JP5845493B2 - miRNA導入による新規hiPSC作製法 - Google Patents
miRNA導入による新規hiPSC作製法 Download PDFInfo
- Publication number
- JP5845493B2 JP5845493B2 JP2013264240A JP2013264240A JP5845493B2 JP 5845493 B2 JP5845493 B2 JP 5845493B2 JP 2013264240 A JP2013264240 A JP 2013264240A JP 2013264240 A JP2013264240 A JP 2013264240A JP 5845493 B2 JP5845493 B2 JP 5845493B2
- Authority
- JP
- Japan
- Prior art keywords
- cells
- pluripotent stem
- base sequence
- stranded
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/18—Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
- C07H21/02—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0696—Artificially induced pluripotent stem cells, e.g. iPS
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/65—MicroRNA
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Epidemiology (AREA)
- Transplantation (AREA)
- Developmental Biology & Embryology (AREA)
- Cell Biology (AREA)
- Neurology (AREA)
- Physical Education & Sports Medicine (AREA)
- Pulmonology (AREA)
- Dermatology (AREA)
- Neurosurgery (AREA)
- Gastroenterology & Hepatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Description
上記文献においてiPS細胞の作成方法が徐々に明らかになってきているが、より効率的に、より高品質のiPS細胞を開発するには、新しい作成方法を明らかにし、iPS細胞に関する情報を蓄積していく必要があった。
本発明の一実施形態は、配列番号41の塩基配列を含む1または複数本鎖のポリヌクレオチドである。この1または複数本鎖のポリヌクレオチドは、後述する実施例で細胞を多能性幹細胞に誘導することが示唆されている。そのため、この1または複数本鎖のポリヌクレオチドは、細胞を多能性幹細胞へ誘導するために好適に使用できる。
他の実施形態は、上記のいずれかの1または複数本鎖のポリヌクレオチド、または上記のいずれかのベクターが導入された細胞である。この細胞は多能性が誘導されているため、再生医療等の医療材料や研究材料として好適に使用できる。
他の実施形態は、上記のいずれかの1または複数本鎖のポリヌクレオチドを、細胞に導入する工程を含む、多能性幹細胞の生産方法である。又は、上記のいずれかのベクターを、細胞に導入する工程を含む、多能性幹細胞の生産方法である。この方法を適切に用いれば、多能性幹細胞を生産することができる。なおポリヌクレオチドまたはベクターの細胞への導入、および培養方法は、当該技術分野で公知の方法に従って行うことができる。細胞への導入は、例えば、リン酸カルシウム法、リポフェクション法、エレクトロポレーション法、ウイルス(アデノウイルス、レトロウイルス、HIV等)を用いた方法、またはマイクロインジェクションなどを使用できる[改訂第4版 新 遺伝子工学ハンドブック, 羊土社(2003):152−179.]。また薬剤耐性やセルソーター等を利用して、導入された細胞のみを選択することができる。培地は、例えば、霊長類ES細胞用培地(コスモ・バイオ社)や通常のヒト細胞用の培地(例えば、DMEMやRPMIベースの培地)等を使用できる。一般的にES細胞を樹立する際にはフィーダー細胞と共培養することが多いが、本実施形態の多能性幹細胞はフィーダー細胞の非存在下でも樹立可能である。フィーダー細胞は、例えばEuropean Collection of Cell Culturesより入手できる。さらに、本実施形態の多能性幹細胞は、いずれもF-12 HAM[DMEM(15mM HEPES+1mM Sodium Pyruvate+pyridoxine+NaHCO3+5mML-glutamine)], RPMI-1640+L-glutamine, DMEM+high glucose+L-glutamine+0.1mM NEAA および REPROSTEM(REPROCell社):bFGF 3-10ng/mlからなる群から選ばれる1種以上の培地で37℃、5% CO2、10% FBSの条件で培養可能である。そのため、いわゆるiPS細胞の有する培養上の困難性を克服することにも成功している。
ここで、上記の配列番号1〜10、および41〜59の塩基配列は、ある程度であれば変異を受けていてもよい。そのような変異を有している塩基配列を含む1または複数本鎖のポリヌクレオチドは、野生型の塩基配列を含む1または複数本鎖のポリヌクレオチドと同様の効果を有すると考えられる。変異型の塩基配列を含むポリヌクレオチドは、人工的に作成することが可能であり、その場合には改変型の塩基配列を含むポリヌクレオチドと呼ぶこともできる。
本明細書において「多能性幹細胞」とは、多能性を有しており、様々な細胞へ分化することができる細胞である。例えば、国際公開第2007/069666号や、文献[Hong et al., Nature. 2009 Aug 27;460(7259):1132-5. Epub 2009 Aug 9.]に生産方法や特性の例が記載されている。また、多能性幹細胞は当業者であれば認識できるが、例えば、ヒト人工多能性幹細胞であるhiPSC(HPS0002 253G1)に比べて、いずれかの未分化マーカーを同程度かそれ以上発現している細胞を含む。
なお、本発明の一実施形態は、以下の(1)〜(33)のいずれかの実施形態を含んでいてもよい。
(1)
配列番号41の塩基配列、またはその塩基配列に対して1〜3個の塩基が欠失、置換もしくは付加された塩基配列、
を含む1本鎖または2本鎖のポリヌクレオチドを含有し、細胞を多能性幹細胞へ誘導する、多能性幹細胞誘導剤。
(2)
前記1本鎖または2本鎖のポリヌクレオチドが、miRNA作用を有する、(1)に記載の多能性幹細胞誘導剤。
(3)
前記1本鎖または2本鎖のポリヌクレオチドが、small RNAである、(1)に記載の多能性幹細胞誘導剤。
(4)
前記1本鎖または2本鎖のポリヌクレオチドが、1本鎖または2本鎖のRNA鎖である、(1)に記載の多能性幹細胞誘導剤。
(5)
前記1本鎖または2本鎖のポリヌクレオチドが、15以上のヌクレオチドからなる、(1)に記載の多能性幹細胞誘導剤。
(6)
前記1本鎖または2本鎖のポリヌクレオチドが、100以下のヌクレオチドからなる、(5)に記載の多能性幹細胞誘導剤。
(7)
前記1本鎖のポリヌクレオチドがshRNAまたはpre−miRNAであり、前記2本鎖のポリヌクレオチドがsiRNAまたはmiRNAである、(1)に記載の多能性幹細胞誘導剤。
(8)
前記shRNAまたはpre−miRNAが35〜100ヌクレオチドからなり、前記siRNAまたはmiRNAのガイド鎖が15〜40ヌクレオチドからなる、(7)に記載の多能性幹細胞誘導剤。
(9)
前記shRNA、前記pre−miRNA、前記siRNA、および前記miRNAが、1〜5ヌクレオチドからなるオーバーハングを含む、(7)に記載の多能性幹細胞誘導剤。
(10)
前記1本鎖または2本鎖のポリヌクレオチドが、さらに、配列番号42の塩基配列、またはその塩基配列に対して1〜5個の塩基が欠失、置換もしくは付加された塩基配列を含む、(1)に記載の多能性幹細胞誘導剤。
(11)
前記1本鎖または2本鎖のポリヌクレオチドが、さらに、配列番号41の塩基配列からなるポリヌクレオチドの相補鎖を含む、(1)に記載の多能性幹細胞誘導剤。
(12)
前記1本鎖または2本鎖のポリヌクレオチドが、1本鎖のポリヌクレオチドであり、且つpre−miRNAである、(1)に記載の多能性幹細胞誘導剤。
(13)
前記1本鎖のポリヌクレオチドが、配列番号43の塩基配列、またはその塩基配列に対して1〜4個の塩基が欠失、置換もしくは付加された塩基配列を含む、(12)に記載の多能性幹細胞誘導剤。
(14)
配列番号41の塩基配列、またはその塩基配列に対して1〜3個の塩基が欠失、置換もしくは付加された塩基配列、
を含むsmall RNAを含有し、細胞を多能性幹細胞へ誘導する、多能性幹細胞誘導剤。
(15)
a)配列番号43の塩基配列、
b)配列番号43の塩基配列に対して、80%以上の相同性を有する塩基配列、
c)配列番号43の塩基配列において1もしくは数個の塩基が欠失、置換もしくは付加された塩基配列、
d)配列番号43の塩基配列に相補的な塩基配列からなる核酸に対して、ストリンジェントな条件でハイブリダイズする核酸の塩基配列、
からなる群から選ばれる1種以上の塩基配列を含むポリヌクレオチドを含有し、細胞を多能性幹細胞へ誘導する、多能性幹細胞誘導剤。
(16)
体細胞を多能性幹細胞へ誘導する、(1)に記載の多能性幹細胞誘導剤。
(17)
悪性腫瘍細胞を多能性幹細胞へ誘導する、(1)に記載の多能性幹細胞誘導剤。
(18)
前記悪性腫瘍が、肝臓癌、膵臓癌、線維肉腫、多形性膠芽腫、メラノーマからなる群から選ばれる1種以上の悪性腫瘍である、(17)に記載の多能性幹細胞誘導剤。
(19)
前記多能性幹細胞が、内在性のp53を発現している、(1)に記載の多能性幹細胞誘導剤。
(20)
配列番号41の塩基配列、またはその塩基配列に対して1〜3個の塩基が欠失、置換もしくは付加された塩基配列、
を含む1本鎖または2本鎖のポリヌクレオチドを含有し、未分化細胞マーカーの発現を調節する、未分化細胞マーカー発現調節剤。
(21)
(20)に記載の未分化細胞マーカー発現調節剤であって、前記未分化細胞マーカーが、Klf4、c−Myc、Oct4、Sox2、PROM1からなる群から選ばれる1種以上の未分化細胞マーカーである、未分化細胞マーカー発現調節剤。
(22)
配列番号41の塩基配列、またはその塩基配列に対して1〜3個の塩基が欠失、置換もしくは付加された塩基配列、
を含む1本鎖または2本鎖のポリヌクレオチドを含有し、多能性幹細胞におけるp53の発現量を促進する、多能性幹細胞のp53発現促進剤。
(23)
配列番号41の塩基配列、またはその塩基配列に対して1〜3個の塩基が欠失、置換もしくは付加された塩基配列、
を含む1本鎖または2本鎖のポリヌクレオチドを、細胞に導入する工程を含む、多能性幹細胞の生産方法。
(24)
(23)に記載の生産方法で得られる、多能性幹細胞。
(25)
HPS0002:253G1株に比べて内在性のp53の発現量が増大している、(24)に記載の多能性幹細胞。
(26)
フィーダー細胞の非存在下で培養可能である、(25)に記載の多能性幹細胞。
(27)
配列番号41の塩基配列、またはその塩基配列に対して1〜3個の塩基が欠失、置換もしくは付加された塩基配列、
を含む1本鎖または2本鎖のポリヌクレオチドを含有する、悪性腫瘍の治療薬。
(28)
(27)に記載の悪性腫瘍の治療薬であって、前記悪性腫瘍が、肝臓癌、肺癌、膵臓癌、線維肉腫、多形性膠芽腫、メラノーマからなる群から選ばれる1種以上の悪性腫瘍である、悪性腫瘍の治療薬。
(29)
前記悪性腫瘍が肉腫である、(27)に記載の悪性腫瘍の治療薬。
(30)
配列番号41の塩基配列に相補的な塩基配列、またはその塩基配列に対して1〜3個の塩基が欠失、置換もしくは付加された塩基配列をコードするポリヌクレオチドを含む、ベクター。
(31)
(30)に記載のベクターを含有し、細胞を多能性幹細胞へ誘導する、多能性幹細胞誘導剤。
(32)
(30)に記載のベクターを含む、悪性腫瘍の治療薬。
(33)
配列番号41の塩基配列、またはその塩基配列に対して1〜3個の塩基が欠失、置換もしくは付加された塩基配列を含むポリヌクレオチドを含む、
多能性幹細胞誘導用、未分化細胞マーカー発現調節用、多能性幹細胞のp53発現促進用、または悪性腫瘍の治療用のキット。
(1−1)RGM249 shRNAの作成
Stealth RNAi designer(Invitrogen, CA, USA)によってRGM249 shRNAの配列をデザインし、BLOCK-it Inducible H1 RNAi Entry Vector (Invitrogen, CA, USA)を用いてRGM249 shRNAを生成するベクター(RGM249 shRNAプラスミド)を作成した。このRGM249 shRNAは、生体内においてRGM249 mRNAに対するRNAiを誘導するように設計されたsmall RNAである。
胸腺欠損マウスの右側腹に、HLF細胞を皮下注射によって播種した。またそのマウスの右側腹に、5日毎にRGM249 shRNAプラスミド+DDS、RGM249m−1 shRNAプラスミド+DDS、またはLacZ shRNAプラスミド+DDSを皮下注射した。この皮下注射は、DDS1mg当たり数μg〜数十μgの生理活性物質を混ぜ、マウス20〜30gに対して行った。このときの腫瘍ボリュームの変化を調査した(図1C)。その結果、投与から21日後、LacZ shRNAグループと比較してRGM249 shRNAグループによる有意な腫瘍抑制効果が見られた。なお、DDS(Drug Delivery System)としてはカチオン化ゼラチンハイドロゲル(MedGel社製)を使用した。プラスミドとDDSは、メーカーのプロトコールに従い各100nMで混合した。グラフには標準誤差を示してある。データ(n=5)はマン・ホイットニーテストによって分析した(P<0.01)。また、最初の投与から4週間後、RGM249 shRNAグループは、RGM249−m1 shRNAグループとLacZ shRNAグループに比較して、有意に腫瘍抑制効果を示した(P=0.034、P=0.021)。
(1−3−1)皮下投与
また皮下注射から35日後に、腫瘍で発現している遺伝子の発現抑制効果を調査した(図2A)。細胞からmirVana miRNA Isolation kitを用いてmiRNAを抽出した後、Mir-XTM miRNA qRT-PCR SYBR(R) Kitを用いてmiRNAの発現量を調べた。その結果、RGM249 shRNAプラスミド+DDS、またはRGM249m−1 shRNAプラスミド+DDSを投与した場合において、RGM249 mRNAおよびhTERT mRNAの発現レベルが、LacZ shRNAと比較して有意に低下していた(RGM249 mRNAとhTERTmRNAのP値は、それぞれP=0.036、P=0.025)。これらのデータはマン・ホイットニーテストによって分析した。クローズドの四角はRGM249の発現を示し、オープンの四角はhTERT mRNAの発現を示す。
一方で、上記のそれぞれのプラスミドを尾静脈へ静脈注射した場合において、28日後に腫瘍で発現している遺伝子の発現抑制効果を調査した(図2B)。DDSには、アテロコラーゲン(AteloGeneTM)(Jo, J., Yamamoto et al., J Nanosci Nanotechnol 6, 2853-2859 (2006).、Takeshita et al., Mol Ther 18, 181-187 (2010).)を用いた。プラスミドとDDSは、メーカーのプロトコールに従い各100μMで混合した。その結果、RGM249 shRNAプラスミド+DDSを投与した場合において、RGM249 mRNAおよびhTERT mRNAの発現レベルが、LacZ shRNAと比較して有意に低下していた。これらのデータはマン・ホイットニーテストによって分析した(P<0.05)。クローズドの四角はRGM249の発現を示し、オープンの四角はhTERT mRNAの発現を示す。以上のように、RGM249 shRNAグループにおけるRGM249 mRNAとhTERT mRNAの発現は、LacZ shRNAグループと比較して、両方とも有意に抑制された(それぞれP=0.049、0.046)。
また静脈注射から28日後に、肝臓の内外の結節を目視的に観察した。HLF細胞のみのグループ(data not shown)と、LacZ shRNAグループにおいて癌結節が目視的に見られた。また、顕微鏡でみた場合、全てのマウスの肝臓または肺に転移性の病巣が、1匹のマウスで左腎への転移が見られた。
(2−1)miR−47 siRNA、miR−101 siRNA、miR−197 siRNAのコンストラクト
RGM249を、pRNAT-U6.1/neoベクター(GenScript USA社、ニュージャージー、米国)に連結した。T7 RNAポリメラーゼにより生成されたRGM249 mRNAを、Dicer酵素(Genlantis社、カリフォルニア、米国)を使用して消化した。miRNAを、mirVANA miRNA単離キット(日本Ambion社、東京、日本)により分画し、 ヒト抗Ago2ビーズを用いたmiRNA単離キット(和光純薬工業株式会社、東京、日本)を用いて精製した。また、小RNAがAgo2に結合しない可能性があるため抗Ago2を用いずにも精製した。消化したsmall RNAsを、miRCAT-microRNAクローニングキット(Integrated DNA Technologies社、アイオワ、米国)を使用してクローニングし、TOPOベクター(Invitrogen社、カリフォルニア、米国)を使用してシークエンシングした。そして、二次構造を予測した(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi)。small RNAsの配列相同性を、miRBasを使用して検討した。以上の結果、miR−47、miR−101、miR−197の3つのmiRNAが得られた。miRNA前駆遺伝子であるRGM249 mRNAと、内部の3つのmiRNAに相当する部位を図3Aに示す。
miR−47 siRNA、miR−101 siRNA、miR−197 siRNA、またはそれらの混合物(3siRNA混合物)各50nMを高レベルのRGM249を発現するHMV−Iへトランスフェクションした。トランスフェクションにはFuGeneキット(Roche社製)を使用した。トランスフェクションから24時間経過後の形質転換体を収集した。
上記(2−2)において3siRNA混合物を同時にトランスフェクションしたHMV−IからRNA抽出を行い、miR−47、miR−101、miR−197の発現レベルを調査した(図3E)。
形質転換体の転写発現プロファイリングを、癌(hTERT、c−Myc、p53)、多分化能(Oct4、Sox2、Klf4)、幹細胞性(PROM1)に関連する遺伝子について評価した(図3F)。3siRNA混合物を使用した場合、Oct4、Sox2、hTERT、p53遺伝子は3siRNA混合物による処理に伴いアップレギュレイトし、c−MycとKlf4遺伝子はダウンレギュレイトした。一方でPROM1への影響は見られなかった。またmiR−47 siRNAは、Oct3/4およびhTERT遺伝子をアップレギュレイトし、c−MycおよびKlf4遺伝子をダウンレギュレイトした。図3D中の*は、mRNAの発現をβ−actin mRNAと比較した時に有意差があることを示す。
(3−1)siRNAの皮下投与
3siRNA混合物+DDSの皮下投与は、DDSのみのコントロール投与に比べて、HMV−I細胞の増殖性の抑制を示した(Kruskal-WallisテストにおいてP<0.01、n=5)(図4)。この試験には胸腺欠損マウスを用いた。DDSはアテロコラーゲン(AteloGeneTM)を用いた。3siRNA混合物とDDSは、メーカーのプロトコールに従い各100μMで混合した。図4中の上部に示した写真は、RNAを含まないアテロコラーゲン(mock)を皮下注射したときの写真である。下部に示した写真は、3siRNA混合物+DDSを皮下注射したときの写真である。*はRNAを含まないものとsiRNAを含むものの間に有意差(P<0.01)があることを示す。また、コントロールマウスは肺(15.8±1.9 結節)と腹腔内(0.8±0.6 結節)に複数の結節を示した(表2)。いくつかの転移性の病巣が腹腔内および腹腔外で観察され、皮下浸潤も観察された。
胸腺欠損マウスにHLF細胞を投与した後1週間後から、3siRNA混合物+DDSを毎週静脈注射した。マウス当たりに1×107細胞を含む200 μlをインジェクションした。DDSはアテロコラーゲン(AteloGeneTM)を使用した。3siRNA混合物とDDSは、メーカーのプロトコールに従い各100μMで混合した。28日後にその動物を屠殺し、肝内腫瘍と腹腔内転移の試験を行なった(表3)。この結果、3siRNA混合物+DDSの静脈投与は、HMV−1細胞の抗転移能を有意に誘導した(P<0.05、肺と肝臓それぞれ)。肝臓と肺では転移がほとんど見られず、1匹のマウスのみで腹腔内への転移が見られた。
(4−1)腫瘍におけるmiRNAとmRNAの発現レベルの評価方法
siRNAで処理した腫瘍を用いてmiR−47、miR−101、miR−197の発現レベルの評価を以下の通り行った。miRNAの発現量は、細胞または組織からmirVana miRNA Isolation kit を用いてmiRNAを抽出した後、Mir-XTM miRNA qRT-PCR SYBR(R) Kit を用いて調べた。これにより、siRNAによるmiRNAの発現抑制効果、およびmiRNAの発現量の変化を確認した。
皮下による異種移植によって、3つのmiRNAの抑制効果を実証した。前記異種移植は、1 × 107個のHMV-I細胞を右側腹へ接種することにより確立した。触知できる腫瘍は播種から7日後に確認できた。10匹のマウスをランダムに2グループに分け、3siRNA混合物(100 μM)(n=5)、または等量のDDS(n=5)を投与した。3siRNA混合物をトランスフェクションした細胞は、in vitroで増殖が抑制された。5週間後、腫瘍を分析するためにマウスを屠殺した。腫瘍ボリュームはボリューム = π/6×横幅×縦幅×高さの式によって評価した。
siRNA混合物(400 μM)またはDDSで処理する1週間前に、HMV−I細胞(1×107 細胞)を胸腺欠損マウスの尾静脈にインジェクションした。siRNA混合物またはDDSは毎週投与し、腫瘍ボリュームまたは転移を5週間後に調査した。全てのマウスはJapanese Association for Accreditation for Laboratory Animal Care-approved facilitiesで保管および飼育した。動物実験および取り扱いはfederal Institutional Animal Care and Use Committee guidelinesを厳格に遵守した。
腫瘍内のRNAの定量化、および高い再現性のシークエンシングを行ない、3siRNA混合物による、miR−47、miR−101、miR−197それぞれの発現抑制効果を評価した結果を図5Bに示す。データはクラスカル・ワーリステスト(n=5)を用いて分析した。*はDDS処理した腫瘍に対してmiRNA発現レベルに有意差(P<0.01)があることを示す。3つのmiRNAはの量は、3siRNA混合物を投与することによって減少する傾向が見られた。
上記(4−1−2)で得られた腫瘍について、顕微鏡による調査結果(HE(ヘマトキシリン・エオシン染色); ×400)を図5Cに示す。上部はコントロールを、下部はsiRNAで処理した腫瘍を示す。siRNAで処理した腫瘍はHMV−I細胞で減少し、フィブロシスによる置き換わりに伴って腫瘍は壊死し、新血管新生は抑制された。
上記(4−1−2)で得られた腫瘍について、腫瘍、分化、多能性の関連遺伝子の転写レベルを試験した結果を図5Dに示す(*: P<0.05, **: P<0.01)。Oct4、Klf4、p53、hTERT、PROM1、Sox2は多能性、腫瘍形成、または癌幹細胞性に関与すると考えられる。2−△△法を用いてβ−actin mRNAの発現を比較した。図5D中においてCntlはコントロール(DDSのみ)を表し、3 mixは3siRNA混合物+DDSを表す。この結果、3siRNA混合物はp53およびSox2のmRNAの上昇を誘導した。一方で、hTERT、PROM1、Oct3/4、Klf4は減少した。
(5−1)miRNA−197の抑制と、hsa−mir−520dのアップレギュレーションの評価
FuGeneキット(Roche社製)を用いて、miR−197 siRNAを293FT細胞にトランスフェクションした後、顕微鏡で観察した(図6A)。また、ウイルスベクター(pMIRNA1、System Bioscience:SBI社製)を用いて、hsa−mir−520d(Accession:MI0003164)をヒトの線維芽細胞細胞(TIG−1−20)に感染させた後、顕微鏡で観察した。このhsa−mir−520dは、RGM249 shRNAをトランスフェクションすることによってアップレギュレイトされるmiRNAである(A noncoding RNA gene on chromosome 10p15.3 may function upstream of hTERT. Miura et al., BMC Mol Biol. 2009 Feb 2;10:5.)。上記ウイルスベクターから発現するhsa−mir−520dの塩基配列は5'-UCUCAAGCUGUGAGUCUACAAAGGGAAGCCCUUUCUGUUGUCUAAAAGAAAAGAAAGUGCUUCUCUUUGGUGGGUUACGGUUUGAGA-3'(配列番号43)である。その推定2次構造を図6Bに示す。この配列において、ガイド鎖に相当する配列は5'-UCUACAAAGGGAAGCCCUUUCUG-3'(配列番号41)、パッセンジャー鎖に相当する配列は5'-AAAGUGCUUCUCUUUGGUGGGU-3'(配列番号42)である。
miR−197 siRNAをトランスフェクションした293FT細胞(ヒト胎児腎臓由来細胞株)を、顕微鏡で免疫組織化学的に観察した結果を図6Cに示す。図6Cは未分化マーカーであるOct4とNANOGを検出している。上部(0hr)の3つは、トランスフェクションしていない293FT細胞を顕微鏡(拡大率: ×40)で観察した写真である。左の列は身染色、真ん中の列は抗Oct4抗体によるローダミン染色、右の列は抗NANOG抗体によるローダミン染色を施した結果である。細胞の染色は各1週間行った。
hsa−mir−520dを各種癌細胞にウイルスベクター(pMIRNA1、System Bioscience:SBI社製)で感染させ、強制発現させた。その後、上述の免疫組織科学的試験と同様の方法で未分化マーカーの発現量を観察した。その結果を図6D、図6E、図6Fに示す。使用した癌細胞は、HT1080細胞(ヒト線維肉腫細胞株)、T98G細胞(ヒトグリオーマ細胞株)、PK−45p細胞(ヒト膵臓癌由来細胞株)、HMV−I細胞(ヒト悪性黒色腫由来細胞株)、HLF細胞(ヒト肝癌由来細胞株)である。またHMV−I細胞、およびHLF細胞においては、未分化マーカーであるOct4またはNANOGを発現していた。
上記ようにして生成したiPS細胞における各種遺伝子の転写量を図7Aに示す。miR−197 siRNAで処理した293FT細胞、およびhsa−mir−520dが過剰発現した293FT細胞における各種遺伝子の転写量は同じであった。図7Aは、その2つの細胞の転写量を、hiPSC(HPS0002 253G1)('Generation of mouse-induced pluripotent stem cells with plasmid vectors.' Okita et al., Nat Protoc 5, 418-428 (2010).)の発現量に対して比較した結果である。転写レベルはワンステップリアルタイムRT−qPCRで調査した。図中、hiPSCの発現量を0として表している。上部は、293FT細胞用の培地において293FT細胞にトランスフェクションまたは感染させてから48時間後の転写量である。下部は、その後2週間、ES細胞のための培地で維持したときの転写量である。
(6−1)細胞
in vitroとin vivoにおけるhsa-mir-520d発現の効果を評価するために、複数種類の細胞株とレンチウイルスベクターとを使用した。ヒトメサンギウム細胞株である293FTは、日本Invitrogen社(東京、日本)から提供され、10%FBS、0.1mM MEM非必須アミノ酸溶液、2mM L-グルタミン、および1%ペニシリン/ストレプトマイシンを添加したダルベッコ改変イーグル培地中で培養した。強力なRGM249発現を有するヒト未成熟または未分化肝細胞株(HLF)とRGM249の弱い発現を有する高分化肝癌細胞株(Huh7)を、アメリカ培養細胞系統保存機関(American Type Culture Collection)から購入し、10%FBSおよび1%ペニシリン/ストレプトマイシンを添加したRPMI培地中で培養した。ウイルス処理により形質転換した細胞の未分化状態を維持するため、5ng/mlのbFGF-2を有するReproStem培地(ReproCell社、東京、日本)中で、細胞を培養した。ヒト誘導多能性幹細胞(HPS0001、HPS0002)は、理研バイオリソースセンターの細胞バンク(Riken Bioresource Center Cell Bank)から提供された。
pMIRNA1-mir-520d/GFP(20μg)(System Biosciences社、Mountain View、米国)とモック(mock)ベクターとしてのpCDH(20μg)とを各々、(10cm培養プレートあたり5 × 106細胞の)293FT細胞へトランスフェクトした。 上清中のウイルス粒子を回収するために、4℃、120分間、170000 × gで遠心後、ウイルスペレットを回収し、Lenti-XTM(商標)qRT-PCR滴定キット(Clontech社、カリフォルニア、米国)を使用して力価測定を行った。293FTまたはHLF細胞へのレンチウイルス感染のために、10cm培養プレート当たり100万個のウイルスを使用した。ポジティブコントロールとして使用したRGM249miRNA-197 siRNAを、ステルスRNAiデザイナー(Stealth RNAi designer)(https://rnaidesigner.invitrogen.com/rnaiexpress/)を用いて設計し、FuGENE HDトランスフェクション試薬(Roche Diagnostics社、バーゼル、スイス)を用いて、50nMの合成オリゴヌクレオチドを、293FT細胞へトランスフェクトした。また、520d-HLF細胞が骨芽細胞へと分化誘導することを確認するために、通常のRPMI1640培地中に2Mのpurmorphamineを添加して、その細胞を一週間処理した。
レンチウイルス感染後のHLFを回収し、1マウス当たり5 × 107個のHLF細胞を、各々のマウスの腹腔内および皮下(右側腹)へ接種した。注入体積は、200μlであった。6週齢の免疫不全マウス(KSN/Slc)(清水実験材料株式会社、京都、日本)を、4週間通常給餌した。KSN/Slcマウスを、100 mg/kgのネンブタールを腹腔内注射することにより麻酔し、解剖および組織学的検査のために屠殺した。皮下への異種移植を使用して、hsa-mir-520dの抑制効果を実証した。体積評価は、以下の式を使用して決定した:体積 = π/6 × 幅 × 長さ × 高さ。全ての動物は、日本実験動物管理公認協会承認施設で保管および飼育した。動物の研究と取り扱いについては国際動物実験委員会のガイドラインを厳格に遵守した。
small RNA分画を含んだトータルRNAを、培養細胞またはホモジェナイズしたマウス組織から、mirVana miRNA分離キット(Ambion社、オースチン、米国)を使用して抽出した。Mir-X(商標)miRNA qRT-PCR SYBR(登録商標)キット(Clontech社、Mountain View、米国)を製造元のマニュアル(Clontech)に従って使用することにより、成熟型miRNAsの定量を実施した。U6 small nuclear RNAをインターナルコントロールとして使用した。トータルRNA(50ng/μl)を、OneStep RT-PCRキット(日本QIAGEN社、東京、日本)を用いて逆転写および増幅した。PCR解析とデータ収集解析とは、LineGene(東洋紡、名古屋、日本)を使用して実施した。サンプルの発現レベルを、検量線方法(2-ΔΔ法)を使用して決定した。全てのデータ(hTERTのものを除く)を、インターナルコントロールであるβ-アクチンに対して標準化した。hTERTの推定は、本発明者が以前開発した定量方法に従って、コピー数により行った。そのRNA定量を、シークエンシングによって、高い再現性をもって確認した。miRNA(25ng/μl)を、Mir-X miRNA qRT-PCR SYBRキット(タカラバイオ(株)、東京、日本)を使用して定量した。siRNAによる抑制を確認するために、miRNA発現変化を評価した。mRNAまたはmiRNA定量用のプライマー配列を、表4に示す。有意差を、*: P<0.05、**: P<0.01として示した。
20μg/μlのタンパク質とi-Blotゲル転写システムとを用いてウエスタンブロット解析した。製造元のマニュアルに従って、抗β-アクチン抗体以外の抗体(抗hTERT抗体、抗p53抗体、抗Oct4抗体、抗DICER1抗体、抗AID抗体、抗Alb抗体、および抗GFAP抗体)を1:500倍に希釈し、抗β-アクチン抗体を1:1,000倍に希釈した。LAS-4000(富士フイルム、東京、日本)を使用して、化学発光シグナルを1分以内に検出した。
製造元(R&D Systems社、ミネアポリス、米国)のマニュアルに従って、多能性幹細胞マーカー(抗Oct3/4抗体および抗NANOG抗体)ならびに胚性幹細胞マーカー抗体パネル(Embryonic Stem Cell Marker Antibody Panel)を用いて、免疫組織化学的検査を実施した。293FT細胞およびHLF細胞に、miRNA-197に対するsiRNAもしくはhas-mir-520dを含むレンチウイルス粒子をトランスフェクトまたは感染させた。浮遊するトランスフェクタント(つまり、トランスフェクトされた細胞)を回収し、顕微鏡観察用の新しい培養プレートまたは免疫染色用スライドチャンバーに移した。Huh7においても、293FTとHLFと同一の処理を、免疫細胞化学検査のために行った。
免疫組織化学解析のために、4%パラフォルムアルデヒド中で固定された肝臓組織標本を、常法により処理した。この試験で用いられたモノクローナル抗体は、以下のものである:抗アルブミン抗体(Sigma社、セントルイス、米国)、抗AFP抗体(Sigma社)、および抗GFAP抗体(Sigma社)。ネガティブコントロールとしては、一次抗体を省略して染色工程を実行した。発現の程度は、病理専門家が評価した。
細胞周期解析を実行するために、単一細胞懸濁物を、冷却したPBSで一度洗浄した。細胞ペレットを、その後、穏やかにチューブを振とうすることによりほぐして、ddH2O中の3.7%ホルマリンを滴下して固定した。細胞を、少なくとも一晩、-20℃でインキュベートした。固定後、細胞を冷却したPBSを用いて二回洗浄してEtOHを除去した。その後、細胞を、100U/mlのRNaseA含有PBS中に、1 × 106細胞/mlにて再懸濁し、37℃で50分間インキュベートした。50μg/mlのヨウ化プロピジウムを直接加えて、光を遮蔽して氷上において40分間インキュベートした。DNA含量を、EXPO32 ADC解析ソフトウエアを搭載したフローサイトメーター(EPICS ALTRA; Beckman Coulter社)により解析した。DNA含量は、pMIRNA1-mir-520d/GFPクローンをトランスフェクト後に、約20000イベントで評価した。GFP陽性細胞を、Moflo XDPセルソーター(EPICS ALTRA、Beckman Coulter社)により分取(ソート)した。
腫瘍体積、ならびに肺、肝臓、腹腔内、および後腹膜腔への転移がんを、明視野イメージング機能を備えた解剖顕微鏡下または肉眼で検査および計測した。組織サンプルは、10%緩衝ホルマリン溶液中で一晩固定し、PBSで洗浄し、70%エタノールへ移した。その後、パラフィンに包埋し、薄切し、ヘマトキシリン・エオシンを用いて染色した。
レンチウイルスmir-520d発現ベクターによる感染効率を評価するために、緑色蛍光発現を検出した。
一観察変数を有し、P<0.05を有意なものと見なすMann-Whitney Uテストを用いて、3つの群(コントロール群、モック(mock)群、およびmir-520d群)間で比較した。*: P<0.05、**: P<0.01である。
(6−12−1)293FT細胞へのhas-mir-520dのウイルス感染によるin vitro試験
表現系の変化を、顕微鏡的に評価した。図8Aは、293FT細胞へのhas-mir-520dのウイルス導入後に出現した浮遊細胞集団を示す。GFP陽性浮遊細胞(図8A(a))を、ES細胞用のフィーダー細胞不含有培地中で培養し、GFP発現を有するトランスフェクタントの増殖過程をタイムラプスモードで観察した(図8A(c))。has-mir-520dがウイルス感染した293FT細胞は、24時間以内にシート状の層を形成した。幹性化転換を、免疫細胞化学(図8B)に基づき確認した。GFP陽性細胞は、抗Oct4抗体により強く染色された。3日から1週間後、細胞はより大きなコロニーに生育し、NANOG陽性状態を維持していた(図8C)。トランスフェクタントの遺伝子発現を、RT-PCR、Western blot、および定量的miRNA RT-PCRにより評価した。
has-mir-520d発現ベクターを受容したHLF細胞(以下「520d-HLF」と称することもある)を、10cmプレート当たり20〜50個の新規細胞集団へと転換した。図11A(左上図)に形態学的変化を示す。これらの細胞は、GFP(右上)および多能性マーカー(右下)を発現していた。その中で、Oct4およびNANOGは、転写的にアップレギュレートされていた。対照的に、RGM249、CD44、Alb、およびp53は、有意にダウンレギュレートされていた(**: P<0.01;図11B)。浸潤アッセイにおいては、多能性マーカー陽性細胞のほとんどは、フィブロネクチン膜(6穴プレート当たり5μg/ml)を通過して移動することはできなかった。対照的に、mock-HLF細胞は、容易に移動することができた(図11C)。ウエスタンブロットは、Oct4およびp53のアップレギュレーションを示した。has-mir-520d発現HLF(520d-HLF)細胞中で、DICER1が抑制されていた(図11D)。mock-HLF細胞と比較した場合、520d-HLF細胞では、メチル化マーカー(HDAC、Sin3A、およびMBD3)が有意に低いレベルで維持されていた(P<0.01) (図11B)。細胞周期解析によると、mock-HLFと比較して、520d-HLF細胞はS期が増加し、G0期が減少していたことを示した(図12A)。mir-520dを安定的に発現する10クローンのHLF細胞を、ES用培地で一ヶ月間に渡り培養した後には、HLFのものと比べて、520d-HLF細胞中でのhTERTおよびアルブミン(Alb)はダウンレギュレートされていた。520d-HLF細胞中での、Oct4およびp53はアップレギュレートされていた。がん幹細胞マーカー(PROM1:CD133)は、HLF、hiPSC、520d-HLF細胞間では有意差はなかった(図12B)。CD44発現は有意に減少していた(P<0.01) (データは示されない)。さらにまた、mir-520dによるHuh7細胞(高分化肝癌細胞株)における多能性誘導を検証した。小さく丸い細胞集団におけるOct4およびNANOG発現は、モックベクターによる誘導と比較して、より上昇していた。また、2μMのpurmorphamine添加により、ALP、SPP1、およびIBSPのアップレギュレーションを有する骨芽細胞へと、520d-HLF細胞を誘導した。
has-mir-520dのレンチウイルス発現ベクターまたはモックベクターにより、HLF細胞を感染したのち、その細胞(5 × 107細胞)を、免疫不全マウス(KSN/Slc)の腹腔内間隙へ注射した。has-mir-520dを発現したHLF細胞を注入したマウス群の75%は、腹腔内または注射針の刺入部分に沿って腫瘍を形成した(図14A)。対照的に、100%のモック感染群は、白色結節(HE染色(×40)にて組織学的に未分化肝癌細胞)を、腹腔内または肝臓に形成した(図14B)。12.5%(1/8)のマウス群中の520d-HLF細胞は、(肝細胞索、中心静脈、胆管(右図;白矢印)を有し、部分的に腺腫様過形成を内部に有する(図14D)(右から2番目の図))正常肝組織へと転換した(図14C、下図:HE染色組織標本)。37.5%(3/8)のHLF細胞は、表皮を有する類皮嚢胞と、汗腺(左図;白矢印)(図14A、図14D、および図14C上図;HE染色組織標本)とおよび皮脂腺(左から2番目;白矢印)とからなる奇形腫に形質転換した。生成した奇形腫と肝組織は、GFPタンパク質を発現していた(図14E)(左図:HEおよび右図:GFP)。肝組織中のほとんど全ての肝細胞がヒトアルブミンを強く発現しているのを免疫組織化学染色により確認した。肝星細胞(HSC)/筋線維芽細胞(MFs)のマーカーである、グリア線維性酸性タンパク質(GFAP)およびアルファフェトプロテイン(AFP)は、弱く発現していた。このことは、一ヶ月間に、520d-HLF細胞が未成熟肝組織へと分化したことを示唆する。50%(4/8)は、全く腫瘍および特定組織を形成しなかった。
また、免疫組織化学的分析により、未分化な肝臓組織のマーカーを用いて肝組織を構成する肝細胞、胆管、静脈、星細胞などの存在を確認できた(図15)。骨分化誘導によりOsteopontin, sialoprotein陽性の骨芽細胞を得たことから、内・中・外胚葉へ分化できる間葉系幹細胞(MSC)に形質転換できた。(図16)。
図17は高分化型肝癌(Huh7)細胞について評価した結果である。肝癌細胞においては分化度に関わらず、同等に多能性マーカー強陽性に変化させることができた。図18は多形性膠芽腫(T98G)細胞について評価した結果である。未分化脳腫瘍においても幹性誘導し、in vivoで腫瘍を形成せずに正常組織に生着した。図19は膵癌(PK−9)細胞について評価した結果である。膵癌においても幹性誘導が見られた。図20は線維肉腫(HT1080)細胞について評価した結果である。非上皮性悪性腫瘍である肉腫細胞(HT1080)をも幹性誘導し、脂肪細胞へ分化させることができた。
(7−1)細胞
HMV-I(ヒト悪性黒色腫)
T98G(ヒト神経膠芽腫)
HT1080(ヒト線維芽肉腫)
Pk-45(ヒト肝臓癌)
表5のmiRNAに対するshRNA(hsa-mir-192 shRNA、hsa-mir-196a-1 shRNA、hsa-mir-423-3p shRNA、has-mir-222 shRNA)をコードするベクターは、GenScript corp.,(NJ, USA)から購入した。このベクターは、pRNATin-H1.4/Lenti (GenScript, corp.,)に上記shRNAをコードする塩基配列が組込まれたものである(以下、「siRNA生成ウイルス)と証することもある)。細胞に導入後、shRNAを発現し、さらにsiRNAを生成することができる。
表5のmiRNAに対するsiRNA(hsa-mir-192 siRNA、hsa-mir-196a-1 siRNA、hsa-mir-423-3p siRNA、has-mir-222 siRNA)は、Stealth RNAi designer(Invitrogen社)によって入手した。配列を表6に示す。これらsiRNAが細胞増殖抑制等の効果を有していることを確認した後、上記(7−3)のshRNAでさらに細胞増殖抑制等の効果がみられるかどうかを検証するという流れで実験を行った。
細胞へのinfectionは、まず、293FTまたは293H細胞へレンチウイルスベクター(pRNATin-H1.4/Lenti)をtransfectionし、上清を回収し、遺伝子実験施設にある超遠心機で、27,000rpm、2時間遠心してウイルスを回収し、ペレットをPBSに溶解し、力価を検討後、−80度で保存した。そのウイルスを用いて、力価に基づき、各50μlずつ細胞に感染させた。また、3種類のsiRNA ( has-mir-196a-1 siRNA / has-mir-423-3p siRNA / has-mir-222 siRNA) 共感染または4種類のsiRNA (hsa-mir-192 siRNA / has-mir-196a-1 siRNA / has-mir-423-3p siRNA / has-mir-222 siRNA)共感染では、1種類のウイルス粒子が有効に作用する力価で感染させた。
mirVana(tm) miRNA Isolation Kit ( Ambion , TX , USA )を使用してmiRNA , totalRNAを抽出した。washした細胞にTorizol Reagent( Life Technologies Carlabad , CA , USA )を添加し、3分間インキュベート後Torizol Reagentの1/5量のchloroform( ニッポンジーン , Tokyo , Japan )を添加した。15秒間振盪後、14,000rpmで15分間遠心を行った。得られた上清の1/10量の100%エタノールを加え、数回転倒混和しspin columnに入れ、10,000g で15秒遠心した。カラムをwashするためmiRNA Wash Solution 1を700μl加え、10,000g で15秒遠心した。更にWash Solution 2/3を500μl加え、同様に遠心した。この作業を2回繰り返し、あらかじめ、95度に温めておいたRNase , DNase Free Waterを100μl加え、同様に遠心、そして、この過程を2回繰り返した。その後、真空濃縮を40分間し、そのうち2μlを使用し、NanoDrop( バイオメディカルサイエンス, Tokyo, Japan )を用いて濃度を測定した。
RGM249 , hTERT , Sox2 , p53 , c-Myc , Oct4 , PROM1の7種類の発現を調べるためにQIAGEN OneStep RT-PCR Kit ( Qiagen , Tokyo , Japan )を使用した。GAPDH , β-actinをコントロールとした。検討した遺伝子は多能性関連マーカー、未分化マーカー及び分化マーカー、テロメレース関連遺伝子を使用した。
PBS(-)でwashした細胞をtrypsin処理した後、エッペンドルフチューブに回収し、蛋白分解酵素阻害剤 Complete, Mini ( Roche Japan , Tokyo , Japan ) を含むCell Lysis Buffer ( SIGMA , Tokyo , Japan ) 22μlを加え、たんぱく質抽出液を得た。そのうちの2μlをNanoDropを用いて濃度測定に使用した。
iBlotTM ドライブロッティングシステム( Invitorogen , Tokyo , Japan )を使用し、電気泳動したゲルをセミドライ状態でメンブレンに転写した。その後WesternBreeze(r)イムノディテクションキット( Invitorogen , Tokyo , Japan )を使用し、ブロッキング30分、リンス5分×2、一次抗体60分、wash 5分×4、二次抗体30分、wash 5分×4、リンス2分×2を行った。そして、ケミルミネッセンス2.5mlをメンブレンに添加し5分後、遺伝子実験施設のLas-1000plus (FUJIFILM , Kanagawa , Japan ) で検出した。
1×106個の細胞をwashした後、trypsin処理し15mlチューブに回収した。その後、95%エタノールを5ml加え、オーバーナイトで固定した。翌日1μg/mlのRNaseを1ml加え、1時間37度でインキュベートした後、PIを5μl加え、30分以上4度、遮光で遺伝子実験施設のEPICS ALTRA ( Beckman coulter , Tokyo Japan ) で解析を行った。
PBS ( - )で washした細胞をtrypsin処理した後、96wallプレートに1×106個の細胞を100μlずつ蒔いた。Promega社のCellTiter96(R) Non-Radioactive Cell Proliferation Assay kitを使用して細胞増殖能を検討した。
soft agerを使用して、形質転換を起こした細胞の足場依存性及び腫瘍形成能を検討した。60mmディッシュにボトムアガロース( 0.5-0.6% )を2-3ml入れ、ある固形化した後、トップアガロース( 0.4% )で重層した。そして、そのディッシュに細胞を播き、1-2週間培養し、その後、細胞をカウントした。
Takara ( Tokyo , Japan ) 社のmir-x miRNA定量kitを用いて定量した。指定されたプロトコールに準じて施行した。
感染効率はレンチウイルスベクターの情報に準じて評価した。感染をGFP発現に関して蛍光顕微鏡で可視化して判定し、neomycinの導入、miRNAの導入を感染細胞の一部よりDNAまたはRNAを抽出し、PCRで増幅後、電気泳動で可視化して評価した。ゲノムへの取り込み部位の検討は施行しなかった。
(7−15−1)siRNA生成Lentivirus感染後のHMV-1におけるMTT assay
各siRNA生成ウイルスを感染させたHMV-1でのMTT assayを3日間施行した(図21)。3種類のsiRNA ( has-mir-196a-1 siRNA / has-mir-423-3p siRNA / has-mir-222 siRNA) 共感染または4種類のsiRNA (hsa-mir-192 siRNA / has-mir-196a-1 siRNA / has-mir-423-3p siRNA / has-mir-222 siRNA)共感染細胞で有意に増殖抑制を確認した。統計学的有意差を* ( p<0.05 ) で示した ( Mann-Whitney test ) 。
各siRNA生成ウイルス感染による導入はmiRNA発現を阻害した。また、細胞の増殖抑制を示す経時的変化を示した(図22)。図中のトップパネルは、1週間後のmockとhsa-mir-196a-1 / hsa-mir-423-3p / hsa-mir-222でのGFP検出のための蛍光顕微鏡写真である。図中のボトムパネルは、ウイルス感染後の HMV-1の増殖曲線である。コントロール、mock、hsa-mir-192、hsa-mir-196a-1 siRNA、hsa-mir-222 siRNAと比較して、3種類のsiRNA ( has-mir-196a-1 siRNA / has-mir-423-3p siRNA / has-mir-222 siRNA) 共感染または4種類のsiRNA (hsa-mir-192 siRNA / has-mir-196a-1 siRNA / has-mir-423-3p siRNA / has-mir-222 siRNA)共感染で顕著な増殖抑制を観察し、感染細胞は3週間以内にアポトーシスに至った。
miRNAに対するsiRNAを生成するウイルスベクターに感染させ、siRNAが導入されたHMV-1において、腫瘍形成能を評価するためにsoft agerを用いて、colony formation assayを行った(図23)。コントロールではコロニーを多数形成しているのに対し、hsa-mir-192単独導入、4種類 (has-mir-192 / -196a-1 / -423-3p / -222 ) のmiRNAの共発現で、顕著にコロニー形成能が抑制された。hsa-mir-192に対するsiRNAでは途中までコロニー形成を認めたが、その後、増殖は止まり、そのまま細胞の断片化を起こしてアポトーシスに至った。また、4 種類 (has-mir-192 / -196a-1 / -423-3p / -222)の共感染ではコロニーを形成することはなかった。
・アンタゴマーの合成
アンタゴマー(miRNAを標的としたsmall RNA)のデザインと合成はInvitrogen社(Stealth RNAi designer (https://rnaidesigner.invitrogen.com/rnaiexpress/))とGenScript社へ委託した(pRNATin-H1.4/Lenti, pRNAT-T6.1/neo)。shRNA−generatingベクターはBLOCK-it Inducible H1 RNAi Entry Vector (Invitrogen, CA, USA)を用いて、プロトコールに沿って作成した。
HLF細胞ラインとHMV−I細胞ラインはAmerican Type Culture CollectionとTohoku Universityからそれぞれ購入し、10% FBSと1% ペニシリン/ストレプトマイシンを添加したRPMI培地で培養した。アンタゴマー処理の場合、HMV−1細胞を50 nMのantagomirとともにインキュベーションした。
FuGene HD transfection Reagent (Roche Diagnostic GmbH)を使用して、HLFまたはHMV−I細胞に、50 nM siRNA、コントロールのオリゴヌクレオチド、または空のベクターをトランスフェクションした。ダイサー(Dicer enzyme)はGenlantisから購入し、プロトコールに沿って使用した。3つのmiRNAは、ダイサーで消化したものをmiRCAT-microRNA cloning kit (Integrated DNA Technologies)でクローニングすることによって得た。免疫不全マウスは、Charles riverからCAnN Cg-Foxn1 BALB/c-nuを、SHIMIZU Laboratory Supplies Co., Ltd.からKSN/Slcを購入した。
トータルRNA、small RNAフラクションは、培養細胞またはホモジナイズしたマウス組織から、mirVana miRNA Isolation Kit (Ambion)を用いて抽出した。miRNAの成熟化の定量は、Mir-XTM miRNA qRT-PCR SYBR(R) kit (Takara Bio Company)を用いて説明書に従って行った。U6 small nuclear RNAをインターナルコントロールとして使用した。
トータルRNAは、OneStep RT-PCR kit (QIAGEN)を用いて逆転写及び増幅させた。PCRとデータ収集分析はLineGene (TOYOBO)を用いて行った。サンプルの発現レベルは、検量線方法(2-ΔΔ法)を使用して決定した。全てのデータ(hTERTおよびRGM249のものを除く)を、インターナルコントロールであるβ-アクチンに対して標準化した。hTERTおよびRGM249の推定は、本発明者が以前開発した定量方法に従って、コピー数により行った。mRNAに関しては50ng/μlで、small RNAに関しては100ng/μlで試験した。
ウエスタンブロット解析をi-Blotゲル転写システム(Invitrogen社)を使用して実行した。目的バイオマーカー遺伝子に対するそれぞれの抗体を、製造元のマニュアルに従った希釈率を用いて使用した。20μgの細胞抽出物を試験した。
取大学動物実験委員会で承認されたプロトコルに基づいて、動物実験を実施した。腫瘍細胞接種、検死、および組織学的解析を、実験方法セクションに記載したように実施した。播種から7日後、ショートサイレンスオリゴヌクレオチドによる処理を、マウスの尾静脈または右側腹の皮下に、siRNAまたはshRNA (100μM)を週一回のペースで4〜5週にわたって行なった。腫瘍を摘出して計量した。腫瘍体積、ならびに肺、肝臓、腹腔内、および腹腔外(postperitoneal)転移がんを、明視野イメージング機能を備えた解剖顕微鏡下または肉眼で検査および計測した。組織サンプルは、10%緩衝ホルマリン溶液中で一晩固定し、PBSで洗浄し、70%エタノールへ移した。その後、パラフィンに包埋し、薄切し、ヘマトキシリン・エオシンを用いて染色した。転移プロセスの後期ステージにおけるantagomirの効果を評価するために、胸腺欠損マウスの尾静脈を介するかまたは皮下に腫瘍細胞を移植した。次に、腫瘍細胞移植7日後に、同所性の実験に使用したと同一の用量と頻度でantagomir治療を開始した。静脈内投与の場合は全身性転移によって、または、皮下接種の場合は肝臓転移もしくは腹腔内転移によって、マウスは30日目には瀕死の状態になり、安楽死させた。
胸腺欠損マウスを、1グループにつき5匹に分けて、PBS+DDSまたは50 μMのアンタゴマーを、週一回のペースで4〜5週間にわたって6回、静脈投与した。体重は2週に1回のペースで測定した。マウスは最後の投与後6日で安楽死させ、組織を収集した。全血の一定分量をEDTAで処理したチューブに集めた。遠心分離により血球細胞を除去して、血漿を得た。サンプルを、オリンパス社製Bioanalyzerを使用して解析し、血液の生化学的値を測定した。全ての可能な病理状態に関して、肺または肝臓の切片を検査した。
miRNA−47、−101、−197に対するsiRNAをトランスフェクションすることにより、293FT細胞はヒト正常細胞へと誘導された。その後、RT−PCRとウエスタンブロット法を用いて関連遺伝子の発現の変化を評価した。
製造元(R&D Systems、ミネアポリス、米国)のマニュアルに従って、未分化マーカー(抗Oct-4抗体)ならびに胚性幹細胞マーカー抗体パネル(Embryonic Stem Cell Marker Antibody Panel)を用いて、免疫組織化学検査を実施した。細胞に、miRNA-197に対するsiRNAをトランスフェクトまたは感染した。浮遊するトランスフェクタントを回収し、顕微鏡観察用の新しい培養プレートまたは免疫染色用スライドチャンバーに移した。
ヒト人工多能性幹細胞であるhiPSC(HPS0002 253G1)はRiken Bioresource Center Cell Bank('Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts.' Nakagawa M et al., Nat Biotechnol 26, 101-106 (2008))から提供された。
miR−197 siRNAまたはhsa−mir−520dを導入して作成した多能性幹細胞は、ES細胞用培養液で培養できるが、F-12 HAM[DMEM(15mM HEPES+1mM Sodium Pyruvate+pyridoxine+NaHCO3+5mML-glutamine)], RPMI-1640+L-glutamine, DMEM+high glucose+L-glutamine+0.1mM NEAA およびREPROSTEM(REPROCell社):bFGF 3-10ng/mlからなる群から選ばれる1種以上の培地で37℃、5%CO2、10%FBSの条件で培養可能であった。
miRNA-197に対応するsiRNAをトランスフェクトした293FT細胞を使用して、トリプシンにより分離脱着した細胞上で、フローサイトメトリーを実行した。単一細胞懸濁物を、冷却したPBSで一度洗浄した。細胞ペレットを、その後、穏やかにチューブを振とうすることによりほぐして、ddH2O中の冷却70%EtOHを滴下して固定した。細胞を、少なくとも一晩、-20℃でインキュベートした。固定後、細胞を冷却したPBSを用いて二回洗浄してEtOHを除去した。その後、細胞を、100U/mlのRNAaseA含有PBS中に、1 × 106細胞/mlにて再懸濁し、37℃で50分間インキュベートした。50μg/mlのヨウ化プロピジウムを直接加えて、光を遮蔽して氷上において40分間インキュベートした。DNA含量を、フローサイトメーター(EPICS ALTRA; Beckman Coulter社)により解析した。リプログラムされた細胞の発現を評価するために、EXPO32 ADC解析ソフトウエアを搭載したフローサイトメーターにより、siRNA-197をトランスフェクション後、約20000イベントで、iPS細胞を評価した。GFP発現細胞もしくはPE陽性細胞のフローサイトメトリーを用いた精製に関しては、ウイルストランスダクション過程の完了24時間後に、(未分化状態を維持して2週間培養後の)293FT細胞またはHLF細胞を、5%FCSを添加したリン酸緩衝液(PBS)中に再懸濁した。PE抱合抗アルカリホスファターゼ(ALP)抗体で、細胞を染色後、GFP陽性細胞またはPE陽性細胞を、Moflo XDP(Beckman Coulter社、カリフォルニア、米国)を使用して分取および解析した。1×108細胞を、アルゴンレーザー(488nm、100mW)を用いて、フォワードスキャッター、サイドスキャッター、ならびにPEおよびGFP蛍光に関して解析した。検出器としては、各々、GFPに関してはFL1を、PEに関してはFL2を使用した。
免疫不全マウスをペントバルビタールナトリウム(50mg/kg、腹腔内注射)を用いて麻酔し、定位固定装置中に配置した。外科手術中、動物の体温を、加熱パッドを使用して、37℃に維持した。頭蓋を露出し、左線条体の上に、小規模な開頭を作製した。ポリエチレンの管を介して10μlのハミルトンシリンジに連結された30Gの注射針を、細胞移植用に使用した。注射針を、左線条体に定位的に挿入(ブレグマからA(前方) 0.5mm、L(側方) 2.0mm、D(深さ) 2.5mm)し、5μlの細胞懸濁物(108細胞/μl)を圧力注射した。注射後、その注射針をゆっくりと引き抜いて、頭蓋の孔を、歯科用セメントを用いて被覆した。切開部を、6-0プロレン(Prolene)を用いて縫合した。外科手術から回復後、動物を元の飼育ケージへと戻した。
以上の結果を踏まえて考察する。実施例の結果、RGM249 shRNAは悪性腫瘍の増殖抑制、悪性腫瘍の転移抑制、細胞内RGM249 mRNA量の抑制、または細胞内hTERT mRNA量の抑制の効果を有していることが示された。また、3つのsiRNAは、悪性腫瘍の増殖抑制、悪性腫瘍の転移抑制、細胞内の3つのmiRNA量の抑制、未分化マーカーのアップレギュレイト、p53のアップレギュレイト、または正常細胞もしくは悪性腫瘍細胞のリプログラミングの効果を有していることが示された。hsa−mir−520dは、未分化マーカーのアップレギュレイト、p53のアップレギュレイト、または正常細胞もしくは悪性腫瘍細胞のリプログラミング、悪性腫瘍の増殖抑制等の効果を有していることが示された。また、hsa-mir-192 siRNA等についても類似の効果が見られた。マウスで見られた悪性腫瘍の抑制は、悪性腫瘍細胞のリプログラミングが要因のひとつであると考えられる。また、未分化型だけでなく高分化型肝癌細胞でもOct4陽性かつNANOG陽性細胞になり、分化型によらない幹性化効果が見られた。なお、RGM249 shRNAと3つのsiRNAは、RGM249 mRNAから始まるカスケードを遮断する点で機能が共通しており、この機能が上記の悪性腫瘍の抑制や悪性腫瘍細胞のリプログラミング等の効果に関与していると考えられる。hsa−mir−520dはこのときアップレギュレイトしていると考えられる。以上から、RGM249 shRNA、3つのsiRNA、hsa−mir−520d、hsa-mir-192 siRNA等はいずれも悪性腫瘍治療に好適に使用できると考えられる。
Claims (25)
- 配列番号41の塩基配列、またはその塩基配列に対して1個の塩基が欠失、置換もしくは付加された塩基配列、を含む1本鎖または2本鎖のポリヌクレオチドと、
アテロコラーゲンと、
を含有し、細胞を多能性幹細胞へ誘導する、多能性幹細胞誘導剤。 - 前記1本鎖または2本鎖のポリヌクレオチドが、miRNA作用を有する、請求項1に記載の多能性幹細胞誘導剤。
- 前記1本鎖または2本鎖のポリヌクレオチドが、small RNAである、請求項1又は2に記載の多能性幹細胞誘導剤。
- 前記1本鎖または2本鎖のポリヌクレオチドが、1本鎖または2本鎖のRNA鎖である、請求項1〜3いずれかに記載の多能性幹細胞誘導剤。
- 前記1本鎖または2本鎖のポリヌクレオチドが、15以上のヌクレオチドからなる、請求項1〜4いずれかに記載の多能性幹細胞誘導剤。
- 前記1本鎖または2本鎖のポリヌクレオチドが、100以下のヌクレオチドからなる、請求項5に記載の多能性幹細胞誘導剤。
- 前記1本鎖のポリヌクレオチドがshRNAまたはpre−miRNAであり、前記2本鎖のポリヌクレオチドがsiRNAまたはmiRNAである、請求項1〜6いずれかに記載の多能性幹細胞誘導剤。
- 前記shRNAまたはpre−miRNAが35〜100ヌクレオチドからなり、前記siRNAまたはmiRNAのガイド鎖が15〜40ヌクレオチドからなる、請求項7に記載の多能性幹細胞誘導剤。
- 前記shRNA、前記pre−miRNA、前記siRNA、および前記miRNAが、1〜5ヌクレオチドからなるオーバーハングを含む、請求項7又は8に記載の多能性幹細胞誘導剤。
- 前記1本鎖または2本鎖のポリヌクレオチドが、さらに、配列番号42の塩基配列、またはその塩基配列に対して1〜5個の塩基が欠失、置換もしくは付加された塩基配列を含む、
請求項1〜9いずれかに記載の多能性幹細胞誘導剤。 - 前記1本鎖または2本鎖のポリヌクレオチドが、さらに、配列番号41の塩基配列からなるポリヌクレオチドの相補鎖を含む、請求項1〜9いずれかに記載の多能性幹細胞誘導剤。
- 前記1本鎖または2本鎖のポリヌクレオチドが、1本鎖のポリヌクレオチドであり、且つpre−miRNAである、請求項1〜10いずれかに記載の多能性幹細胞誘導剤。
- 前記1本鎖のポリヌクレオチドが、配列番号43の塩基配列、またはその塩基配列に対して1〜4個の塩基が欠失、置換もしくは付加された塩基配列を含む、
請求項12に記載の多能性幹細胞誘導剤。 - 配列番号41の塩基配列、またはその塩基配列に対して1個の塩基が欠失、置換もしくは付加された塩基配列、
を含むsmall RNAと、
アテロコラーゲンと、
を含有し、細胞を多能性幹細胞へ誘導する、多能性幹細胞誘導剤。 - a)配列番号43の塩基配列、
b)配列番号43の塩基配列に対して、98%以上の相同性を有する塩基配列、
c)配列番号43の塩基配列において1個の塩基が欠失、置換もしくは付加された塩基配列、
からなる群から選ばれる1種以上の塩基配列を含むポリヌクレオチドと、
アテロコラーゲンと、
を含有し、細胞を多能性幹細胞へ誘導する、多能性幹細胞誘導剤。 - 体細胞を多能性幹細胞へ誘導する、請求項1〜15いずれかに記載の多能性幹細胞誘導剤。
- 悪性腫瘍細胞を多能性幹細胞へ誘導する、請求項1〜15いずれかに記載の多能性幹細胞誘導剤。
- 前記悪性腫瘍が、肝臓癌、膵臓癌、肉腫、グリオーマ、メラノーマからなる群から選ばれる1種以上の悪性腫瘍である、請求項17に記載の多能性幹細胞誘導剤。
- 前記多能性幹細胞が、内在性のp53を発現している、請求項1〜18いずれかに記載の多能性幹細胞誘導剤。
- 配列番号41の塩基配列、またはその塩基配列に対して1個の塩基が欠失、置換もしくは付加された塩基配列、
を含む1本鎖または2本鎖のポリヌクレオチドと、
アテロコラーゲンと、
を含有し、未分化細胞マーカーの発現を調節する、未分化細胞マーカー発現調節剤。 - 請求項20に記載の未分化細胞マーカー発現調節剤であって、
前記未分化細胞マーカーが、Klf4、c−Myc、Oct4、Sox2、PROM1からなる群から選ばれる1種以上の未分化細胞マーカーである、未分化細胞マーカー発現調節剤。 - 配列番号41の塩基配列、またはその塩基配列に対して1個の塩基が欠失、置換もしくは付加された塩基配列、を含む1本鎖または2本鎖のポリヌクレオチドと、
アテロコラーゲンと、
を含有する、肝臓癌、肺癌、肉腫、グリオーマ、メラノーマからなる群から選ばれる1種以上の悪性腫瘍の治療薬。 - 配列番号41の塩基配列に相補的な塩基配列、またはその塩基配列に対して1個の塩基が欠失、置換もしくは付加された塩基配列をコードするポリヌクレオチドを含む、ベクターと、
アテロコラーゲンと、
を含有し、細胞を多能性幹細胞へ誘導する、多能性幹細胞誘導剤。 - 配列番号41の塩基配列に相補的な塩基配列、またはその塩基配列に対して1個の塩基が欠失、置換もしくは付加された塩基配列をコードするポリヌクレオチドを含む、ベクターと、
アテロコラーゲンと、
を含む、肝臓癌、肺癌、肉腫、グリオーマ、メラノーマからなる群から選ばれる1種以上の悪性腫瘍の治療薬。 - 配列番号41の塩基配列、またはその塩基配列に対して1個の塩基が欠失、置換もしくは付加された塩基配列を含むポリヌクレオチドと、
アテロコラーゲンと、
を含む、多能性幹細胞誘導用、未分化細胞マーカー発現調節用、または肝臓癌、肺癌、肉腫、グリオーマ、メラノーマからなる群から選ばれる1種以上の悪性腫瘍の治療用のキット。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013264240A JP5845493B2 (ja) | 2010-07-12 | 2013-12-20 | miRNA導入による新規hiPSC作製法 |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010158194 | 2010-07-12 | ||
JP2010158192 | 2010-07-12 | ||
JP2010158193 | 2010-07-12 | ||
JP2010158192 | 2010-07-12 | ||
JP2010158193 | 2010-07-12 | ||
JP2010158194 | 2010-07-12 | ||
JP2013264240A JP5845493B2 (ja) | 2010-07-12 | 2013-12-20 | miRNA導入による新規hiPSC作製法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012202509A Division JP2013034479A (ja) | 2010-07-12 | 2012-09-14 | miRNA導入による新規hiPSC作製法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014097059A JP2014097059A (ja) | 2014-05-29 |
JP5845493B2 true JP5845493B2 (ja) | 2016-01-20 |
Family
ID=45469308
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011530189A Expired - Fee Related JP5099571B2 (ja) | 2010-07-12 | 2011-06-28 | miRNA導入による新規hiPSC作製法 |
JP2011530188A Expired - Fee Related JP5099570B2 (ja) | 2010-07-12 | 2011-06-28 | siRNA導入による新規hiPSC作製法 |
JP2012202508A Pending JP2013046616A (ja) | 2010-07-12 | 2012-09-14 | siRNA導入による新規hiPSC作製法 |
JP2012202509A Pending JP2013034479A (ja) | 2010-07-12 | 2012-09-14 | miRNA導入による新規hiPSC作製法 |
JP2013264240A Expired - Fee Related JP5845493B2 (ja) | 2010-07-12 | 2013-12-20 | miRNA導入による新規hiPSC作製法 |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011530189A Expired - Fee Related JP5099571B2 (ja) | 2010-07-12 | 2011-06-28 | miRNA導入による新規hiPSC作製法 |
JP2011530188A Expired - Fee Related JP5099570B2 (ja) | 2010-07-12 | 2011-06-28 | siRNA導入による新規hiPSC作製法 |
JP2012202508A Pending JP2013046616A (ja) | 2010-07-12 | 2012-09-14 | siRNA導入による新規hiPSC作製法 |
JP2012202509A Pending JP2013034479A (ja) | 2010-07-12 | 2012-09-14 | miRNA導入による新規hiPSC作製法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US9476041B2 (ja) |
EP (2) | EP2594643B1 (ja) |
JP (5) | JP5099571B2 (ja) |
CN (2) | CN103097535A (ja) |
WO (2) | WO2012008301A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012008301A1 (ja) | 2010-07-12 | 2012-01-19 | 国立大学法人鳥取大学 | siRNA導入による新規hiPSC作製法 |
WO2013059373A2 (en) | 2011-10-17 | 2013-04-25 | Minerva Biotechnologies Corporation | Media for stem cell proliferation and induction |
EP3401393B1 (en) * | 2012-02-22 | 2020-02-19 | Exostem Biotec Ltd | Micrornas for the generation of astrocytes |
JP6748430B2 (ja) * | 2012-07-13 | 2020-09-02 | ミネルバ バイオテクノロジーズ コーポレーション | より未分化状態への細胞の誘導方法 |
CN105492598B (zh) * | 2013-08-29 | 2019-12-03 | 三浦典正 | 与细胞的抗衰老相关的生物分子群 |
US20160289678A1 (en) * | 2013-11-22 | 2016-10-06 | Dcb-Usa Llc | Use of microrna 146-a in the diagnosis, treatment and prevention of picornavirus infection and microrna 146-a antagonists |
CN104109670B (zh) * | 2014-03-12 | 2018-01-05 | 首都医科大学附属北京安定医院 | 一种双链siRNA分子及其应用 |
EA031135B1 (ru) | 2014-06-27 | 2018-11-30 | Ризен Фармасьютикалз Са | Замещенные производные хромена как селективные двойные ингибиторы протеинкиназ pi3 дельта и гамма |
EP3286335A4 (en) * | 2015-04-24 | 2018-10-17 | The Johns Hopkins University | Compositions and methods related to characterizing proviral reservoirs |
US20180311270A1 (en) * | 2015-10-30 | 2018-11-01 | Norimasa Miura | Rna molecule for repairing dna damage |
KR102011336B1 (ko) * | 2015-12-31 | 2019-08-16 | 인터올리고 주식회사 | 약물 전달 및 안정화를 위한 복합체 및 그 제조방법 |
JP7327801B2 (ja) * | 2017-05-02 | 2023-08-16 | 株式会社ペジィー・ファーマ | 分化細胞の品質改善方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1452594A4 (en) * | 2001-11-15 | 2007-01-10 | Kyowa Hakko Kogyo Kk | INDUCTOR FOR DIFFERENTIATING EMBRYOONAL STEM CELLS TO EODODERMAL CELLS, METHOD FOR OBTAINING THEM AND USE THEREOF |
WO2004024940A2 (en) | 2002-09-16 | 2004-03-25 | University Of Southern California | Rna-mediated gene modulation |
US20060247193A1 (en) | 2003-02-10 | 2006-11-02 | National Institute Of Advanced Industrial Science And Technology | Regulation of gene expression by dna interference |
US9453219B2 (en) | 2003-05-15 | 2016-09-27 | Mello Biotech Taiwan Co., Ltd. | Cosmetic designs and products using intronic RNA |
ES2507544T3 (es) | 2004-11-12 | 2014-10-15 | Asuragen, Inc. | Procedimientos y composiciones que implican miARN y moléculas inhibidoras de miARN |
AU2006210416A1 (en) | 2005-02-04 | 2006-08-10 | Auburn University | Contact drug delivery system |
US7985852B2 (en) | 2005-04-15 | 2011-07-26 | National University Corporation Tottori University | hTERT gene expression regulatory gene |
US10000757B2 (en) * | 2005-05-27 | 2018-06-19 | Ospedale San Raffaele S.R.L. | Gene vector |
JPWO2006137514A1 (ja) * | 2005-06-23 | 2009-01-22 | 学校法人 聖マリアンナ医科大学 | シノビオリンの発現もしくは機能阻害物質を有効成分とする癌治療剤、および癌治療剤のスクリーニング方法 |
CN101356270B (zh) | 2005-12-13 | 2014-02-12 | 国立大学法人京都大学 | 核重新编程因子 |
ES2461189T3 (es) | 2006-01-05 | 2014-05-19 | The Ohio State University Research Foundation | Métodos basados en microARN y composiciones para el diagnóstico y el tratamiento de cánceres sólidos de mama o pulmón |
MX2008012219A (es) | 2006-04-03 | 2008-10-02 | Santaris Pharma As | Composicion farmaceutica que comprende oligonucleotidos antisentido anti-miarn. |
US8211867B2 (en) * | 2007-10-29 | 2012-07-03 | Regulus Therapeutics Inc. | Targeting microRNAs for the treatment of liver cancer |
EP2096169B1 (en) * | 2007-10-31 | 2020-11-18 | Kyoto University | Nuclear reprogramming method |
AU2008286249B2 (en) | 2007-12-10 | 2013-10-10 | Kyoto University | Efficient method for nuclear reprogramming |
CA2710713C (en) | 2007-12-27 | 2017-09-19 | Protiva Biotherapeutics, Inc. | Silencing of polo-like kinase expression using interfering rna |
JP5945385B2 (ja) | 2008-01-16 | 2016-07-05 | リン、シー−ランLIN, Shi−Lung | 誘導性組換えrna因子を用いた腫瘍のない多能性胚性幹様細胞の生成 |
CN101333524B (zh) * | 2008-06-25 | 2010-06-02 | 中山大学 | 一个小分子非编码RNA基因hsa-miR-101及其抗肿瘤用途 |
CN101392251B (zh) * | 2008-11-03 | 2015-07-22 | 清华大学深圳研究生院 | 能诱导干细胞向成骨细胞分化的微小rna及其应用 |
JP2010120881A (ja) | 2008-11-19 | 2010-06-03 | Keio Gijuku | ヒト癌タンパク質MDM2とヒト癌抑制タンパク質p53との相互作用阻害ペプチド及びその使用 |
WO2012008301A1 (ja) | 2010-07-12 | 2012-01-19 | 国立大学法人鳥取大学 | siRNA導入による新規hiPSC作製法 |
-
2011
- 2011-06-28 WO PCT/JP2011/064846 patent/WO2012008301A1/ja active Application Filing
- 2011-06-28 JP JP2011530189A patent/JP5099571B2/ja not_active Expired - Fee Related
- 2011-06-28 JP JP2011530188A patent/JP5099570B2/ja not_active Expired - Fee Related
- 2011-06-28 US US13/809,880 patent/US9476041B2/en not_active Expired - Fee Related
- 2011-06-28 EP EP11806631.5A patent/EP2594643B1/en not_active Not-in-force
- 2011-06-28 CN CN201180043810XA patent/CN103097535A/zh active Pending
- 2011-06-28 EP EP11806632.3A patent/EP2594644B1/en not_active Not-in-force
- 2011-06-28 CN CN201180043814.8A patent/CN103189511B/zh not_active Expired - Fee Related
- 2011-06-28 US US13/809,882 patent/US9790491B2/en not_active Expired - Fee Related
- 2011-06-28 WO PCT/JP2011/064847 patent/WO2012008302A1/ja active Application Filing
-
2012
- 2012-09-14 JP JP2012202508A patent/JP2013046616A/ja active Pending
- 2012-09-14 JP JP2012202509A patent/JP2013034479A/ja active Pending
-
2013
- 2013-12-20 JP JP2013264240A patent/JP5845493B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO2012008302A1 (ja) | 2012-01-19 |
JP5099571B2 (ja) | 2012-12-19 |
EP2594643B1 (en) | 2017-04-12 |
CN103189511A (zh) | 2013-07-03 |
US9790491B2 (en) | 2017-10-17 |
CN103189511B (zh) | 2016-10-12 |
JPWO2012008301A1 (ja) | 2013-09-09 |
EP2594644B1 (en) | 2016-08-10 |
JP5099570B2 (ja) | 2012-12-19 |
EP2594644A4 (en) | 2014-12-24 |
JP2013034479A (ja) | 2013-02-21 |
US9476041B2 (en) | 2016-10-25 |
WO2012008301A1 (ja) | 2012-01-19 |
JP2014097059A (ja) | 2014-05-29 |
US20130190389A1 (en) | 2013-07-25 |
EP2594643A1 (en) | 2013-05-22 |
US20130184335A1 (en) | 2013-07-18 |
JP2013046616A (ja) | 2013-03-07 |
EP2594644A1 (en) | 2013-05-22 |
CN103097535A (zh) | 2013-05-08 |
EP2594643A4 (en) | 2014-12-24 |
JPWO2012008302A1 (ja) | 2013-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5845493B2 (ja) | miRNA導入による新規hiPSC作製法 | |
US11578107B2 (en) | Compositions and methods for reprogramming somatic cells into induced vasculogenic cells | |
EP2077326A1 (en) | Novel nucleic acid | |
US20210147853A1 (en) | Use of Trinucleotide Repeat RNAs To Treat Cancer | |
WO2014096418A2 (en) | Micrornas as therapeutics and biomarkers for epilepsy | |
Huang et al. | MicroRNA-133b negatively regulates zebrafish single Mauthner-cell axon regeneration through targeting TPPP3 in vivo | |
EP3040414B1 (en) | Biomolecular group related to cell anti-aging | |
IL277136A (en) | Means and methods for lowering the tumorigenicity of cancer stem cells | |
US20160220599A1 (en) | Novel lincrna and interfering nucleic acid molecules, compositions and methods and uses thereof for regulating angiogenesis and related conditions | |
WO2014097875A1 (ja) | 新規の脱分化誘導方法を用いた多能性幹細胞化 | |
AU2011256098A1 (en) | Method for reducing expression of downregulated in renal cell carcinoma in malignant gliomas | |
KR101197627B1 (ko) | Hpv 감염과 관련된 암의 치료용 조성물 | |
CN112725436A (zh) | 一种人circMKLN1基因的用途及相关产品 | |
US9045752B2 (en) | NKX3-1 saRNA and KLF4 saRNA and uses thereof | |
Moriconi | Caveolin-1: a mediator of Glioblastoma cell invasion and an independent negative biomarker of Glioblastoma patient survival |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151023 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5845493 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |