JP5845955B2 - Method for producing lithium hexafluorophosphate concentrate - Google Patents
Method for producing lithium hexafluorophosphate concentrate Download PDFInfo
- Publication number
- JP5845955B2 JP5845955B2 JP2012032368A JP2012032368A JP5845955B2 JP 5845955 B2 JP5845955 B2 JP 5845955B2 JP 2012032368 A JP2012032368 A JP 2012032368A JP 2012032368 A JP2012032368 A JP 2012032368A JP 5845955 B2 JP5845955 B2 JP 5845955B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- reaction
- concentration
- lithium hexafluorophosphate
- filtration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- -1 lithium hexafluorophosphate Chemical compound 0.000 title claims description 92
- 239000012141 concentrate Substances 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 88
- 238000006243 chemical reaction Methods 0.000 claims description 83
- 239000000243 solution Substances 0.000 claims description 60
- 238000001914 filtration Methods 0.000 claims description 54
- 239000000706 filtrate Substances 0.000 claims description 48
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 44
- 239000007787 solid Substances 0.000 claims description 36
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 35
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 35
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 30
- 239000011356 non-aqueous organic solvent Substances 0.000 claims description 30
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 27
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 27
- 239000002002 slurry Substances 0.000 claims description 26
- 239000002904 solvent Substances 0.000 claims description 25
- 239000000460 chlorine Substances 0.000 claims description 24
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 claims description 21
- 239000002994 raw material Substances 0.000 claims description 20
- 239000008151 electrolyte solution Substances 0.000 claims description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 17
- 229910001416 lithium ion Inorganic materials 0.000 claims description 17
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 14
- 229910052801 chlorine Inorganic materials 0.000 claims description 14
- 239000003792 electrolyte Substances 0.000 claims description 13
- 239000007795 chemical reaction product Substances 0.000 claims description 12
- 238000009295 crossflow filtration Methods 0.000 claims description 10
- 239000000654 additive Substances 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 4
- 239000012535 impurity Substances 0.000 description 29
- 229910052744 lithium Inorganic materials 0.000 description 26
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 25
- 229910013870 LiPF 6 Inorganic materials 0.000 description 23
- 230000002378 acidificating effect Effects 0.000 description 20
- 238000007872 degassing Methods 0.000 description 18
- 239000007788 liquid Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 239000006227 byproduct Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000007664 blowing Methods 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 238000005070 sampling Methods 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 229910052723 transition metal Inorganic materials 0.000 description 8
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 7
- OBCUTHMOOONNBS-UHFFFAOYSA-N phosphorus pentafluoride Chemical compound FP(F)(F)(F)F OBCUTHMOOONNBS-UHFFFAOYSA-N 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 150000003624 transition metals Chemical class 0.000 description 7
- 239000002699 waste material Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 238000004040 coloring Methods 0.000 description 6
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000012159 carrier gas Substances 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 238000003682 fluorination reaction Methods 0.000 description 5
- 239000003456 ion exchange resin Substances 0.000 description 5
- 229920003303 ion-exchange polymer Polymers 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000000108 ultra-filtration Methods 0.000 description 5
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 238000005660 chlorination reaction Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 229910012258 LiPO Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 239000002905 metal composite material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- WKFBZNUBXWCCHG-UHFFFAOYSA-N phosphorus trifluoride Chemical compound FP(F)F WKFBZNUBXWCCHG-UHFFFAOYSA-N 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 229910000319 transition metal phosphate Inorganic materials 0.000 description 2
- 238000009849 vacuum degassing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- QTZBTBLHYPSFMG-UHFFFAOYSA-N 5-chloro-3-methylpyridin-2-amine Chemical compound CC1=CC(Cl)=CN=C1N QTZBTBLHYPSFMG-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- HFGCNBNCMOCFCE-UHFFFAOYSA-I [F-].[F-].[F-].[F-].[F-].[Li+].[Li+].[Li+].[Li+].[Li+] Chemical compound [F-].[F-].[F-].[F-].[F-].[Li+].[Li+].[Li+].[Li+].[Li+] HFGCNBNCMOCFCE-UHFFFAOYSA-I 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000004820 halides Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/005—Lithium hexafluorophosphate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Description
本発明は、ヘキサフルオロリン酸リチウム濃縮液の製造方法およびそれを用いた、ヘキサフルオロリン酸リチウムを電解質として含有するリチウムイオン電池用電解液に関する。 The present invention relates to a method for producing a lithium hexafluorophosphate concentrate and an electrolyte for a lithium ion battery using the same and containing lithium hexafluorophosphate as an electrolyte.
リチウムイオン電池等に有用な電解質であるヘキサフルオロリン酸リチウムの製造方法は、種々提案されており、溶媒を用いたヘキサフルオロリン酸リチウムの製造方法では、無水フッ化水素を溶媒として溶解させたフッ化リチウムにガス状の五フッ化リンを反応させ、生成したヘキサフルオロリン酸リチウムを晶析し、取り出すという方法(非特許文献1)がある。 Various methods for producing lithium hexafluorophosphate which is an electrolyte useful for lithium ion batteries and the like have been proposed. In the method for producing lithium hexafluorophosphate using a solvent, anhydrous hydrogen fluoride is dissolved as a solvent. There is a method (Non-patent Document 1) in which gaseous lithium pentafluoride is reacted with lithium fluoride, and the produced lithium hexafluorophosphate is crystallized and taken out.
この方法ではヘキサフルオロリン酸リチウムの反応収率は高いが、溶媒として、蒸気圧が高く、また毒性、腐食性を有する無水フッ化水素を大量に使用しなければならず、ハンドリングが容易ではない。さらに原料の一つである五フッ化リンを別プロセスで製造する必要があることや、ヘキサフルオロリン酸リチウムの晶析プロセスが必要であることなど、コストアップにつながる要素が多い。 In this method, the reaction yield of lithium hexafluorophosphate is high, but a large amount of anhydrous hydrogen fluoride having high vapor pressure and toxicity and corrosiveness must be used as a solvent, and handling is not easy. . Furthermore, there are many factors that lead to an increase in costs, such as the need to produce phosphorus pentafluoride, which is one of the raw materials, in a separate process, and the need for a crystallization process of lithium hexafluorophosphate.
一般的な電解液製造は、まずヘキサフルオロリン酸リチウムを製造し、所定のリチウム電池用溶媒に溶解させて電解液とする方法が行われている。ヘキサフルオロリン酸リチウムの製造方法については、例えば、無溶媒で固体のフッ化リチウムと気体の五フッ化リンを反応させる方法(特許文献1)がある。この方法においては、フッ化リチウムの表面に反応生成物の被膜が形成され、反応が完全に進行せず未反応のフッ化リチウムが残存する恐れがある。 In general electrolyte production, lithium hexafluorophosphate is first produced and dissolved in a predetermined lithium battery solvent to obtain an electrolyte solution. As a method for producing lithium hexafluorophosphate, for example, there is a method of reacting solid lithium fluoride and gaseous phosphorus pentafluoride without solvent (Patent Document 1). In this method, a film of a reaction product is formed on the surface of lithium fluoride, and the reaction does not proceed completely, so that unreacted lithium fluoride may remain.
同じく無溶媒で五塩化リンとフッ化リチウムに無水フッ化水素を加えて反応させる方法(特許文献2)もある。この方法は、反応の制御が容易ではなく、氷点下数十℃までの冷却が必要である。 Similarly, there is a method (Patent Document 2) in which anhydrous hydrogen fluoride is added to phosphorus pentachloride and lithium fluoride and reacted without solvent. In this method, the reaction is not easily controlled, and cooling to several tens of degrees Celsius is necessary.
また、有機溶媒中でフッ化リチウムと五フッ化リンを反応させる方法(特許文献3)がある。この方法では反応の制御および反応生成物の純度の点で利点は大きいが、前述したように別プロセスで原料の一つである五フッ化リンガスを製造し、取り扱う必要があるためコストの課題が残る。 There is also a method of reacting lithium fluoride and phosphorus pentafluoride in an organic solvent (Patent Document 3). Although this method has great advantages in terms of reaction control and reaction product purity, as described above, it is necessary to produce and handle phosphorus pentafluoride gas, which is one of the raw materials, in a separate process. Remain.
さらに、溶媒として無水フッ化水素または極性有機溶媒であるCH3CNを用い、三塩化リンと塩素、フッ化水素を反応させて五フッ化リンを得て、さらに同一の反応器にフッ化リチウムを加えて、五フッ化リンと反応させてヘキサフルオロリン酸リチウムを製造する方法(特許文献4)もある。この方法では五フッ化リンの製造も同一反応器内で行うため効率的であるが、蒸気圧の高い五フッ化リンの生成を経由するため、加圧反応器などの高価な設備と複雑な操作が必要であり、また基本的に結晶化プロセスが必要であるために電解液製造に対して根本的なコストダウンは難しいなど多くの課題が残っている。 Further, anhydrous hydrogen fluoride or polar organic solvent CH 3 CN is used as a solvent, and phosphorus trichloride is reacted with chlorine and hydrogen fluoride to obtain phosphorus pentafluoride. Further, lithium fluoride is added to the same reactor. There is also a method of producing lithium hexafluorophosphate by reacting with phosphorus pentafluoride (Patent Document 4). This method is efficient because phosphorous pentafluoride is produced in the same reactor. However, since it produces phosphorus pentafluoride with a high vapor pressure, expensive equipment such as a pressurized reactor and complicated Many problems remain, such as the need for operation, and basically the need for a crystallization process, which makes it difficult to fundamentally reduce the cost of electrolyte production.
一方、非水性有機溶媒中で、三塩化リンと塩素と塩化リチウムとを反応させ、その後、溶媒中に生成した反応生成物とフッ化水素とを反応させることによりリチウムイオン電池用電解液を製造する方法(特許文献5)がある。この方法ではヘキサフルオロリン酸リチウムを電解質として含有する高純度のリチウムイオン電池用電解液を得ることができる。該方法ではヘキサフルオロリン酸リチウムの一部が下記に示す分解反応により分解し、固体のフッ化リチウムが析出するため、後工程で濾過操作により除去する必要がある。
LiPF6 → LiF↓ + PF5↑
On the other hand, in a non-aqueous organic solvent, phosphorous trichloride, chlorine and lithium chloride are reacted, and then the reaction product produced in the solvent is reacted with hydrogen fluoride to produce an electrolyte for a lithium ion battery. There is a method (Patent Document 5). In this method, a high-purity electrolyte solution for lithium ion batteries containing lithium hexafluorophosphate as an electrolyte can be obtained. In this method, a part of lithium hexafluorophosphate is decomposed by the decomposition reaction shown below, so that solid lithium fluoride is deposited. Therefore, it is necessary to remove it by a filtration operation in a subsequent step.
LiPF 6 → LiF ↓ + PF 5 ↑
上記の特許文献5の方法のように、後工程で固体の析出物(フッ化リチウム)を除去する場合、合成バッチ毎に副生成する前記析出物を廃棄物として処理する必要があった。 When the solid precipitate (lithium fluoride) is removed in the subsequent step as in the method of Patent Document 5, it is necessary to treat the precipitate generated as a by-product for each synthesis batch as waste.
本発明は、非水性有機溶媒中で、三塩化リンと、塩素と、塩化リチウム及び/またはフッ化リチウムとを反応させた後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、その後、脱気処理により反応溶液から塩化水素を除去した後、濾過を行い、濾液を脱気濃縮してヘキサフルオロリン酸リチウム濃縮液を得る方法において、合成バッチ毎に副生成する前記析出物を廃棄物として処理することなく、より効率的に高純度のヘキサフルオロリン酸リチウム濃縮液を製造する方法およびそれを用いた、ヘキサフルオロリン酸リチウムを電解質として含有するリチウムイオン電池用電解液の製造方法を提供するものである。 In the present invention, phosphorus trichloride, chlorine, lithium chloride and / or lithium fluoride are reacted in a non-aqueous organic solvent, and then the reaction product generated in the solvent is reacted with hydrogen fluoride. Then, after removing hydrogen chloride from the reaction solution by degassing treatment, filtration is performed, and in the method of degassing and concentrating the filtrate to obtain a lithium hexafluorophosphate concentrated solution, the precipitation generated as a by-product for each synthesis batch For producing a lithium hexafluorophosphate concentrate with high purity more efficiently without treating the waste as waste, and an electrolytic solution for lithium ion batteries containing lithium hexafluorophosphate as an electrolyte using the same The manufacturing method of this is provided.
本発明者らは、かかる課題に鑑み、鋭意研究した結果、非水性有機溶媒中で、三塩化リンと、塩素と、塩化リチウム及び/またはフッ化リチウムとを反応させた後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、その後、脱気処理により反応溶液から塩化水素を除去した後、濾過を行い、濾液を脱気濃縮してヘキサフルオロリン酸リチウム濃縮液を得る方法において、前記濾過を、水分を実質的に含まない不活性雰囲気において行い、該濾過で濾液と分離されたフッ化リチウム固形分を含む濾物を、前記反応工程(I)及び(II)のうち少なくとも1つの工程の反応の原料として用いることにより、合成バッチ毎に副生成する前記析出物を廃棄物として処理することなく、より効率的に高純度のヘキサフルオロリン酸リチウム濃縮液を製造できることを見出し、本発明に到ったものである。 As a result of earnest research in view of such problems, the present inventors have reacted phosphorus trichloride, chlorine, lithium chloride and / or lithium fluoride in a non-aqueous organic solvent, and then in the solvent. The produced reaction product is reacted with hydrogen fluoride, and then hydrogen chloride is removed from the reaction solution by degassing, followed by filtration. The filtrate is degassed and concentrated to obtain a lithium hexafluorophosphate concentrate. In the method, the filtration is carried out in an inert atmosphere substantially free of moisture, and the filtrate containing lithium fluoride solids separated from the filtrate by the filtration is subjected to the reaction steps (I) and (II). By using it as a raw material for the reaction in at least one of the steps, the high-purity lithium hexafluorophosphate is more efficiently produced without treating the precipitate generated as a by-product for each synthesis batch as waste. It found to be able to produce a reduced solution, which was led to the present invention.
すなわち本発明は、非水性有機溶媒中で、三塩化リンと、塩素と、塩化リチウム及び/またはフッ化リチウムとを反応させる、反応工程(I)、
前記反応工程(I)で前記溶媒中に生成した反応生成物とフッ化水素とを反応させる、反応工程(II)、
前記反応工程(II)後、脱気処理により反応溶液から塩化水素を除去した後、濾過を行い、濾液を脱気濃縮してヘキサフルオロリン酸リチウム濃縮液を得る方法において、
前記濾過を、水分を実質的に含まない不活性雰囲気において行い、該濾過で濾液と分離されたフッ化リチウム固形分を含む濾物を、前記反応工程(I)及び(II)のうち少なくとも1つの工程の反応の原料として用いることを特徴とする、ヘキサフルオロリン酸リチウム濃縮液の製造方法である。
That is, the present invention provides a reaction step (I) in which phosphorus trichloride, chlorine, lithium chloride and / or lithium fluoride are reacted in a non-aqueous organic solvent.
Reacting the reaction product produced in the solvent in the reaction step (I) with hydrogen fluoride, reaction step (II),
After the reaction step (II), after removing hydrogen chloride from the reaction solution by deaeration treatment, filtration is performed, and the filtrate is deaerated and concentrated to obtain a lithium hexafluorophosphate concentrate.
The filtration is performed in an inert atmosphere substantially free of moisture, and the filtrate containing the lithium fluoride solid content separated from the filtrate by the filtration is treated with at least one of the reaction steps (I) and (II). A method for producing a lithium hexafluorophosphate concentrate, characterized by being used as a raw material for a reaction in one step.
なお、前記濾過は、濾布やカートリッジフィルターを用いた、加圧濾過器、減圧濾過器、フィルタープレス機や、遠心分離による沈降分離機、濾過分離機、さらには限外濾過膜を用いたクロスフロー濾過器などで行う。前記濾過は水分を実質的に含まない不活性雰囲気において行われる。大気中など開放系で水分を含む雰囲気で濾過を行うと、ヘキサフルオロリン酸リチウムの加水分解反応により不純物であるフッ化水素やジフルオロリン酸などの不純物濃度が増加し品質上問題が生じるばかりでなく、濾物を次バッチ原料に使用する場合、主に付着水分により、ヘキサフルオロリン酸リチウム濃縮液中の塩化物イオン濃度の増加や着色が生じる場合がある。さらに、大気中での濾過作業は、酸性ガスのため機器の腐食や人体への毒性影響なども懸念され、製造作業上も好ましくない。なお、水分を実質的に含まない不活性雰囲気とは、窒素、アルゴン等の不活性ガス雰囲気で、一般に露点が−50℃以下、好ましくは−60℃以下の雰囲気をいう。 The filtration is performed using a filter cloth or a cartridge filter, a pressure filter, a vacuum filter, a filter press machine, a sedimentation separator by centrifugation, a filter separator, or a cloth using an ultrafiltration membrane. Use a flow filter or the like. The filtration is performed in an inert atmosphere substantially free of moisture. When filtration is performed in an atmosphere containing moisture in an open system such as the air, the concentration of impurities such as hydrogen fluoride and difluorophosphoric acid, which are impurities, increases due to the hydrolysis reaction of lithium hexafluorophosphate, which causes quality problems. In the case where the filtrate is used as a raw material for the next batch, the concentration of chloride ions in the lithium hexafluorophosphate concentrate or coloration may occur mainly due to adhering moisture. Further, the filtering operation in the atmosphere is an acid gas, and there is a concern about the corrosion of equipment and the toxic effect on the human body, which is not preferable in the manufacturing operation. In addition, the inert atmosphere which does not contain water | moisture content is inert gas atmosphere, such as nitrogen and argon, and generally means an atmosphere with a dew point of -50 degrees C or less, Preferably it is -60 degrees C or less.
また、前記濾物はフッ化リチウム固形分を含むことが必要である。回収したフッ化リチウム固形分を含む濾物は、次バッチ反応において、リチウム源、およびフッ素源として消費されるため、基本的に廃棄物とならず、特にリチウム回収率は100%に近くなるなど原料コスト面からも有用である。 Moreover, the said filtrate needs to contain lithium fluoride solid content. The filtrate containing the recovered lithium fluoride solid content is consumed as a lithium source and a fluorine source in the next batch reaction, so it is basically not a waste, and in particular, the lithium recovery rate is close to 100%. It is also useful in terms of raw material costs.
また、前記濾物は、フッ化リチウム固形分と、ヘキサフルオロリン酸リチウムの非水性有機溶媒溶液とからなるスラリーであることが好ましい。スラリー状態であれば、ポンプ、配管を使用した密閉状態での取り出し、移送が容易で安全なハンドリングが可能となる。 Moreover, it is preferable that the said filtration thing is a slurry which consists of lithium fluoride solid content and the non-aqueous organic solvent solution of lithium hexafluorophosphate. If it is in a slurry state, it can be taken out and transferred in a sealed state using a pump and piping, and can be handled safely.
また、前記濾過はクロスフロー濾過であることが好ましい。クロスフロー濾過以外の濾過方式では、濾過終了後に密閉系で濾物を濾布等から剥離、回収、移動するなどの固体のハンドリングが必要で、作業が煩雑で危険とトラブルが多いが、クロスフロー濾過方式であれば、濾物は、フッ化リチウム固形分と非水性有機溶媒を含むスラリーとしてハンドリング可能で、移液などの操作が密閉系では容易である。また、クロスフロー濾過は密閉状態で連続的に濾過を行う方式であり、該濾過方法であれば、水分を実質的に含まない不活性雰囲気において濾過を行うことができるため特に好ましい。 The filtration is preferably cross flow filtration. Filtration methods other than cross-flow filtration require solid handling such as separation, collection, and movement of the filtrate from the filter cloth, etc. in a closed system after filtration, which is cumbersome and dangerous and troublesome. If it is a filtration system, the filtrate can be handled as a slurry containing lithium fluoride solids and a non-aqueous organic solvent, and operations such as liquid transfer are easy in a closed system. Further, cross flow filtration is a method of continuous filtration in a sealed state, and this filtration method is particularly preferable because filtration can be performed in an inert atmosphere substantially free of moisture.
また、前記濾物は、固形分濃度が0.1〜10質量%のスラリーであることが好ましい。濾物の固形分濃度が0.1質量%未満ではクロスフロー濾過での濾過濃縮が十分でなく、効率的ではない。一方、10質量%超のスラリーでは粘度上昇によりクロスフロー濾過操作が困難になるばかりでなく、スラリー移液そのものも困難になるため好ましくない。従って、固形分濃度が10質量%超のスラリーを移液するには、移液前に予め、該スラリーに非水性有機溶媒を加えて、固形分濃度を0.1〜10質量%に調整する必要がある。なお、クロスフロー濾過以外の濾過方式では一般に10質量%以上のスラリーが得られるが、水分を実質的に含まない不活性雰囲気の操作であれば、次バッチ原料として使用しても品質上の問題はない。 Moreover, it is preferable that the said filtration thing is a slurry whose solid content concentration is 0.1-10 mass%. If the solid content concentration of the filtrate is less than 0.1% by mass, filtration concentration by cross flow filtration is not sufficient and is not efficient. On the other hand, a slurry of more than 10% by mass is not preferable because not only the cross flow filtration operation becomes difficult due to the increase in viscosity but also the slurry transfer itself becomes difficult. Therefore, in order to transfer a slurry having a solid content concentration exceeding 10% by mass, a non-aqueous organic solvent is added to the slurry in advance before the transfer to adjust the solid content concentration to 0.1 to 10% by mass. There is a need. In addition, a filtration method other than cross flow filtration generally yields a slurry of 10% by mass or more. However, if the operation is performed in an inert atmosphere substantially free of moisture, it is a quality problem even if used as a raw material for the next batch. There is no.
また本発明は、上記の製造方法で得られたヘキサフルオロリン酸リチウム濃縮液に、さらに、濾過、濃縮、非水性有機溶媒による希釈、及び、添加剤の添加から選ばれる少なくとも1つの処理を施すことを特徴とする、ヘキサフルオロリン酸リチウムを電解質として含有するリチウムイオン電池用電解液の製造方法である。 In the present invention, the lithium hexafluorophosphate concentrate obtained by the above production method is further subjected to at least one treatment selected from filtration, concentration, dilution with a non-aqueous organic solvent, and addition of an additive. This is a method for producing an electrolytic solution for a lithium ion battery containing lithium hexafluorophosphate as an electrolyte.
脱気濃縮とは、揮発により溶媒が含有する気相部を、減圧、または、窒素ガス、ドライ空気等のキャリアガスを流通することにより、系外に排出し、これにより溶質の濃度を上げる方法である。本発明では、脱気濃縮を用いることにより、溶質の濃度が高くなると共に、溶媒と共に酸性不純物も排出されることを見出し、これにより、高純度のヘキサフルオロリン酸リチウム濃縮液が製造可能となる。 Degassing concentration is a method of increasing the concentration of a solute by discharging the gas phase part contained in the solvent by volatilization out of the system by reducing the pressure or by circulating a carrier gas such as nitrogen gas or dry air. It is. In the present invention, it is found that by using degassing concentration, the concentration of the solute is increased and acidic impurities are discharged together with the solvent, whereby a highly purified lithium hexafluorophosphate concentrate can be produced. .
なお、ヘキサフルオロリン酸リチウム濃縮液中に含まれる酸性不純物濃度は低いほど好ましく、本発明で得られる該濃縮液中に含まれる酸性不純物濃度は500質量ppm以下、より好ましくは150質量ppm以下であることが望まれる。この酸性不純物濃度が上記範囲を超えるとリチウム電池特性に悪影響を及ぼす可能性があるため好ましくない。さらにヘキサフルオロリン酸リチウム濃縮液中に含まれる塩化物イオン濃度も低いほど好ましく、本発明で得られる該濃縮液中に含まれる塩化物イオン濃度は20質量ppm以下、より好ましくは5質量ppm以下であることが望まれる。この塩化物イオン濃度が上記範囲を超えるとリチウム電池特性に悪影響を及ぼす可能性があるため好ましくない。 The acidic impurity concentration contained in the lithium hexafluorophosphate concentrate is preferably as low as possible, and the acidic impurity concentration contained in the concentrate obtained in the present invention is 500 mass ppm or less, more preferably 150 mass ppm or less. It is desirable to be. If the acidic impurity concentration exceeds the above range, it is not preferable because it may adversely affect the lithium battery characteristics. Furthermore, the lower the chloride ion concentration contained in the lithium hexafluorophosphate concentrate, the better. The chloride ion concentration contained in the concentrate obtained in the present invention is 20 ppm by mass or less, more preferably 5 ppm by mass or less. It is desirable that If the chloride ion concentration exceeds the above range, the lithium battery characteristics may be adversely affected.
本発明により、三塩化リンと、塩素と、塩化リチウム及び/またはフッ化リチウムとを反応させた後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、その後、脱気処理により反応溶液から塩化水素を除去した後、濾過を行い、濾液を脱気濃縮してヘキサフルオロリン酸リチウム濃縮液を得る方法において、合成バッチ毎に副生成する前記析出物を廃棄物として処理することなく、より効率的に高純度のヘキサフルオロリン酸リチウム濃縮液を製造することができる。 According to the present invention, after reacting phosphorus trichloride, chlorine, lithium chloride and / or lithium fluoride, the reaction product produced in the solvent is reacted with hydrogen fluoride, and then degassed. In the method of removing hydrogen chloride from the reaction solution and then filtering and degassing and concentrating the filtrate to obtain a lithium hexafluorophosphate concentrate, the precipitate generated as a by-product for each synthesis batch is treated as waste. Therefore, a highly purified lithium hexafluorophosphate concentrate can be produced more efficiently.
本発明は、非水性有機溶媒中で、三塩化リンと、塩素と、塩化リチウム及び/またはフッ化リチウムとを反応させる、反応工程(I)、
前記反応工程(I)で前記溶媒中に生成した反応生成物とフッ化水素とを反応させる、反応工程(II)、
前記反応工程(II)後、脱気処理により反応溶液から塩化水素を除去した後、濾過を行い、濾液を脱気濃縮してヘキサフルオロリン酸リチウム濃縮液を得る方法において、
前記濾過を、水分を実質的に含まない不活性雰囲気において行い、該濾過で濾液と分離されたフッ化リチウム固形分を含む濾物を、前記反応工程(I)及び(II)のうち少なくとも1つの工程の反応の原料として用いることを特徴とする、ヘキサフルオロリン酸リチウム濃縮液の製造方法を提供するものである。
The present invention provides a reaction step (I) in which phosphorus trichloride, chlorine, lithium chloride and / or lithium fluoride are reacted in a non-aqueous organic solvent.
Reacting the reaction product produced in the solvent in the reaction step (I) with hydrogen fluoride, reaction step (II),
After the reaction step (II), after removing hydrogen chloride from the reaction solution by deaeration treatment, filtration is performed, and the filtrate is deaerated and concentrated to obtain a lithium hexafluorophosphate concentrate.
The filtration is performed in an inert atmosphere substantially free of moisture, and the filtrate containing the lithium fluoride solid content separated from the filtrate by the filtration is treated with at least one of the reaction steps (I) and (II). The present invention provides a method for producing a lithium hexafluorophosphate concentrate, characterized by being used as a raw material for the reaction in one step.
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
1.ヘキサフルオロリン酸リチウム濃縮液およびそれを用いた電解液の製法
(1)溶媒について
使用される非水性有機溶媒は、化学的安定性が高く、しかもヘキサフルオロリン酸リチウムの溶解度が高い鎖状もしくは環状の炭酸エステル化合物、または2つ以上の酸素原子を有するエーテル化合物が望ましい。このような溶媒としては、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状の炭酸エステル化合物、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状の炭酸エステル化合物、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、ジエチルエーテル等の鎖状のエーテル化合物、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン等の環状のエーテル化合物などが挙げられる。高誘電率や高耐酸性の理由で、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、1,2−ジメトキシエタンが好ましい。
1. Method for producing lithium hexafluorophosphate concentrate and electrolytic solution using the same (1) Solvent The non-aqueous organic solvent used has a high chemical stability and has a high chain solubility or a high solubility of lithium hexafluorophosphate. A cyclic carbonate compound or an ether compound having two or more oxygen atoms is desirable. Examples of such solvents include chain carbonate compounds such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, cyclic carbonate compounds such as ethylene carbonate, propylene carbonate, and butylene carbonate, γ-butyrolactone, γ-valerolactone, Examples include chain ether compounds such as 1,2-dimethoxyethane and diethyl ether, and cyclic ether compounds such as tetrahydrofuran, 2-methyltetrahydrofuran and dioxane. For reasons of high dielectric constant and high acid resistance, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, and 1,2-dimethoxyethane are preferred.
上記非水性有機溶媒は、一種類または数種類を混合して用いることができる。 The said non-aqueous organic solvent can be used 1 type or in mixture of several types.
(2)反応工程(I)について
本発明の製造方法は、まず非水性有機溶媒に原料である三塩化リンと、塩化リチウム及び/又はフッ化リチウムを仕込み、これに塩素ガスを吹き込むことで、該非水性有機溶媒中で反応が実施され、その後、該反応生成物を含む溶媒中にフッ化水素を導入し、反応生成物と反応させる。
(2) Regarding the reaction step (I) The production method of the present invention is prepared by first charging raw materials phosphorus trichloride and lithium chloride and / or lithium fluoride into a non-aqueous organic solvent, and blowing chlorine gas into this. The reaction is carried out in the non-aqueous organic solvent, and then hydrogen fluoride is introduced into the solvent containing the reaction product and reacted with the reaction product.
本発明において、リチウム成分(塩化リチウム及びフッ化リチウム)、塩素、三塩化リンのそれぞれのモル比は、1〜1.1:1:1〜2であり、三塩化リンの量は、塩素ガスと同量または塩素ガスよりも多く仕込む必要がある。塩素ガスの量が三塩化リンよりも多いと、過剰の塩素ガスが溶媒と反応して不純物が生成するためである。このため三塩化リンの量を、塩素ガスに対して1〜2倍molの範囲で仕込む必要がある。また、リチウム成分の量は、原料コストの点で、塩素の1〜1.1倍molが好ましい。より好ましくは、1.0倍molである。 In the present invention, the molar ratios of the lithium component (lithium chloride and lithium fluoride), chlorine, and phosphorus trichloride are 1 to 1.1: 1: 1 to 2, and the amount of phosphorus trichloride is chlorine gas. It is necessary to charge the same amount or more than chlorine gas. This is because if the amount of chlorine gas is larger than phosphorus trichloride, excess chlorine gas reacts with the solvent to generate impurities. For this reason, it is necessary to prepare the amount of phosphorus trichloride in a range of 1 to 2 times mol of chlorine gas. Further, the amount of the lithium component is preferably 1 to 1.1 times mol of chlorine in terms of raw material cost. More preferably, it is 1.0 times mol.
本発明の特徴として、濾物中のリチウム成分はほぼ100%再利用可能であるため、例えば前合成バッチの残渣である濾物中のフッ化リチウムを次バッチの原料として利用可能である。仮に前バッチの合成にて生成した、フッ化リチウムが0.1倍モル量含まれる濾物を次バッチの原料として用いる場合、該次バッチに仕込む塩化リチウム量は、上記リチウム成分の範囲からフッ化リチウム量を差し引いた0.9〜1.0倍モル量であり、塩化リチウムの仕込み量を減少させることが可能となる。 As a feature of the present invention, since the lithium component in the filtrate can be reused almost 100%, for example, lithium fluoride in the filtrate, which is a residue of the previous synthesis batch, can be used as a raw material for the next batch. If the filtrate containing 0.1 times the molar amount of lithium fluoride produced in the synthesis of the previous batch is used as the raw material for the next batch, the amount of lithium chloride charged into the next batch is in the range from the above lithium component range. The amount is 0.9 to 1.0 times the molar amount obtained by subtracting the lithium chloride amount, and the amount of lithium chloride charged can be reduced.
非水性有機溶媒に対する原料の仕込量は、非水性有機溶媒1リットルに対してリチウム成分(塩化リチウム及びフッ化リチウム)が300g以下、好ましくは200g以下にする必要がある。リチウム成分の量が非水性有機溶媒1リットルに対して300gを超えると反応中の固形分濃度が増加し、均一で効率的な反応が難しくなる。 The amount of the raw material charged in the non-aqueous organic solvent needs to be 300 g or less, preferably 200 g or less, of lithium components (lithium chloride and lithium fluoride) with respect to 1 liter of the non-aqueous organic solvent. When the amount of the lithium component exceeds 300 g with respect to 1 liter of the non-aqueous organic solvent, the solid content concentration during the reaction increases, and a uniform and efficient reaction becomes difficult.
この反応を行う際の温度は、下限が−40℃、好ましくは5℃で、上限は100℃、好ましくは50℃である。反応温度が−40℃未満では、非水性有機溶媒が凝固してしまうため反応が進行しない。また100℃よりも高い場合、着色や副反応の原因となるため好ましくない。 The lower limit of the temperature at which this reaction is carried out is −40 ° C., preferably 5 ° C., and the upper limit is 100 ° C., preferably 50 ° C. If reaction temperature is less than -40 degreeC, since a non-aqueous organic solvent will coagulate | solidify, reaction does not advance. Moreover, when higher than 100 degreeC, since it causes coloring and a side reaction, it is unpreferable.
上記反応時の圧力は特に限定しないが、生成するガス成分はなく、大気圧で反応は迅速に100%進行するため、特別な耐圧反応器を必要とせず、基本的に大気圧付近で行う。 The pressure during the reaction is not particularly limited, but there is no gas component to be generated, and the reaction proceeds rapidly 100% at atmospheric pressure. Therefore, a special pressure-resistant reactor is not required, and the reaction is basically performed near atmospheric pressure.
また反応時に光が照射されると、非水性有機溶媒と塩素の反応が進行する恐れがあるため、反応時には遮光した条件下で行うことが望ましい。 Further, if light is irradiated during the reaction, the reaction between the non-aqueous organic solvent and chlorine may proceed, so it is desirable to carry out the reaction under light-shielded conditions.
塩素ガス吹き込み完了後、反応器内に仕込んだ塩化リチウム粉末は、下記反応式[1]により全部または一部溶解して、ヘキサクロロリン酸リチウムと推定される中間体化合物となる。
LiCl + PCl3 + Cl2 → LiPCl6 [1]
After completion of the blowing of chlorine gas, the lithium chloride powder charged into the reactor is dissolved in whole or in part by the following reaction formula [1] to become an intermediate compound presumed to be lithium hexachlorophosphate.
LiCl + PCl 3 + Cl 2 → LiPCl 6 [1]
また、前記反応工程(I)の原料として、フッ化リチウムが含まれる濾物を用いた場合、該フッ化リチウムは、下記反応式[2]により全部または一部溶解して、LiPClxFyと推定される中間体化合物となる。
aLiF + bLiCl + cPCl3 + dCl2 → eLiPClxFy [2]
(xは任意の塩素元素数、yは任意のフッ素元素数であり、xとyの和は6である。またa〜eは任意数である。)
When a filtrate containing lithium fluoride is used as a raw material for the reaction step (I), the lithium fluoride is dissolved in whole or in part according to the following reaction formula [2], and LiPCl x F y It becomes the presumed intermediate compound.
aLiF + bLiCl + cPCl 3 + dCl 2 → eLiPCl x F y [2]
(X is an arbitrary number of chlorine elements, y is an arbitrary number of fluorine elements, and the sum of x and y is 6. a to e are arbitrary numbers.)
(3)反応工程(II)について
次に、前記反応式[1]や[2]で生成した中間体化合物のフッ素化を行うため、無水フッ化水素を反応器内に導入する。この時、無水フッ化水素は、ガス状でも液状でも構わない。前記反応式[1]や[2]で生成した中間体化合物は、それぞれ、下記反応式[3]、[4]によって反応し、目的生成物のヘキサフルオロリン酸リチウムが得られる。
LiPCl6 + 6HF → LiPF6 + 6HCl [3]
LiPClxFy + xHF → LiPF6 + xHCl [4]
(3) Reaction step (II) Next, anhydrous hydrogen fluoride is introduced into the reactor in order to fluorinate the intermediate compound produced in the reaction formulas [1] and [2]. At this time, anhydrous hydrogen fluoride may be gaseous or liquid. The intermediate compounds produced by the above reaction formulas [1] and [2] are reacted by the following reaction formulas [3] and [4], respectively, to obtain the target product lithium hexafluorophosphate.
LiPCl 6 + 6HF → LiPF 6 + 6HCl [3]
LiPCl x F y + xHF → LiPF 6 + xHCl [4]
また、前記反応工程(II)の原料として、フッ化リチウムが含まれる濾物を用いた場合、下記反応式[5]によって目的生成物のヘキサフルオロリン酸リチウムが得られる。
LiF + PCl5 + 5HF → LiPF6 + 5HCl [5]
(PCl5は、PCl3とCl2の反応により生成したものである)
Moreover, when the filtrate containing lithium fluoride is used as the raw material of the reaction step (II), the target product lithium hexafluorophosphate is obtained by the following reaction formula [5].
LiF + PCl 5 + 5HF → LiPF 6 + 5HCl [5]
(PCl 5 is produced by the reaction of PCl 3 and Cl 2 )
無水フッ化水素の導入量は、中間生成物であるヘキサクロロリン酸リチウムと五塩化リンと前反応での過剰分の三塩化リンを合わせた量に対して、モル比で6.01倍mol以上必要である。無水フッ化水素の量が、モル比で6.01倍mol未満であると、ヘキサクロロリン酸リチウムや五塩化リンのフッ素化が十分進行せず、部分フッ素化塩素化リン酸リチウムおよび三塩化リンが残存してしまうため、液中の塩素濃度が高くなり、結果として酸性不純物濃度も高くなり、リチウム電池特性に悪影響を及ぼす恐れがある。無水フッ化水素の量がヘキサクロロリン酸リチウムと五塩化リンと過剰分の三塩化リンを合わせた量に対してモル比で6.01倍mol以上であると、ヘキサクロロリン酸リチウムは完全に反応してヘキサフルオロリン酸リチウムに変化するばかりではなく、五塩化リンが消費されてヘキサフルオロリン酸リチウムに変化し、過剰分の三塩化リンも、蒸気圧の高い三フッ化リンへと反応し、後の減圧処理等で容易に除去することが可能となる。このため、無水フッ化水素の量は、ヘキサクロロリン酸リチウムと五塩化リンと過剰分の三塩化リンを合わせた量以上導入する必要がある。なお、無水フッ化水素の導入量は原料コストの点から、ヘキサクロロリン酸リチウムと五塩化リンと過剰分の三塩化リンを合わせた量の6.01〜7.20倍molの範囲が好ましい。 The amount of anhydrous hydrogen fluoride introduced is 6.01 times mol or more in molar ratio with respect to the total amount of lithium hexachlorophosphate, phosphorus pentachloride as an intermediate product, and excess phosphorus trichloride in the previous reaction. is necessary. If the amount of anhydrous hydrogen fluoride is less than 6.01 mol in molar ratio, the fluorination of lithium hexachlorophosphate and phosphorus pentachloride does not proceed sufficiently, and partially fluorinated lithium chlorinated phosphate and phosphorus trichloride As a result, the chlorine concentration in the liquid becomes high, resulting in a high concentration of acidic impurities, which may adversely affect the lithium battery characteristics. When the amount of anhydrous hydrogen fluoride is 6.01 times mol or more in molar ratio with respect to the total amount of lithium hexachlorophosphate, phosphorus pentachloride and excess phosphorus trichloride, lithium hexachlorophosphate is completely reacted. In addition to changing to lithium hexafluorophosphate, phosphorus pentachloride is consumed and converted to lithium hexafluorophosphate, and excess phosphorus trichloride also reacts with phosphorus trifluoride with a high vapor pressure. It can be easily removed by a subsequent decompression process or the like. For this reason, it is necessary to introduce the anhydrous hydrogen fluoride in an amount equal to or more than the total amount of lithium hexachlorophosphate, phosphorus pentachloride, and excess phosphorus trichloride. The introduction amount of anhydrous hydrogen fluoride is preferably in the range of 6.01 to 7.20 times mol of the total amount of lithium hexachlorophosphate, phosphorus pentachloride and excess phosphorus trichloride from the viewpoint of raw material cost.
この反応を行う際の温度は、下限が−40℃、好ましくは5℃で、上限は100℃、好ましくは50℃である。反応温度が−40℃未満では、非水性有機溶媒が凝固してしまうため反応が進行しない。また100℃よりも高い場合、着色や副反応の原因となり、収率の低下や、濃縮液中に含まれる酸性不純物濃度が、500質量ppm以上になる恐れがあるため好ましくない。 The lower limit of the temperature at which this reaction is carried out is −40 ° C., preferably 5 ° C., and the upper limit is 100 ° C., preferably 50 ° C. If reaction temperature is less than -40 degreeC, since a non-aqueous organic solvent will coagulate | solidify, reaction does not advance. Moreover, when higher than 100 degreeC, it becomes a cause of coloring and a side reaction, and since there exists a possibility that the fall of a yield and the acidic impurity concentration contained in a concentrate may become 500 mass ppm or more, it is unpreferable.
この反応時の圧力は特に限定しないが、副生成する塩化水素を取り除くため、一般的に大気圧付近で行なわれる。 Although the pressure during this reaction is not particularly limited, it is generally carried out near atmospheric pressure in order to remove by-product hydrogen chloride.
(4)脱気処理による反応溶液からの塩化水素の除去について
上記のように合成した固形分を含むヘキサフルオロリン酸リチウム溶液は塩化水素の飽和状態の液であるため、後工程である濾過操作前に、減圧脱気や不活性ガス流通などで前記のとおり塩化水素の大部分をあらかじめ系外に排出しておくと、発泡や圧力上昇などが起こりにくく濾過操作を容易にかつ安全に行うことができる。塩化水素の除去は、減圧、または、窒素、アルゴンなどの不活性ガスやドライ空気等の水分を実質的に含まないキャリアガスを流通し、溶解している塩化水素をガス状にして系外に排出することにより行う。該工程での塩化水素除去は、ろ過工程の効率化と作業安全性向上のため行う粗精製であり、100%の除去を目的としていない。後工程の脱気濃縮工程で塩化水素の他、フッ化水素等も十分に除去可能である。このため、該工程での除去後の塩化水素濃度は特に限定しないが、概ね0.2質量%以下であれば十分である。
(4) Removal of hydrogen chloride from the reaction solution by degassing treatment Since the lithium hexafluorophosphate solution containing the solids synthesized as described above is a hydrogen chloride saturated solution, it is a subsequent filtration operation. If the majority of the hydrogen chloride is discharged out of the system in advance by vacuum degassing or inert gas circulation, foaming and pressure rise are unlikely to occur and the filtration operation can be performed easily and safely. Can do. Hydrogen chloride is removed from the system by reducing the pressure or supplying a carrier gas substantially free of moisture such as inert gas such as nitrogen and argon or dry air, and dissolving dissolved hydrogen chloride in the gaseous state. This is done by discharging. The removal of hydrogen chloride in this step is a crude purification performed for the purpose of improving the efficiency of the filtration step and improving work safety, and does not aim for 100% removal. In the subsequent degassing and concentration step, hydrogen fluoride and the like can be sufficiently removed in addition to hydrogen chloride. For this reason, the concentration of hydrogen chloride after removal in this step is not particularly limited, but is generally 0.2% by mass or less.
減圧には、真空ポンプ、アスピレータなどを用いることができる。該減圧は、反応器を密閉状態としてから、系内を大気圧以下の圧力に保持することにより行う。系内の圧力が低いほど、さらに系内の温度が高いほど、より効率的に塩化水素を除去できるが、温度が高すぎると得られる濃縮液に着色が生じたり、ヘキサフルオロリン酸リチウムの分解による収率低下、さらには非水性有機溶媒の飛散による濃度上昇が進み、粘度が上昇して後プロセスである濾過工程に悪影響を及ぼす恐れがある。このために該温度の上限は90℃、好ましくは60℃である。また、温度が低すぎると塩化水素の除去速度が低下し、さらにはヘキサフルオロリン酸リチウム溶液が凝固する可能性があるため、該温度の下限は−20℃、好ましくは10℃である。前記系内の圧力は、塩化水素濃度、および液体の温度と蒸気圧によって変わるため、一概には言えないが、該減圧は、槽内の真空度を、絶対圧で10kPa以下に保持することが好ましい。保持する圧力が10kPaを超えた場合、塩化水素を所望の濃度以下になるまで排除することができない、あるいは、所望の濃度以下になるまで排除するのに長時間を要するため、好ましくない。キャリアガスを流通する場合は、気相部のみに流通させてもよいが、バブリング等により液中も流通させるとより効率的である。 A vacuum pump, an aspirator, etc. can be used for pressure reduction. The pressure reduction is performed by keeping the reactor in a sealed state and then maintaining the system at a pressure lower than atmospheric pressure. The lower the pressure in the system and the higher the temperature in the system, the more efficiently hydrogen chloride can be removed. However, if the temperature is too high, the resulting concentrated solution may become colored or decompose lithium lithium hexafluorophosphate. There is a possibility that the yield decreases due to the concentration of the non-aqueous organic solvent and the concentration increases due to the scattering of the non-aqueous organic solvent, and the viscosity increases to adversely affect the subsequent filtration step. For this reason, the upper limit of the temperature is 90 ° C., preferably 60 ° C. Further, if the temperature is too low, the removal rate of hydrogen chloride decreases, and further, the lithium hexafluorophosphate solution may solidify. Therefore, the lower limit of the temperature is −20 ° C., preferably 10 ° C. Since the pressure in the system varies depending on the hydrogen chloride concentration and the temperature and vapor pressure of the liquid, it cannot be said unconditionally. However, the reduced pressure can maintain the degree of vacuum in the tank at 10 kPa or less in absolute pressure. preferable. When the holding pressure exceeds 10 kPa, it is not preferable because hydrogen chloride cannot be eliminated until the concentration is lower than the desired concentration or it takes a long time to eliminate hydrogen chloride below the desired concentration. When the carrier gas is circulated, it may be circulated only in the gas phase portion, but it is more efficient if it is circulated in the liquid by bubbling or the like.
(5)濾過について
前記の塩化水素の除去後に、得られた反応液を濾過することにより、濾液と、フッ化リチウム固形分を含む濾物とを分離する。濾過は、濾布やカートリッジフィルターを用いた、加圧濾過器、減圧濾過器、フィルタープレス機や、遠心分離による沈降分離機、濾過分離機、さらには限外濾過膜を用いたクロスフロー濾過器などいずれの方法でも可能であるが、ハンドリングとコストの点で前記の通り、クロスフロー濾過方式で行うことが望ましい。クロスフロー濾過では、セラミック、樹脂、等の限外濾過膜を使用し、合成した固形分を含むヘキサフルオロリン酸リチウム溶液を濾過膜に加圧循環させることにより行う。
(5) Filtration After the removal of the hydrogen chloride, the reaction solution obtained is filtered to separate the filtrate from the filtrate containing lithium fluoride solids. For filtration, pressure filters, vacuum filters, filter presses using filter cloths and cartridge filters, sedimentation separators by filtration, filtration separators, and cross-flow filters using ultrafiltration membranes However, it is desirable to use the cross flow filtration method as described above in terms of handling and cost. In the cross-flow filtration, an ultrafiltration membrane such as ceramic or resin is used, and a lithium hexafluorophosphate solution containing a synthesized solid content is pressurized and circulated through the filtration membrane.
濾過膜を通過したヘキサフルオロリン酸リチウム溶液の濾液は次工程である濃縮を行う槽に移液し、濃縮操作を行う。 The filtrate of the lithium hexafluorophosphate solution that has passed through the filtration membrane is transferred to a tank for concentration in the next step, and a concentration operation is performed.
一方、固形分を含む循環スラリーは、濾過の進捗ともにスラリー中の固形分濃度が増加するため、該固形分濃度が0.1〜10質量%のスラリーの範囲で濾過操作を管理することが好ましい。濾過操作完了後、スラリーは次バッチ反応を行う槽に移液するか、濾過操作を行った槽で次バッチ反応を行うのであれば、そのまま待機しておく。 On the other hand, since the solid content concentration in the slurry of the circulating slurry containing the solid content increases with the progress of filtration, it is preferable to manage the filtration operation in the range of the slurry having the solid content concentration of 0.1 to 10% by mass. . After completion of the filtration operation, the slurry is transferred to a tank in which the next batch reaction is performed, or if the next batch reaction is performed in the tank in which the filtration operation is performed, the slurry is kept waiting.
(4)脱気濃縮について
前記濾過によって得られた濾液中に存在する主に塩化水素、三フッ化リン、過剰導入分のフッ化水素を脱気濃縮によって除去する。
(4) Degassing concentration Hydrogen chloride, phosphorus trifluoride, and excessively introduced hydrogen fluoride present in the filtrate obtained by the filtration are removed by degassing concentration.
脱気濃縮は、溶液からの揮発成分を含む気相部を、減圧、または、窒素、アルゴンなどの不活性ガスやドライ空気等の水分を実質的に含まないキャリアガスを流通し、揮発成分を系外に排出することにより行う。また、脱気濃縮操作によりヘキサフルオロリン酸リチウムの濃度は増加し、該濃縮液を用いたリチウムイオン電池用電解液の製造が可能となる。 In degassing concentration, the gas phase part containing volatile components from the solution is evacuated, or a carrier gas substantially free of moisture such as inert gas such as nitrogen and argon or dry air is circulated to remove the volatile components. This is done by discharging out of the system. Further, the concentration of lithium hexafluorophosphate is increased by the degassing concentration operation, and it becomes possible to produce an electrolytic solution for a lithium ion battery using the concentrated solution.
減圧には、真空ポンプ、アスピレータなどを用いることができる。該減圧は、反応器を密閉状態としてから、系内を大気圧以下の圧力に保持することにより行う。系内の圧力が低いほど、さらに系内の温度が高いほど、より効率的に濃縮を行うことができるが、温度が高すぎると得られる濃縮液に着色が生じたり、ヘキサフルオロリン酸リチウムの分解による収率低下が起きたりするため、該温度の上限は90℃、好ましくは60℃である。また、温度が低すぎると濃縮速度が低下し非効率となり、さらにはヘキサフルオロリン酸リチウム溶液が凝固する可能性があり、凝固した場合は濃縮が困難となるので、該温度の下限は−20℃、好ましくは10℃である。前記系内の圧力は、濃縮対象の液体の温度と蒸気圧によって変わるため、一概には言えないが、該減圧は、槽内の真空度を、絶対圧で10kPa以下に保持することが好ましい。保持する圧力が10kPaを超えた場合、不純物である塩化水素やフッ化水素等を所望の濃度以下になるまで排除することができない、あるいは、該不純物を所望の濃度以下になるまで排除するのに長時間を要するため、好ましくない。また、保持する圧力が1kPa以下であると、前記不純物を低濃度まで排除できるため、さらに好ましい。キャリアガスを流通する場合は、気相部のみに流通させてもよいが、バブリング等により液中も流通させるとより効率的である。 A vacuum pump, an aspirator, etc. can be used for pressure reduction. The pressure reduction is performed by keeping the reactor in a sealed state and then maintaining the system at a pressure lower than atmospheric pressure. The lower the pressure in the system and the higher the temperature in the system, the more efficient the concentration can be. However, if the temperature is too high, the resulting concentrated solution may be colored or the concentration of lithium hexafluorophosphate Since the yield is reduced due to decomposition, the upper limit of the temperature is 90 ° C, preferably 60 ° C. On the other hand, if the temperature is too low, the concentration rate decreases and becomes inefficient, and further, the lithium hexafluorophosphate solution may coagulate, and if coagulated, it becomes difficult to concentrate, so the lower limit of the temperature is −20 ° C, preferably 10 ° C. Since the pressure in the system varies depending on the temperature and vapor pressure of the liquid to be concentrated, it cannot be generally stated, but the reduced pressure preferably maintains the vacuum in the tank at 10 kPa or less in absolute pressure. When the holding pressure exceeds 10 kPa, impurities such as hydrogen chloride and hydrogen fluoride cannot be excluded until the concentration is lower than the desired concentration, or the impurities are excluded until the concentration is lower than the desired concentration. Since it takes a long time, it is not preferable. Further, it is more preferable that the holding pressure is 1 kPa or less because the impurities can be eliminated to a low concentration. When the carrier gas is circulated, it may be circulated only in the gas phase portion, but it is more efficient if it is circulated in the liquid by bubbling or the like.
脱気濃縮時の温度は、下限が−20℃、好ましくは10℃で、上限は90℃、好ましくは60℃である。脱気濃縮時の温度が−20℃未満では、濃縮効率が低くなるばかりでなく、ヘキサフルオロリン酸リチウム溶液が凝固してしまう可能性があるため酸性不純物が除去され難い。また、90℃よりも高い場合、着色や分解の原因となり、結果として濃縮液中に含まれる酸性不純物濃度を、500質量ppm以下とし難くなるため好ましくない。 The lower limit of the temperature during deaeration and concentration is -20 ° C, preferably 10 ° C, and the upper limit is 90 ° C, preferably 60 ° C. When the temperature during deaeration and concentration is less than −20 ° C., not only is the concentration efficiency low, but the lithium hexafluorophosphate solution may be solidified, so that acidic impurities are difficult to remove. Moreover, when higher than 90 degreeC, it becomes a cause of coloring and decomposition | disassembly, and as a result, it becomes difficult to make acidic impurity concentration contained in a concentrate into 500 mass ppm or less, and it is unpreferable.
濃縮濃度は初期のヘキサフルオロリン酸リチウムの濃度にもよるが、濃縮後のヘキサフルオロリン酸リチウムの濃度が高いほど好ましく、最低でもヘキサフルオロリン酸リチウムの濃度が25質量%以上になるまで脱気濃縮する必要があり、好ましくは35〜45質量%程度である。45質量%を超える濃度に濃縮するとヘキサフルオロリン酸リチウム固形分の析出の可能性が生じるため好ましくない。さらに25質量%未満の濃度での濃縮の場合は、濃縮液中に含まれる酸性不純物濃度を、500質量ppm以下に低減することが難しくなり、また該ヘキサフルオロリン酸リチウム濃縮液を使用した後述の電解液の製造も難しくなるため好ましくない。従って、濃縮濃度は35〜45質量%程度が望ましい。 Although the concentration depends on the initial concentration of lithium hexafluorophosphate, the concentration of lithium hexafluorophosphate after concentration is preferably as high as possible, and it is removed until the concentration of lithium hexafluorophosphate is at least 25% by mass. It is necessary to air-concentrate, and it is preferably about 35 to 45% by mass. Concentration to a concentration exceeding 45% by mass is not preferred because it may cause precipitation of lithium hexafluorophosphate solids. Furthermore, in the case of concentration at a concentration of less than 25% by mass, it becomes difficult to reduce the concentration of acidic impurities contained in the concentrated solution to 500 ppm by mass or less, and it will be described later using the lithium hexafluorophosphate concentrated solution. Since it is difficult to produce the electrolyte solution, it is not preferable. Therefore, the concentrated concentration is preferably about 35 to 45% by mass.
前記脱気濃縮によって得られる高純度のヘキサフルオロリン酸リチウム濃縮液は、リチウムイオン電池の電解液の原料として用いることができる。リチウムイオン電池に用いる場合、前記濃縮液に、さらに、濾過、濃縮、非水性有機溶媒による希釈、及び、添加剤の添加から選ばれる少なくとも1つの処理を施すことにより、所望の濃度および構成の電解液である、リチウムイオン電池の電解液が得られる。前記濾過は濾布やカートリッジフィルターを用いた、加圧濾過器、減圧濾過器、フィルタープレス機や、遠心分離による沈降分離機、濾過分離機、さらには限外濾過膜を用いたクロスフロー濾過器などを用いてフッ化リチウム等を除去する。また、イオン交換樹脂に前記濃縮液を通すことでフッ化水素等の酸性不純物の除去を行うこともできる。その際の温度は、ヘキサフルオロリン酸リチウムや非水性有機溶媒、およびイオン交換樹脂の分解を防ぐ理由から、15〜50℃が好ましい。またイオン交換樹脂に通す前記濃縮液の粘度の観点から、16〜34℃がさらに好ましい。前記イオン交換樹脂としては母体構造がスチレンジビニルベンゼン共重合体、スチレン系、アクリル系などで、官能基は―SO3H、―N(CH3)2、―N(X)(CH3)3、―N(X)(C2H4OH)(CH3)2等が挙げられる。なお、前記Xはハロゲン化物である。前記濃縮は密閉状態での減圧脱気等により溶媒等を留去し、所望の濃度に調整するものである。また、前記濃縮において溶媒とともに酸性不純物を除去してもよい。前記非水性有機溶媒による希釈はエチルメチルカーボネート等の非水性有機溶媒により希釈し、所望の濃度に調整するものである。また、上記のリチウムイオン電池の電解液には添加剤が含有されていてもよい。 The high-purity lithium hexafluorophosphate concentrate obtained by the degassing concentration can be used as a raw material for the electrolyte solution of a lithium ion battery. When used in a lithium ion battery, the concentrated solution is further subjected to at least one treatment selected from filtration, concentration, dilution with a non-aqueous organic solvent, and addition of an additive, so that an electrolytic solution having a desired concentration and configuration is obtained. A lithium ion battery electrolyte solution is obtained. The filtration uses a filter cloth or a cartridge filter, a pressure filter, a vacuum filter, a filter press machine, a sedimentation separator by centrifugation, a filter separator, and a cross flow filter using an ultrafiltration membrane Remove lithium fluoride, etc. In addition, acidic impurities such as hydrogen fluoride can be removed by passing the concentrated solution through an ion exchange resin. The temperature at that time is preferably 15 to 50 ° C. in order to prevent decomposition of lithium hexafluorophosphate, a non-aqueous organic solvent, and an ion exchange resin. Moreover, 16-34 degreeC is more preferable from a viewpoint of the viscosity of the said concentrate which passes through an ion exchange resin. The base structure of the ion exchange resin is a styrene divinylbenzene copolymer, styrene, acrylic, or the like, and the functional groups are —SO 3 H, —N (CH 3 ) 2 , —N (X) (CH 3 ) 3. , —N (X) (C 2 H 4 OH) (CH 3 ) 2 and the like. X is a halide. The concentration is performed by distilling off the solvent and the like by vacuum degassing in a sealed state to adjust to a desired concentration. Moreover, you may remove an acidic impurity with a solvent in the said concentration. The dilution with the non-aqueous organic solvent is performed by diluting with a non-aqueous organic solvent such as ethyl methyl carbonate to adjust to a desired concentration. Further, an additive may be contained in the electrolyte solution of the lithium ion battery.
以上のように、三塩化リンと、塩素と、塩化リチウム及び/またはフッ化リチウムとを反応させた後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、その後、濾過を行い、濾液を脱気濃縮してヘキサフルオロリン酸リチウム濃縮液を得る方法において、合成バッチ毎に副生成する前記析出物を廃棄物として処理することなく、より効率的に高純度のヘキサフルオロリン酸リチウム濃縮液を製造することができる。また、以上のようにして得られたヘキサフルオロリン酸リチウムを電解質として含有している溶液から冷却や濃縮という晶析プロセスにより、ヘキサフルオロリン酸リチウム結晶を得ることも可能であるが、本発明では反応に用いた非水性有機溶媒としてリチウムイオン電池用溶媒を使用しているため、反応により得られた溶液からヘキサフルオロリン酸リチウムを晶析プロセスで固体として取り出すことなしに、直接リチウムイオン電池用電解液の原料として使用することが可能である。 As described above, after reacting phosphorus trichloride, chlorine, lithium chloride and / or lithium fluoride, the reaction product produced in the solvent is reacted with hydrogen fluoride, and then filtered. And degassing and concentrating the filtrate to obtain a lithium hexafluorophosphate concentrate, and the high-purity hexafluorophosphorus can be obtained more efficiently without treating the precipitate generated as a by-product for each synthesis batch as waste. A lithium acid concentrate can be produced. Further, lithium hexafluorophosphate crystals can be obtained from a solution containing lithium hexafluorophosphate obtained as described above as an electrolyte by a crystallization process of cooling or concentration. Since the lithium ion battery solvent is used as the non-aqueous organic solvent used in the reaction, lithium lithium hexafluorophosphate is directly removed from the solution obtained by the reaction as a solid in the crystallization process. It can be used as a raw material for an electrolytic solution.
2.リチウムイオン電池について
次に、本発明のリチウムイオン電池の構成について説明する。本発明のリチウムイオン電池は、上記の本発明の製造方法で得られるヘキサフルオロリン酸リチウム濃縮液、または該ヘキサフルオロリン酸リチウム濃縮液を用いた、ヘキサフルオロリン酸リチウムを電解質として含有するリチウムイオン電池用電解液を用いることが特徴であり、その他の構成部材には一般のリチウムイオン電池に使用されているものが用いられる。即ち、リチウムの吸蔵及び放出が可能な正極及び負極、セパレータ、容器等から成る。
2. Next, the configuration of the lithium ion battery of the present invention will be described. The lithium ion battery of the present invention is a lithium hexafluorophosphate concentrate obtained by the production method of the present invention or a lithium containing lithium hexafluorophosphate as an electrolyte using the lithium hexafluorophosphate concentrate. It is characterized by using an electrolytic solution for an ion battery, and the other components used in general lithium ion batteries are used. That is, it consists of positive and negative electrodes capable of inserting and extracting lithium, a separator, a container and the like.
負極は、負極材料と集電体を、正極は、正極材料と集電体を、少なくともそれぞれ具備する。 The negative electrode includes at least a negative electrode material and a current collector, and the positive electrode includes at least a positive electrode material and a current collector.
集電体は、正極材料や負極材料と電子のやり取りをする導電性のシートで、金属、カーボン材料、または導電性高分子を使用できる。例えば、正極用としてアルミニウム箔、負極用として銅箔が使用される。 The current collector is a conductive sheet that exchanges electrons with the positive electrode material or the negative electrode material, and a metal, a carbon material, or a conductive polymer can be used. For example, an aluminum foil is used for the positive electrode and a copper foil is used for the negative electrode.
負極材料としては、特に限定されないが、リチウムを吸蔵・放出できるリチウム金属、リチウムと他の金属との合金及び金属間化合物や種々のカーボン材料、人造黒鉛、天然黒鉛、金属酸化物、金属窒化物、活性炭、または導電性ポリマー等が用いられる。 Although it does not specifically limit as a negative electrode material, The lithium metal which can occlude / release lithium, the alloy and intermetallic compound of lithium and another metal, various carbon materials, artificial graphite, natural graphite, metal oxide, metal nitride , Activated carbon, or a conductive polymer is used.
正極材料としては、特に限定されないが、例えば、LiCoO2、LiNiO2、LiMnO2、またはLiMn2O4等のリチウム含有遷移金属複合酸化物、それらのリチウム含有遷移金属複合酸化物の遷移金属が複数混合したもの、それらのリチウム含有遷移金属複合酸化物の遷移金属の一部が他の金属に置換されたもの、LiFePO4またはLiMnPO4等のリチウム含有遷移金属リン酸塩、それらのリチウム含有遷移金属リン酸塩の遷移金属が複数混合したもの、それらのリチウム含有遷移金属リン酸塩の遷移金属の一部が他の金属に置換されたもの、TiO2、V2O5、またはMoO3等の酸化物、TiS2またはFeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、およびポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、またはカーボン材料等が使用される。 The positive electrode material is not particularly limited. For example, a lithium-containing transition metal composite oxide such as LiCoO 2 , LiNiO 2 , LiMnO 2 , or LiMn 2 O 4 , and a plurality of transition metals of these lithium-containing transition metal composite oxides are used. Mixtures, those in which some of the transition metals of the lithium-containing transition metal composite oxides are substituted with other metals, lithium-containing transition metal phosphates such as LiFePO 4 or LiMnPO 4 , those lithium-containing transition metals A mixture of a plurality of phosphate transition metals, a lithium-containing transition metal phosphate transition metal partially substituted with another metal, TiO 2 , V 2 O 5 , MoO 3, etc. Oxides, sulfides such as TiS 2 or FeS, or polyacetylene, polyparaphenylene, polyaniline, and poly A conductive polymer such as pyrrole, activated carbon, a polymer that generates radicals, or a carbon material is used.
正極材料や負極材料に、導電材としてアセチレンブラック、ケッチェンブラック、炭素繊維、または黒鉛、結着剤としてポリテトラフルオロエチレン、ポリフッ化ビニリデン、またはSBR樹脂等を加えることにより、容易にシート状に成型できる。 By adding acetylene black, ketjen black, carbon fiber, or graphite as a conductive material to a positive electrode material or a negative electrode material, and polytetrafluoroethylene, polyvinylidene fluoride, or SBR resin as a binder, it is easily formed into a sheet shape Can be molded.
正極と負極の接触を防ぐためのセパレータとしては、ポリプロピレン、ポリエチレン、紙、またはガラス繊維等で作られた不織布や多孔質シートが使用される。 As a separator for preventing contact between the positive electrode and the negative electrode, a nonwoven fabric or a porous sheet made of polypropylene, polyethylene, paper, glass fiber or the like is used.
以上の各要素からコイン状、円筒状、角形、またはアルミラミネートシート型等の形状のリチウムイオン電池が組み立てられる。 A lithium-ion battery having a coin shape, cylindrical shape, square shape, aluminum laminate sheet shape, or the like is assembled from the above elements.
以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by this Example.
[実施例1]
(第1バッチ)
ポリテトラフルオロエチレン樹脂(以降「PFA樹脂」と記載する)を接液部にコーティングしたジャケット付きSUS反応器に、エチルメチルカーボネート(以降、「EMC」と記載する)80kg、三塩化リン(以降、「PCl3」と記載する)23.1kg、塩化リチウム(以降、「LiCl」と記載する)6.8kgを仕込んだ。次に、撹拌器にて撹拌しながら、塩素ガス(以降、「Cl2」と記載する)11.4kgを吹き込み塩素化反応を行った。なおこの時、ジャケットに冷却水を流して、液温を20〜30℃に維持した。次に、同様に撹拌しながら、20〜30℃に液温を冷却維持して、無水フッ化水素(以降、「HF」と記載する)を19.9kgを吹き込むことによりフッ素化反応を行い、反応溶液を得た。なお、この時、副生成する塩化水素ガスは系外に排出し、アルカリスクラバーで中和処理した。得られた反応溶液は、ドライ真空ポンプを用いて反応器を減圧することにより脱気処理を行い、溶液中に溶解した大部分の塩化水素を除去した。この後、サンプリングを行ったところ、溶液はやや白濁しており、分析したところ、フッ化リチウム(以降、「LiF」と記載する)とヘキサフルオロリン酸リチウム(以降、「LiPF6」と記載する)の生成を確認した。溶液中のLiPF6の濃度は23質量%であり、反応収率は約93%であった。さらに酸性不純物濃度は4500質量ppmであり、その他の不純物はほとんど認められなかった。
[Example 1]
(First batch)
A jacketed SUS reactor coated with a polytetrafluoroethylene resin (hereinafter referred to as “PFA resin”) on a wetted portion was charged with 80 kg of ethyl methyl carbonate (hereinafter referred to as “EMC”), phosphorus trichloride (hereinafter referred to as “EMC”). 23.1 kg (described as “PCl 3 ”) and 6.8 kg of lithium chloride (hereinafter referred to as “LiCl”) were charged. Next, while stirring with a stirrer, 11.4 kg of chlorine gas (hereinafter referred to as “Cl 2 ”) was blown in to perform chlorination reaction. At this time, cooling water was passed through the jacket to maintain the liquid temperature at 20 to 30 ° C. Next, with the same stirring, the liquid temperature was maintained at 20 to 30 ° C., and 19.9 kg of anhydrous hydrogen fluoride (hereinafter referred to as “HF”) was blown to perform a fluorination reaction. A reaction solution was obtained. At this time, by-product hydrogen chloride gas was discharged out of the system and neutralized with an alkali scrubber. The obtained reaction solution was degassed by depressurizing the reactor using a dry vacuum pump to remove most of the hydrogen chloride dissolved in the solution. Thereafter, when sampling was performed, the solution was slightly cloudy, and when analyzed, lithium fluoride (hereinafter referred to as “LiF”) and lithium hexafluorophosphate (hereinafter referred to as “LiPF 6 ”) were described. ) Was confirmed. The concentration of LiPF 6 in the solution was 23% by mass, and the reaction yield was about 93%. Furthermore, the acidic impurity concentration was 4500 mass ppm, and other impurities were hardly recognized.
次に、塩化水素を除去した後に得られた反応溶液をスラリーポンプにて循環しながらクロスフロー濾過器(限外濾過膜;セラミックス膜)に導入して濾過操作を行った。濾液は透明であり、次工程を行うPFAをコーティングしたジャケット付きSUS反応容器に移液した。また、スラリーの固形分濃度は、質量分析を行った結果、0.2質量%であった。 Next, the reaction solution obtained after removing hydrogen chloride was introduced into a cross flow filter (ultrafiltration membrane; ceramic membrane) while circulating with a slurry pump, and filtration operation was performed. The filtrate was transparent and transferred to a jacketed SUS reaction vessel coated with PFA for the next step. The solid content concentration of the slurry was 0.2% by mass as a result of mass spectrometry.
次に、前記濾液を、反応器ジャケットに45℃温水を流通させて加温しながら密閉状態とした後にドライ真空ポンプを用いて脱気濃縮を行った。脱気濃縮開始より、容器内の圧力は低下し、非水性有機溶媒であるEMCの留出が確認され、合成液中のLiPF6濃度が40質量%になるまで継続した。脱気濃縮終了時点の反応容器内の圧力は約3hPaであった。脱気濃縮終了後、容器内に窒素ガスを導入して大気圧に復圧し、サンプリング、分析を行ったところ、生成物はLiPF6であり、その他の生成物はほとんど認められなかった。酸性不純物濃度は290質量ppmに低減した。また、塩化物イオン濃度(以降、「Cl濃度」と記載する)は、3質量ppm未満であり、着色も認められなかった。結果を表1に示す。 Next, the filtrate was sealed by heating 45 ° C. warm water through the reactor jacket, and then degassed and concentrated using a dry vacuum pump. From the start of deaeration and concentration, the pressure in the vessel decreased, and distillation of EMC as a non-aqueous organic solvent was confirmed, and continued until the concentration of LiPF 6 in the synthesis solution reached 40% by mass. The pressure in the reaction vessel at the end of degassing concentration was about 3 hPa. After completion of the deaeration and concentration, nitrogen gas was introduced into the container, the pressure was returned to atmospheric pressure, sampling and analysis were performed. As a result, the product was LiPF 6 and almost no other product was observed. The acidic impurity concentration was reduced to 290 mass ppm. The chloride ion concentration (hereinafter referred to as “Cl concentration”) was less than 3 ppm by mass, and no coloring was observed. The results are shown in Table 1.
(第2バッチ)
上記第1バッチと同様のPFA樹脂を接液部にコーティングしたジャケット付きSUS反応器に、上記第1バッチで回収した濾物(LiF固形分と、LiPF6のEMC溶液とからなるスラリー)を原料として約20kg用い、さらに、EMC:65kg、PCl3:18.8kg、LiCl:5.0kgを仕込んだ。次に、撹拌器にて撹拌しながら、Cl2:9.2kgを吹き込み塩素化反応を行った。なおこの時、ジャケットに冷却水を流して、液温を20〜30℃に維持した。次に、同様に撹拌しながら、20〜30℃に液温を冷却維持して、HF:16.0kgを吹き込むことによりフッ素化反応を行い、反応溶液を得た。なお、この時、副生成する塩化水素ガスは系外に排出し、アルカリスクラバーで中和処理した。得られた反応溶液は、ドライ真空ポンプを用いて反応器を減圧することにより脱気処理を行い、溶液中に溶解した大部分の塩化水素を除去した。この後、サンプリングを行ったところ、溶液はやや白濁しており、分析したところ、LiFとLiPF6の生成を確認した。溶液中のLiPF6の濃度は22質量%であり、反応収率は約92%であった。さらに酸性不純物濃度は1500質量ppmであり、その他の不純物はほとんど認められなかった。
(2nd batch)
Into the jacketed SUS reactor coated with the same PFA resin as in the first batch, the filtered material collected in the first batch (slurry composed of LiF solids and the LiPF 6 EMC solution) is used as a raw material. About 20 kg was used, and EMC: 65 kg, PCl 3 : 18.8 kg, and LiCl: 5.0 kg were charged. Next, chlorination reaction was performed by blowing 9.2 kg of Cl 2 while stirring with a stirrer. At this time, cooling water was passed through the jacket to maintain the liquid temperature at 20 to 30 ° C. Next, the liquid temperature was kept cooled to 20 to 30 ° C. while stirring similarly, and fluorination reaction was performed by blowing HF: 16.0 kg to obtain a reaction solution. At this time, by-product hydrogen chloride gas was discharged out of the system and neutralized with an alkali scrubber. The obtained reaction solution was degassed by depressurizing the reactor using a dry vacuum pump to remove most of the hydrogen chloride dissolved in the solution. Thereafter, when sampling was performed, the solution was slightly cloudy, and when analyzed, generation of LiF and LiPF 6 was confirmed. The concentration of LiPF 6 in the solution was 22% by mass, and the reaction yield was about 92%. Furthermore, the acidic impurity concentration was 1500 mass ppm, and other impurities were hardly recognized.
次に、塩化水素を除去した後に得られた反応溶液をスラリーポンプにて循環しながらクロスフロー濾過器に導入して濾過操作を行った。クロスフロー濾過は第1バッチと同一条件で行った。濾液は透明であり、スラリーの固形分濃度は、質量分析を行った結果、0.2質量%であった。 Next, the reaction solution obtained after removing hydrogen chloride was introduced into a cross flow filter while circulating with a slurry pump, and a filtration operation was performed. Cross flow filtration was performed under the same conditions as in the first batch. The filtrate was transparent, and the solid content concentration of the slurry was 0.2% by mass as a result of mass spectrometry.
次に、前記濾液を、第1バッチと同一の条件で脱気濃縮を行った。脱気濃縮終了後サンプリング、分析を行ったところ、生成物はLiPF6であり、その他の生成物はほとんど認められなかった。酸性不純物濃度は60質量ppmに低減した。また、Cl濃度は、3質量ppm未満であり、着色も認められなかった。結果を表1に示す。 Next, the filtrate was degassed and concentrated under the same conditions as in the first batch. When sampling and analysis were performed after completion of degassing concentration, the product was LiPF 6 and other products were hardly observed. The acidic impurity concentration was reduced to 60 mass ppm. Further, the Cl concentration was less than 3 ppm by mass, and no coloring was observed. The results are shown in Table 1.
[実施例2〜6]
実施例1で用いた、溶媒種類やその量、PCl3、LiCl、Cl2、およびHFの量、使用した濾物とその添加工程を変更すること以外は実施例1と同様の手順でLiPF6濃縮液を作製した。なお、上記のいずれの実施例においても、濃縮後の生成物はLiPF6のみであり、得られた溶液において品質上の問題はなかった。結果を表1に示す。なお、表中で、「DEC」はジエチルカーボネート、「DMC」はジメチルカーボネートを意味する。
[Examples 2 to 6]
Used in Example 1, the solvent type and amount, PCl 3, LiCl, the amount of Cl 2, and HF, except for changing the filtered product and the addition step using the same procedure as in Example 1 LiPF 6 A concentrated solution was prepared. In any of the above Examples, the product after concentration was only LiPF 6 , and there was no quality problem in the obtained solution. The results are shown in Table 1. In the table, “DEC” means diethyl carbonate and “DMC” means dimethyl carbonate.
なお、実施例4では、実施例3で得られた濾物を用いているが、該濾物の固形分濃度が高すぎたため、該濾物にEMCを加えて、固形分濃度を5.0質量%に調整したものを移液し、使用した。 In Example 4, the filtrate obtained in Example 3 was used. However, because the solid content concentration of the filtrate was too high, EMC was added to the filtrate to obtain a solid content concentration of 5.0. What was adjusted to the mass% was transferred and used.
[比較例1]
(第1バッチ)
実施例1と同様のPFA樹脂を接液部にコーティングしたジャケット付きSUS反応器に、実施例4で回収した濾物(LiF固形分と、LiPF6のEMC溶液とからなるスラリー)約20kgに、EMC:65kg、PCl3:18.8kg、LiCl:5.0kgを仕込んだ。次に、撹拌器にて撹拌しながら、Cl2:9.2kgを吹き込み塩素化反応を行った。なおこの時、ジャケットに冷却水を流して、液温を20〜30℃に維持した。次に、同様に撹拌しながら、20〜30℃に液温を冷却維持して、HF:16.0kgを吹き込むことによりフッ素化反応を行い、反応溶液を得た。なお、この時、副生成する塩化水素ガスは系外に排出し、アルカリスクラバーで中和処理した。得られた反応溶液は、ドライ真空ポンプを用いて反応器を減圧することにより脱気処理を行い、溶液中に溶解した大部分の塩化水素を除去した。この後、サンプリングを行ったところ、溶液はやや白濁しており、分析したところ、LiFとLiPF6の生成を確認した。溶液中のLiPF6の濃度は23質量%であり、反応収率は約92%であった。さらに酸性不純物濃度は5500質量ppmであり、その他の不純物はほとんど認められなかった。
[Comparative Example 1]
(First batch)
To a jacketed SUS reactor coated with the same PFA resin as in Example 1 on the wetted part, about 20 kg of the filtrate collected in Example 4 (slurry composed of LiF solid content and EMC solution of LiPF 6 ) EMC: 65 kg, PCl 3 : 18.8 kg, LiCl: 5.0 kg were charged. Next, chlorination reaction was performed by blowing 9.2 kg of Cl 2 while stirring with a stirrer. At this time, cooling water was passed through the jacket to maintain the liquid temperature at 20 to 30 ° C. Next, the liquid temperature was kept cooled to 20 to 30 ° C. while stirring similarly, and fluorination reaction was performed by blowing HF: 16.0 kg to obtain a reaction solution. At this time, by-product hydrogen chloride gas was discharged out of the system and neutralized with an alkali scrubber. The obtained reaction solution was degassed by depressurizing the reactor using a dry vacuum pump to remove most of the hydrogen chloride dissolved in the solution. Thereafter, when sampling was performed, the solution was slightly cloudy, and when analyzed, generation of LiF and LiPF 6 was confirmed. The concentration of LiPF 6 in the solution was 23% by mass, and the reaction yield was about 92%. Furthermore, the acidic impurity concentration was 5500 ppm by mass, and other impurities were hardly recognized.
次に、塩化水素を除去した後に得られた反応溶液をPFAコーティングした加圧ろ過器を用いて濾過操作を行った。なお、濾過操作は数回に分けて大気中で固形分をかきとって行った。濾物の固形分濃度は、質量分析を行った結果、45質量%であった。 Next, filtration operation was performed using a pressure filter coated with PFA on the reaction solution obtained after removing hydrogen chloride. In addition, filtration operation was divided into several times and scraped solid content in air | atmosphere. As a result of mass analysis, the solid content concentration of the filtrate was 45% by mass.
次に、前記濾液を、実施例1と同一の条件で脱気濃縮を行った。脱気濃縮終了後サンプリング、分析を行ったところ、生成物はLiPF6であり、その他の生成物としてジフルオロリン酸リチウム(以降、「LiPO2F2」と記載する)が数千質量ppm認められた。酸性不純物濃度は620質量ppmと高く、また、赤褐色の着色が認められた。結果を表2に示す。 Next, the filtrate was degassed and concentrated under the same conditions as in Example 1. After sampling and analysis after completion of degassing concentration, the product was LiPF 6 , and several thousand mass ppm of lithium difluorophosphate (hereinafter referred to as “LiPO 2 F 2 ”) was recognized as the other product. It was. The acidic impurity concentration was as high as 620 mass ppm, and reddish brown coloring was observed. The results are shown in Table 2.
(第2バッチ)
上記比較例1の第1バッチと同様のPFA樹脂を接液部にコーティングしたジャケット付きSUS反応器に、EMC:65kg、PCl3:18.8kg、LiCl:5.0kgを仕込み、さらに、上記比較例1の第1バッチで回収した濾物(ケーキ)を約0.6kg仕込んだ。次に、撹拌器にて撹拌しながら、Cl2:9.2kgを吹き込み塩素化反応を行った。なおこの時、ジャケットに冷却水を流して、液温を20〜30℃に維持した。次に、同様に撹拌しながら、20〜30℃に液温を冷却維持して、HF:16.0kgを吹き込むことによりフッ素化反応を行い、反応溶液を得た。なお、この時、副生成する塩化水素ガスは系外に排出し、アルカリスクラバーで中和処理した。得られた反応溶液は、ドライ真空ポンプを用いて反応器を減圧することにより脱気処理を行い、溶液中に溶解した大部分の塩化水素を除去した。この後、サンプリングを行ったところ、溶液はやや白濁しており、分析したところ、LiFとLiPF6の他にLiPO2F2の生成を確認した。溶液中のLiPF6の濃度は20質量%であり、反応収率は約82%と低い値であった。さらに酸性不純物濃度は12000質量ppmと高かった。
(2nd batch)
A jacketed SUS reactor in which the wetted part was coated with the same PFA resin as in the first batch of Comparative Example 1 was charged with EMC: 65 kg, PCl 3 : 18.8 kg, LiCl: 5.0 kg, and the above comparison About 0.6 kg of the filtrate (cake) collected in the first batch of Example 1 was charged. Next, chlorination reaction was performed by blowing 9.2 kg of Cl 2 while stirring with a stirrer. At this time, cooling water was passed through the jacket to maintain the liquid temperature at 20 to 30 ° C. Next, the liquid temperature was kept cooled to 20 to 30 ° C. while stirring similarly, and fluorination reaction was performed by blowing HF: 16.0 kg to obtain a reaction solution. At this time, by-product hydrogen chloride gas was discharged out of the system and neutralized with an alkali scrubber. The obtained reaction solution was degassed by depressurizing the reactor using a dry vacuum pump to remove most of the hydrogen chloride dissolved in the solution. Thereafter, when sampling was performed, the solution was slightly cloudy, and when analyzed, generation of LiPO 2 F 2 was confirmed in addition to LiF and LiPF 6 . The concentration of LiPF 6 in the solution was 20% by mass, and the reaction yield was a low value of about 82%. Furthermore, the acidic impurity concentration was as high as 12000 mass ppm.
次に、塩化水素を除去した後に得られた反応溶液を上記比較例1の第1バッチと同様の方法で濾過操作した。濾物の固形分濃度は、質量分析を行った結果、44質量%であった。 Next, the reaction solution obtained after removing hydrogen chloride was filtered in the same manner as in the first batch of Comparative Example 1 above. The solid content concentration of the filtrate was 44% by mass as a result of mass spectrometry.
次に、前記濾液を、実施例1と同一の条件で脱気濃縮を行った。脱気濃縮終了後サンプリング、分析を行ったところ、生成物はLiPF6であり、その他の生成物としてLiPO2F2が数千質量ppm認められた。酸性不純物濃度は2500質量ppmと高く、Cl濃度も30質量ppmと高かった。さらに、濃縮液に赤褐色の着色が認められた。結果を表2に示す。 Next, the filtrate was degassed and concentrated under the same conditions as in Example 1. When sampling and analysis were performed after completion of degassing concentration, the product was LiPF 6 and LiPO 2 F 2 was found to be several thousand mass ppm as other products. The acidic impurity concentration was as high as 2500 mass ppm, and the Cl concentration was as high as 30 mass ppm. Further, reddish brown coloration was observed in the concentrate. The results are shown in Table 2.
[実施例7]
実施例1の第2バッチで得られた濃縮液をカートリッジフィルターを用いて濾別し、得られた濾過液を用いてテストセルを作製し、充放電試験により電解液としての性能を評価した。まず濾別により得られた濾過液であるLiPF6/EMC溶液を2倍程度濃縮し、そこにエチレンカーボネート(以降、「EC」と記載する)を体積比でEMC:EC=2:1になるように添加して1mol/LのLiPF6の(EMC、EC混合溶媒)電解液を調合した。
[Example 7]
The concentrate obtained in the second batch of Example 1 was filtered using a cartridge filter, a test cell was prepared using the obtained filtrate, and the performance as an electrolyte was evaluated by a charge / discharge test. First, the LiPF 6 / EMC solution, which is the filtrate obtained by filtration, is concentrated about twice, and then ethylene carbonate (hereinafter referred to as “EC”) becomes EMC: EC = 2: 1 by volume. Thus, an electrolyte solution of 1 mol / L LiPF 6 (EMC, EC mixed solvent) was prepared.
この電解液を用いて負極に黒鉛、正極にコバルト酸リチウムを用いたテストセルを組み立てた。具体的には、天然黒鉛粉末95質量部に、バインダーとして5質量部のポリフッ化ビニリデン(PVDF)を混合し、さらにN,N−ジメチルホルムアミドを添加し、スラリー状にした。このスラリーをニッケルメッシュ上に塗布して、150℃で12時間乾燥させることにより、試験用負極体とした。また、コバルト酸リチウム85質量部に、黒鉛粉末10質量部およびPVDF5質量部を混合し、さらに、N,N−ジメチルホルムアミドを添加し、スラリー状にした。このスラリーをアルミニウム箔上に塗布して、150℃で12時間乾燥させることにより、試験用正極体とした。 Using this electrolytic solution, a test cell using graphite as a negative electrode and lithium cobaltate as a positive electrode was assembled. Specifically, 95 parts by mass of natural graphite powder was mixed with 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder, and N, N-dimethylformamide was further added to form a slurry. This slurry was applied on a nickel mesh and dried at 150 ° C. for 12 hours to obtain a test negative electrode body. Further, 85 parts by mass of lithium cobaltate was mixed with 10 parts by mass of graphite powder and 5 parts by mass of PVDF, and N, N-dimethylformamide was further added to form a slurry. This slurry was applied on an aluminum foil and dried at 150 ° C. for 12 hours to obtain a test positive electrode body.
ポリプロピレン不織布をセパレータとして、上記電解液と、上記負極体および正極体とを用いてテストセルを組み立てた。続いて定電流充放電試験を、充電、放電ともに0.35mA/cm2で、充電4.2V、放電2.5Vまでのサイクルを繰り返し行い容量維持率の変化を観察した。 Using a polypropylene nonwoven fabric as a separator, a test cell was assembled using the electrolytic solution, the negative electrode body, and the positive electrode body. Subsequently, a constant current charge / discharge test was repeated at 0.35 mA / cm 2 for both charging and discharging, and the cycle of charging to 4.2 V and discharging to 2.5 V was repeated to observe the change in capacity retention rate.
その結果、充放電効率がほぼ100%で、100サイクル終了後の容量維持率は全く変化しなかった。 As a result, the charge / discharge efficiency was almost 100%, and the capacity retention rate after the end of 100 cycles did not change at all.
[実施例8]
実施例3で得られた濃縮液をカートリッジフィルターを用いて濾別し、得られた濾過液をイオン交換樹脂カラム通液し、酸性不純物濃度を10質量ppmまで低減させた。この濃縮液を用いて、実施例7と同様に、テストセルを作製し、充放電試験により電解液としての性能を評価した。
[Example 8]
The concentrated solution obtained in Example 3 was filtered off using a cartridge filter, and the obtained filtrate was passed through an ion exchange resin column to reduce the acidic impurity concentration to 10 ppm by mass. Using this concentrate, a test cell was prepared in the same manner as in Example 7, and the performance as an electrolytic solution was evaluated by a charge / discharge test.
その結果、充放電効率がほぼ100%で、100サイクル終了後の容量維持率は全く変化しなかった。 As a result, the charge / discharge efficiency was almost 100%, and the capacity retention rate after the end of 100 cycles did not change at all.
Claims (5)
前記反応工程(I)で前記溶媒中に生成した反応生成物とフッ化水素とを反応させる、反応工程(II)、
前記反応工程(II)後、脱気処理により反応溶液から塩化水素を除去した後、濾過を行い、濾液を脱気濃縮してヘキサフルオロリン酸リチウム濃縮液を得る方法において、
前記濾過を、水分を実質的に含まない不活性雰囲気において行い、該濾過で濾液と分離されたフッ化リチウム固形分を含む濾物を、前記反応工程(I)及び(II)のうち少なくとも1つの工程の反応の原料として用いることを特徴とする、ヘキサフルオロリン酸リチウム濃縮液の製造方法。 Reaction step (I) in which phosphorus trichloride, chlorine, lithium chloride and / or lithium fluoride are reacted in a non-aqueous organic solvent;
Reacting the reaction product produced in the solvent in the reaction step (I) with hydrogen fluoride, reaction step (II),
After the reaction step (II), after removing hydrogen chloride from the reaction solution by deaeration treatment, filtration is performed, and the filtrate is deaerated and concentrated to obtain a lithium hexafluorophosphate concentrate.
The filtration is performed in an inert atmosphere substantially free of moisture, and the filtrate containing the lithium fluoride solid content separated from the filtrate by the filtration is treated with at least one of the reaction steps (I) and (II). A method for producing a concentrated solution of lithium hexafluorophosphate, which is used as a raw material for a reaction in one step.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012032368A JP5845955B2 (en) | 2012-02-17 | 2012-02-17 | Method for producing lithium hexafluorophosphate concentrate |
PCT/JP2013/050640 WO2013121816A1 (en) | 2012-02-17 | 2013-01-16 | Method for producing concentrated lithium hexafluorophosphate solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012032368A JP5845955B2 (en) | 2012-02-17 | 2012-02-17 | Method for producing lithium hexafluorophosphate concentrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013166680A JP2013166680A (en) | 2013-08-29 |
JP5845955B2 true JP5845955B2 (en) | 2016-01-20 |
Family
ID=48983942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012032368A Active JP5845955B2 (en) | 2012-02-17 | 2012-02-17 | Method for producing lithium hexafluorophosphate concentrate |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5845955B2 (en) |
WO (1) | WO2013121816A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016002773A1 (en) * | 2014-07-02 | 2016-01-07 | セントラル硝子株式会社 | Method for producing purified ionic complex |
WO2016002772A1 (en) * | 2014-07-02 | 2016-01-07 | セントラル硝子株式会社 | Method for producing purified ionic complex, and ionic complex |
JP6369292B2 (en) * | 2014-11-05 | 2018-08-08 | セントラル硝子株式会社 | Method for purifying electrolyte solution and method for producing electrolyte solution |
CN110998955B (en) | 2017-09-12 | 2023-04-25 | 奥加诺株式会社 | Electrolyte refining device and method |
JP7116314B2 (en) | 2017-12-06 | 2022-08-10 | セントラル硝子株式会社 | Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same |
WO2019111983A1 (en) | 2017-12-06 | 2019-06-13 | セントラル硝子株式会社 | Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same |
CN114132912B (en) * | 2021-12-24 | 2023-04-07 | 浙江中欣氟材股份有限公司 | Synthesis method of hexafluorophosphate |
CN115196654B (en) * | 2022-08-11 | 2023-12-01 | 胜华新能源科技(东营)有限公司 | Synthesis device of liquid lithium hexafluorophosphate and application thereof |
CN115849409B (en) * | 2022-12-01 | 2024-04-09 | 胜华新能源科技(东营)有限公司 | Synthesis process of liquid lithium hexafluorophosphate |
CN115650260B (en) * | 2022-12-13 | 2023-04-18 | 深圳新宙邦科技股份有限公司 | Preparation method of lithium hexafluorophosphate, electrolyte and lithium ion battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT816288E (en) * | 1996-06-26 | 2000-04-28 | Solvay Fluor & Derivate | PREPARATION OF LITHIUM HEXAFLUOROMETHYLATES |
CN101310407B (en) * | 2005-12-06 | 2010-12-08 | 中央硝子株式会社 | Method of manufacturing electrolyte solution for lithium ion battery and lithium ion battery using it |
JP5609283B2 (en) * | 2010-06-08 | 2014-10-22 | セントラル硝子株式会社 | Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same |
-
2012
- 2012-02-17 JP JP2012032368A patent/JP5845955B2/en active Active
-
2013
- 2013-01-16 WO PCT/JP2013/050640 patent/WO2013121816A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2013121816A1 (en) | 2013-08-22 |
JP2013166680A (en) | 2013-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5845955B2 (en) | Method for producing lithium hexafluorophosphate concentrate | |
JP5862094B2 (en) | Method for producing lithium hexafluorophosphate concentrate | |
CN1108985C (en) | Preparation method of lithium hexafluorophosphate | |
CN107001042B (en) | Method for producing lithium difluorophosphate powder and lithium difluorophosphate | |
KR102036924B1 (en) | Method for producing alkali metal hexafluorophosphate, alkali metal hexafluorophosphate, method for producing electrolyte concentrate comprising alkali metal hexafluorophosphate, and method for producing secondary battery | |
KR101603376B1 (en) | Method for producing tetrafluoroborate | |
CN106744781A (en) | A kind of method of purification of difluorophosphate | |
JP5609283B2 (en) | Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same | |
JP5165364B2 (en) | Method for producing hexafluorophosphate | |
CN112537763B (en) | Method for synthesizing lithium difluorophosphate by gas-solid-liquid three-phase | |
CN112897494A (en) | Synthesis process and synthesis device of lithium difluorophosphate | |
JP5151121B2 (en) | Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same | |
JPH11157830A (en) | Production of lithium tetrafluoroborate | |
KR102687640B1 (en) | Method for producing alkali metal hexafluorophosphate, method for producing electrolyte concentrate comprising alkali metal hexafluorophosphate, and method for producing secondary battery | |
CN111909208B (en) | Preparation method of lithium tris (oxalate) phosphate | |
CN108178139A (en) | A kind of method that product yield is improved during difluorophosphate is prepared | |
TWI540097B (en) | Preparation of Tetrafluoroborate | |
CN116282085A (en) | Preparation method of lithium hexafluorophosphate | |
CN118084019A (en) | Hexafluorophosphate concentrated solution and preparation method, system and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141121 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151027 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151109 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5845955 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |