。   Also, the outer joint member 20 has a shoulder portion 26 as well as the hub wheel 18, and an annular notch portion 11 is formed at the intersection of the shoulder portion 26 and the inner rolling surface 20a. The notch 11 is formed in a tapered surface having a predetermined inclination angle θ. Thereby, the heat raised by induction hardening can be released also in the direction of the edge portion 11a, and the vicinity of the end 13 of the inner rolling surface 20a can be prevented from overheating. That is, by storing a portion in which the structure is likely to be coarse due to the influence of heat in the notch portion 11 formed of a tapered surface, the structure in the vicinity of the terminal end 13 of the inner rolling surface 20a is not coarsened. It is possible to prevent a short life due to the high surface pressure of the converted tissue. Further, the rolling element 3 does not roll because the height h from the groove bottom of the end 13 on the outer diameter side of the inner rolling surface 20a is turning μ = 0.6 of the vehicle to which the wheel bearing device is applied. When the height is equal to or greater than or the diameter of the rolling element 3 is Da and the groove curvature radius Ra of the inner rolling surface 20a is 2Ra = 1.02 to 1.08Da, h ≦ 0.50Da is set. For example, when the rolling element 3 protrudes from the terminal end 13 of the inner rolling surface 20a and rolls, the volume receiving the load is increased, and the inner rolling surfaces 20a and 5a are larger than the edge portion 11a of the shoulder portion 10. It is possible to prevent the corner portion of the terminal end 13 from being extremely edge-loaded.

図8は、本発明に係る車輪用軸受装置の第4の実施形態を示す縦断面図である。なお、この実施形態は、前述した実施形態(図1)と基本的には複列の転動体の左右のピッチ円直径が異なるだけで、その他同一部品同一部位あるいは同様の機能を有する部品や部位には同じ符号を付して詳細な説明を省略する。   FIG. 8 is a longitudinal sectional view showing a fourth embodiment of the wheel bearing device according to the present invention. Note that this embodiment is basically the same as the above-described embodiment (FIG. 1) except that the left and right pitch circle diameters of the double row rolling elements are different, and the same parts or parts having the same function. Are denoted by the same reference numerals, and detailed description thereof is omitted.

この車輪用軸受装置は第3世代と呼称される従動輪用であって、内方部材30と外方部材31、および両部材30、31間に転動自在に収容された複列の転動体3’、3とを備えている。内方部材30は、ハブ輪32と、このハブ輪32に所定のシメシロを介して圧入された内輪5とからなる。   This wheel bearing device is for a driven wheel referred to as a third generation, and is an inner member 30, an outer member 31, and a double row rolling element housed between the members 30, 31 so as to roll freely. 3 'and 3 are provided. The inner member 30 includes a hub ring 32 and an inner ring 5 that is press-fitted into the hub ring 32 through a predetermined shimiro.

ハブ輪32は、アウター側の端部に車輪取付フランジ6を一体に有し、外周に一方(アウター側)の内側転走面32aと、この内側転走面32aから軸方向に延びる軸状部33を介して小径段部4bが形成されている。   The hub wheel 32 integrally has a wheel mounting flange 6 at an end portion on the outer side, one (outer side) inner rolling surface 32a on the outer periphery, and an axial portion extending in the axial direction from the inner rolling surface 32a. A small diameter step 4 b is formed through 33.

ハブ輪32はS53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、内側転走面32aをはじめ、車輪取付フランジ6のインナー側の基部6bから小径段部4bに亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理されている。   The hub wheel 32 is made of medium and high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and the inner raceway surface 32a and the inner side base portion 6b of the wheel mounting flange 6 to the small diameter step portion 4b. Thus, the surface hardness is set to a range of 58 to 64 HRC by induction hardening.

外方部材31は、外周にナックル(図示せず)に取り付けられるための車体取付フランジ2bを一体に有し、内周にハブ輪32の内側転走面32aに対向するアウター側の外側転走面31aと、内輪5の内側転走面5aに対向するインナー側の外側転走面2aが一体に形成されている。これら両転走面間に複列の転動体3’、3が収容され、保持器7’、7によって転動自在に保持されている。   The outer member 31 integrally has a vehicle body mounting flange 2b to be attached to a knuckle (not shown) on the outer periphery, and the outer side outer rolling facing the inner rolling surface 32a of the hub wheel 32 on the inner circumference. The surface 31a and the inner side outer rolling surface 2a facing the inner rolling surface 5a of the inner ring 5 are integrally formed. Double-row rolling elements 3 ′ and 3 are accommodated between these rolling surfaces, and are held by the cages 7 ′ and 7 so as to roll freely.

この外方部材31はS53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、複列の外側転走面31a、2aが高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理されている。そして、外方部材31と内方部材30との間に形成される環状空間の開口部にはシール8、9が装着され、軸受内部に封入されたグリースの外部への漏洩と、外部から雨水やダスト等が軸受内部に侵入するのを防止している。   This outer member 31 is made of medium and high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and the double row outer rolling surfaces 31a and 2a have a surface hardness of 58 to 64 HRC by induction hardening. Has been cured. Seals 8 and 9 are attached to the opening of the annular space formed between the outer member 31 and the inner member 30, and leakage of grease sealed inside the bearing and rainwater from the outside. And dust are prevented from entering the bearing.

ハブ輪32の外郭形状は、内側転走面32aの溝底部からカウンタ部34と、このカウンタ部34から軸方向に延びる軸状部33を介して段部33aおよび内輪5が突き合わされる肩部33bを介して小径段部4bに続いている。また、ハブ輪32のアウター側の端部にはすり鉢状の凹所35が形成されている。この凹所35の深さは内側転走面32aの溝底付近までの深さとされ、ハブ輪32のアウター側が略均一な肉厚となっている。   The outer shape of the hub wheel 32 is such that the shoulder part is brought into contact with the step part 33a and the inner ring 5 via the counter part 34 from the groove bottom part of the inner rolling surface 32a and the shaft part 33 extending in the axial direction from the counter part 34. It continues to the small diameter step part 4b via 33b. A mortar-shaped recess 35 is formed at the outer end of the hub wheel 32. The depth of the recess 35 is a depth up to the vicinity of the groove bottom of the inner rolling surface 32a, and the outer side of the hub wheel 32 has a substantially uniform thickness.

本実施形態では、アウター側の転動体3’のピッチ円直径PCDoがインナー側の転動体3のピッチ円直径PCDiよりも大径に設定されている。そして、アウター側の転動体3’の外径doがインナー側の転動体3の外径diよりも小径に形成されている。そして、ピッチ円直径PCDo、PCDiの違いにより、アウター側の転動体3’の個数がインナー側の転動体3の個数よりも多く設定されている。これにより、有効に軸受スペースを活用して外方部材31の外径を大きくすることなく、アウター側の軸受列の剛性を高めると共に、負荷容量を増大せしめることができる。さらに、ハブ輪32のアウター側端部に凹所35が外郭形状に沿って形成され、ハブ輪32のアウター側が均一な肉厚に設定されているので、装置の軽量・コンパクト化と高剛性化という、相反する課題を解決することができる。   In this embodiment, the pitch circle diameter PCDo of the outer side rolling element 3 ′ is set larger than the pitch circle diameter PCDi of the inner side rolling element 3. The outer diameter do of the outer side rolling element 3 ′ is smaller than the outer diameter di of the inner side rolling element 3. The number of outer side rolling elements 3 ′ is set to be larger than the number of inner side rolling elements 3 due to the difference in pitch circle diameters PCDo and PCDi. Thus, the rigidity of the outer bearing row can be increased and the load capacity can be increased without effectively using the bearing space and increasing the outer diameter of the outer member 31. Further, the recess 35 is formed along the outer shape at the outer end of the hub wheel 32, and the outer side of the hub wheel 32 is set to have a uniform thickness, so that the device is lighter, more compact and more rigid. It can solve the conflicting issues.

外方部材31において、ピッチ円直径PCDo、PCDiの違いに伴い、アウター側の外側転走面31aがインナー側の外側転走面2aよりも拡径して形成され、アウター側の外側転走面31aから円筒状の大径側の肩部36と段部36aを介して小径側の肩部37に続き、インナー側の外側転走面2aに到っている。   In the outer member 31, the outer side outer rolling surface 31 a is formed with a larger diameter than the inner side outer rolling surface 2 a due to the difference in pitch circle diameters PCDo and PCDi, and the outer side outer rolling surface is formed. 31a continues to the small-diameter shoulder 37 through the cylindrical large-diameter shoulder 36 and step 36a, and reaches the outer-side rolling surface 2a on the inner side.

また、図9に示すように、ハブ輪32の基部10および内輪5の肩部(外径)5bの内側転走面32a、5aの端部にそれぞれ環状の切欠き部11’、11が形成されている。切欠き部11’、11は所定の傾斜角θからなるテーパ面に形成されている。これにより、高周波焼入れによって昇温される熱をこのエッジ部11aの方向へも逃がし、内側転走面32a、5aの終端13’、13の近傍がオーバーヒートするのを防止することができる。すなわち、熱の影響で組織が粗粒化し易い部分をテーパ面からなる切欠き部11’、11に収め、内側転走面32a、5aの終端13’、13の近傍の組織は粗粒化しないようにすることで、粗粒化した組織の高面圧による短寿命を防止することができる。   Also, as shown in FIG. 9, annular notches 11 ′ and 11 are formed at the ends of the inner rolling surfaces 32a and 5a of the base 10 of the hub wheel 32 and the shoulder (outer diameter) 5b of the inner ring 5, respectively. Has been. The notches 11 'and 11 are formed in a tapered surface having a predetermined inclination angle θ. As a result, heat raised by induction hardening can be released in the direction of the edge portion 11a, and overheating of the vicinity of the terminal ends 13 'and 13 of the inner rolling surfaces 32a and 5a can be prevented. That is, the portion where the structure is likely to be coarsened due to the influence of heat is accommodated in the notches 11 ′ and 11 formed of a tapered surface, and the structure in the vicinity of the terminal ends 13 ′ and 13 of the inner rolling surfaces 32a and 5a is not coarsened. By doing so, the short life by the high surface pressure of the coarse structure can be prevented.

また、加熱炉によってズブ焼入れされる場合には、前述した部分的なオーバーヒートは発生しないが、高周波コイルによる加熱によりズブ焼入れされる場合と共に、内側転走面32a、5aの終端13から転動体3がはみ出して転動する際にも、その荷重を受ける体積を大きくとり、肩部10のエッジ部11aに比べ内側転走面41a、5aの終端13、13’の角部が極端にエッジロードとなるのを防止し、軸受の長寿命化を図ることができる。   Further, in the case where it is quenched by the heating furnace, the above-mentioned partial overheating does not occur, but along with the case where it is quenched by heating by the high frequency coil, the rolling element 3 starts from the end 13 of the inner rolling surfaces 32a, 5a. Even when rolling out and rolling, the volume receiving the load is increased, and the corners of the terminal ends 13 and 13 ′ of the inner rolling surfaces 41 a and 5 a are extremely edge load compared to the edge portion 11 a of the shoulder portion 10. It is possible to prevent this from happening and prolong the life of the bearing.

図10は、本発明に係る車輪用軸受装置の第5の実施形態を示す縦断面図である。なお、この実施形態は、前述した実施形態(図1)と基本的には複列の転動体の左右の構成が異なるだけで、その他同一部品同一部位あるいは同様の機能を有する部品や部位には同じ符号を付して詳細な説明を省略する。   FIG. 10 is a longitudinal sectional view showing a fifth embodiment of the wheel bearing device according to the present invention. This embodiment is basically different from the above-described embodiment (FIG. 1) only in the configuration of the left and right of the double row rolling elements, and other parts and parts having the same function or similar functions are used. The same reference numerals are assigned and detailed description is omitted.

この車輪用軸受装置は第3世代と呼称される従動輪用であって、内方部材39と外方部材40、および両部材39、40間に転動自在に収容された複列の転動体3’、3とを備えている。内方部材39は、ハブ輪41と、このハブ輪41に所定のシメシロを介して圧入された内輪5とからなる。   This wheel bearing device is for a driven wheel called the third generation, and is an inner member 39, an outer member 40, and a double row rolling element housed between the members 39, 40 so as to be freely rollable. 3 'and 3 are provided. The inner member 39 includes a hub ring 41 and an inner ring 5 that is press-fitted into the hub ring 41 through a predetermined shimiro.

ハブ輪41は、アウター側の端部に車輪取付フランジ6を一体に有し、外周に一方(アウター側)の内側転走面41aと、この内側転走面41aから軸方向に延びる軸状部33を介して小径段部4bが形成されている。   The hub wheel 41 integrally has a wheel mounting flange 6 at an end portion on the outer side, one (outer side) inner rolling surface 41a on the outer periphery, and an axial portion extending in an axial direction from the inner rolling surface 41a. A small diameter step 4 b is formed through 33.

ハブ輪41はS53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、内側転走面41aをはじめ、車輪取付フランジ6のインナー側の基部6bから小径段部4bに亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理されている。高周波焼入れの後、複列の内側転走面41a、5aが、研削加工、そして、超仕上げ加工により、所定の形状および面粗度に仕上げられる。 The hub wheel 41 is made of medium and high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and the inner raceway surface 41a and the inner side base portion 6b of the wheel mounting flange 6 to the small diameter step portion 4b. Thus , the surface hardness is set to a range of 58 to 64 HRC by induction hardening. After induction hardening, the double row inner rolling surfaces 41a and 5a are finished to a predetermined shape and surface roughness by grinding and superfinishing.

外方部材40は、外周に車体取付フランジ2bを一体に有し、内周にハブ輪41の内側転走面41aに対向するアウター側の外側転走面40aと、内輪5の内側転走面5aに対向するインナー側の外側転走面2aが一体に形成されている。これら両転走面間に複列の転動体3’、3が収容され、保持器7’、7によって転動自在に保持されている。   The outer member 40 integrally has a vehicle body mounting flange 2 b on the outer periphery, and has an outer outer rolling surface 40 a that faces the inner rolling surface 41 a of the hub wheel 41 on the inner periphery, and an inner rolling surface of the inner ring 5. An inner side outer rolling surface 2a opposite to 5a is integrally formed. Double-row rolling elements 3 ′ and 3 are accommodated between these rolling surfaces, and are held by the cages 7 ′ and 7 so as to roll freely.

この外方部材40はS53C等の炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、複列の外側転走面40a、2aが高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理されている。そして、外方部材40と内方部材39との間に形成される環状空間の開口部にはシール8、9が装着され、軸受内部に封入されたグリースの外部への漏洩と、外部から雨水やダスト等が軸受内部に侵入するのを防止している。   This outer member 40 is made of medium and high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and the double row outer rolling surfaces 40a and 2a have a surface hardness in the range of 58 to 64HRC by induction hardening. Has been cured. Seals 8 and 9 are attached to the opening of the annular space formed between the outer member 40 and the inner member 39, and leakage of grease sealed inside the bearing and rainwater from the outside. And dust are prevented from entering the bearing.

ハブ輪41の外郭形状は、内側転走面41aの溝底部からカウンタ部34と、このカウンタ部34から軸方向に延びる軸状部33を介して内輪5が突き合わされる肩部33bを介して小径段部4bに続いている。また、ハブ輪41のアウター側の端部にはすり鉢状の凹所35が形成されている。   The outer shape of the hub wheel 41 is formed through a counter portion 34 from the groove bottom portion of the inner rolling surface 41a, and a shoulder portion 33b with which the inner ring 5 is abutted via a shaft-like portion 33 extending in the axial direction from the counter portion 34. It continues to the small diameter step 4b. A mortar-shaped recess 35 is formed at the outer end of the hub wheel 41.

本実施形態では、アウター側の転動体3’のピッチ円直径PCDoとインナー側の転動体3のピッチ円直径PCDiが同一に設定されている。そして、アウター側の転動体3’の外径doがインナー側の転動体3の外径diよりも小径に形成されている。そして、転動体3’、3の外径do、diの違いにより、アウター側の転動体3’の個数がインナー側の転動体3の個数よりも多く設定されている。これにより、アウター側の軸受列の剛性を高めることができると共に、インナー側の軸受列の負荷容量を増大させることができる。さらに、ハブ輪41のアウター側端部に凹所35が外郭形状に沿って形成され、ハブ輪41のアウター側が均一な肉厚に設定されているので、装置の軽量・コンパクト化と高剛性化という、相反する課題を解決することができる。   In this embodiment, the pitch circle diameter PCDo of the outer side rolling element 3 ′ and the pitch circle diameter PCDi of the inner side rolling element 3 are set to be the same. The outer diameter do of the outer side rolling element 3 ′ is smaller than the outer diameter di of the inner side rolling element 3. The number of outer side rolling elements 3 ′ is set to be larger than the number of inner side rolling elements 3 due to the difference in outer diameters do and di of the rolling elements 3 ′ and 3. Thereby, the rigidity of the outer bearing row can be increased, and the load capacity of the inner bearing row can be increased. Furthermore, the recess 35 is formed in the outer side end portion of the hub wheel 41 along the outline shape, and the outer side of the hub wheel 41 is set to have a uniform thickness, so that the device is lighter, more compact and more rigid. It can solve the conflicting issues.

また、図11に示すように、ハブ輪41の肩部10と内輪5の肩部5bに環状の切欠き部11’、11が形成されている。切欠き部11’、11は所定の傾斜角θからなるテーパ面に形成されている。これにより、高周波焼入れによって昇温される熱をこのエッジ部11aの方向へも逃がし、内側転走面41a、5aの終端13’、13の近傍がオーバーヒートするのを防止することができる。すなわち、熱の影響で組織が粗粒化し易い部分をテーパ面からなる切欠き部11’、11に収め、内側転走面41a、5aの終端13’、13の近傍の組織は粗粒化しないようにすることで、粗粒化した組織の高面圧による短寿命を防止することができる。   Further, as shown in FIG. 11, annular notches 11 ′ and 11 are formed in the shoulder 10 of the hub wheel 41 and the shoulder 5 b of the inner ring 5. The notches 11 'and 11 are formed in a tapered surface having a predetermined inclination angle θ. As a result, heat raised by induction hardening can be released in the direction of the edge portion 11a, and overheating of the vicinity of the terminal ends 13 'and 13 of the inner rolling surfaces 41a and 5a can be prevented. That is, the portion where the structure is likely to be coarsened due to the influence of heat is accommodated in the notches 11 ′ and 11 formed of a tapered surface, and the structure in the vicinity of the terminal ends 13 ′ and 13 of the inner rolling surfaces 41a and 5a is not coarsened. By doing so, the short life by the high surface pressure of the coarse structure can be prevented.

また、内側転走面41a、5aの外径側の終端の溝底からの高さhが、車輪用軸受装置が適用される車両の旋回μ=0.6で転動体3がはみ出して転動しない高さ以上、または、転動体3の直径をDaとし、内側転走面41a、5aの溝曲率半径Raを、2Ra=1.02〜1.08Daとした時、h≦0.50Daに設定されていれば、内側転走面41a、5aの終端13から転動体3がはみ出して転動する際にも、その荷重を受ける体積を大きくとり、肩部10のエッジ部11aに比べ内側転走面41a、5aの終端13の角部が極端にエッジロードとなるのを防止することができる。 Further, the rolling element 3 protrudes and rolls when the height h from the groove bottom at the outer diameter side end of the inner rolling surfaces 41a and 5a is turning μ = 0.6 of the vehicle to which the wheel bearing device is applied. If the diameter of the rolling element 3 is Da or the groove curvature radius Ra of the inner rolling surfaces 41a and 5a is 2Ra = 1.02 to 1.08Da, h ≦ 0.50Da is set. If the rolling element 3 protrudes from the end 13 of the inner rolling surfaces 41a and 5a and rolls, the volume receiving the load is increased, and the inner rolling is performed in comparison with the edge portion 11a of the shoulder portion 10. It can prevent that the corner | angular part of the termination | terminus 13 of the surface 41a, 5a becomes an edge load extremely.

以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and is merely an example, and various modifications can be made without departing from the scope of the present invention. Of course, the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims and all modifications within the scope of the scope of the present invention are included. Including.

本発明に係る車輪用軸受装置は、内周に複列の外側転走面が一体に形成された外方部材を備える第1世代乃至第4世代構造の車輪用軸受装置に適用できる。   The wheel bearing device according to the present invention can be applied to a wheel bearing device having a first generation to a fourth generation structure including an outer member in which double row outer rolling surfaces are integrally formed on the inner periphery.

1、15、17、30、39 内方部材
2、31、40 外方部材
2a、31a、40a 外側転走面
2b 車体取付フランジ
3、3’ 転動体
4、16、18、32、41 ハブ輪
4a、5a、20a、32a、41a 内側転走面
4b 小径段部
4c 加締部
5 内輪
5b 内輪の肩部
6 車輪取付フランジ
6a ハブボルト
7、7’ 保持器
8、9 シール
10 車輪取付フランジのインナー側の基部
11、11’ 切欠き部
11a、11b エッジ部
12 硬化層
13、13’、13a 内側転走面の終端
14 内側転走面の接線
16a セレーション
19 等速自在継手
20 外側継手部材
21 凹凸部
22 継手内輪
23 ケージ
24 トルク伝達用ボール
25 マウス部
26、36、37 肩部
27 軸部
27a インロウ部
27b 嵌合部
28、29 エンドキャップ
33 軸状部
33a、36a 段部
34 カウンタ部
35 凹所
51 外方部材
51a、51b 外側転走面
52 肩部
53 硬化層
54 切欠き部
55 エッジ部
A〜E 硬化層の軸方向深さ
di インナー側の転動体の外径
do アウター側の転動体の外径
Da 転動体の直径
h 内側転走面の外径側の終端の溝底からの高さ
H 基部の内径面の溝底からの高さ
PCDi インナー側の転動体のピッチ円直径
PCDo アウター側の転動体のピッチ円直径
R1 内側転走面の終端の角部の曲率半径
R2 切欠き部のエッジ部の角部の曲率半径
Ra 内側転走面の曲率半径
α 内側転走面の接線と基部の外径面で作る角度
θ 切欠き部の傾斜角
1, 15, 17, 30, 39 Inner members 2, 31, 40 Outer members 2a, 31a, 40a Outer rolling surface 2b Car body mounting flange 3, 3 'Rolling bodies 4, 16, 18, 32, 41 Hub wheel 4a, 5a, 20a, 32a, 41a Inner rolling surface 4b Small-diameter stepped portion 4c Clamping portion 5 Inner ring 5b Shoulder portion of inner ring 6 Wheel mounting flange 6a Hub bolt 7, 7 'Cage 8, 9 Seal 10 Inner wheel mounting flange Side base 11, 11 'Notch 11a, 11b Edge 12 Hardened layer 13, 13', 13a End of inner rolling surface 14 Tanning of inner rolling surface 16a Serration 19 Constant velocity universal joint 20 Outer joint member 21 Uneven Part 22 Joint inner ring 23 Cage 24 Torque transmission ball 25 Mouse part 26, 36, 37 Shoulder part 27 Shaft part 27 a Inrow part 27 b Fitting part 28, 29 End cap 33 Axial part 3a, 36a Step part 34 Counter part 35 Recess 51 Outer member 51a, 51b Outer rolling surface 52 Shoulder part 53 Hardened layer 54 Notch part 55 Edge part A to E Axial depth of hardened layer di Inner side rolling Outer diameter of the moving body do Outer diameter of the outer rolling element Da Diameter of the rolling element h Height from the groove bottom at the outer diameter side of the inner rolling surface H Height from the groove bottom of the inner diameter surface of the base PCDi Inner Pitch circle diameter PCDo of outer side rolling element Pitch circle diameter R1 of outer side rolling element Curvature radius R2 of end of inner rolling surface Corner radius of curvature Ra of notched portion of inner rolling surface Radius of curvature α Angle formed by tangent to inner raceway and outer diameter surface of base θ Inclination angle of notch

Claims (9)

内周に複列の外側転走面が一体に形成された外方部材と、
一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に前記複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面の他方に対向する内側転走面が形成された内輪または等速自在継手の外側継手部材からなる内方部材と、
この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備えた車輪用軸受装置において、
前記ハブ輪または外側継手部材が炭素0.40〜0.80wt%を含む中高炭素鋼で形成され、この内側転走面の大径端に円筒状の肩部が形成され、前記転動体が転動する当該内側転走面の終端から前記肩部にかけてテーパ面が形成されると共に、前記内側転走面に表面硬さが58〜64HRCの範囲に硬化層が形成され、前記内側転走面の終端と前記テーパ面のエッジ部の角部が所定の曲率半径R1、R2からなる円弧状に形成され、前記終端側の曲率半径R1が前記テーパ面のエッジ部の曲率半径R2よりも大きく(R1>R2)設定され、前記内側転走面の終端部の硬化層の表面から1mm以内のオーステナイト結晶粒度が、前記テーパ面のエッジ部のオーステナイト結晶粒度よりも小さく設定されていることを特徴とする車輪用軸受装置。
An outer member in which a double row outer rolling surface is integrally formed on the inner periphery;
A wheel mounting flange for mounting a wheel at one end is integrally formed, one inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and a small diameter step extending in the axial direction from the inner rolling surface Of the inner ring or constant velocity universal joint that is press-fitted into a small-diameter stepped portion of the hub ring and has an inner rolling surface facing the other of the outer rolling surfaces of the double row on the outer periphery. An inner member made of an outer joint member;
In a wheel bearing device comprising a double-row rolling element that is accommodated so as to roll freely between both rolling surfaces of the inner member and the outer member via a cage,
The hub ring or the outer joint member is made of medium-high carbon steel containing carbon of 0.40 to 0.80 wt%, a cylindrical shoulder is formed at the large diameter end of the inner rolling surface, and the rolling element is rolled. with the tapered surface from the end of the inner raceway surface to the dynamic toward said shoulder portion is formed, cured layer is formed front surface hardness on the inner raceway surface is in the range of 58~64HRC, the inner raceway surface The end of the taper surface and the corner of the edge portion of the tapered surface are formed in an arc shape having predetermined curvature radii R1 and R2, and the curvature radius R1 on the end side is larger than the curvature radius R2 of the edge portion of the tapered surface ( R1> R2) is set, and the austenite grain size within 1 mm from the surface of the hardened layer at the end of the inner rolling surface is set smaller than the austenite grain size at the edge of the taper surface. Wheel bearing Location.
前記内側転走面の外径側の終端の溝底からの高さhが、前記車輪用軸受装置が適用される車両の旋回μ=0.6で前記転動体がはみ出して転動しない高さ以上、かつ、前記転動体の直径をDaとし、前記内側転走面の溝曲率半径Raを、2Ra=1.02〜1.08Daとした時、h≦0.50Daに設定されている請求項1に記載の車輪用軸受装置。 The height h from the groove bottom on the outer diameter side of the inner rolling surface is a height at which the rolling element does not roll out due to the turning μ = 0.6 of the vehicle to which the wheel bearing device is applied. When the diameter of the rolling element is Da and the groove radius of curvature Ra of the inner rolling surface is 2Ra = 1.02 to 1.08Da, h ≦ 0.50Da is set. a bearing device for a wheel according to 1. 前記肩部の外径面の前記内側転走面の溝底からの高さHが、前記転動体の直径をDaとした時、H≦0.6Daに設定されている請求項1に記載の車輪用軸受装置。   The height H from the groove bottom of the inner rolling surface of the outer diameter surface of the shoulder portion is set to H ≦ 0.6 Da, where Da is the diameter of the rolling element. Wheel bearing device. 前記テーパ面の傾斜角が、前記内側転走面の終端位置での当該内側転走面の接線と前記肩部の外径面で作る角度よりも小さく、40°〜85°の範囲に設定されている請求項1に記載の車輪用軸受装置。 The inclination angle of the tapered surface is smaller than the angle formed by the tangent line of the inner rolling surface at the end position of the inner rolling surface and the outer diameter surface of the shoulder, and is set in a range of 40 ° to 85 °. The wheel bearing device according to claim 1 . 前記テーパ面が研削面とされている請求項1または4に記載の車輪用軸受装置。 A bearing device for a wheel according to claim 1 or 4 are to the tapered surface GaKen Kezumen. 前記肩部の外径面が研削面とされている請求項1または3に記載の車輪用軸受装置。 The wheel bearing device according to claim 1 or 3, wherein an outer diameter surface of the shoulder portion is a ground surface . 前記ハブ輪の内側転走面の硬化層の軸方向深さが、当該内側転走面の転動体との接触点位置から前記肩部にかけて軸方向に漸増するように形成されている請求項1に記載の車輪用軸受装置。   The axial depth of the hardened layer on the inner raceway surface of the hub wheel is formed so as to gradually increase in the axial direction from the contact point position with the rolling element of the inner raceway surface to the shoulder. The wheel bearing apparatus described in 1. 前記複列の転動体のうちアウター側の転動体のピッチ円直径がインナー側の転動体のピッチ円直径よりも大径に設定されている請求項1に記載の車輪用軸受装置。   2. The wheel bearing device according to claim 1, wherein a pitch circle diameter of an outer side rolling element of the double row rolling elements is set to be larger than a pitch circle diameter of an inner side rolling element. 前記複列の転動体のうちアウター側の転動体の外径がインナー側の転動体の外径よりも小径に形成されると共に、前記アウター側の転動体の個数が前記インナー側の転動体の個数よりも多く設定されている請求項1または8に記載の車輪用軸受装置。 Outer diameters of the outer side rolling elements of the double row rolling elements are formed smaller than the outer diameter of the inner side rolling elements, and the number of outer side rolling elements is the number of the inner side rolling elements. The wheel bearing device according to claim 1 or 8, wherein a larger number than the number is set.
JP2011214964A 2011-09-06 2011-09-29 Wheel bearing device Expired - Fee Related JP5852388B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011214964A JP5852388B2 (en) 2011-09-29 2011-09-29 Wheel bearing device
PCT/JP2012/072650 WO2013035756A1 (en) 2011-09-06 2012-09-05 Bearing device for wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011214964A JP5852388B2 (en) 2011-09-29 2011-09-29 Wheel bearing device

Publications (3)

Publication Number Publication Date
JP2013076424A JP2013076424A (en) 2013-04-25
JP2013076424A5 JP2013076424A5 (en) 2014-05-22
JP5852388B2 true JP5852388B2 (en) 2016-02-03

Family

ID=48480044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011214964A Expired - Fee Related JP5852388B2 (en) 2011-09-06 2011-09-29 Wheel bearing device

Country Status (1)

Country Link
JP (1) JP5852388B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066651A (en) * 2013-09-30 2015-04-13 日本精工株式会社 Helical groove grinding grindstone of screw shaft for ball screw and helical groove forming method
JP6422669B2 (en) * 2014-05-26 2018-11-14 Ntn株式会社 Wheel bearing device
WO2018194025A1 (en) * 2017-04-17 2018-10-25 Ntn株式会社 Slewing bearing and processing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830497B2 (en) * 1987-07-24 1996-03-27 光洋精工株式会社 Double-row angular contact ball bearing
JP4527440B2 (en) * 2004-05-13 2010-08-18 Ntn株式会社 Wheel bearing device and manufacturing method thereof
JP2010111133A (en) * 2008-11-04 2010-05-20 Nsk Ltd Method for manufacturing wheel support rolling bearing unit
JP5476173B2 (en) * 2010-03-19 2014-04-23 Ntn株式会社 Wheel bearing device

Also Published As

Publication number Publication date
JP2013076424A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5890636B2 (en) Wheel bearing device
WO2007049437A1 (en) Bearing device for wheel
JP2010112452A (en) Wheel bearing device
JP5852388B2 (en) Wheel bearing device
JP4455182B2 (en) Wheel bearing device
JP3923986B2 (en) Wheel bearing device
JP5252834B2 (en) Manufacturing method of wheel bearing device
WO2013035756A1 (en) Bearing device for wheel
JP5415999B2 (en) Wheel bearing device
JP4993342B2 (en) Wheel bearing device
JP4994717B2 (en) Wheel bearing device
JP4998979B2 (en) Wheel bearing device
JP2010112446A (en) Wheel bearing device
JP4321714B2 (en) Wheel bearing device
JP4743890B2 (en) Wheel bearing device
JP4998980B2 (en) Wheel bearing device
JP4969899B2 (en) Wheel bearing device
JP4936739B2 (en) Wheel bearing device
JP5236097B2 (en) Wheel bearing device
JP4993341B2 (en) Wheel bearing device
JP5000206B2 (en) Wheel bearing device
CN101432540B (en) Bearing device for wheel
JP2009286238A (en) Wheel bearing device
JP5024850B2 (en) Wheel bearing device
JP2007100715A (en) Bearing device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151204

R150 Certificate of patent or registration of utility model

Ref document number: 5852388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees