JP5733974B2 - CO shift conversion system and method, coal gasification power plant - Google Patents
CO shift conversion system and method, coal gasification power plant Download PDFInfo
- Publication number
- JP5733974B2 JP5733974B2 JP2010283811A JP2010283811A JP5733974B2 JP 5733974 B2 JP5733974 B2 JP 5733974B2 JP 2010283811 A JP2010283811 A JP 2010283811A JP 2010283811 A JP2010283811 A JP 2010283811A JP 5733974 B2 JP5733974 B2 JP 5733974B2
- Authority
- JP
- Japan
- Prior art keywords
- shift
- gas
- shift conversion
- hydrogen sulfide
- product gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Industrial Gases (AREA)
Description
本発明は、COシフト反応を効率よく行うことができるCOシフト変換システム及び方法、石炭ガス化発電プラントに関する。 The present invention relates to a CO shift conversion system and method capable of efficiently performing a CO shift reaction, and a coal gasification power plant.
石炭の有効利用は近年のエネルギー問題での切り札の一つとして注目されている。一方、石炭を付加価値の高いエネルギー媒体として、変換するためには石炭ガス化技術、ガス精製技術など高度な技術が必要とされる。このガス化ガスを用いて発電する石炭ガス化複合発電システムが提案されている(特許文献1)。 Effective use of coal has attracted attention as one of the trump cards in recent energy problems. On the other hand, advanced technology such as coal gasification technology and gas purification technology is required to convert coal as an energy medium with high added value. A coal gasification combined power generation system that generates power using this gasification gas has been proposed (Patent Document 1).
この石炭ガス化複合発電(Integrated coal. Gasification Combined Cycle:IGCC)とは、石炭を高温高圧のガス化炉で可燃性ガスに転換し、そのガス化ガスを燃料としてガスタービンと蒸気タービンとによる複合発電を行うシステムをいう。 This integrated coal gasification combined cycle (IGCC) is a combination of a gas turbine and a steam turbine that converts coal into combustible gas in a high-temperature and high-pressure gasification furnace and uses the gasification gas as fuel. A system that generates electricity.
石炭ガス化ガス(生成ガス)中に存在する炭化水素化合物は、殆どが一酸化炭素(CO)であり、二酸化炭素(CO2)、炭化水素(CH4、CnHm)は数パーセントに過ぎない。この結果、CO2を回収するためには、生成ガス中に存在するCOをCO2に転換する必要があり、水蒸気(H2O)を添加しつつ、シフト触媒により下記反応によってCO2に転換することが提案されている。
CO+H2O⇔ CO2+H2+40.9kJ/mol (発熱反応) ・・・(1)
Most of the hydrocarbon compounds present in the coal gasification gas (product gas) are carbon monoxide (CO), and carbon dioxide (CO 2 ) and hydrocarbons (CH 4 , CnHm) are only a few percent. As a result, in order to recover the CO 2 is converted to CO present in the product gas must be converted to CO 2, while adding water vapor (H 2 O), the shift catalyst to CO 2 by the following reaction It has been proposed to do.
CO + H 2 O⇔CO 2 + H 2 +40.9 kJ / mol (exothermic reaction) (1)
これまで、化学工業分野でのシフト反応に対する知見より、COシフト反応器入口での水蒸気添加割合(H2O/CO)を十分に高くすることにより、上記(1)の反応を進めた上で、希望するCO→CO2転換率を得ることができることとなる。 Up to now, based on the knowledge of shift reaction in the chemical industry, the reaction (1) has been advanced by sufficiently increasing the steam addition ratio (H 2 O / CO) at the CO shift reactor inlet. Thus, the desired CO → CO 2 conversion rate can be obtained.
一方、CO2回収設備を備えたIGCCプラントは、発電プラントであり、環境(CO2排出量の低減)に配慮すると共に、プラント発電効率にも重点を置く必要がある。
つまり、シフト反応器入口における水蒸気添加割合(H2O/CO)のための水蒸気添加源に計画されているHRSG(排熱回収ボイラ)よりの抽気中圧蒸気量の低減がプラント効率向上を図る上で重要な要素であるため、HRSGからの中圧蒸気をなるべく減らすことが、発電効率上昇の点から求められている。
On the other hand, an IGCC plant equipped with a CO 2 recovery facility is a power plant, and it is necessary to give consideration to the environment (reduction of CO 2 emissions) and to emphasize plant power generation efficiency.
That is, the reduction of the amount of steam extracted from the HRSG (exhaust heat recovery boiler) planned as the steam addition source for the steam addition ratio (H 2 O / CO) at the shift reactor inlet improves the plant efficiency. Since it is an important factor above, it is required to reduce the medium-pressure steam from HRSG as much as possible from the viewpoint of increasing the power generation efficiency.
また、シフト変換装置におけるシフト反応にはCOシフト触媒(例えば硫化モリブデン(MoS3)が用いられるが、外部から補給する水蒸気量が少ない場合、触媒表面にコーキング(炭素析出)が発生して触媒劣化を引き起こし、変換効率が低下するという問題がある。 A CO shift catalyst (for example, molybdenum sulfide (MoS 3 )) is used for the shift reaction in the shift converter, but when the amount of water replenished from the outside is small, coking (carbon deposition) occurs on the catalyst surface and the catalyst deteriorates. Cause the conversion efficiency to decrease.
本発明は、前記問題に鑑み、水蒸気量が少ない場合でも触媒劣化がなく、COシフト反応を効率よく行うことができるCOシフト変換システム及び方法、石炭ガス化発電プラントを提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a CO shift conversion system and method, and a coal gasification power plant capable of efficiently performing a CO shift reaction without catalyst deterioration even when the amount of water vapor is small. .
上述した課題を解決するための本発明の第1の発明は、硫化モリブデンを用いたCOシフト触媒を有し、生成ガス中のCOをCO2に変換するCOシフト変換装置と、該COシフト変換装置の上流側に設けられ、生成ガス中のCOをCO2へ変換するために要する水蒸気を供給する水蒸気供給手段と、水蒸気を供給した生成ガスに水スプレを混合器を介して供給する水スプレ供給手段とを具備するCOシフト変換部を備え、前記COシフト変換部が少なくとも2以上直列に多段連結され、生成ガス中の硫化水素濃度が100ppm以下の場合に、水スプレを混合器に供給することを特徴とするCOシフト変換システムにある。 A first invention of the present invention for solving the above-mentioned problems includes a CO shift conversion device that has a CO shift catalyst using molybdenum sulfide and converts CO in the product gas into CO 2 , and the CO shift conversion A water vapor supply means provided on the upstream side of the apparatus for supplying water vapor required for converting CO in the generated gas into CO 2; and a water spray for supplying water spray to the generated gas supplied with water vapor via a mixer. includes a CO shift conversion unit having a supply means, the CO shift converter unit is multistage connected in series at least two supplies when hydrogen sulfide concentration in the product gas is 100ppm or less, a water spray into the mixer It is in the CO shift conversion system characterized by this.
第2の発明は、第1の発明において、生成ガス中の硫化水素濃度が100ppm以下の場合に、硫化水素を供給する硫化水素供給手段を有することを特徴とするCOシフト変換システムにある。 A second invention is the CO shift conversion system according to the first invention, further comprising hydrogen sulfide supply means for supplying hydrogen sulfide when the concentration of hydrogen sulfide in the product gas is 100 ppm or less .
第3の発明は、石炭をガス化して生成ガスを得るガス化炉と、生成ガス中のCOをCO2に変換する第1又は2の発明のCOシフト変換システムと、COシフトガス中のCO2を回収するCO2吸収塔と吸収液を再生する吸収液再生塔とを備えたCO2回収装置と、精製ガスを燃焼する燃焼器を備えたガスタービン設備と、ガスタービン設備の燃焼排ガスの熱エネルギーを回収する排熱回収ボイラ(HRSG)と、排熱回収ボイラで回収した蒸気を用いて発電する蒸気タービン設備とを具備することを特徴とする石炭ガス化発電プラントにある。
A third invention is a gasification furnace to obtain a product gas of coal is gasified, the CO shift conversion system of the first or second invention for converting CO in the product gas to CO 2, CO 2 in the CO shifted gas CO 2 recovery device having a CO 2 absorption tower for recovering gas and an absorption liquid regeneration tower for regenerating the absorption liquid, gas turbine equipment having a combustor for burning purified gas, and heat of combustion exhaust gas of the gas turbine equipment A coal gasification power plant comprising an exhaust heat recovery boiler (HRSG) that recovers energy and a steam turbine facility that generates power using steam recovered by the exhaust heat recovery boiler.
第4の発明は、第1又は第2の発明のCOシフト変換システムを用い、請求項1又は2のCOシフト変換システムを用い、生成ガス中の硫化水素濃度が100ppm以下の場合に、水スプレを混合器に供給してCOシフト触媒の温度上昇を抑制することを特徴とするCOシフト変換方法にある。
A fourth invention uses the CO shift conversion system according to the first or second invention, and uses the CO shift conversion system according to
第5の発明は、第4の発明において、生成ガス中の硫化水素濃度が100ppm以下の場合に、硫化水素を供給する硫化水素供給手段を有することを特徴とするCOシフト変換方法にある。 A fifth invention is the CO shift conversion method according to the fourth invention, further comprising hydrogen sulfide supply means for supplying hydrogen sulfide when the concentration of hydrogen sulfide in the product gas is 100 ppm or less .
本発明によれば、水スプレを供給することにより、水蒸気量が少ない場合でも触媒劣化がなく、COシフト反応を効率よく行うことができる。よって、水蒸気の供給量を増大させることなくCOシフト反応を効率よく行うことができる。これにより従来HRSGから供給していた抽気中圧蒸気の供給量を低減することができる。この結果、発電効率が向上し、プラント全体のエネルギー効率を向上させることができる。 According to the present invention, by supplying water spray, even when the amount of water vapor is small, there is no catalyst deterioration and the CO shift reaction can be performed efficiently. Therefore, the CO shift reaction can be performed efficiently without increasing the supply amount of water vapor. Thereby, supply_amount | feed_rate of the extraction intermediate pressure steam conventionally supplied from HRSG can be reduced. As a result, the power generation efficiency is improved and the energy efficiency of the entire plant can be improved.
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。 Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.
本発明による実施例に係るCOシフト変換システムについて、図面を参照して説明する。図1は、実施例1に係るCOシフト変換システムの概略図である。
図1に示すように、本実施例に係るCOシフト変換システム10Aは、COシフト触媒11を有し、生成ガス12中のCOをCO2に変換するCOシフト変換装置13と、該COシフト変換装置13の上流側に設けられ、生成ガス12中に水蒸気14を供給する水蒸気供給手段15と、水蒸気14を供給した後に、水スプレ16を混合器17により供給する水スプレ供給手段18と、を具備するCOシフト変換部20とからなり、前記COシフト変換部20が少なくとも2以上直列に多段連結されている。図1中、符号21はH2S濃度計、22は温度計、23はCOシフトガス、V1、V2はバルブを図示する。
A CO shift conversion system according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a CO shift conversion system according to the first embodiment.
As shown in FIG. 1, a CO
本発明では、生成ガス12中の硫化水素(H2S)濃度が低い場合でも、水スプレ供給手段18から水スプレ16を十分供給することにより、COシフト反応の発熱反応に起因する温度上昇を抑えることができ、触媒劣化を抑制することができる。なお、水スプレ16を直接生成ガス12中に供給することなく、混合器17を用いて混合しているのは、後流側に設けた触媒劣化を防止するために、水滴が十分気化するために設けている。
In the present invention, even when the hydrogen sulfide (H 2 S) concentration in the
これは、硫化モリブデン濃度が低い場合には、COシフト変換装置13内の温度が例えば250℃程度の場合、そのCOシフト変換反応に起因する発熱反応により、触媒温度が上昇し、触媒不安定領域から、酸化モリブデン(MoO3)に変化し、その後コーキングが発生して、触媒機能が発揮されなかった。
This is because when the molybdenum sulfide concentration is low, when the temperature in the CO
ここで、図2にCOシフト変換装置の触媒温度と、(H2S/H2O)3との関係図を示す。図2によれば、硫化水素濃度が低いほど、触媒温度が低い領域で、硫化モリブデン(MoS3)が酸化モリブデン(MoO3)に変化するのが確認される。そこで、本発明では、硫化モリブデン(MoS3)の濃度が例えば100ppm以下と低い場合において、COシフト変換装置13における温度を求め、COシフト変換装置13内に導入する生成ガス12中の硫化水素の濃度をH2S濃度計21により求めることで、図2に示す(H2S/H2O)3が計算より求められ、この結果、硫化モリブデンの安定領域となるような水の投入量を求めることができる。これにより、硫化モリブデンは安定に存在することとなるので、COシフト変換が効率よく行うことができる。
Here, FIG. 2 shows a relationship diagram between the catalyst temperature of the CO shift converter and (H 2 S / H 2 O) 3 . According to FIG. 2, it is confirmed that molybdenum sulfide (MoS 3 ) changes to molybdenum oxide (MoO 3 ) in a region where the catalyst temperature is lower as the hydrogen sulfide concentration is lower. Therefore, in the present invention, when the concentration of molybdenum sulfide (MoS 3 ) is as low as 100 ppm or less, for example, the temperature in the
ここで、本発明では、硫化水素(H2S)の濃度について、100ppm以下を低い場合としているのは、図2より、水を1とした場合、1×10-12となり、これに対応する温度が325℃であるので、それ以下の場合には、触媒安定領域が極めて少なくなり、触媒表面にコーキング(炭素析出)が発生し触媒劣化を引き起こすこととなるからである。よって、本発明では硫化モリブデン濃度が低い場合とは100ppmとしている。
なお、MoS3安定領域とMoO3安定領域の境界線は触媒の粒子径等で若干変化する。
Here, in the present invention, the case where the concentration of hydrogen sulfide (H 2 S) is as low as 100 ppm or less is 1 × 10 −12 when water is 1, as shown in FIG. 2, corresponding to this. This is because the temperature is 325 ° C., and if the temperature is lower than that, the catalyst stable region becomes extremely small, and coking (carbon deposition) occurs on the catalyst surface, causing catalyst deterioration. Therefore, in the present invention, the case where the molybdenum sulfide concentration is low is 100 ppm.
Note that the boundary line between the MoS 3 stable region and the MoO 3 stable region slightly changes depending on the particle diameter of the catalyst.
多段に連結するのは、触媒を分散させて少しずつCOシフト変換を行うことで、温度上昇を抑制するようにしている。 The multi-stage connection is made by suppressing the temperature rise by dispersing the catalyst and performing CO shift conversion little by little.
なお、本実施例ではCOシフト変換部20を2段のものを例示するが、必要に応じて2段、3段・・・と設けるようにすればよい。よって、生成ガス12中の硫化水素濃度が例えば10ppmと更に低いような場合には、多段連結の数を多くするようにすればよい。ここで、生成ガス12中の硫化水素の濃度は、例えば石炭ガス化発電プラント(IGCC)のガス火炉に供給する原炭の生産地、生産ロット等により大きく左右するので、供給する原炭の種類の変更の際には、特にCOシフト変換部20の段数についての選定について留意するようにすればよい。
In the present embodiment, the CO
本実施例によれば、生成ガス12中の硫化水素の濃度が低く、触媒温度が上昇する場合においては、水蒸気14の温度を変更することなく、水スプレ16を供給することにより、水蒸気量が少ないままでも触媒劣化がなく、COシフト反応を効率よく行うことができる。よって、水蒸気14の供給量を増大させることなくCOシフト反応を効率よく行うことができる。
According to this embodiment, when the concentration of hydrogen sulfide in the
本発明による実施例に係るエネルギー回収装置を備えた石炭ガス化発電プラントについて、図面を参照して説明する。図3は、実施例2に係るエネルギー回収装置を備えた石炭ガス化発電プラントの概略図である。
図3に示すように、エネルギー回収装置を備えた石炭ガス化発電プラント50は、石炭51をガス化して生成ガス12を得るガス化炉52と、生成ガス12中のCOをCO2に変換するCOシフト変換システム10Aと、COシフトガス23中の硫黄(S)分を回収する脱硫装置53と、CO2を回収するCO2回収装置54と、CO2回収装置54からの精製ガス55を用いて複合発電する複合発電設備(精製燃焼する燃焼器を備えたガスタービン設備及びガスタービン設備の燃焼排ガスの熱エネルギーを回収する排熱回収ボイラ(HRSG)と、排熱回収ボイラで回収した蒸気を用いて発電機67を発電する蒸気タービン設備)56とを具備するものである。図3中、符号60は空気、61は空気分離装置、62は空気分離装置61で得られた酸素、63は窒素、64は脱硫装置53で回収された回収H2Sガス、65は硫黄(S)分回収装置、66は回収CO2ガス、67はCO2圧縮装置、68はスラグを各々図示する。
A coal gasification power plant including an energy recovery device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a schematic diagram of a coal gasification power plant including the energy recovery device according to the second embodiment.
As shown in FIG. 3, a coal gasification power plant 50 equipped with an energy recovery device converts a
本実施例では、COシフト変換システムとして実施例1のCOシフト変換システム10Aを適用するので、従来複合発電設備56の排熱回収ボイラ(HRSG)から供給していた抽気中圧蒸気69の供給量の一部(約15%)を補完することができ、その分抽気中圧蒸気69の低減を図ることができる。この結果、発電効率が向上し、プラント全体のエネルギー効率を向上させることができる。
In the present embodiment, since the CO
このように、本実施例によれば、COシフト変換システム10Aにおいては、生成ガス12中に存在する硫化水素の濃度が低い場合においても、水スプレを供給することで、触媒劣化を抑制しつつCOシフト変換を行うことができると共に、水スプレを供給することにより、COシフト変換システム10AのCOシフト変換装置における抽気中圧蒸気69の一部を補完することができ、複合発電設備56の排熱回収ボイラ(HRSG)よりの抽気中圧蒸気69の供給量の低減を図ることができ、発電効率の向上に寄与する。
Thus, according to the present embodiment, in the CO
本発明による実施例に係るCOシフト変換システムについて、図面を参照して説明する。図4は、実施例3に係るCOシフト変換システムの概略図である。
図4に示すように、本実施例に係るCOシフト変換システム10Bは、実施例1のCOシフト変換システム10Aにおいて、混合器17に硫化水素(H2S)を供給するH2S供給手段31を設けている。
A CO shift conversion system according to an embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a schematic diagram of a CO shift conversion system according to the third embodiment.
As shown in FIG. 4, the CO
実施例1においては、水スプレ16を供給して、COシフト触媒11の温度上昇を抑制しているが、本実施例では、生成ガス12中のH2S濃度が極めて低いとき、別途H2Sを追給するようにしている。供給するH2Sは、図3に示す石炭ガス化発電プラント50における脱硫装置53で回収した回収H2Sガス64を再利用している。
In the first embodiment, the
特に、ガス火炉52に供給する石炭51の銘柄変更等によりH2S濃度の急変が予測される場合は、温度及び水蒸気の変更による対応は熱容量による応答性の観点から難しい場合がある。このような場合、硫化水素濃度を所定量(例えば100ppm)となるように、追加することで、硫化モリブデン(MoS3)が安定している領域から、不安定領域を通過して、MoO3安定領域に達することが防止され、触媒機能を十分に発揮することができ、良好なCOシフト反応を行うことができる。
In particular, when a sudden change in the H 2 S concentration is predicted due to a change in the brand of the
以上のように、本発明に係るCOシフト変換システム及び方法、石炭ガス化発電プラントによれば、水蒸気量が少ない場合でも触媒劣化がなく、COシフト反応を効率よく行うことができ、発電効率の向上に寄与することができる。 As described above, according to the CO shift conversion system and method and the coal gasification power plant according to the present invention, even when the amount of water vapor is small, there is no catalyst deterioration, and the CO shift reaction can be performed efficiently. It can contribute to improvement.
10A、10B COシフト変換システム
11 COシフト触媒
12 生成ガス
13 COシフト変換装置
14 水蒸気
15 水蒸気供給手段
16 水スプレ
17 混合器
18 水スプレ供給手段
20 COシフト変換部
10A, 10B CO
Claims (5)
該COシフト変換装置の上流側に設けられ、生成ガス中のCOをCO2へ変換するために要する水蒸気を供給する水蒸気供給手段と、
水蒸気を供給した生成ガスに水スプレを混合器を介して供給する水スプレ供給手段とを具備するCOシフト変換部を備え、
前記COシフト変換部が少なくとも2以上直列に多段連結され、
生成ガス中の硫化水素濃度が100ppm以下の場合に、水スプレを混合器に供給することを特徴とするCOシフト変換システム。 A CO shift conversion device having a CO shift catalyst using molybdenum sulfide and converting CO in the product gas to CO 2 ;
A water vapor supply means provided on the upstream side of the CO shift converter, for supplying water vapor required for converting CO in the produced gas into CO 2 ;
Includes a CO shift conversion unit comprising a supply water spray supply means generating gas supplied steam water spray through a mixer,
The CO shift conversion units are connected in multiple stages in series of at least two or more,
A CO shift conversion system that supplies water spray to a mixer when the concentration of hydrogen sulfide in the product gas is 100 ppm or less.
生成ガス中の硫化水素濃度が100ppm以下の場合に、硫化水素を供給する硫化水素供給手段を有することを特徴とするCOシフト変換システム。 In claim 1,
A CO shift conversion system comprising hydrogen sulfide supply means for supplying hydrogen sulfide when the concentration of hydrogen sulfide in the product gas is 100 ppm or less.
生成ガス中のCOをCO2に変換する請求項1又は2のCOシフト変換システムと、
COシフトガス中のCO2を回収するCO2吸収塔と吸収液を再生する吸収液再生塔とを備えたCO2回収装置と、
精製ガスを燃焼する燃焼器を備えたガスタービン設備と、
ガスタービン設備の燃焼排ガスの熱エネルギーを回収する排熱回収ボイラ(HRSG)と、
排熱回収ボイラで回収した蒸気を用いて発電する蒸気タービン設備とを具備することを特徴とする石炭ガス化発電プラント。 A gasification furnace that gasifies coal to obtain product gas;
A CO shift conversion system according to claim 1 or 2 for converting CO in the product gas into CO 2 ;
A CO 2 recovery device comprising a CO 2 absorption tower for recovering CO 2 in the CO shift gas and an absorption liquid regeneration tower for regenerating the absorption liquid;
A gas turbine facility equipped with a combustor for burning purified gas;
An exhaust heat recovery boiler (HRSG) for recovering the thermal energy of the combustion exhaust gas of the gas turbine equipment,
A coal gasification power plant comprising a steam turbine facility that generates electricity using steam recovered by an exhaust heat recovery boiler.
生成ガス中の硫化水素濃度が100ppm以下の場合に、水スプレを混合器に供給してCOシフト触媒の温度上昇を抑制することを特徴とするCOシフト変換方法。 Using the CO shift conversion system according to claim 1 or 2,
A CO shift conversion method characterized in that when the concentration of hydrogen sulfide in the product gas is 100 ppm or less, water spray is supplied to a mixer to suppress the temperature increase of the CO shift catalyst.
生成ガス中の硫化水素濃度が100ppm以下の場合に、硫化水素を供給する硫化水素供給手段を有することを特徴とするCOシフト変換方法。 In claim 4,
A CO shift conversion method comprising hydrogen sulfide supply means for supplying hydrogen sulfide when the concentration of hydrogen sulfide in the product gas is 100 ppm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010283811A JP5733974B2 (en) | 2010-12-20 | 2010-12-20 | CO shift conversion system and method, coal gasification power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010283811A JP5733974B2 (en) | 2010-12-20 | 2010-12-20 | CO shift conversion system and method, coal gasification power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012131873A JP2012131873A (en) | 2012-07-12 |
JP5733974B2 true JP5733974B2 (en) | 2015-06-10 |
Family
ID=46647854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010283811A Expired - Fee Related JP5733974B2 (en) | 2010-12-20 | 2010-12-20 | CO shift conversion system and method, coal gasification power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5733974B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6025603B2 (en) | 2013-02-21 | 2016-11-16 | 三菱重工業株式会社 | CO shift reaction apparatus and CO shift conversion method |
KR102142300B1 (en) * | 2018-09-21 | 2020-08-10 | 주식회사 포스코 | Method and apparatus for syngas production from fuel comprising sulfur |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004035309A (en) * | 2002-07-02 | 2004-02-05 | Toyota Motor Corp | Fuel reforming apparatus |
US7503947B2 (en) * | 2005-12-19 | 2009-03-17 | Eastman Chemical Company | Process for humidifying synthesis gas |
-
2010
- 2010-12-20 JP JP2010283811A patent/JP5733974B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012131873A (en) | 2012-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chiesa et al. | Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: Performance and emissions | |
Shoko et al. | Hydrogen from coal: Production and utilisation technologies | |
Jansen et al. | Pre-combustion CO2 capture | |
US20080098654A1 (en) | Synthetic fuel production methods and apparatuses | |
US8236072B2 (en) | System and method for producing substitute natural gas from coal | |
JP2008163944A (en) | Reforming system for partial co2 recovery type cycle plant | |
US20100018216A1 (en) | Carbon capture compliant polygeneration | |
Iaquaniello et al. | Integration of biomass gasification with MCFC | |
US20160153316A1 (en) | Methanation method and power plant comprising co2 methanation of power plant flue gas | |
US8551416B2 (en) | System for recovering high-purity CO2 from gasification gas containing CO, CO2, COS and H2S | |
JP2005502811A (en) | Combustion turbine fuel inlet temperature control to maximize power generation | |
JP2007254270A (en) | Method of treating gaseous mixture comprising hydrogen and carbon dioxide | |
Andersen et al. | Gas turbine combined cycle with CO2-capture using auto-thermal reforming of natural gas | |
Prins et al. | Technological developments in IGCC for carbon capture | |
JP5733974B2 (en) | CO shift conversion system and method, coal gasification power plant | |
JP2013087021A (en) | Carbon dioxide recovery system for plant generating syngas from fossil fuel | |
US20100212226A1 (en) | Self-generated power integration for gasification | |
US20240117258A1 (en) | Bio-multi-reactor hydrogen generation method and system | |
JPH05523B2 (en) | ||
KR20140038672A (en) | Igcc with co2 removal system | |
JPH066710B2 (en) | Coal gasification method | |
JP6301118B2 (en) | Gasified fuel cell combined power generation system and operation method of gasified fuel cell combined power generation system | |
JP5465028B2 (en) | Coal gasification system | |
Collodi et al. | The experience of Snamprogetti’s four gasification projects for over 3000 MWth | |
JP2019178230A (en) | Gasification furnace system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140430 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140916 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150317 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150414 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5733974 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |