JP5848788B2 - Substrate processing apparatus, semiconductor manufacturing method, and substrate processing method - Google Patents
Substrate processing apparatus, semiconductor manufacturing method, and substrate processing method Download PDFInfo
- Publication number
- JP5848788B2 JP5848788B2 JP2014024277A JP2014024277A JP5848788B2 JP 5848788 B2 JP5848788 B2 JP 5848788B2 JP 2014024277 A JP2014024277 A JP 2014024277A JP 2014024277 A JP2014024277 A JP 2014024277A JP 5848788 B2 JP5848788 B2 JP 5848788B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- substrate
- processing
- processing chamber
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims description 95
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000004065 semiconductor Substances 0.000 title claims description 13
- 238000003672 processing method Methods 0.000 title claims 4
- 238000000034 method Methods 0.000 claims description 68
- 238000012546 transfer Methods 0.000 claims description 43
- 238000010438 heat treatment Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 10
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 108
- 235000012431 wafers Nutrition 0.000 description 63
- 239000010408 film Substances 0.000 description 45
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 44
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 23
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 15
- 238000000231 atomic layer deposition Methods 0.000 description 14
- 230000007246 mechanism Effects 0.000 description 14
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 10
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 238000011068 loading method Methods 0.000 description 8
- 238000012423 maintenance Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 230000005284 excitation Effects 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 230000004224 protection Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000007723 transport mechanism Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000006557 surface reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000003685 thermal hair damage Effects 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000013404 process transfer Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
Landscapes
- Plasma Technology (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Description
本発明はシリコンウェーハ等の基板に薄膜の生成、酸化、不純物の拡散、アニール処理、エッチング等の処理を行う基板処理装置に関するものである。 The present invention relates to a substrate processing apparatus for performing processes such as thin film generation, oxidation, impurity diffusion, annealing, and etching on a substrate such as a silicon wafer.
半導体製造工程の1つに、プラズマを利用したCVD(Chemical Vapor Deposition)法やALD(Atomic Layer Deposition)法を用いて基板上に所定の薄膜を堆積する成膜工程がある。 As one of semiconductor manufacturing processes, there is a film forming process for depositing a predetermined thin film on a substrate by using a CVD (Chemical Vapor Deposition) method using plasma or an ALD (Atomic Layer Deposition) method.
CVD法とは、ガス状原料の気相及び表面での反応を利用して、原料分子に含まれる元素を構成要素とする薄膜を被処理基板上へ堆積する方法である。 The CVD method is a method for depositing a thin film having an element contained in a raw material molecule as a constituent element on a substrate to be processed by utilizing a gas phase and reaction at the surface of a gaseous raw material.
CVD法の中で薄膜堆積が原子層レベルで制御されているものはALD法と呼ばれ、従来のCVD法に対して基板温度が低くできることが大きな特徴である。 A CVD method in which thin film deposition is controlled at the atomic layer level is called an ALD method, and is characterized by a lower substrate temperature than the conventional CVD method.
プラズマは、CVD法で堆積する薄膜の化学反応を促進したり、薄膜から不純物を除去したり、或は、ALD法では吸着した成膜原料の化学反応を補助したりする為等に用いられる。 Plasma is used to promote a chemical reaction of a thin film deposited by a CVD method, remove impurities from the thin film, or assist a chemical reaction of an adsorbed film forming material by an ALD method.
例えば、基板温度650℃以下の低温で、DCS(ジクロロシラン)とNH3 (アンモニア)プラズマを用いてALD法によるアモルファスシリコン窒化膜(以下、SiNと略す)の形成が行われている。 For example, an amorphous silicon nitride film (hereinafter abbreviated as SiN) is formed by ALD using DCS (dichlorosilane) and NH3 (ammonia) plasma at a substrate temperature of 650 ° C. or lower.
基板上へのSiN形成の工程は、DCS照射工程、NH3 プラズマ照射工程で構成される。この2つの工程を繰返す処理(以下、サイクル処理と称す)により、基板上に所定の膜厚のSiNの堆積を行うことができる。ALD法では、そのサイクル処理の数で膜厚が制御されることが特徴である。 The process of forming SiN on the substrate includes a DCS irradiation process and an NH3 plasma irradiation process. By a process of repeating these two steps (hereinafter referred to as a cycle process), SiN having a predetermined film thickness can be deposited on the substrate. The ALD method is characterized in that the film thickness is controlled by the number of cycles.
然し乍ら、この様なALD法に於いては、基板以外のガスに接触する部位に薄膜が累積的に堆積されるという欠点を持っている。 However, such an ALD method has a drawback in that a thin film is cumulatively deposited on a portion in contact with a gas other than the substrate.
この為、以下に示す様な問題が発生し易い。 For this reason, the following problems are likely to occur.
基板以外の部位に堆積した累積膜にマイクロクラックが発生することで、剥離浮遊する異物による汚染である。異物による汚染は、SiN堆積時の堆積速度が速くなる程、或は、累積膜厚が厚くなる程発生し易くなる。これは、堆積速度が速くなる程、累積膜中に混入する不純物量が多くなり、連続的な成膜処理による熱エネルギーによりアニールされて不純物が離脱するうえ、熱収縮と熱膨張を繰返すことによってマイクロクラックが発生し易くなることによると考えられる。 Micro-cracks are generated in the accumulated film deposited on a portion other than the substrate, which is a contamination due to a foreign substance that is separated and floated. Contamination due to foreign matter is more likely to occur as the deposition rate during SiN deposition increases or as the cumulative film thickness increases. This is because the higher the deposition rate, the greater the amount of impurities mixed in the accumulated film, which is annealed by the thermal energy of the continuous film formation process, and the impurities are released, and the thermal contraction and thermal expansion are repeated. It is considered that microcracks are likely to occur.
又、累積膜がある一定量迄増加すると歩留まりが極端に悪化する為、定期的に累積膜を除去するメンテナンス(NF3 クリーニングやWET洗浄処理)を実施しなければならない。メンテナンス時には基板処理装置を停止するので、結果として、装置の稼働率、生産性を向上する為の大きな障壁となっている。 Further, since the yield is extremely deteriorated when the accumulated film is increased to a certain amount, maintenance (NF3 cleaning or WET cleaning process) for periodically removing the accumulated film must be performed. Since the substrate processing apparatus is stopped at the time of maintenance, as a result, it becomes a big barrier for improving the operation rate and productivity of the apparatus.
本発明は斯かる実情に鑑み、累積膜除去のメンテナンス頻度を少なくして基板処理装置の稼働率の向上を図るものである。 In view of such circumstances, the present invention is intended to improve the operating rate of the substrate processing apparatus by reducing the maintenance frequency of cumulative film removal.
本発明は、基板が保持された基板保持具を収容し、前記基板に膜を形成する処理室と、前記基板及び前記処理室内の雰囲気を加熱する加熱手段と、前記処理室内へガスを供給するガス供給手段と、前記処理室内を排出するガス排出手段と、前記基板保持具に対し前記基板を移載する移載手段と、前記処理室から搬出された前記基板保持具から前記基板を移載する移載工程と、前記処理室内を、前記基板を処理する処理温度を超える第1の温度へ昇温させた後、前記処理温度よりも低い第2の温度へと降温させるとともに、前記処理室内の圧力の昇圧、降圧を繰り返し、前記処理室内の異物を除去する異物除去工程と、を並行して行う様、前記加熱手段、前記ガス供給手段、前記ガス排出手段および前記移載手段を制御する制御部と、を有する基板処理装置に係るものである。 The present invention accommodates a substrate holder holding a substrate, forms a film on the substrate, a heating means for heating the atmosphere of the substrate and the processing chamber, and supplies a gas into the processing chamber. A gas supply means; a gas discharge means for discharging the processing chamber; a transfer means for transferring the substrate to the substrate holder; and the substrate being transferred from the substrate holder carried out of the processing chamber. A transfer step, and after the temperature in the processing chamber is raised to a first temperature that exceeds the processing temperature for processing the substrate, the temperature is lowered to a second temperature lower than the processing temperature, and the processing chamber The heating means, the gas supply means, the gas discharge means, and the transfer means are controlled so that the foreign matter removal step of removing the foreign matter in the processing chamber is repeated in parallel with the pressure increase and decrease of the pressure. And a control unit Those of the plate processor.
本発明によれば、基板が保持された基板保持具を収容し、前記基板に膜を形成する処理室と、前記基板及び前記処理室内の雰囲気を加熱する加熱手段と、前記処理室内へガスを供給するガス供給手段と、前記処理室内を排出するガス排出手段と、前記基板保持具に対し前記基板を移載する移載手段と、前記処理室から搬出された前記基板保持具から前記基板を移載する移載工程と、前記処理室内を、前記基板を処理する処理温度を超える第1の温度へ昇温させた後、前記処理温度よりも低い第2の温度へと降温させるとともに、前記処理室内の圧力の昇圧、降圧を繰り返し、前記処理室内の異物を除去する異物除去工程と、を並行して行う様、前記加熱手段、前記ガス供給手段、前記ガス排出手段および前記移載手段を制御するので、前記処理室の壁面等に堆積した反応生成物からの異物の発生を抑制でき、累積膜除去のメンテナンス期間の延長が図れ、メンテナンス頻度が少なくなり、前記基板処理装置の稼働率の向上が図れるという優れた効果を発揮する。 According to the present invention, the substrate holder holding the substrate is accommodated, a processing chamber for forming a film on the substrate, a heating means for heating the atmosphere of the substrate and the processing chamber, and a gas into the processing chamber. Gas supply means for supplying; gas discharge means for discharging the processing chamber; transfer means for transferring the substrate to the substrate holder; and the substrate from the substrate holder carried out of the processing chamber. The transfer step of transferring, and after raising the temperature in the processing chamber to a first temperature exceeding the processing temperature for processing the substrate, the temperature is lowered to a second temperature lower than the processing temperature, and The heating means, the gas supply means, the gas discharge means, and the transfer means are performed in parallel with the foreign matter removal step of removing the foreign matter in the processing chamber by repeatedly increasing and decreasing the pressure in the processing chamber. Control. The generation of foreign substances from reaction products deposited on the walls of the chamber can be suppressed, the maintenance period for cumulative film removal can be extended, the frequency of maintenance can be reduced, and the operating rate of the substrate processing apparatus can be improved. Demonstrate the effect.
以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。 The best mode for carrying out the present invention will be described below with reference to the drawings.
先ず、図1に於いて、本発明が実施される基板処理装置の一例について説明する。 First, referring to FIG. 1, an example of a substrate processing apparatus in which the present invention is implemented will be described.
尚、以下の説明では、基板処理装置として基板に酸化、拡散処理やCVD処理等を行なう縦型の基板処理装置を適用した場合について述べる。 In the following description, a case where a vertical substrate processing apparatus that performs oxidation, diffusion processing, CVD processing, or the like is applied to the substrate as the substrate processing apparatus will be described.
本発明に係る基板処理装置1では、シリコン等からなるウェーハ2の搬送は、基板収容器としてのカセット3にウェーハ2を装填した状態で行われる。 In the substrate processing apparatus 1 according to the present invention, the transfer of the wafer 2 made of silicon or the like is performed in a state where the wafer 2 is loaded in a cassette 3 as a substrate container.
図中、4は筐体であり、該筐体4の正面には、カセット搬入搬出口5が前記筐体4内外を連通する様に開設されており、前記カセット搬入搬出口5はフロントシャッタ(図示せず)によって開閉される様になっている。 In the figure, reference numeral 4 denotes a housing, and a cassette loading / unloading port 5 is opened on the front surface of the housing 4 so as to communicate with the inside and outside of the housing 4. The cassette loading / unloading port 5 has a front shutter ( (Not shown).
前記カセット搬入搬出口5と臨接してカセットステージ(基板収容器受渡し台)6が設置されている。前記カセット3は前記カセットステージ6上に工程内搬送装置(図示せず)によって搬入され、又、前記カセットステージ6上から搬出される様になっている。 A cassette stage (substrate container delivery table) 6 is installed adjacent to the cassette carry-in / out port 5. The cassette 3 is carried onto the cassette stage 6 by an in-process carrying device (not shown) and unloaded from the cassette stage 6.
該カセットステージ6は、工程内搬送装置によって、前記カセット3内のウェーハ2が垂直姿勢となり、前記カセット3のウェーハ出入れ口が上方向を向く様に載置される。前記カセットステージ6は、前記カセット3を前記筐体4後方に右回り縦方向90°回転し、前記カセット3内のウェーハ2が水平姿勢となり、前記カセット3のウェーハ出入れ口が前記筐体4後方を向く様に動作可能となる様構成されている。 The cassette stage 6 is placed by the in-process transfer device so that the wafer 2 in the cassette 3 is in a vertical posture and the wafer inlet / outlet of the cassette 3 faces upward. The cassette stage 6 rotates the cassette 3 clockwise 90 ° to the rear of the casing 4, the wafer 2 in the cassette 3 is in a horizontal posture, and the wafer inlet / outlet of the cassette 3 is the casing 4. It is configured to be operable so as to face backward.
前記筐体4内の前後方向の略中央部には、カセット棚(基板収容器載置棚)7が設置されており、該カセット棚7は複数段複数列に、複数個のカセット3を保管する様に構成されている。前記カセット棚7にはウェーハ移載機構(基板移載機構)8の搬送対象となるカセット3が収納される移載棚9が設けられている。 A cassette shelf (substrate container mounting shelf) 7 is installed at a substantially central portion in the front-rear direction in the housing 4. The cassette shelf 7 stores a plurality of cassettes 3 in a plurality of rows and a plurality of rows. It is configured to do. The cassette shelf 7 is provided with a transfer shelf 9 in which the cassette 3 to be transferred by the wafer transfer mechanism (substrate transfer mechanism) 8 is stored.
又、前記カセットステージ6の上方には予備カセット棚10が設けられ、予備的にカセット3を保管する様に構成されている。 Further, a spare cassette shelf 10 is provided above the cassette stage 6 so as to store the cassette 3 in a preliminary manner.
前記カセットステージ6と前記カセット棚7との間には、カセット搬送装置(基板収容器搬送装置)21が設置されている。該カセット搬送装置21は、カセット3を保持したまま昇降可能なカセットエレベータ(基板収容器昇降機構)22と水平搬送機構としてのカセット搬送機構(基板収容器搬送機構)23とで構成されており、前記カセットエレベータ22と前記カセット搬送機構23との協働により、前記カセットステージ6、前記カセット棚7、前記予備カセット棚10との間で、カセット3を搬送する様に構成されている。 A cassette transfer device (substrate container transfer device) 21 is installed between the cassette stage 6 and the cassette shelf 7. The cassette transport device 21 includes a cassette elevator (substrate container lifting mechanism) 22 that can be moved up and down while holding the cassette 3, and a cassette transport mechanism (substrate container transport mechanism) 23 as a horizontal transport mechanism. The cassette 3 is transported between the cassette stage 6, the cassette shelf 7, and the spare cassette shelf 10 by the cooperation of the cassette elevator 22 and the cassette transport mechanism 23.
前記カセット棚7の後方には、前記ウェーハ移載機構8が設置されており、該ウェーハ移載機構8は、ウェーハ2を水平方向に回転可能及び直動可能なウェーハ移載装置(基板移載装置)11及び該ウェーハ移載装置11を昇降させる為のウェーハ移載装置エレベータ(基板移載装置昇降機構)12とで構成されている。該ウェーハ移載装置エレベータ12及び前記ウェーハ移載装置11の協働により、ボート13に対してウェーハ2を装填及び払出しする様に構成されている。 The wafer transfer mechanism 8 is installed behind the cassette shelf 7, and the wafer transfer mechanism 8 is a wafer transfer device (substrate transfer) capable of rotating and linearly moving the wafer 2 in the horizontal direction. Apparatus) 11 and a wafer transfer apparatus elevator (substrate transfer apparatus lifting mechanism) 12 for moving the wafer transfer apparatus 11 up and down. The wafer transfer device elevator 12 and the wafer transfer device 11 cooperate to load and unload the wafers 2 with respect to the boat 13.
前記筐体4内部の後部には気密な耐圧容器であるロードロック室(図示せず)が設けられ、該ロードロック室の上方には、縦型の処理炉15が設けられている。該処理炉15の下端は開口され、開口は炉口を形成し、該炉口は炉口シャッタ(炉口開閉機構)16により開閉される様に構成されている。 A load lock chamber (not shown), which is an airtight pressure vessel, is provided at the rear of the housing 4, and a vertical processing furnace 15 is provided above the load lock chamber. The lower end of the processing furnace 15 is opened, the opening forms a furnace port, and the furnace port is configured to be opened and closed by a furnace port shutter (furnace port opening / closing mechanism) 16.
前記ロードロック室の内部には前記ボート13を昇降して前記処理炉15に装脱させる昇降機構としてのボートエレベータ(基板保持具昇降機構)17が設けられ、該ボートエレベータ17からはボートアーム18が水平方向に延出し、該ボートアーム18には前記炉口を気密に閉塞するシールキャップ19が設けられ、該シールキャップ19には前記ボート13が垂直に載置される。 Inside the load lock chamber, there is provided a boat elevator (substrate holder lifting mechanism) 17 as a lifting mechanism for lifting and lowering the boat 13 to and from the processing furnace 15, and a boat arm 18 is provided from the boat elevator 17. The boat arm 18 is provided with a seal cap 19 that hermetically closes the furnace port, and the boat 13 is placed vertically on the seal cap 19.
該ボート13は、石英等ウェーハ2を汚染しない材質で構成され、ウェーハ2を水平姿勢で多段に保持する様になっている。 The boat 13 is made of a material that does not contaminate the wafers 2 such as quartz, and holds the wafers 2 in multiple stages in a horizontal posture.
前記カセット棚7の上方には、清浄化した雰囲気であるクリーンエアを供給する様、供給ファン及び防塵フィルタで構成されたクリーンユニット24が設けられており、クリーンエアを前記筐体4の内部に流通させる様に構成されている。 A clean unit 24 composed of a supply fan and a dustproof filter is provided above the cassette shelf 7 so as to supply clean air, which is a cleaned atmosphere, and the clean air is placed inside the casing 4. It is configured to be distributed.
又、前記ウェーハ移載装置エレベータ12に対向し、該ウェーハ移載装置エレベータ12に向ってクリーンエアを供給する様、供給ファン及び防塵フィルタで構成されたクリーンユニット25が設置されており、該クリーンユニット25から吹出されたクリーンエアは、前記ウェーハ移載装置11、前記ボート13を流通した後に、図示しない排気装置に吸込まれて、前記筐体4の外部に排気される様になっている。 In addition, a clean unit 25 composed of a supply fan and a dustproof filter is installed so as to face the wafer transfer device elevator 12 and supply clean air toward the wafer transfer device elevator 12. The clean air blown out from the unit 25 flows through the wafer transfer device 11 and the boat 13, and then is sucked into an exhaust device (not shown) and exhausted to the outside of the housing 4.
次に、本発明の基板処理装置の動作について説明する。 Next, the operation of the substrate processing apparatus of the present invention will be described.
前記カセット搬入搬出口5がフロントシャッタ(図示せず)によって開放される。その後、カセット3は前記カセット搬入搬出口5から搬入され、前記カセットステージ6の上にウェーハ2が垂直姿勢であって、カセット3のウェーハ出入れ口が上方向を向く様に載置される。前記カセットステージ6は、カセット3内のウェーハ2が水平姿勢となり、カセット3のウェーハ出入れ口が前記筐体4後方を向く様に、カセット3を載置する。 The cassette loading / unloading port 5 is opened by a front shutter (not shown). Thereafter, the cassette 3 is loaded from the cassette loading / unloading port 5 and is placed on the cassette stage 6 so that the wafer 2 is in a vertical posture and the wafer loading / unloading port of the cassette 3 faces upward. The cassette stage 6 mounts the cassette 3 so that the wafer 2 in the cassette 3 is in a horizontal posture and the wafer inlet / outlet of the cassette 3 faces the rear of the housing 4.
前記カセット搬送装置21は、カセット3を、前記カセット棚7又は前記予備カセット棚10の指定された棚位置へ搬送する。カセット3は、前記カセット棚7又は前記予備カセット棚10に一時的に保管された後、前記カセット棚7又は前記予備カセット棚10から前記カセット搬送装置21によって前記移載棚9に移載されるか、或は前記カセットステージ6から直接前記移載棚9に搬送される。 The cassette carrying device 21 carries the cassette 3 to a designated shelf position of the cassette shelf 7 or the spare cassette shelf 10. After the cassette 3 is temporarily stored in the cassette shelf 7 or the spare cassette shelf 10, the cassette 3 is transferred from the cassette shelf 7 or the spare cassette shelf 10 to the transfer shelf 9 by the cassette carrying device 21. Alternatively, it is conveyed directly from the cassette stage 6 to the transfer shelf 9.
カセット3が前記移載棚9に移載されると、ウェーハ2はカセット3から前記ウェーハ移載装置11によって降下状態の前記ボート13に装填(チャージング)される。該ボート13にウェーハ2を移載すると、前記ウェーハ移載装置11はカセット3に戻り、次のウェーハ2を前記ボート13に装填する。 When the cassette 3 is transferred to the transfer shelf 9, the wafer 2 is loaded (charged) from the cassette 3 to the boat 13 in the lowered state by the wafer transfer device 11. When the wafer 2 is transferred to the boat 13, the wafer transfer device 11 returns to the cassette 3 and loads the next wafer 2 into the boat 13.
予め指定された枚数のウェーハ2が前記ボート13に装填されると、前記炉口シャッタ16が炉口を開放する。続いて、ウェーハ2群を保持した前記ボート13は前記シールキャップ19が前記ボートエレベータ17によって上昇されることにより、前記処理炉15内へ装入されていく。 When a predetermined number of wafers 2 are loaded into the boat 13, the furnace port shutter 16 opens the furnace port. Subsequently, the boat 13 holding the group of wafers 2 is loaded into the processing furnace 15 when the seal cap 19 is lifted by the boat elevator 17.
装入後は、前記処理炉15にてウェーハ2に任意の処理が実施される。 After the charging, an arbitrary process is performed on the wafer 2 in the processing furnace 15.
処理後は、上述と逆の手順で、ウェーハ2及びカセット3は前記筐体4の外部へ払出される。 After the processing, the wafer 2 and the cassette 3 are dispensed to the outside of the housing 4 in the reverse procedure to that described above.
次に、図2、図3により前記処理炉15について説明する。 Next, the processing furnace 15 will be described with reference to FIGS.
前記基板処理装置1は制御手段であるコントローラ31を備え、該コントローラ31により前記基板処理装置1、及び前記処理炉15を構成する各部の動作等が制御されると共に処理ガスの供給制御、ヒータ32によるウェーハ2、処理室33、反応管34の加熱制御、更に前記処理室33のガス排気制御が行われる。 The substrate processing apparatus 1 includes a controller 31 as control means. The controller 31 controls the operation of each part of the substrate processing apparatus 1 and the processing furnace 15 and controls supply of process gas, and a heater 32. The heating control of the wafer 2, the processing chamber 33, and the reaction tube 34, and the gas exhaust control of the processing chamber 33 are performed.
加熱装置である前記ヒータ32の内側に、前記処理室33を画成する前記反応管34が同心に設けられ、該反応管34はウェーハ2を処理し、所要の処理を行う。前記反応管34の下端開口は蓋体である前記シールキャップ19により気密に閉塞され、少なくとも、前記反応管34、及び前記シールキャップ19により前記処理室33を形成している。又、前記ヒータ32、及び前記処理室33の温度を検出する温度センサ(図示せず)等は加熱手段を構成する。 The reaction tube 34 defining the processing chamber 33 is concentrically provided inside the heater 32 which is a heating device, and the reaction tube 34 processes the wafer 2 and performs a required process. The lower end opening of the reaction tube 34 is hermetically closed by the seal cap 19 that is a lid, and at least the reaction tube 34 and the seal cap 19 form the processing chamber 33. The heater 32, a temperature sensor (not shown) for detecting the temperature of the processing chamber 33, and the like constitute a heating means.
前記シールキャップ19にはボート支持台20を介して前記ボート13が立設され、前記ボート支持台20は前記ボート13を保持する保持体となっている。該ボート13にはバッチ処理される複数のウェーハ2が水平姿勢で管軸方向に多段に装填され、前記ボートエレベータ17によって前記処理室33に装入され、前記ヒータ32は装入されたウェーハ2を所定の温度に加熱する。 The boat 13 is erected on the seal cap 19 via a boat support 20, and the boat support 20 is a holding body that holds the boat 13. The boat 13 is loaded with a plurality of wafers 2 to be batch-processed in a horizontal posture in a multi-stage in the tube axis direction, loaded into the processing chamber 33 by the boat elevator 17, and the heater 32 loaded. Is heated to a predetermined temperature.
前記処理室33へは複数種類、ここでは2種類のガスを供給する供給経路としての2本のガス供給管35a,35bが設けられる。ここでは第1ガス供給管35aからは流量制御装置(流量制御手段)である第1マスフローコントローラ36a及び開閉弁である第1バルブ37aを介し、更に後述する前記反応管34内に形成されたバッファ室38を介して前記処理室33に反応ガスが供給され、前記第2ガス供給管35bからは流量制御装置(流量制御手段)である第2マスフローコントローラ36b、開閉弁である第2バルブ37b、ガス溜め39、及び開閉弁である第3バルブ37cを介し、更に後述するガス供給部41を介して前記処理室33に反応ガスが供給されている。 The processing chamber 33 is provided with two gas supply pipes 35a and 35b as supply paths for supplying a plurality of types, here two types of gases. Here, a buffer formed in the reaction tube 34, which will be described later, from the first gas supply pipe 35a through a first mass flow controller 36a which is a flow rate control device (flow rate control means) and a first valve 37a which is an on-off valve. A reaction gas is supplied to the processing chamber 33 through the chamber 38, and a second mass flow controller 36b, which is a flow rate control device (flow rate control means), a second valve 37b, which is an on-off valve, from the second gas supply pipe 35b. A reactive gas is supplied to the processing chamber 33 through a gas reservoir 39 and a third valve 37c, which is an on-off valve, and a gas supply unit 41 described later.
前記反応管34にはガスを排気するガス排気管42により第4バルブ37dを介して排気装置である真空ポンプ43に接続され、真空排気される様になっている。又、前記第4バルブ37dは、開閉して前記処理室33の真空排気・真空排気停止ができ、更に弁開度を調節して圧力調整が可能になっている開閉弁である。前記ガス排気管42、前記真空ポンプ43、前記第4バルブ37d等はガス排出手段を構成する。 The reaction tube 34 is connected to a vacuum pump 43, which is an exhaust device, through a fourth valve 37d by a gas exhaust tube 42 for exhausting gas, and is evacuated. The fourth valve 37d is an open / close valve that can be opened / closed to stop evacuation / evacuation of the processing chamber 33, and further adjust the pressure by adjusting the valve opening. The gas exhaust pipe 42, the vacuum pump 43, the fourth valve 37d and the like constitute gas exhaust means.
前記反応管34の内壁とウェーハ2との間に於ける円弧状の空間には、前記反応管34の下部より上部の内壁にウェーハ2の積載方向に沿って、ガス分散空間である前記バッファ室38が設けられており、該バッファ室38のウェーハ2と隣接する壁の端部にはガスを供給する供給孔である第1ガス供給孔44aが設けられている。該第1ガス供給孔44aは前記反応管34の中心へ向けて開口している。前記第1ガス供給孔44aは、下部から上部に亘ってそれぞれ同一の開口面積を有し、更に同じ開口ピッチで設けられている。 In the arc-shaped space between the inner wall of the reaction tube 34 and the wafer 2, the buffer chamber which is a gas dispersion space along the loading direction of the wafer 2 on the inner wall above the lower part of the reaction tube 34. 38 is provided, and a first gas supply hole 44a, which is a supply hole for supplying gas, is provided at the end of the wall of the buffer chamber 38 adjacent to the wafer 2. The first gas supply hole 44 a opens toward the center of the reaction tube 34. The first gas supply holes 44a have the same opening area from the lower part to the upper part, and are provided at the same opening pitch.
前記バッファ室38の前記第1ガス供給孔44aが設けられた端部と反対側の端部には、ノズル45が、前記反応管34の下部より上部に亘りウェーハ2の積載方向に沿って配設されている。前記ノズル45には複数のガスを供給する供給孔である第2ガス供給孔44bが設けられている。該第2ガス供給孔44bの開口面積は、前記バッファ室38と前記処理室33の差圧が小さい場合には、ガスの上流側から下流側迄、同一の開口面積で同一の開口ピッチとすると良いが、差圧が大きい場合には上流側から下流側に向かって開口面積を大きくするか、開口ピッチを小さくすると良い。 At the end of the buffer chamber 38 opposite to the end where the first gas supply hole 44 a is provided, a nozzle 45 is arranged along the stacking direction of the wafer 2 from the lower part to the upper part of the reaction tube 34. It is installed. The nozzle 45 is provided with a second gas supply hole 44b which is a supply hole for supplying a plurality of gases. When the differential pressure between the buffer chamber 38 and the processing chamber 33 is small, the second gas supply hole 44b has the same opening area and the same opening pitch from the upstream side to the downstream side of the gas. Although it is good, when the differential pressure is large, the opening area should be increased from the upstream side to the downstream side, or the opening pitch should be reduced.
本実施の形態に於いては、前記第2ガス供給孔44bの開口面積を上流側から下流側にかけて徐々に大きくしている。この様に構成することで、各前記第2ガス供給孔44bよりガスの流速の差はあるが、流量は略同量であるガスを前記バッファ室38に噴出させている。 In the present embodiment, the opening area of the second gas supply hole 44b is gradually increased from the upstream side to the downstream side. With this configuration, the gas having the same flow rate is ejected from the second gas supply holes 44b to the buffer chamber 38 with the same flow rate.
該バッファ室38内に於いて、各前記第2ガス供給孔44bより噴出したガスの粒子速度差が緩和された後、前記第1ガス供給孔44aより前記処理室33に噴出させている。よって、各前記第2ガス供給孔44bより噴出したガスは、各前記第1ガス供給孔44aより噴出する際には、均一な流量と流速にすることができる。 In the buffer chamber 38, after the difference in the particle velocity of the gas ejected from the second gas supply holes 44b is alleviated, the gas is ejected from the first gas supply holes 44a to the processing chamber 33. Therefore, the gas ejected from each second gas supply hole 44b can have a uniform flow rate and flow velocity when ejected from each first gas supply hole 44a.
更に、前記バッファ室38に、細長い構造を有する第1電極である第1棒状電極46及び第2電極である第2棒状電極47が上部より下部に亘って電極を保護する保護管である電極保護管48に保護されて配設され、前記第1棒状電極46又は前記第2棒状電極47のいずれか一方は整合器49を介して高周波電源51に接続され、他方は基準電位であるアースに接続されている。この結果、前記第1棒状電極46及び前記第2棒状電極47間のプラズマ生成領域52にプラズマが生成される。 Further, in the buffer chamber 38, the first rod-shaped electrode 46, which is a first electrode having an elongated structure, and the second rod-shaped electrode 47, which is a second electrode, are electrode protections which are protective tubes that protect the electrode from the upper part to the lower part. Protected by a tube 48, either the first rod-shaped electrode 46 or the second rod-shaped electrode 47 is connected to a high-frequency power source 51 through a matching unit 49, and the other is connected to a ground that is a reference potential. Has been. As a result, plasma is generated in the plasma generation region 52 between the first rod-shaped electrode 46 and the second rod-shaped electrode 47.
前記電極保護管48は、前記第1棒状電極46及び前記第2棒状電極47のそれぞれを前記バッファ室38の雰囲気と隔離した状態で該バッファ室38に挿入できる構造となっている。ここで、前記電極保護管48の内部は外気(大気)と同一雰囲気であると、該電極保護管48にそれぞれ挿入された前記第1棒状電極46及び前記第2棒状電極47は前記ヒータ32の加熱で酸化されてしまう。そこで、前記電極保護管48の内部は窒素等の不活性ガスを充填或はパージし、酸素濃度を充分低く抑えて前記第1棒状電極46又は前記第2棒状電極47の酸化を防止する為の不活性ガスパージ機構が設けられる。 The electrode protection tube 48 has a structure in which each of the first rod-shaped electrode 46 and the second rod-shaped electrode 47 can be inserted into the buffer chamber 38 while being isolated from the atmosphere of the buffer chamber 38. Here, if the inside of the electrode protection tube 48 has the same atmosphere as the outside air (atmosphere), the first rod-shaped electrode 46 and the second rod-shaped electrode 47 respectively inserted into the electrode protection tube 48 are connected to the heater 32. It is oxidized by heating. Therefore, the inside of the electrode protection tube 48 is filled or purged with an inert gas such as nitrogen to prevent the oxidation of the first rod-shaped electrode 46 or the second rod-shaped electrode 47 by suppressing the oxygen concentration sufficiently low. An inert gas purge mechanism is provided.
更に、前記第1ガス供給孔44aの位置より、前記反応管34の内周を120゜程度回った内壁に、前記ガス供給部41が設けられている。該ガス供給部41は、ALD法による成膜に於いてウェーハ2へ、複数種類のガスを1種類ずつ交互に供給する際に、前記バッファ室38とガス供給種を分担する供給部である。 Further, the gas supply unit 41 is provided on the inner wall of the reaction tube 34 that is rotated about 120 ° from the position of the first gas supply hole 44a. The gas supply unit 41 is a supply unit that shares the gas supply species with the buffer chamber 38 when a plurality of types of gases are alternately supplied to the wafer 2 one by one in the film formation by the ALD method.
前記ガス供給部41も前記バッファ室38と同様にウェーハ2と隣接する位置に同一ピッチでガスを供給する供給孔である第3ガス供給孔44cを有し、下部では前記第2ガス供給管35bが接続されている。 Similarly to the buffer chamber 38, the gas supply unit 41 has third gas supply holes 44c that supply gas at the same pitch at positions adjacent to the wafer 2, and the second gas supply pipe 35b at the bottom. Is connected.
前記第3ガス供給孔44cの開口面積は前記ガス供給部41内と前記処理室33内の差圧が小さい場合には、ガスの上流側から下流側迄同一の開口面積で同一の開口ピッチとすると良いが、差圧が大きい場合には上流側から下流側に向かって開口面積を大きくするか開口ピッチを小さくすると良い。 When the differential pressure in the gas supply unit 41 and the processing chamber 33 is small, the opening area of the third gas supply hole 44c has the same opening area and the same opening pitch from the upstream side to the downstream side of the gas. However, when the differential pressure is large, it is preferable to increase the opening area or reduce the opening pitch from the upstream side toward the downstream side.
本実施の形態に於いては、前記第3ガス供給孔44cの開口面積を上流側から下流側にかけて徐々に大きくしている。 In the present embodiment, the opening area of the third gas supply hole 44c is gradually increased from the upstream side to the downstream side.
前記反応管34内の中央部には複数枚のウェーハ2を多段に同一間隔で載置する前記ボート13が収納されており、該ボート13は前記ボートエレベータ17により前記反応管34に装脱される様になっている。又処理の均一性を向上する為に前記ボート13を回転する為の回転装置(回転手段)であるボート回転機構53が設けてあり、該ボート回転機構53を回転することにより、前記ボート支持台20に保持された前記ボート13を回転する様になっている。 The boat 13 on which a plurality of wafers 2 are placed in multiple stages at the same interval is accommodated in the center of the reaction tube 34, and the boat 13 is loaded into and removed from the reaction tube 34 by the boat elevator 17. It has become like that. Further, in order to improve the uniformity of processing, a boat rotation mechanism 53 which is a rotation device (rotation means) for rotating the boat 13 is provided. By rotating the boat rotation mechanism 53, the boat support base is rotated. The boat 13 held at 20 is rotated.
前記コントローラ31は、前記第1、第2マスフローコントローラ36a,36b、前記第1〜第4バルブ37a,37b,37c,37d、前記ヒータ32、前記真空ポンプ43、前記ボート回転機構53、前記ボートエレベータ17、前記高周波電源51、前記整合器49に接続されており、前記第1、第2マスフローコントローラ36a,36bの流量調整、前記第1〜第3バルブ37a,37b,37cの開閉動作、前記第4バルブ37dの開閉及び圧力調整動作、前記ヒータ32の温度調節、前記真空ポンプ43の起動・停止、前記ボート回転機構53の回転速度調節、前記ボートエレベータ17の昇降動作制御、前記高周波電源51の電力供給制御、前記整合器49によるインピーダンス制御が行われる。 The controller 31 includes the first and second mass flow controllers 36a and 36b, the first to fourth valves 37a, 37b, 37c, and 37d, the heater 32, the vacuum pump 43, the boat rotating mechanism 53, and the boat elevator. 17, connected to the high-frequency power source 51 and the matching unit 49, to adjust the flow rate of the first and second mass flow controllers 36a, 36b, to open / close the first to third valves 37a, 37b, 37c, Opening / closing and pressure adjusting operation of the 4-valve 37d, temperature adjustment of the heater 32, starting / stopping of the vacuum pump 43, rotation speed adjustment of the boat rotating mechanism 53, raising / lowering operation control of the boat elevator 17, and the high frequency power supply 51 Power supply control and impedance control by the matching unit 49 are performed.
次にALD法による成膜例について、半導体デバイスの製造工程の1つである、DCS(ジクロロシラン)及びNH3 (アンモニア)ガスを用いてSiN膜を成膜する例で説明する。 Next, an example of film formation by the ALD method will be described using an example of forming a SiN film using DCS (dichlorosilane) and NH3 (ammonia) gas, which is one of the semiconductor device manufacturing steps.
CVD法の中の1つであるALD法は、ある成膜条件(温度、時間等)の下で、成膜に用いる2種類(又はそれ以上)の原料となる処理ガスを1種類ずつ交互に基板上に供給し、1原子層単位で吸着させ、表面反応を利用して成膜を行う手法である。 The ALD method, which is one of the CVD methods, alternately uses two kinds (or more) of processing gases as raw materials used for film formation one by one under certain film formation conditions (temperature, time, etc.). In this method, the film is supplied onto a substrate, adsorbed in units of one atomic layer, and a film is formed using a surface reaction.
利用する化学反応は、例えばSiN(窒化珪素)膜形成の場合ALD法ではDCSとNH3 を用いて300℃〜600℃の低温で高品質の成膜が可能である。又、ガス供給は、複数種類の反応性ガスを1種類ずつ交互に供給する。そして、膜厚制御は、反応性ガス供給のサイクル数で制御する。(例えば、成膜速度が1Å/サイクルとすると、20Åの膜を形成する場合、処理を20サイクル行う。) For example, in the case of SiN (silicon nitride) film formation, high-quality film formation is possible at a low temperature of 300 ° C. to 600 ° C. using DCS and NH 3 in the ALD method. The gas supply alternately supplies a plurality of types of reactive gases one by one. And film thickness control is controlled by the cycle number of reactive gas supply. (For example, if the deposition rate is 1 mm / cycle, the process is performed 20 cycles when a film of 20 mm is formed.)
先ず成膜しようとするウェーハ2を前記ボート13に装填し、前記処理室33に搬入する。搬入後、次の3つのステップを順次実行する。 First, the wafer 2 to be formed is loaded into the boat 13 and carried into the processing chamber 33. After carrying in, the following three steps are sequentially executed.
(ステップ1) ステップ1では、プラズマ励起の必要なNH3 ガスと、プラズマ励起の必要のないDCSガスとを並行して流す。先ず前記第1ガス供給管35aに設けた前記第1バルブ37a、及び前記ガス排気管42に設けた前記第4バルブ37dを共に開けて、前記第1ガス供給管35aから前記第1マスフローコントローラ36aにより流量調整されたNH3 ガスを前記ノズル45の前記第2ガス供給孔44bから前記バッファ室38へ噴出し、前記第1棒状電極46及び前記第2棒状電極47間に前記高周波電源51から前記整合器49を介して高周波電力を印加してNH3 をプラズマ励起し、活性種として前記処理室33に供給しつつ前記ガス排気管42から排気する。NH3 ガスをプラズマ励起することにより活性種として流す時は、前記第4バルブ37dを適正に調整して前記処理室33内圧力を10〜100Paの範囲であって、例えば、40Paに維持する。前記第1マスフローコントローラ36aで制御するNH3 の供給流量は1〜10slmの範囲であ
って、例えば3slmで供給されNH3 をプラズマ励起することにより得られた活性種にウェーハ2を晒す時間は2〜102秒である。この時の前記ヒータ32の温度はウェーハ2が300℃〜600℃の範囲であって、例えば600℃になる様に設定してある。NH3 は反応温度が高い為、上記温度では反応しないので、プラズマ励起することにより活性種としてから流す様にしており、この為ウェーハ2の温度は設定した低い温度範囲のままで行える。
(Step 1) In Step 1, NH3 gas that requires plasma excitation and DCS gas that does not require plasma excitation are allowed to flow in parallel. First, the first valve 37a provided in the first gas supply pipe 35a and the fourth valve 37d provided in the gas exhaust pipe 42 are both opened, and the first mass flow controller 36a is connected from the first gas supply pipe 35a. The NH 3 gas whose flow rate has been adjusted by the nozzle 45 is ejected from the second gas supply hole 44 b of the nozzle 45 to the buffer chamber 38, and the alignment from the high-frequency power source 51 between the first rod-shaped electrode 46 and the second rod-shaped electrode 47. A high frequency power is applied through a vessel 49 to excite NH3 plasma, and the exhaust gas is exhausted from the gas exhaust pipe 42 while being supplied to the processing chamber 33 as active species. When flowing NH3 gas as an active species by plasma excitation, the fourth valve 37d is adjusted appropriately to maintain the pressure in the processing chamber 33 within a range of 10 to 100 Pa, for example, 40 Pa. The NH3 supply flow rate controlled by the first mass flow controller 36a is in the range of 1 to 10 slm. For example, the time during which the wafer 2 is exposed to the active species obtained by plasma excitation of NH3 supplied at 3 slm is 2 to 102. Seconds. The temperature of the heater 32 at this time is set so that the wafer 2 is in the range of 300 ° C. to 600 ° C., for example, 600 ° C. Since NH3 has a high reaction temperature, it does not react at the above temperature. Therefore, NH3 is flowed as an active species by plasma excitation. Therefore, the temperature of the wafer 2 can be maintained in the set low temperature range.
このNH3 をプラズマ励起することにより活性種として供給している時、前記第2ガス供給管35bの下流側の前記第2バルブ37bを開け、下流側の前記第3バルブ37cを閉めて、DCSも流す様にする。これにより前記第2バルブ37b、前記第3バルブ37c間に設けた前記ガス溜め39にDCSを溜める。この時、前記処理室33内に流しているガスはNH3 をプラズマ励起することにより得られた活性種であり、DCSは存在しない。従って、NH3 は気相反応を起こすことはなく、プラズマにより励起され活性種となったNH3 はウェーハ2上の下地膜等の表面部分と表面反応(化学吸着)する。 When this NH3 is supplied as an active species by plasma excitation, the second valve 37b on the downstream side of the second gas supply pipe 35b is opened, the third valve 37c on the downstream side is closed, and the DCS is also Make it flow. Thus, DCS is stored in the gas reservoir 39 provided between the second valve 37b and the third valve 37c. At this time, the gas flowing in the processing chamber 33 is an active species obtained by exciting NH3 with plasma, and DCS does not exist. Accordingly, NH3 does not cause a gas phase reaction, and NH3 excited by plasma to become an active species undergoes surface reaction (chemical adsorption) with a surface portion such as a base film on the wafer 2.
(ステップ2) ステップ2では、前記第1ガス供給管35aの前記第1バルブ37aを閉めて、NH3 の供給を止めるが、引続き前記ガス溜め39へ供給を継続する。該ガス溜め39に所定圧、所定量のDCSが溜まったら上流側の前記第2バルブ37bも閉めて、前記ガス溜め39にDCSを閉込めておく。又、前記ガス排気管42の前記第4バルブ37dは開いたままにし前記真空ポンプ43により、前記処理室33を20Pa以下に排気し、残留NH3 を前記処理室33から排除する。又、この時にはN2 等の不活性ガスを前記処理室33に供給すると、更に残留NH3 を排除する効果が高まる。前記ガス溜め39内には、圧力が20000Pa以上になる様にDCSを溜める。又、前記ガス溜め39と前記処理室33との間のコンダクタンスが1.5×10-3m3 /s以上になる様に装置を構成する。又、前記反応管34の容積とこれに対する必要な前記ガス溜め39の容積との比として考えると、前記反応管34の容積100l(リットル)の場合に於いては、100〜300ccであることが好ましく、容積比としては前記ガス溜め39は反応室容積の1/1000〜3/1000倍とすることが好ましい。 (Step 2) In Step 2, the first valve 37a of the first gas supply pipe 35a is closed to stop the supply of NH3, but the supply to the gas reservoir 39 is continued. When a predetermined pressure and a predetermined amount of DCS are accumulated in the gas reservoir 39, the second valve 37b on the upstream side is also closed, and the DCS is confined in the gas reservoir 39. Further, the fourth valve 37d of the gas exhaust pipe 42 is kept open, and the processing chamber 33 is evacuated to 20 Pa or less by the vacuum pump 43, and residual NH3 is removed from the processing chamber 33. At this time, if an inert gas such as N2 is supplied to the processing chamber 33, the effect of eliminating residual NH3 is further enhanced. DCS is stored in the gas reservoir 39 so that the pressure is 20000 Pa or more. Further, the apparatus is configured such that the conductance between the gas reservoir 39 and the processing chamber 33 is 1.5 × 10 −3 m 3 / s or more. Considering the ratio between the volume of the reaction tube 34 and the volume of the gas reservoir 39 required for this, when the volume of the reaction tube 34 is 100 l (liter), it is 100 to 300 cc. The volume ratio of the gas reservoir 39 is preferably 1/1000 to 3/1000 times the reaction chamber volume.
(ステップ3) ステップ3では、前記処理室33の排気が終わったら前記ガス排気管42の前記第4バルブ37dを閉じて排気を止める。前記第2ガス供給管35bの下流側の前記第3バルブ37cを開く。これにより前記ガス溜め39に溜められたDCSが前記処理室33に一気に供給される。この時前記ガス排気管42の前記第4バルブ37dが閉じられているので、前記処理室33内の圧力は急激に上昇して約931Pa(7Torr)迄昇圧される。DCSを供給する為の時間は2〜4秒に設定し、その後上昇した圧力雰囲気中に晒す時間を2〜4秒に設定し、合計6秒とした。この時のウェーハ2の温度はNH3 の供給時と同じく、300℃〜600℃の範囲内の所望の温度で維持される。DCSの供給により、ウェーハ2の表面に化学吸着したNH3 とDCSとが表面反応(化学吸着)して、ウェーハ2上にSiN膜が成膜される。成膜後、前記第3バルブ37cを閉じ、前記第4バルブ37dを開けて前記処理室33を真空排気し、残留するDCSの成膜に寄与した後のガスを排除する。又、この時にはN2 等の不活性ガスを前記処理室33に供給すると、更に残留するDCSの成膜に寄与した後のガスを前記処理室33から排除する効果が高まる。又前記第2バルブ37bを開いて前記ガス溜め39へのDCSの供給を開始する。 (Step 3) In step 3, when the exhaust of the processing chamber 33 is finished, the fourth valve 37d of the gas exhaust pipe 42 is closed to stop the exhaust. The third valve 37c on the downstream side of the second gas supply pipe 35b is opened. As a result, the DCS stored in the gas reservoir 39 is supplied to the processing chamber 33 at once. At this time, since the fourth valve 37d of the gas exhaust pipe 42 is closed, the pressure in the processing chamber 33 is rapidly increased to about 931 Pa (7 Torr). The time for supplying DCS was set to 2 to 4 seconds, and then the time for exposure to the increased pressure atmosphere was set to 2 to 4 seconds, for a total of 6 seconds. At this time, the temperature of the wafer 2 is maintained at a desired temperature within the range of 300 ° C. to 600 ° C., as in the case of supplying NH 3. By supplying DCS, NH 3 chemically adsorbed on the surface of the wafer 2 and DCS undergo a surface reaction (chemical adsorption), and a SiN film is formed on the wafer 2. After the film formation, the third valve 37c is closed, the fourth valve 37d is opened, and the processing chamber 33 is evacuated to remove the gas after contributing to the film formation of the remaining DCS. At this time, if an inert gas such as N2 is supplied to the processing chamber 33, the effect of removing the remaining gas after contributing to the deposition of DCS from the processing chamber 33 is enhanced. Also, the second valve 37b is opened to start supplying DCS to the gas reservoir 39.
上記ステップ1〜3を1サイクルとし、このサイクルを複数回繰返すことによりウェーハ2上に所定膜厚のSiN膜を成膜する。 Steps 1 to 3 are defined as one cycle, and a SiN film having a predetermined thickness is formed on the wafer 2 by repeating this cycle a plurality of times.
ALD装置では、ガスはウェーハ2の表面部分に化学吸着する。このガスの吸着量は、ガスの圧力、及びガスの暴露時間に比例する。よって、希望する一定量のガスを、短時間で吸着させる為には、ガスの圧力を短時間で大きくする必要がある。この点で、本実施の形態では、前記第4バルブ37dを閉めた上で、前記ガス溜め39内に溜めたDCSを瞬間的に供給しているので、前記処理室33内のDCSの圧力を急激に上げることができ、希望する一定量のガスを瞬間的に吸着させることができる。 In the ALD apparatus, the gas is chemisorbed on the surface portion of the wafer 2. The amount of gas adsorption is proportional to the gas pressure and the gas exposure time. Therefore, in order to adsorb the desired amount of gas in a short time, it is necessary to increase the gas pressure in a short time. In this regard, in the present embodiment, since the DCS accumulated in the gas reservoir 39 is instantaneously supplied after the fourth valve 37d is closed, the pressure of the DCS in the processing chamber 33 is reduced. It can be raised rapidly and a desired amount of gas can be adsorbed instantaneously.
又、本実施の形態では、前記ガス溜め39にDCSを溜めている間に、ALD法で必要なステップであるNH3 ガスをプラズマ励起することにより活性種として供給、及び前記処理室33の排気をしているので、DCSを溜める為の特別なステップを必要としない。又、前記処理室33内を排気してNH3 ガスを除去してからDCSを流すので、両者はウェーハ2に向かう途中で反応しない。供給されたDCSは、ウェーハ2に吸着しているNH3 とのみ有効に反応させることができる。 Further, in the present embodiment, while DCS is stored in the gas reservoir 39, NH3 gas, which is a necessary step in the ALD method, is excited as a plasma by supplying it as an active species and exhausting the processing chamber 33. As a result, no special steps are required to store the DCS. Further, since the inside of the processing chamber 33 is evacuated to remove NH3 gas and then DCS is flowed, both do not react on the way to the wafer 2. The supplied DCS can be effectively reacted only with NH3 adsorbed on the wafer 2.
上記した様に、基板を処理するシーケンスとしては、前記移載棚9のカセット3から前記ウェーハ移載装置11による前記ボート13への装填、前記ボートエレベータ17による前記処理炉15への前記ボート13の装入、ウェーハ2の加熱昇温、ALDサイクル処理、前記処理室33のガス排気処理、前記ボート13の前記処理室33からの引出し、処理済ウェーハ2の冷却処理、前記ウェーハ移載装置11による前記ボート13から前記移載棚9のカセット3への基板の払出し処理、更に次処理の為の未処理ウェーハ2のカセット3への装填と、順次繰返される。 As described above, as a sequence for processing the substrate, the boat 13 is loaded from the cassette 3 of the transfer shelf 9 into the boat 13 by the wafer transfer device 11 and is loaded into the processing furnace 15 by the boat elevator 17. Loading, heating and heating of the wafer 2, ALD cycle processing, gas exhaust processing of the processing chamber 33, withdrawal of the boat 13 from the processing chamber 33, cooling processing of the processed wafer 2, and the wafer transfer device 11 The process of discharging the substrate from the boat 13 to the cassette 3 of the transfer shelf 9 and the loading of the unprocessed wafer 2 into the cassette 3 for further processing are sequentially repeated.
図4は基板処理の概略のシーケンスを模式したものであり、成膜処理と成膜処理との間には基板冷却工程と基板搬送工程が介在する。本発明では、基板冷却工程と基板搬送工程が実行されている時間を利用して、異物除去工程を実行する。従って、基板処理シーケンス全体としては、時間が増大することはない。 FIG. 4 schematically shows a sequence of substrate processing, and a substrate cooling process and a substrate transport process are interposed between the film forming process and the film forming process. In the present invention, the foreign matter removing process is executed by using the time during which the substrate cooling process and the substrate transport process are executed. Therefore, time does not increase in the entire substrate processing sequence.
図5、図6により、従来の基板処理シーケンスと対比させながら本発明の異物除去工程を説明する。 The foreign matter removing process of the present invention will be described with reference to FIGS. 5 and 6 while comparing with a conventional substrate processing sequence.
本発明の異物除去工程は、急速昇温工程、急速降温工程、リカバリ工程を含む温度制御と、更に前記処理室33内の圧力を短周期で大きな圧力変動を与える圧力制御の組合わせで実行される。 The foreign matter removing process of the present invention is executed by a combination of temperature control including a rapid temperature raising process, a rapid temperature lowering process, and a recovery process, and further pressure control that gives a large pressure fluctuation in a short cycle to the pressure in the processing chamber 33. The
先ず、図5は温度制御を示しており、図中、実線で示す線図Aは本発明による前記処理室33の温度変化を示し、図中破線で示す線図Bは従来の処理での温度変化を示している。 First, FIG. 5 shows temperature control. In the figure, a line A shown by a solid line shows a temperature change of the processing chamber 33 according to the present invention, and a line B shown by a broken line in the figure shows a temperature in a conventional process. It shows a change.
従来の温度制御は、成膜処理後漸次温度をSTANDBY温度迄低下させ、次の成膜処理が開始される迄、STANDBY温度を維持していた。 In the conventional temperature control, after the film formation process, the temperature gradually decreases to the STANDBY temperature, and the STANDBY temperature is maintained until the next film formation process is started.
本発明では、成膜処理後、成膜温度からΔT1だけ急速昇温させ、更にΔT2だけ急速降温させる。ΔT2は、400℃を越える大きな温度差とし、累積膜を急激に温度変化させることで、熱ダメージを与え、膜応力の緩和を図る。更に、ΔT3だけ昇温させ、STANDBY温度にリカバリさせる。 In the present invention, after the film formation process, the temperature is rapidly increased by ΔT1 from the film formation temperature, and further, the temperature is rapidly decreased by ΔT2. ΔT2 is a large temperature difference exceeding 400 ° C., and the accumulated film is rapidly changed in temperature, thereby causing thermal damage and reducing the film stress. Further, the temperature is raised by ΔT3 and recovered to the STANDBY temperature.
昇温、降温により、累積膜に熱ダメージを与えることで、累積膜にクラックが発生することが考えられ、クラック発生に伴い異物が多くなる場合がある。 It is conceivable that cracks are generated in the accumulated film by causing thermal damage to the accumulated film due to temperature rise and fall, and there are cases where foreign matter increases with the occurrence of cracks.
異物除去の為、異物除去工程中に並行して、処理室内の圧力を短周期で大きな圧力変動を与え、異物を排気処理する。 In order to remove the foreign matter, in parallel with the foreign matter removal step, the pressure in the processing chamber is subjected to a large pressure fluctuation in a short cycle, and the foreign matter is exhausted.
図6は、異物除去工程中の温度制御と並行して、処理室内の圧力制御(ATMVAC)が実行された場合の処理室の圧力変動を示したものである。図中、実線で示す線図Aは本発明による処理室の圧力変動を示し、図中破線で示す線図Bは従来の処理での処理室の圧力変動を示している。 FIG. 6 shows the pressure fluctuation in the processing chamber when the pressure control (ATMVAC) in the processing chamber is executed in parallel with the temperature control during the foreign substance removing step. In the figure, a diagram A shown by a solid line shows a pressure fluctuation in the processing chamber according to the present invention, and a diagram B shown by a broken line in the figure shows a pressure fluctuation in the processing chamber in a conventional process.
従来では、成膜処理後大気圧に復帰させ、大気圧の状態が維持されるが、本発明では一旦大気圧迄復帰させた後、更に成膜処理近傍の圧力迄減圧し、負圧の状態で圧力を短周期で大きな圧力変動を与える。急速降温工程で実行される圧力制御をATMVAC1とし、この時の圧力変動幅はΔP1、又リカバリ工程で実行される圧力制御をATMVAC2とし、この時の圧力変動幅はΔP2とする。 Conventionally, after the film formation process, the pressure is returned to atmospheric pressure and the atmospheric pressure state is maintained. However, in the present invention, after the pressure is returned to atmospheric pressure, the pressure is further reduced to a pressure near the film formation process, and the negative pressure state Gives a large pressure fluctuation in a short cycle. The pressure control executed in the rapid cooling step is ATMVAC1, the pressure fluctuation range at this time is ΔP1, and the pressure control executed in the recovery process is ATMVAC2, and the pressure fluctuation range at this time is ΔP2.
尚、図示では、漸次圧力変動幅を減少(ΔP1>ΔP2)させているが、圧力変動幅を一定にしても、或は漸次増大させてもよい。圧力変動の態様は、異物の除去状態に合わせて決定される。 In the drawing, the pressure fluctuation range is gradually decreased (ΔP1> ΔP2), but the pressure fluctuation range may be constant or may be increased gradually. The mode of the pressure fluctuation is determined in accordance with the removal state of the foreign matter.
又、剥離した異物は、主にSi,N,Oで構成される絶縁物質であるので帯電しやすく、累積膜、反応管壁面等に吸着していると推定される。従って、吸着した異物を効率よく除去する為、異物除去工程中に一時的にプラズマを発生させ、除電を行う。除電を実行することで、異物の除去効率が向上する。 Moreover, since the peeled foreign matter is an insulating material mainly composed of Si, N, and O, it is likely to be charged and is presumed to be adsorbed on the accumulated film, the reaction tube wall surface, and the like. Therefore, in order to efficiently remove the adsorbed foreign matter, plasma is temporarily generated during the foreign matter removing step to perform static elimination. By performing the static elimination, the foreign matter removal efficiency is improved.
図7、図8により、異物除去の実施例を説明する。 An example of foreign matter removal will be described with reference to FIGS.
本発明の効果を確認する為、図7の表で示す条件で異物除去工程を実行した。 In order to confirm the effect of the present invention, the foreign matter removing step was executed under the conditions shown in the table of FIG.
本実施例に於いて、ATMVAC1は、N2 を反応炉へ20slm以上の速度で導入しながら、ガス排出手段を制御し、反応炉内の圧力を約43000〜50Paの間で変動させる処理(繰返し処理)である。 In this embodiment, the ATMVAC 1 controls the gas discharge means while introducing N2 into the reactor at a rate of 20 slm or more, and changes the pressure in the reactor between about 43,000 and 50 Pa (repetitive processing). ).
ATMVAC2も同様にN2 を反応炉へ20slm以上の速度で導入しながら、排気手段を制御し、反応炉内の圧力を約28000〜50Pa迄の間で変動させる処理(繰返し処理)である。 Similarly, ATMVAC2 is a process (repetitive process) in which N2 is introduced into the reactor at a rate of 20 slm or more while the exhaust means is controlled and the pressure in the reactor is varied between about 28000-50 Pa.
ATMVAC1、ATMVAC2の圧力変動の速度は、いずれも約2666Pa/s以上であり、急速昇温工程、及び急速降温工程と並行して実行される。これにより、昇降温幅ΔTの温度変化によって生じる異物の除去排出処理を、圧力変動幅ΔPの変化によって促進する。 The pressure fluctuation speeds of ATMVAC1 and ATMVAC2 are both about 2666 Pa / s or more, and are executed in parallel with the rapid temperature increase process and the rapid temperature decrease process. As a result, the foreign substance removal and discharge process caused by the temperature change of the temperature increase / decrease temperature width ΔT is promoted by the change of the pressure fluctuation width ΔP.
図8は、従来の異物除去工程を含まない成膜処理の繰返しのみによる場合と、本発明のの異物除去シーケンスを追加した場合の異物発生傾向を示しており、図中線図Aは本発明、線図Bは従来例を示している。 FIG. 8 shows the tendency of foreign matter generation when the conventional foreign matter removing process is not repeated and only when the foreign matter removing sequence according to the present invention is added. The diagram B shows a conventional example.
図示される様に、従来では4000Å毎に基準設定値(SPEC Line)を超え、累積膜除去のメンテナンスを実施しなければならなかったのに対して、本発明では6500Å毎の装置メンテナンスヘと改善することができた。従って、メンテナンス間隔を大幅に延長できた。尚、図中P/C数は、基板上の異物数を示す。異物のサイズは例えば0.5μm以上である。又、SPEC Lineは、異物を観測する装置や方法によって異なる。図8では、0.5μm以上の異物が20個となるLineがSPEC Lineである。 As shown in the figure, in the past, the standard set value (SPEC Line) was exceeded every 4000 mm, and maintenance of cumulative film removal had to be performed, whereas in the present invention, the apparatus maintenance was improved every 6500 mm. We were able to. Therefore, the maintenance interval can be greatly extended. In addition, P / C number in a figure shows the number of the foreign materials on a board | substrate. The size of the foreign matter is, for example, 0.5 μm or more. Moreover, SPEC Line changes with apparatuses and methods which observe a foreign material. In FIG. 8, the line in which 20 foreign matters having a size of 0.5 μm or more are 20 is SPEC Line.
尚、上記実施例には前記プラズマ処理による除電工程は含まれないが、除電工程を追加することで、異物の発生傾向を更に減少させることができる。 In addition, although the static elimination process by the said plasma processing is not included in the said Example, the generation | occurrence | production tendency of a foreign material can further be reduced by adding a static elimination process.
(付記) 又、本発明は以下の実施の態様を含む。 (Additional remarks) Moreover, this invention includes the following embodiments.
(付記1)成膜処理工程と成膜処理工程との間に異物除去工程を介在させたことを特徴とする半導体製造方法。 (Additional remark 1) The semiconductor manufacturing method characterized by interposing the foreign material removal process between the film-forming process and the film-forming process.
(付記2)前記異物除去工程が、昇温工程、降温工程、リカバリ工程を含む付記1の半導体製造方法。 (Supplementary note 2) The semiconductor manufacturing method according to supplementary note 1, wherein the foreign matter removing step includes a temperature raising step, a temperature lowering step, and a recovery step.
(付記3)前記異物除去工程が、昇温工程、降温工程、リカバリ工程と、前記昇温工程、前記降温工程、前記リカバリ工程と並行して実行される圧力変動サイクル工程を含む付記1の半導体製造方法。 (Supplementary note 3) The semiconductor according to supplementary note 1, wherein the foreign matter removing step includes a temperature raising step, a temperature lowering step, a recovery step, and a pressure fluctuation cycle step executed in parallel with the temperature raising step, the temperature lowering step, and the recovery step. Production method.
(付記4)前記異物除去工程の途中に、一時的にプラズマを発生させ除電を行う付記1の半導体製造方法。 (Supplementary note 4) The semiconductor manufacturing method according to supplementary note 1, wherein neutralization is performed by temporarily generating plasma during the foreign substance removing step.
(付記5)前記昇温工程と前記降温工程との温度変化は400℃以上であり、前記降温工程と前記リカバリ工程との温度変化は250℃以上である付記2又は付記3の半導体製造方法。 (Additional remark 5) The semiconductor manufacturing method of Additional remark 2 or Additional remark 3 whose temperature change of the said temperature rising process and the said temperature-fall process is 400 degreeC or more, and whose temperature change with the said temperature-fall process and the said recovery process is 250 degreeC or more.
(付記6)圧力変動幅は、25000Pa以上である付記3の半導体製造方法。 (Additional remark 6) The semiconductor manufacturing method of Additional remark 3 whose pressure fluctuation range is 25000 Pa or more.
(付記7)前記プラズマは、N2 プラズマである付記4の半導体製造方法。 (Supplementary note 7) The semiconductor manufacturing method according to supplementary note 4, wherein the plasma is N2 plasma.
1 基板処理装置 2 ウェーハ 13 ボート 15 処理炉 31 コントローラ 32 ヒータ 33 処理室 34 反応管 35a
第1ガス供給管 35b 第2ガス供給管 37d 第4バルブ 42 ガス排気管 43 真空ポンプ 46 第1棒状電極 47 第2棒状電極 51 高周波電源 52 プラズマ生成領域
DESCRIPTION OF SYMBOLS 1 Substrate processing apparatus 2 Wafer 13 Boat 15 Processing furnace 31 Controller 32 Heater 33 Processing chamber 34 Reaction tube 35a
First gas supply pipe 35b Second gas supply pipe 37d Fourth valve 42 Gas exhaust pipe 43 Vacuum pump 46 First rod-shaped electrode 47 Second rod-shaped electrode 51 High-frequency power source 52 Plasma generation region
Claims (9)
前記基板及び前記処理室内の雰囲気を加熱する加熱手段と、
前記処理室内へガスを供給するガス供給手段と、
前記処理室内を排出するガス排出手段と、
前記基板保持具に対し前記基板を移載する移載手段と、
前記処理室から搬出された前記基板保持具に対して基板を移載する移載工程と、前記基板保持具を前記処理室内に収容しない状態で、前記処理室内を、前記基板を処理する処理温度を超える第1の温度へ昇温させた後、前記処理温度よりも低い第2の温度へ降温させている最中に前記処理室内の圧力の昇圧、降圧を繰返して前記処理室内の異物を除去する異物除去工程と、を行わせ、前記移載工程と前記異物除去工程とを並行して行わせる様、前記加熱手段、前記ガス供給手段、前記ガス排出手段および前記移載手段を制御する制御部とを、有する基板処理装置。 A processing chamber for storing a substrate holder holding the substrate and forming a film on the substrate;
Heating means for heating the substrate and the atmosphere in the processing chamber;
Gas supply means for supplying gas into the processing chamber;
Gas discharge means for discharging the processing chamber;
Transfer means for transferring the substrate to the substrate holder;
A transfer step of transferring the substrate to the substrate holder, which is unloaded from the processing chamber, said substrate holder in a state that does not accommodated in the processing chamber, the processing temperature of the processing chamber, processing the substrate After the temperature is raised to a first temperature exceeding 1, the pressure in the processing chamber is repeatedly raised and lowered while the temperature is lowered to a second temperature lower than the processing temperature to remove foreign matter in the processing chamber. a foreign matter removing step of, to perform the said transfer step and the foreign substance removing step and a parallel manner to I line, the heating means, the gas supply means, for controlling said gas discharging means and said transfer means A substrate processing apparatus having a control unit.
前記処理室から搬出された前記基板保持具に対して前記基板を移載する移載工程と、
前記基板保持具を前記処理室内に収容しない状態で、前記処理室内を、前記基板を処理する処理温度を超える第1の温度へ昇温させた後、前記処理温度よりも低い第2の温度へと降温させている最中に前記処理室内の圧力の昇圧、降圧を繰り返して前記処理室内の異物を除去する異物除去工程とを有し、
前記移載工程と前記異物除去工程とを並行して行う半導体装置の製造方法。 A film forming step of forming a film on the substrate held by the substrate holder in the processing chamber;
A transfer step of transferring the substrate to the substrate holder, which is unloaded from the processing chamber,
In a state where the substrate holder is not housed in the processing chamber, the temperature in the processing chamber is raised to a first temperature that exceeds the processing temperature for processing the substrate, and then to a second temperature lower than the processing temperature. It said processing boosting the pressure in the chamber during which the temperature is lowered and, and a foreign matter removing step of removing foreign material from the processing chamber by repeating the step-down,
A method of manufacturing a semiconductor device, wherein the transfer step and the foreign matter removal step are performed in parallel.
前記処理室から搬出された前記基板保持具に対して前記基板を移載する移載工程と、
前記基板保持具を前記処理室内に収容しない状態で、前記処理室内を、前記基板を処理する処理温度を超える第1の温度へ昇温させた後、前記処理温度よりも低い第2の温度へと降温させている最中に前記処理室内の圧力の昇圧、降圧を繰り返して前記処理室内の異物を除去する異物除去工程とを有し、
前記移載工程と前記異物除去工程とを並行して行う基板処理方法。 A film forming step of forming a film on the substrate held by the substrate holder in the processing chamber;
A transfer step of transferring the substrate to the substrate holder, which is unloaded from the processing chamber,
In a state where the substrate holder is not housed in the processing chamber, the temperature in the processing chamber is raised to a first temperature that exceeds the processing temperature for processing the substrate, and then to a second temperature lower than the processing temperature. It said processing boosting the pressure in the chamber during which the temperature is lowered and, and a foreign matter removing step of removing foreign material from the processing chamber by repeating the step-down,
The substrate processing method which performs the said transfer process and the said foreign material removal process in parallel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014024277A JP5848788B2 (en) | 2014-02-12 | 2014-02-12 | Substrate processing apparatus, semiconductor manufacturing method, and substrate processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014024277A JP5848788B2 (en) | 2014-02-12 | 2014-02-12 | Substrate processing apparatus, semiconductor manufacturing method, and substrate processing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013018315A Division JP5546654B2 (en) | 2013-02-01 | 2013-02-01 | Substrate processing apparatus, semiconductor manufacturing method, substrate processing method, and foreign matter removal method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014143421A JP2014143421A (en) | 2014-08-07 |
JP5848788B2 true JP5848788B2 (en) | 2016-01-27 |
Family
ID=51424442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014024277A Active JP5848788B2 (en) | 2014-02-12 | 2014-02-12 | Substrate processing apparatus, semiconductor manufacturing method, and substrate processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5848788B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6332089B2 (en) * | 2015-03-16 | 2018-05-30 | 豊田合成株式会社 | Manufacturing method of semiconductor device |
JP6523119B2 (en) | 2015-09-28 | 2019-05-29 | 株式会社Kokusai Electric | Semiconductor device manufacturing method, substrate processing apparatus and program |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04228573A (en) * | 1990-12-27 | 1992-08-18 | Matsushita Electric Ind Co Ltd | Method for reducing particulate contamination in plasma chemical vapor deposition device |
JPH0513348A (en) * | 1991-06-28 | 1993-01-22 | Mitsubishi Electric Corp | Device for manufacturing semiconductor |
JP3818480B2 (en) * | 1999-04-21 | 2006-09-06 | 株式会社日立国際電気 | Method and apparatus for manufacturing semiconductor device |
US6531415B1 (en) * | 2002-01-30 | 2003-03-11 | Taiwan Semiconductor Manufacturing Company | Silicon nitride furnace tube low temperature cycle purge for attenuated particle formation |
KR100938534B1 (en) * | 2003-09-19 | 2010-01-25 | 가부시키가이샤 히다치 고쿠사이 덴키 | Process for producing semiconductor device and substrate treating apparatus |
JP4225998B2 (en) * | 2004-12-09 | 2009-02-18 | 東京エレクトロン株式会社 | Film forming method, film forming apparatus, and storage medium |
JP5028957B2 (en) * | 2005-12-28 | 2012-09-19 | 東京エレクトロン株式会社 | Film forming method, film forming apparatus, and storage medium |
JP4844261B2 (en) * | 2006-06-29 | 2011-12-28 | 東京エレクトロン株式会社 | Film forming method, film forming apparatus, and storage medium |
JP2009272367A (en) * | 2008-05-01 | 2009-11-19 | Hitachi Kokusai Electric Inc | Wafer processing device |
JP5546654B2 (en) * | 2013-02-01 | 2014-07-09 | 株式会社日立国際電気 | Substrate processing apparatus, semiconductor manufacturing method, substrate processing method, and foreign matter removal method |
-
2014
- 2014-02-12 JP JP2014024277A patent/JP5848788B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014143421A (en) | 2014-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8093072B2 (en) | Substrate processing apparatus and method of manufacturing semiconductor device | |
KR100961594B1 (en) | Substrate processing apparatus | |
JP2013012719A (en) | Substrate processing apparatus and substrate processing method | |
US8193101B2 (en) | Substrate processing apparatus and semiconductor device manufacturing method for forming film | |
JP2010239115A (en) | Substrate processing apparatus | |
JP5208294B2 (en) | Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus | |
KR20090004576A (en) | Substrate processing apparatus and semiconductor device manufacturing method | |
KR100860437B1 (en) | Substrate treating apparatus and semiconductor device manufacturing method | |
JP5546654B2 (en) | Substrate processing apparatus, semiconductor manufacturing method, substrate processing method, and foreign matter removal method | |
JP5888820B2 (en) | Substrate processing apparatus, cleaning method, and semiconductor device manufacturing method | |
JP2009272367A (en) | Wafer processing device | |
TWI578384B (en) | A semiconductor device manufacturing method, a substrate processing method, and a substrate processing apparatus | |
JP5848788B2 (en) | Substrate processing apparatus, semiconductor manufacturing method, and substrate processing method | |
JP2012049349A (en) | Substrate processing apparatus | |
JP2011054590A (en) | Substrate processing apparatus | |
JP2006237532A (en) | Substrate processing apparatus | |
JP2010118441A (en) | Method of manufacturing semiconductor device | |
JP2005243737A (en) | Substrate processing apparatus | |
JP2011035191A (en) | Substrate treatment device | |
JP2011134748A (en) | Method of manufacturing semiconductor device | |
JP2007027425A (en) | Substrate treatment device | |
JP2005277264A (en) | Substrate processing apparatus | |
JP4634155B2 (en) | Substrate processing apparatus and film forming method | |
WO2012077680A1 (en) | Method for producing substrate, method for producing semiconductor device, and substrate treatment device | |
JP4936497B2 (en) | Substrate processing apparatus and substrate processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5848788 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |