JP5728904B2 - Method for measuring retardation of optically anisotropic film, and method for producing optically anisotropic film - Google Patents
Method for measuring retardation of optically anisotropic film, and method for producing optically anisotropic film Download PDFInfo
- Publication number
- JP5728904B2 JP5728904B2 JP2010265105A JP2010265105A JP5728904B2 JP 5728904 B2 JP5728904 B2 JP 5728904B2 JP 2010265105 A JP2010265105 A JP 2010265105A JP 2010265105 A JP2010265105 A JP 2010265105A JP 5728904 B2 JP5728904 B2 JP 5728904B2
- Authority
- JP
- Japan
- Prior art keywords
- optically anisotropic
- anisotropic film
- layer
- change
- rth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000005259 measurement Methods 0.000 claims description 31
- 230000010287 polarization Effects 0.000 claims description 31
- 238000000691 measurement method Methods 0.000 claims description 14
- 238000000391 spectroscopic ellipsometry Methods 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000001125 extrusion Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims 2
- 239000010408 film Substances 0.000 description 124
- 230000003287 optical effect Effects 0.000 description 28
- 238000004364 calculation method Methods 0.000 description 7
- 229920006026 co-polymeric resin Polymers 0.000 description 5
- 229920005668 polycarbonate resin Polymers 0.000 description 5
- 239000004431 polycarbonate resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 3
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000002390 adhesive tape Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 101100064324 Arabidopsis thaliana DTX48 gene Proteins 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004421 Wonderlite Substances 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000572 ellipsometry Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Polarising Elements (AREA)
Description
本発明は、光学異方性膜のレターデーションを測定する方法に関し、より詳しくは、二種の層からなる光学異方性膜の各層の面内レターデーションReおよび厚さ方向のレターデーションRthを測定する方法に関する。 The present invention relates to a method for measuring the retardation of an optically anisotropic film. More specifically, the in-plane retardation Re and the thickness direction retardation Rth of each layer of an optically anisotropic film composed of two types of layers are calculated. It relates to a measuring method.
光の偏光状態を変化させることができる光学異方性膜は、位相差板、視野角補償板などとして液晶表示装置をはじめ様々な光学装置に用いられている。光学装置に求められる光学特性に応じて、光学異方性膜として異なる二種の層からなる二層構成や二種三層構成のフィルムが用いられることがある。より精密な光学特性の制御のためには、かかる二種の層からなる光学異方性膜の、各層ごとの光学特性を測定することが重要となる。 Optically anisotropic films capable of changing the polarization state of light are used in various optical devices such as liquid crystal display devices as retardation plates and viewing angle compensation plates. Depending on the optical characteristics required for the optical device, a film having a two-layer structure or two-layer / three-layer structure including two different layers may be used as the optical anisotropic film. In order to control the optical characteristics more precisely, it is important to measure the optical characteristics of each layer of the optically anisotropic film composed of the two types of layers.
薄膜の光学特性を測定する方法としては、分光エリプソメトリー法が広く用いられている。例えば、基板表面の二層構成または二種三層構成の薄膜を分光エリプソメータを用いて測定し、3段階の解析を行うことで構造解析を行う方法が開示されている(特許文献1,2)。 A spectroscopic ellipsometry method is widely used as a method for measuring the optical characteristics of a thin film. For example, there is disclosed a method of performing structural analysis by measuring a thin film having a two-layer structure or a two-type three-layer structure on a substrate surface using a spectroscopic ellipsometer and performing a three-stage analysis (Patent Documents 1 and 2). .
また、2枚の複屈折性フィルムが貼り合わされてなる複合フィルムのレターデーション値を、エリプソメータにより入射光に対する透過光の偏光状態の変化を検出することにより求める工程を含む、複屈折性フィルムの主軸測定方法も開示されている(特許文献3)。 The main axis of the birefringent film includes a step of obtaining a retardation value of a composite film formed by laminating two birefringent films by detecting a change in the polarization state of transmitted light with respect to incident light using an ellipsometer. A measurement method is also disclosed (Patent Document 3).
しかしながら、二種の層からなる光学異方性膜の各層ごとのレターデーションを測定する方法はこれまで知られていなかった。特に多層押出しで得られる光学異方性膜については、各層を分離して各々のレターデーションを直接測定することも実質的に不可能であり、光学異方性膜の製造において各層の光学特性を精密に制御することが困難となっていた。 However, a method for measuring the retardation of each layer of an optically anisotropic film composed of two types of layers has not been known so far. In particular, for optically anisotropic films obtained by multilayer extrusion, it is virtually impossible to measure each retardation by separating each layer, and the optical characteristics of each layer in the production of optically anisotropic films It was difficult to control precisely.
本発明は、二種の層からなる光学異方性膜の各層のレターデーションを、各層を分離することなく測定する方法を提供することを目的とする。 An object of this invention is to provide the method of measuring the retardation of each layer of the optically anisotropic film which consists of two types of layers, without isolate | separating each layer.
本発明者らは鋭意検討の結果、光学異方性膜に対し3方向から光を照射してそれぞれの透過偏光状態の変化を測定することで、光学異方性膜の各層のレターデーションを求められることを見出し、この知見に基づき本発明を完成するに至った。 As a result of intensive studies, the present inventors determined the retardation of each layer of the optically anisotropic film by irradiating the optically anisotropic film with light from three directions and measuring the change in the respective transmitted polarization states. Based on this finding, the present invention has been completed.
かくして本発明によれば、二種の層からなる光学異方性膜のレターデーションを測定する方法であって、
前記光学異方性膜に対し略垂直方向に光を照射してその透過偏光状態の変化(1)を測定する工程、
前記光学異方性膜の面内遅相軸方向に対し方位角−5°〜+5°かつ極角θ1(ただし、30°≦θ1≦70°である)の方向に光を照射してその透過偏光状態の変化(2)を測定する工程、
前記光学異方性膜の面内遅相軸方向に対し方位角θ2(ただし、30°≦θ2≦60°である)かつ極角θ3(ただし、30°≦θ3≦70°である)の方向に光を照射してその透過偏光状態の変化(3)を測定する工程、
ならびに、
前記透過偏光状態の変化(1)〜(3)を用いて前記光学異方性膜を構成する各層の面内レターデーションReおよび厚さ方向のレターデーションRthを算出する工程を含む、
光学異方性膜のレターデーションの測定方法が提供される。
Thus, according to the present invention, there is provided a method for measuring the retardation of an optically anisotropic film composed of two types of layers,
Irradiating light in a substantially perpendicular direction to the optically anisotropic film and measuring a change (1) in the transmitted polarization state;
Irradiating light in the direction of the azimuth angle −5 ° to + 5 ° and the polar angle θ 1 (where 30 ° ≦ θ 1 ≦ 70 °) with respect to the in-plane slow axis direction of the optically anisotropic film Measuring the change (2) in the transmitted polarization state;
An azimuth angle θ 2 (where 30 ° ≦ θ 2 ≦ 60 °) and a polar angle θ 3 (where 30 ° ≦ θ 3 ≦ 70 ° with respect to the in-plane slow axis direction of the optically anisotropic film. Irradiating light in the direction of (a) and measuring the change (3) in the transmitted polarization state;
And
A step of calculating in-plane retardation Re and retardation Rth in the thickness direction of each layer constituting the optically anisotropic film using the transmitted polarization state changes (1) to (3),
A method for measuring retardation of an optically anisotropic film is provided.
上記測定方法においては、前記透過偏光状態の変化(1)〜(3)の測定が分光エリプソメトリーによるものであり、
前記透過偏光状態の変化(1)が透過光の位相差の変化Δ1であり、
前記透過偏光状態の変化(2)が透過光の位相差の変化Δ2であり、
前記透過偏光状態の変化(3)が透過光の位相差の変化Δ3および振幅比の変化Ψ3であることが好ましい。
In the measurement method, the measurement of the change in the transmitted polarization state (1) to (3) is based on spectroscopic ellipsometry,
The change in the transmitted polarization state (1) is the change delta 1 phase difference of the transmitted light,
The change in the transmitted polarization state (2) is a change in delta 2 of the phase difference of the transmitted light,
It is preferable that the change in the transmitted polarization state (3) is changed [psi 3 changes delta 3 and an amplitude ratio of the phase difference of the transmitted light.
前記光学異方性膜を構成する各層の面内レターデーションReおよび厚さ方向のレターデーションRthを算出する工程は、
Re1およびRth1を仮定して、下式[1]〜[4]により各層の厚さと三次元屈折率を求める工程、
この各層の厚さと三次元屈折率を用いて、4×4マトリックス法により方位角θ2かつ極角θ3の方向に光を照射したときの透過光の位相差の変化の計算値Δ3cおよび振幅比の変化の計算値Ψ3cを算出する工程、
Δ3cおよびΨ3cと、前記Δ3およびΨ3との差がそれぞれ最小となる値としてRe1およびRth1を算出する工程、
このRe1およびRth1から下式[1]〜[4]により各層の厚さと三次元屈折率を求める工程、
この三次元屈折率から下式[5]によりRe2およびRth2を算出する工程、
を含むものであることが好ましい。
The step of calculating in-plane retardation Re and thickness direction retardation Rth of each layer constituting the optically anisotropic film,
Assuming Re 1 and Rth 1 , the step of obtaining the thickness and three-dimensional refractive index of each layer by the following equations [1] to [4]:
Using the thickness and three-dimensional refractive index of each layer, a calculated value Δ 3c of a change in phase difference of transmitted light when light is irradiated in the directions of azimuth angle θ 2 and polar angle θ 3 by the 4 × 4 matrix method, and Calculating a calculated value Ψ 3c of a change in amplitude ratio;
Calculating Re 1 and Rth 1 as values at which the difference between Δ 3c and ψ 3c and Δ 3 and ψ 3 is minimized,
A step of obtaining the thickness and three-dimensional refractive index of each layer from Re 1 and Rth 1 by the following equations [1] to [4];
A step of calculating Re 2 and Rth 2 from the three-dimensional refractive index by the following equation [5]:
It is preferable that it contains.
前記式中、niは前記光学異方性膜の各層の平均屈折率を表し、
nx、nyおよびnzは前記光学異方性膜の各層の三次元屈折率を表し(ただし、添字のx、yおよびzはそれぞれ前記光学異方性膜の面内遅相軸方向、光学異方性膜の面内遅相軸に面内で直交する方向、光学異方性膜の厚さ方向を表す。)、
dは前記光学異方性膜の各層の厚さを表す。
また、Re、Rth、Δ1、Δ2、ni、nx、ny、nzおよびdにおける添字の1は、前記光学異方性膜の光を照射する側の層およびそれと同種の層についての値であることを表し、2はそれと異なる種類の層についての値であることを表す。
In the formula, n i denotes an average refractive index of each layer of the optically anisotropic film,
n x, n y and n z represent the three-dimensional refractive index of each layer of the optically anisotropic film (where subscripts x, y and z-plane slow axis direction of each of the optically anisotropic film, Represents the direction perpendicular to the in-plane slow axis of the optically anisotropic film in the plane and the thickness direction of the optically anisotropic film).
d represents the thickness of each layer of the optically anisotropic film.
The subscript 1 in Re, Rth, Δ 1 , Δ 2 , n i , n x , n y , nz, and d is a layer on the optically anisotropic film that is irradiated with light, and a layer of the same type 2 represents a value for a different kind of layer.
上記測定方法においては、θ2が40°≦θ2≦50°であることが好ましい。
また、二種の層からなる光学異方性膜が多層押し出し成形により得られたものであることが好ましい。
In the measurement method, θ 2 is preferably 40 ° ≦ θ 2 ≦ 50 °.
Moreover, it is preferable that the optical anisotropic film which consists of two types of layers is obtained by multilayer extrusion molding.
本発明によれば、二種の層からなる光学異方性膜の各層のレターデーションを測定することが可能となる。これにより、光学異方性膜の製造において、得られるレターデーション値に基づき製造条件を制御することで、各層の光学特性を精密に制御することが可能となる。 According to the present invention, it is possible to measure the retardation of each layer of an optically anisotropic film composed of two types of layers. Thereby, in the manufacture of the optical anisotropic film, the optical characteristics of each layer can be precisely controlled by controlling the manufacturing conditions based on the obtained retardation value.
本発明の測定方法は、二種の層からなる光学異方性膜のレターデーションを測定する方法である。本発明の測定方法が適用できる光学異方性膜は、二種の層からなり、各層の面内遅相軸が平行または直交な膜である。ここで二種の層からなるとは、組成の異なる二種の層が積層された構成を有することを表す。光学異方性膜の構成は、二種の層からなるものであれば二層であっても三層以上であってもよいが、好ましくは二種二層または二種三層であり、より好ましくは二種二層である。 The measuring method of the present invention is a method for measuring the retardation of an optically anisotropic film comprising two types of layers. The optically anisotropic film to which the measurement method of the present invention can be applied is a film composed of two types of layers, and the in-plane slow axis of each layer is parallel or orthogonal. Here, “consisting of two types of layers” means having a configuration in which two types of layers having different compositions are laminated. The configuration of the optically anisotropic film may be two layers or three or more layers as long as it is composed of two types of layers, but is preferably a two-type two-layer or two-type three-layer, more Two types and two layers are preferable.
光学異方性膜の各層を構成する材料は、光を透過する性質のあるものであれば特に限定されないが、通常は樹脂フィルムが用いられる。用いられる樹脂としては、ポリメチルメタクリレート、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリエステル、アモルファスポリエチレン、トリアセチルセルロース、環状オレフィン樹脂などを挙げることができる。 The material constituting each layer of the optically anisotropic film is not particularly limited as long as it has a property of transmitting light, but a resin film is usually used. Examples of the resin used include polymethyl methacrylate, polystyrene, polycarbonate, polyether sulfone, polyester, amorphous polyethylene, triacetyl cellulose, and cyclic olefin resin.
光学異方性膜の膜厚は、通常20〜250μm、好ましくは40〜180μmである。光学異方性膜は、通常、薄いので、互いに直交するx軸及びy軸を膜面に平行な方向に、z軸を膜に垂直(厚さ)な方向にとり、そして、nxを光学異方性膜の面内遅相軸方向の屈折率、nyを光学異方性膜の面内遅相軸に面内で直交する方向の屈折率、nzを光学異方性膜の厚さ方向の屈折率と定義している。 The film thickness of the optically anisotropic film is usually 20 to 250 μm, preferably 40 to 180 μm. Since the optically anisotropic film is usually thin, the x axis and y axis perpendicular to each other are taken in a direction parallel to the film surface, the z axis is taken in a direction perpendicular to the film (thickness), and nx is optically different. plane slow axis direction of the refractive index of the isotropic film, the refractive index in the direction orthogonal to n y in a plane in the in-plane slow axis of the optically anisotropic film, the n z of the optically anisotropic film thickness It is defined as the refractive index in the direction.
樹脂フィルムからなる光学異方性膜の製造方法は限定されない。具体的には、(a)光学異方性を有する二以上のフィルムを、それぞれのフィルムの面内遅相軸が平行または直交となるように貼り合せる方法;(b)光学異方性を有さない二以上のフィルムを貼り合せ、次いでこのフィルムを延伸して光学異方性を付与する方法;および(c)二種の層からなるフィルムを多層押し出しにより成形し、次いでこのフィルムを延伸して光学異方性を付与する方法;が挙げられる。これらの中でも、各層の面内遅相軸を平行または直交にすることが容易であるので(b)および(c)の方法が好ましく、(c)の方法が特に好ましい。本発明の測定方法によれば、各層を分離することが困難な(c)の方法で製造した光学異方性膜であっても、各々の層のレターデーションを測定することができる。 The manufacturing method of the optically anisotropic film which consists of a resin film is not limited. Specifically, (a) a method of bonding two or more films having optical anisotropy so that the in-plane slow axes of the respective films are parallel or orthogonal; (b) having optical anisotropy. A method in which two or more films are bonded together, and then the film is stretched to impart optical anisotropy; and (c) a film comprising two layers is formed by multilayer extrusion, and then the film is stretched. And a method of imparting optical anisotropy. Among these, since it is easy to make the in-plane slow axis of each layer parallel or orthogonal, the methods (b) and (c) are preferable, and the method (c) is particularly preferable. According to the measuring method of the present invention, the retardation of each layer can be measured even with the optically anisotropic film produced by the method (c) in which it is difficult to separate the layers.
本発明の測定方法は、前記光学異方性膜に対し光を照射してその透過偏光状態の変化を測定する工程を含む。本発明で用いる光の種類は限定されないが、レーザー光のように細い平行光線であることが好ましい。光学異方性膜に照射される光の範囲を狭くでき、より正確な測定が可能になる。 The measuring method of the present invention includes a step of irradiating the optically anisotropic film with light and measuring a change in its transmitted polarization state. Although the kind of light used by this invention is not limited, It is preferable that it is a thin parallel light beam like a laser beam. The range of light irradiated to the optically anisotropic film can be narrowed, and more accurate measurement is possible.
本発明で透過偏光状態の変化を測定する方法としては分光エリプソメトリーおよびミュラーマトリックスが挙げられ、それぞれ分光エリプソメータおよびミュラーマトリックス偏光計を用いて測定することができる。中でも、少数のパラメータで十分な情報量が得られるので分光エリプソメトリーによる測定が好ましい。 Examples of the method for measuring the change in the state of transmitted polarization in the present invention include spectroscopic ellipsometry and Mueller matrix, which can be measured using a spectroscopic ellipsometer and Mueller matrix polarimeter, respectively. Among them, measurement by spectroscopic ellipsometry is preferable because a sufficient amount of information can be obtained with a small number of parameters.
本発明の測定方法では、第1の測定として、前記光学異方性膜に対し略垂直方向に光を照射してその透過偏光状態の変化(1)を測定する。ここで光学異方性膜に対し垂直方向とは前記z軸の方向に等しく、略垂直方向とは該z軸と光の照射方向とがなす角である極角が5°以下であることを表す。分光エリプソメトリーによる測定を行う場合は、偏光状態の変化(1)は透過光の位相差の変化Δ1で表される。 In the measurement method of the present invention, as a first measurement, light is irradiated in a substantially vertical direction with respect to the optically anisotropic film, and the change (1) in the transmitted polarization state is measured. Here, the perpendicular direction to the optically anisotropic film is equal to the z-axis direction, and the substantially perpendicular direction means that the polar angle that is an angle formed by the z-axis and the light irradiation direction is 5 ° or less. Represent. When performing measurement by spectroscopic ellipsometry, a change in polarization state (1) is expressed by the change delta 1 phase difference of the transmitted light.
本発明の測定方法では、第2の測定として、前記光学異方性膜の配向方向に対し方位角−5°〜+5°かつ極角θ1(ただし、30°≦θ1≦70°である)の方向に光を照射してその透過偏光状態の変化(2)を測定する。極角θ1の範囲は、好ましくは40°≦θ1≦60°である。この範囲であると、測定感度に優れる。分光エリプソメトリーによる測定を行う場合は、偏光状態の変化(2)は透過光の位相差の変化Δ2で表される。 In the measurement method of the present invention, as the second measurement, the azimuth angle is −5 ° to + 5 ° and the polar angle θ 1 (where 30 ° ≦ θ 1 ≦ 70 ° with respect to the alignment direction of the optically anisotropic film. ) Is irradiated with light, and the change (2) in the transmitted polarization state is measured. The range of the polar angle θ 1 is preferably 40 ° ≦ θ 1 ≦ 60 °. Within this range, the measurement sensitivity is excellent. When the measurement by spectroscopic ellipsometry is performed, the change (2) in the polarization state is represented by the change Δ 2 in the phase difference of the transmitted light.
本発明の測定方法では、第3の測定として、前記光学異方性膜の配向方向に対し方位角θ2(ただし、30°≦θ2≦60°である)かつ極角θ3(ただし、30°≦θ3≦70°である)の方向に光を照射してその透過偏光状態の変化(3)を測定する。 In the measurement method of the present invention, as a third measurement, an azimuth angle θ 2 (where 30 ° ≦ θ 2 ≦ 60 °) and a polar angle θ 3 (wherein the orientation direction of the optically anisotropic film) Light is irradiated in the direction of 30 ° ≦ θ 3 ≦ 70 °), and the change (3) in the transmitted polarization state is measured.
方位角θ2の範囲は45°に近いほど好ましく、好ましくは40°≦θ2≦50°、より好ましくは44°≦θ2≦46°である。この範囲であると、測定感度に優れる。極角θ3の範囲は、好ましくは40°≦θ1≦60°である。この範囲であると、測定感度に優れる。分光エリプソメトリーによる測定を行う場合は、偏光状態の変化(3)は透過光の位相差の変化Δ3および振幅比の変化Ψ3で表される。 The range of the azimuth angle θ 2 is preferably as close to 45 °, preferably 40 ° ≦ θ 2 ≦ 50 °, more preferably 44 ° ≦ θ 2 ≦ 46 °. Within this range, the measurement sensitivity is excellent. The range of the polar angle θ 3 is preferably 40 ° ≦ θ 1 ≦ 60 °. Within this range, the measurement sensitivity is excellent. When performing measurement by spectroscopic ellipsometry, a change in polarization state (3) is expressed by the change [psi 3 changes delta 3 and an amplitude ratio of the phase difference of the transmitted light.
本発明の測定方法は、前記透過偏光状態の変化(1)〜(3)を用いて前記光学異方性膜を構成する各層の面内レターデーションReおよび厚さ方向のレターデーションRthを算出する工程を含む。 In the measurement method of the present invention, the in-plane retardation Re and the thickness direction retardation Rth of each layer constituting the optically anisotropic film are calculated using the transmission polarization state changes (1) to (3). Process.
算出の方法は特に限定されず、例えば結晶光学理論を応用して各層の3次元屈折率(nx1、ny1、nz1、nx2、ny2、nz2)を変化させてΔ1、Δ2、Δ3、Ψ3を計算し、計算結果を測定結果にフィティングして各層のReおよびRthを算出することもできるが、透過偏光状態の変化を分光エリプソメトリーにより測定する場合は、下式[1]〜[5]を用いてReおよびRthを算出することが好ましい。変化させるパラメータが少ないため解析が容易だからである。 The calculation method is not particularly limited, and for example, by applying crystal optical theory, the three-dimensional refractive index (nx 1 , ny 1 , nz 1 , nx 2 , ny 2 , nz 2 ) of each layer is changed to change Δ 1 , Δ 2 , Δ 3 , Ψ 3 can be calculated and the calculation results can be fitted to the measurement results to calculate Re and Rth of each layer. However, when the change in the transmitted polarization state is measured by spectroscopic ellipsometry, It is preferable to calculate Re and Rth using the equations [1] to [5]. This is because analysis is easy because there are few parameters to be changed.
下式[1]〜[5]を用いてReおよびRthを算出する方法について、二種二層構成の光学異方性膜を例として、以下に詳細に説明する。
なお式中、niは光学異方性膜の各層の平均屈折率を表し、
nx、nyおよびnzは光学異方性膜の各層の三次元屈折率を表し(ただし、添字のx、yおよびzはそれぞれ前記光学異方性膜の面内遅相軸方向、光学異方性膜の面内遅相軸に面内で直交する方向、光学異方性膜の厚さ方向を表す。)、
dは前記光学異方性膜の各層の厚さを表す。
また、Re、Rth、Δ1、Δ2、Δ3、Ψ3、ni、nx、ny、nzおよびdにおける添字の1は、前記光学異方性膜の光を照射する側の層(以下、「第1層」ということがある。)についての値であることを表し、2はそれと異なる種類の層(以下、「第2層」ということがある。)についての値であることを表す。
A method for calculating Re and Rth using the following formulas [1] to [5] will be described in detail below by taking an optically anisotropic film having a two-layer / two-layer structure as an example.
Incidentally wherein, n i denotes an average refractive index of each layer of the optically anisotropic film,
n x, n y and n z represent the three-dimensional refractive index of each layer of the optically anisotropic film (where subscripts x, y and z-plane slow axis direction of each of the optically anisotropic film, optical Represents the direction perpendicular to the in-plane slow axis of the anisotropic film in the plane and the thickness direction of the optically anisotropic film).
d represents the thickness of each layer of the optically anisotropic film.
Further, the subscript 1 in Re, Rth, Δ 1 , Δ 2 , Δ 3 , Ψ 3 , n i , n x , n y , nz, and d indicates the light irradiation side of the optical anisotropic film. This represents a value for a layer (hereinafter sometimes referred to as “first layer”), and 2 represents a value for a different type of layer (hereinafter sometimes referred to as “second layer”). Represents that.
まずRe1およびRth1を仮定して、式[1]により第1層(平均屈折率ni1、厚さd1)の3次元屈折率nx1、ny1およびnz1を求める。 First, assuming Re 1 and Rth 1 , the three-dimensional refractive indexes n x1 , n y1, and nz1 of the first layer (average refractive index n i1 , thickness d 1 ) are obtained by the equation [1].
次にこのnx1、ny1およびnz1を用いて、前記第1の測定および第2の測定における第1層の位相差の変化Δ11およびΔ21を式[2]により求める。 Next, using the n x1 , n y1, and n z1 , the changes Δ 11 and Δ 21 in the first layer phase difference in the first measurement and the second measurement are obtained by the equation [2].
この式[2]で得られたΔ11およびΔ21、ならびに前記第1の測定および第2の測定で得られた光学異方性膜全体の位相差の変化Δ1およびΔ2を用いて、前記第1の測定および第2の測定における第2層の位相差の変化Δ12およびΔ22を式[3]により求める。 Using Δ 11 and Δ 21 obtained by the equation [2], and changes Δ 1 and Δ 2 of the retardation of the entire optically anisotropic film obtained by the first measurement and the second measurement, The changes Δ 12 and Δ 22 in the phase difference of the second layer in the first measurement and the second measurement are obtained by Equation [3].
このΔ12およびΔ22を用いて第2層(平均屈折率ni2、厚さd2)の3次元屈折率nx2、ny2およびnz2を式[4]により求める。 The delta 12 and the second layer using a delta 22 (average refractive index n i2, d 2 thickness) three-dimensional refractive indexes of the n x2, n y2 and n z2 is obtained by equation [4].
次いで得られた各層の厚さおよび3次元屈折率を用いてバールマン(Berreman)の4×4マトリックス法を適用すると、前記第3の測定における光学異方性膜の偏光状態の変化を表すエリプソメトリー変数Δ3cおよびΨ3cを算出する。 Then, applying the Berreman 4 × 4 matrix method using the thickness and three-dimensional refractive index of each layer obtained, an ellipsometry representing the change in the polarization state of the optically anisotropic film in the third measurement Variables Δ 3c and ψ 3c are calculated.
なお4×4マトリックス法はJournal of Optical Society of America,vol.62,6,p.502−510(1972)に開示される公知の計算方法であるが、複雑な計算であるので、ここでは詳細の記載を省略する。 The 4 × 4 matrix method is described in Journal of Optical Society of America, vol. 62, 6, p. 502-510 (1972), which is a well-known calculation method, but since it is a complicated calculation, detailed description thereof is omitted here.
こうして得られたΔ3cおよびΨ3cと、前記第3の測定で直接得られた光学異方性膜の偏光状態の変化Δ3およびΨ3とを対比する。最初に仮定したRe1およびRth1の値を変化させながら前記式[1]〜[4]による計算を繰り返し、Δ3cおよびΨ3cとΔ3およびΨ3との差がそれぞれ最も小さくなるときのRe1およびRth1を求める。この値が第1層の真のRe1およびRth1となる。 The Δ 3c and ψ 3c obtained in this way are compared with the changes Δ 3 and ψ 3 in the polarization state of the optically anisotropic film obtained directly in the third measurement. When the calculations of the above equations [1] to [4] are repeated while changing the values of Re 1 and Rth 1 assumed first, the difference between Δ 3c and Ψ 3c and Δ 3 and Ψ 3 is the smallest. Re 1 and Rth 1 are obtained. This value becomes the true Re 1 and Rth 1 of the first layer.
またこのRe1およびRth1に対応するnx2、ny2およびnz2が第2層の真の屈折率になる。これらを用いて 式[5]により第2層の面内レターデーションRe2および厚さ方向のレターデーションRth2を求める。 Further, n x2 , n y2 and nz2 corresponding to Re 1 and Rth 1 become the true refractive index of the second layer. Using these, the in-plane retardation Re 2 and the thickness direction retardation Rth 2 of the second layer are obtained by the equation [5].
以上、二種二層の光学異方性膜を例として説明したが、三層以上の構成の光学異方性膜についても同様に各層のレターデーションを求めることができる。この場合、計算に用いる各パラメータは、同種の層を合計した値となる。例えば、第1層−第2層−第1層と同種の層である第3層、の順に積層された構成を有する二種三層の光学異方性膜であれば、Re1、Rth1、Δ11、Δ21、ni1、nx1、ny1、nz1およびd1は全て第1層と第3層とを合わせた値として得られる。 As described above, the two-type two-layer optically anisotropic film has been described as an example. However, the retardation of each layer can be similarly obtained for an optically anisotropic film having three or more layers. In this case, each parameter used for the calculation is a value obtained by summing up the same kind of layers. For example, if it is a two-kind-three-layer optically anisotropic film having a structure in which a first layer, a second layer, and a third layer, which is the same kind of layer as the first layer, are stacked in this order, Re 1 , Rth 1 , Δ 11 , Δ 21 , n i1 , n x1 , n y1 , n z1, and d 1 are all obtained as values obtained by combining the first layer and the third layer.
光学異方性膜の製造方法においては、所望の光学特性を有する光学異方性膜を得るために、製造工程の諸条件、例えば、温度、圧力、膜厚、成膜速度、粘度、延伸倍率などの条件を変更し、屈折率やレターデーションなどの値が所望の値に近づくように、自動または手動でフィードバック制御している。本発明の測定方法によれば、二種の層からなる光学異方性膜について、各層の面内レターデーションReおよび厚さ方向のレターデーションRthを測定することができるので、このフィードバック制御をより精密に行うことが可能になり、所望の光学特性を有する光学異方性膜を製造することが容易になる。 In the method for producing an optically anisotropic film, in order to obtain an optically anisotropic film having desired optical properties, various conditions of the production process, such as temperature, pressure, film thickness, film forming speed, viscosity, and draw ratio The feedback control is performed automatically or manually so that the values such as the refractive index and the retardation approach a desired value. According to the measurement method of the present invention, the in-plane retardation Re and the thickness direction retardation Rth of each layer can be measured for the optically anisotropic film composed of two types of layers. It becomes possible to carry out precisely and it becomes easy to manufacture the optical anisotropic film which has a desired optical characteristic.
以下、実施例及び比較例を参照して本発明をより詳細に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例1)
厚さが67μmで未延伸の環状オレフィン樹脂フィルム(ゼオノアフィルムZF14;日本ゼオン社製)を144℃で縦方向に1.5倍延伸して、厚さd2が55μm、平均屈折率ni2が1.535、Reが118nm、Rthが61nmであるフィルムを第2層のフィルムとして得た。
Example 1
A non-stretched cyclic olefin resin film (Zeonor film ZF14; manufactured by Nippon Zeon Co., Ltd.) having a thickness of 67 μm is stretched 1.5 times in the longitudinal direction at 144 ° C., the thickness d 2 is 55 μm, and the average refractive index n i2 is A film having 1.535, Re of 118 nm and Rth of 61 nm was obtained as the second layer film.
この第2層の上に第1層のフィルムとして、厚さd1が50μm、平均屈折率ni1が1.535、Reが52nm、Rthが126nmである延伸された環状オレフィン樹脂フィルム(ゼオノアフィルムZB12;日本ゼオン社製)を、日東電工社製両面接着テープを用いて両フィルムの遅相軸が直交するように貼り合わせて光学異方性膜Aを作製した。なお、それぞれのフィルムの光学特性は特開2007−225426号公報に記載の方法に基づき測定した。すなわち、特開2007−225426号公報に記載の方法により平均屈折率niおよび三次元屈折率nx、nyおよびnzを測定し、前記式[5]によりReおよびRthを求めた。また厚さはマイクロメータを用いて測定した。 A stretched cyclic olefin resin film (Zeonor film) having a thickness d 1 of 50 μm, an average refractive index n i1 of 1.535, Re of 52 nm, and Rth of 126 nm as a first layer film on the second layer. ZB12 (manufactured by ZEON CORPORATION) was bonded using a double-sided adhesive tape manufactured by Nitto Denko Corporation so that the slow axes of both films were orthogonal to produce an optically anisotropic film A. In addition, the optical characteristic of each film was measured based on the method as described in Unexamined-Japanese-Patent No. 2007-225426. That is, the average refractive index by the method described in JP 2007-225426 n i and the three-dimensional refractive index n x, measured n y and n z, was calculated Re and Rth by the formula [5]. The thickness was measured using a micrometer.
分光エリプソメータ(J.A.Woollam社製M−2000)を用いて以下のように各層のReとRthを測定した。なお下記第1〜第3の測定いずれにおいても光学異方性膜Aの第1層側の面から光を照射した。 Re and Rth of each layer were measured as follows using a spectroscopic ellipsometer (M-2000 manufactured by JA Woollam). In any of the following first to third measurements, light was irradiated from the surface of the optically anisotropic film A on the first layer side.
第1の測定として、図1に示すように、光ビームが光学異方性膜Aに垂直に入射されるように調整し透過光の位相差の変化Δ1を測定した。このときΔ1=65.9nm(=43.1°)であった。 As a first measurement, as shown in FIG. 1, the light beam is to measure the change delta 1 phase difference of the adjusted transmission light to be perpendicularly incident on the optically anisotropic film A. At this time, Δ 1 = 65.9 nm (= 43.1 °).
第2の測定として、図2に示すように、光学異方性膜Aの遅相軸(配向方向)が0°且つ光ビームが光学異方性膜Aに対し極角θ1が50°で入射されるように調整し透過光の位相差の変化Δ2を測定した。このときΔ2=12.0nm(=7.85°)であった。 As a second measurement, as shown in FIG. 2, the slow axis (orientation direction) of the optical anisotropic film A is 0 °, and the light beam has a polar angle θ 1 of 50 ° with respect to the optical anisotropic film A. adjusted to measure the change delta 2 of the phase difference of the transmitted light as incident. At this time, Δ 2 = 12.0 nm (= 7.85 °).
第3の測定として、図3に示すように、光学異方性膜Aの遅相軸(配向方向)に対し方位角θ2が45°且つ光ビームが光学異方性膜Aに対し極角θ3が50°で入射されるように調整し透過光の位相差の変化Δ3と振幅比の変化Ψ3を測定した。このときΔ3=−97.7°、Ψ3=23.9°であった。 As a third measurement, as shown in FIG. 3, the azimuth angle θ 2 is 45 ° with respect to the slow axis (orientation direction) of the optically anisotropic film A, and the light beam has a polar angle with respect to the optically anisotropic film A. Adjustment was made so that θ 3 was incident at 50 °, and a change Δ 3 in phase difference of transmitted light and a change in amplitude ratio ψ 3 were measured. At this time, Δ 3 = −97.7 ° and Ψ 3 = 23.9 °.
第1層のフィルムのRe1を−300〜+300nm、Rth1を−300〜+300nmの範囲内に変化させ、それぞれのRe1、Rth1に対して前記式[1]〜[4]を用い第1層のフィルムの3次元屈折率nx1、ny1、nz1および第2層のフィルムの3次元屈折率nx2、ny2、nz2を計算した。 The Re 1 of the first layer film is changed within the range of −300 to +300 nm and the Rth 1 is changed within the range of −300 to +300 nm, and the above equations [1] to [4] are used for the respective Re 1 and Rth 1 . the three-dimensional refractive indexes n x1, n y1, n z1 and 3-dimensional refractive index of the film of the second layer n x2, n y2, n z2 of the first layer film was calculated.
得られたnx1、ny1、nz1およびnx2、ny2、nz2を用いて4×4マトリックス法により方位角θ2、極角θ3の入射条件に対して透過光の位相差の変化Δ3cと振幅比の変化Ψ3cを計算した。計算されたΔ3cおよびΨ3cを前記第3の測定で得られたΔ3およびΨ3と比較し、その差が一番小さくなるときのRe1およびRth1として、第1層の面内レターデーションRe1=52nmおよび厚さ方向のレターデーションRth1=122nmを得た。 Using the obtained n x1 , n y1 , n z1 and n x2 , n y2 , n z2 , the phase difference of the transmitted light with respect to the incident condition of azimuth angle θ 2 and polar angle θ 3 by the 4 × 4 matrix method A change Δ 3c and an amplitude ratio change Ψ 3c were calculated. The calculated Δ 3c and Ψ 3c are compared with Δ 3 and Ψ 3 obtained in the third measurement, and Re 1 and Rth 1 when the difference is the smallest are used as the in-plane letters of the first layer. It was obtained Deshon Re 1 = 52nm and the thickness direction retardation Rth 1 = 122nm.
このRe1=52nm、Rth1=122nmに対応する第2層の三次元屈折率nx2=1.5362、ny2=1.5344、nz2=1.5343を用いて、式[5]に基づき第2層のRe2およびRth2を計算すると、Re2=119nm、Rth2=67nmであった。こうして得られたRe1、Rth1、Re2およびRth2は第1層のフィルムと第2層のフィルムとを貼り合わせる前に個別で測定した値とよく一致し、本発明の測定方法により二種二層構成の光学異方性膜のレターデーションを精度よく測定できることが分かった。 Using the three-dimensional refractive index n x2 = 1.5362, n y2 = 1.5344, n z2 = 1.5343 of the second layer corresponding to this Re 1 = 52 nm and Rth 1 = 122 nm, the equation [5] Based on the calculation of Re 2 and Rth 2 of the second layer, Re 2 = 119 nm and Rth 2 = 67 nm. Re 1 , Rth 1 , Re 2 and Rth 2 thus obtained are in good agreement with the values measured individually before the first layer film and the second layer film are bonded together. It was found that the retardation of the optically anisotropic film having the seed two-layer structure can be accurately measured.
(実施例2)
実施例1で用いた光学異方性膜Aの第2層側に、第1層と同じフィルムを第3層として、日東電工社製両面接着テープを用いて、第1層と第3層の遅相軸が平行となるように貼り合わせて2種3層の光学異方性膜Bを作製した。この光学異方性膜について実施例1と同様の測定を行い、Δ1=15.0nm、Δ2=−74.3nm、Δ3=−63.2°、Ψ3=6.87°を得た。
(Example 2)
On the second layer side of the optically anisotropic film A used in Example 1, the same film as the first layer is used as the third layer, and a double-sided adhesive tape manufactured by Nitto Denko Corporation is used, and the first layer and the third layer are formed. Bonding was performed so that the slow axes were parallel to each other, so that a two-type three-layer optically anisotropic film B was produced. The optical anisotropic film was measured in the same manner as in Example 1 to obtain Δ 1 = 15.0 nm, Δ 2 = −74.3 nm, Δ 3 = −63.2 °, and Ψ 3 = 6.87 °. It was.
ここで、屈折率が第1層及び第3層に等しく、厚さが第1層の厚さと第3層の厚さとの和である層を第4層として仮定する。そして、上記2種3層の光学異方性膜Bを、第2層−第4層の構成を有する2種2層の光学異方性膜とみなして、実施例1と同様な手法でRe2を−300nm〜+300nm、Rth2を−300nm〜+300nmの範囲で変化させ、それぞれのRe2、Rth2に対して前記式[1]〜[4]を用い第2層のフィルムの3次元屈折率nx2、ny2、nz2および第4層のフィルムの3次元屈折率nx4、ny4、nz4を計算した。 Here, it is assumed that a layer having a refractive index equal to that of the first layer and the third layer and having a thickness equal to the sum of the thickness of the first layer and the thickness of the third layer is the fourth layer. The above-described two-type three-layer optically anisotropic film B is regarded as a two-type two-layer optically anisotropic film having the configuration of the second layer to the fourth layer, and the same method as in Example 1 is applied. 2 is changed in the range of −300 nm to +300 nm, Rth 2 is changed in the range of −300 nm to +300 nm, and the above-mentioned formulas [1] to [4] are used for Re 2 and Rth 2 , respectively. the rate n x2, n y2, 3-dimensional refractive index of the film of n z2 and the fourth layer n x4, n y4, n z4 was calculated.
前記仮定よりnx4、ny4、nz4は第1層のフィルムの3次元屈折率nx1、ny1、nz1および第3層のフィルムの3次元屈折率nx3、ny3、nz3にそれぞれに等しい。そこで前記2種3層の光学異方性膜について、得られた各層の3次元屈折率を用いて4×4マトリックス法により方位角θ2、極角θ3の入射条件に対して透過光の位相差の変化Δ3cと振幅比の変化Ψ3cを計算した。計算されたΔ3cおよびΨ3cを前記第3の測定で得られたΔ3およびΨ3と比較し、その差が一番小さくなるときのRe2およびRth2として、第2層の面内レターデーションRe2=119nmおよび厚さ方向のレターデーションRth2=65nmを得た。 N x4, n y4 from the assumption, n z4 is the three-dimensional refractive index n x3, n y3, n z3 film of three-dimensional refractive index n x1, n y1, n z1 and a third layer of the film of the first layer Equal to each. Therefore, with respect to the two-type three-layer optically anisotropic film, the transmitted light is transmitted with respect to the incident conditions of the azimuth angle θ 2 and polar angle θ 3 by the 4 × 4 matrix method using the obtained three-dimensional refractive index of each layer. A phase difference change Δ 3c and an amplitude ratio change ψ 3c were calculated. The calculated Δ 3c and ψ 3c are compared with Δ 3 and ψ 3 obtained in the third measurement, and Re 2 and Rth 2 when the difference is smallest are used as the in-plane letters of the second layer. The retardation Re 2 = 119 nm and the thickness direction retardation Rth 2 = 65 nm were obtained.
このRe2=119nm、Rth2=65nmと決定されたときの第1層の三次元屈折率nx1=1.53634、ny1=1.5353およびnz1=1.53336を用いて、式[5]に基づき第1層のRe1およびRth1を計算すると、Re1=52nm、Rth2=123nmであった。こうして得られたRe1、Rth1、Re2およびRth2は各層を個別で測定した値とよく一致し、本発明の測定方法により二種三層構成の光学異方性膜のレターデーションを精度よく測定できることが分かった。 Using the three-dimensional refractive indexes n x1 = 1.53634, n y1 = 1.5353 and n z1 = 1.53336 of the first layer when Re 2 = 119 nm and Rth 2 = 65 nm are determined, the equation [ 5], Re 1 and Rth 1 of the first layer were calculated to be Re 1 = 52 nm and Rth 2 = 123 nm. Re 1 , Rth 1 , Re 2 and Rth 2 thus obtained are in good agreement with the values measured individually for each layer, and the retardation of the optically anisotropic film having a two-layer / three-layer structure is accurately measured by the measurement method of the present invention. It turns out that it can measure well.
(実施例3)
二種二層の共押出成形用のフィルム成形装置を準備し、ポリカーボネート樹脂(旭化成社製、ワンダーライトPC−110、荷重たわみ温度145℃、平均屈折率ni1=1.590)のペレットを、ダブルフライト型のスクリューを備えた一方の一軸押出機に投入して、溶融させた。スチレン−無水マレイン酸共重合体樹脂(NovaChemicals社製、Dylark D332、荷重たわみ温度135℃、平均屈折率:ni2=1.585)のペレットをダブルフライト型のスクリューを備えたもう一方の一軸押出機に投入して、溶融させた。溶融された260℃のポリカーボネート樹脂を目開き10μmのリーフディスク形状のポリマーフィルターを通してマルチマニホールドダイ(ダイスリップの表面粗さRa:0.1μm)の一方のマニホールドに、溶融された260℃のスチレン−無水マレイン酸共重合体樹脂を目開き10μmのリーフディスク形状のポリマーフィルターを通してもう一方のマニホールドにそれぞれ供給した。ポリカーボネート樹脂およびスチレン−無水マレイン酸共重合体樹脂を該マルチマニホールドダイから260℃で同時に押し出しフィルム状にした。該フィルム状溶融樹脂を表面温度130℃に調整された冷却ロールにキャストし、次いで表面温度50℃に調整された2本の冷却ロール間に通して、ポリカーボネート樹脂層(第1層)とスチレン−無水マレイン酸共重合体樹脂層(第2層)からなる幅1350mmの積層フィルムを得た。
(Example 3)
A film forming apparatus for two-type two-layer coextrusion molding was prepared, and a pellet of polycarbonate resin (manufactured by Asahi Kasei Co., Ltd., Wonderlite PC-110, deflection temperature under load 145 ° C., average refractive index n i1 = 1.590), It was charged into one single screw extruder equipped with a double flight type screw and melted. Pellets of styrene-maleic anhydride copolymer resin (Nova Chemicals, Dylark D332, deflection temperature under load, 135 ° C., average refractive index: n i2 = 1.585), another uniaxial extrusion equipped with a double flight type screw The machine was charged and melted. Melted 260 ° C. styrene-polycarbonate resin is passed through a polymer filter in the form of a leaf disk having a mesh size of 10 μm to one manifold of a multi-manifold die (die slip surface roughness Ra: 0.1 μm). The maleic anhydride copolymer resin was supplied to the other manifold through a leaf disk-shaped polymer filter having an opening of 10 μm. A polycarbonate resin and a styrene-maleic anhydride copolymer resin were simultaneously extruded from the multi-manifold die at 260 ° C. to form a film. The film-like molten resin was cast on a cooling roll adjusted to a surface temperature of 130 ° C., and then passed between two cooling rolls adjusted to a surface temperature of 50 ° C. to obtain a polycarbonate resin layer (first layer) and styrene- A laminated film having a width of 1350 mm composed of a maleic anhydride copolymer resin layer (second layer) was obtained.
該積層フィルムを縦一軸延伸機に供給し、延伸温度155℃、延伸倍率2倍で縦方向に延伸した。続いて、延伸されたフィルムをテンター延伸機に供給し、延伸温度130℃、延伸倍率1.15で横方向に延伸して光学異方性膜Cを得た。マイクロメータを使用して光学異方性膜の厚さを測った結果92μmであった。なおポリカーボネート樹脂:スチレン−無水マレイン酸共重合体樹脂〜1:9.2の割合で共押し出ししたので第1層の膜厚d1=9μm、第2層の膜厚d2=83μmと計算された。 The laminated film was supplied to a longitudinal uniaxial stretching machine and stretched in the longitudinal direction at a stretching temperature of 155 ° C. and a stretching ratio of 2 times. Subsequently, the stretched film was supplied to a tenter stretching machine, and stretched in the transverse direction at a stretching temperature of 130 ° C. and a stretching ratio of 1.15 to obtain an optical anisotropic film C. The thickness of the optically anisotropic film was measured using a micrometer and found to be 92 μm. Since the polycarbonate resin: styrene-maleic anhydride copolymer resin was coextruded at a ratio of 1: 9.2, the first layer thickness d 1 = 9 μm and the second layer thickness d 2 = 83 μm were calculated. It was.
第1層のRe,RthをRe1,Rth1とし、第2層のRe,RthをRe2,Rth2として実施例1と同様にデータを測定したところ
Δ1=157.4nm
Δ2=158.0nm
Δ3=76.1°
Ψ3=53.0°
であった。
実施例1と同様にRe1,Rth1、Re2,Rth2を求めた結果
Re1=40[nm]
Rth1=130[nm]
Re2=117[nm]
Rth2=−127[nm]
であった。
The data was measured in the same manner as in Example 1 with Re and Rth of the first layer being Re 1 and Rth 1 and Re and Rth of the second layer being Re 2 and Rth 2 , and Δ 1 = 157.4 nm.
Δ 2 = 158.0 nm
Δ 3 = 76.1 °
Ψ 3 = 53.0 °
Met.
As a result of obtaining Re 1 , Rth 1 , Re 2 , Rth 2 in the same manner as in Example 1, Re 1 = 40 [nm]
Rth 1 = 130 [nm]
Re 2 = 117 [nm]
Rth 2 = −127 [nm]
Met.
以上のように本発明の測定方法によれば、二種の層からなる光学異方性膜の各層の面内レターデーションReおよび厚さ方向のレターデーションRthを、各層を分離することなく精度よく測定できることが分かった。 As described above, according to the measurement method of the present invention, the in-plane retardation Re and the thickness direction retardation Rth of each layer of the optically anisotropic film composed of two types of layers can be accurately measured without separating the layers. It turned out that it can measure.
1,2,3:入射光
100:光学異方性膜
101:第1層
102:第2層
1, 2, 3: Incident light 100: Optical anisotropic film 101: First layer 102: Second layer
Claims (6)
前記光学異方性膜に対し略垂直方向に光を照射してその透過偏光状態の変化(1)を測定する工程、
前記光学異方性膜の面内遅相軸方向に対し方位角−5°〜+5°かつ極角θ1(ただし、30°≦θ1≦70°である)の方向に光を照射してその透過偏光状態の変化(2)を測定する工程、
前記光学異方性膜の面内遅相軸方向に対し方位角θ2(ただし、30°≦θ2≦60°である)かつ極角θ3(ただし、30°≦θ3≦70°である)の方向に光を照射してその透過偏光状態の変化(3)を測定する工程、
ならびに、
前記透過偏光状態の変化(1)〜(3)を用いて前記光学異方性膜を構成する各層の面内レターデーションReおよび厚さ方向のレターデーションRthを算出する工程を含む、光学異方性膜のレターデーションの測定方法。 A method for measuring the retardation of an optically anisotropic film comprising two layers,
Irradiating light in a substantially perpendicular direction to the optically anisotropic film and measuring a change (1) in the transmitted polarization state;
Irradiating light in the direction of the azimuth angle −5 ° to + 5 ° and the polar angle θ 1 (where 30 ° ≦ θ 1 ≦ 70 °) with respect to the in-plane slow axis direction of the optically anisotropic film Measuring the change (2) in the transmitted polarization state;
An azimuth angle θ 2 (where 30 ° ≦ θ 2 ≦ 60 °) and a polar angle θ 3 (where 30 ° ≦ θ 3 ≦ 70 ° with respect to the in-plane slow axis direction of the optically anisotropic film. Irradiating light in the direction of (a) and measuring the change (3) in the transmitted polarization state;
And
A step of calculating in-plane retardation Re and retardation Rth in the thickness direction of each layer constituting the optically anisotropic film using the changes (1) to (3) of the transmitted polarization state. For measuring retardation of conductive film.
前記透過偏光状態の変化(1)が透過光の位相差の変化Δ1であり、
前記透過偏光状態の変化(2)が透過光の位相差の変化Δ2であり、
前記透過偏光状態の変化(3)が透過光の位相差の変化Δ3および振幅比の変化Ψ3である、請求項1記載の測定方法。 The measurement of the change in the transmission polarization state (1) to (3) is based on spectroscopic ellipsometry,
The change in the transmitted polarization state (1) is the change delta 1 phase difference of the transmitted light,
The change in the transmitted polarization state (2) is a change in delta 2 of the phase difference of the transmitted light,
The measurement method according to claim 1, wherein the change (3) of the transmitted polarization state is a change Δ 3 in phase difference of transmitted light and a change Ψ 3 in amplitude ratio.
前記光学異方性膜を構成する各層の面内レターデーションReおよび厚さ方向のレターデーションRthを算出する工程が、
Re1およびRth1を仮定して、下式[1]〜[4]により各層の三次元屈折率を求める工程、
この各層の厚さと三次元屈折率を用いて、4×4マトリックス法により方位角θ2かつ極角θ3の方向に光を照射したときの透過光の位相差の変化の計算値Δ3cおよび振幅比の変化の計算値Ψ3cを算出する工程、
Δ3cおよびΨ3cと、前記Δ3およびΨ3との差がそれぞれ最小となる値としてRe1およびRth1を算出する工程、
このRe1およびRth1から下式[1]〜[4]により各層の三次元屈折率を求める工程、
この三次元屈折率から下式[5]によりRe2およびRth2を算出する工程、
を含むものである請求項2記載の測定方法。
nx、nyおよびnzは前記光学異方性膜の各層の三次元屈折率を表し(ただし、添字のx、yおよびzはそれぞれ前記光学異方性膜の面内遅相軸方向、光学異方性膜の面内遅相軸に面内で直交する方向、光学異方性膜の厚さ方向を表す。)、
dは前記光学異方性膜の各層の厚さを表す。
また、Re、Rth、Δ1、Δ2、ni、nx、ny、nzおよびdにおける添字の1は、前記光学異方性膜の光を照射する側の層およびそれと同種の層についての値であることを表し、2はそれと異なる種類の層についての値であることを表す。) Measuring the thickness of each layer of the optically anisotropic film,
The step of calculating in-plane retardation Re and thickness direction retardation Rth of each layer constituting the optically anisotropic film,
Assuming Re 1 and Rth 1 , the step of obtaining the three- dimensional refractive index of each layer by the following equations [1] to [4]:
Using the thickness and three-dimensional refractive index of each layer, a calculated value Δ 3c of a change in phase difference of transmitted light when light is irradiated in the directions of azimuth angle θ 2 and polar angle θ 3 by the 4 × 4 matrix method, and Calculating a calculated value Ψ 3c of a change in amplitude ratio;
Calculating Re 1 and Rth 1 as values at which the difference between Δ 3c and ψ 3c and Δ 3 and ψ 3 is minimized,
A step of obtaining a three- dimensional refractive index of each layer from Re 1 and Rth 1 by the following equations [1] to [4]:
A step of calculating Re 2 and Rth 2 from the three-dimensional refractive index by the following equation [5]:
The measurement method according to claim 2, comprising:
n x, n y and n z represent the three-dimensional refractive index of each layer of the optically anisotropic film (where subscripts x, y and z-plane slow axis direction of each of the optically anisotropic film, Represents the direction perpendicular to the in-plane slow axis of the optically anisotropic film in the plane and the thickness direction of the optically anisotropic film).
d represents the thickness of each layer of the optically anisotropic film.
The subscript 1 in Re, Rth, Δ 1 , Δ 2 , n i , n x , n y , nz, and d is a layer on the optically anisotropic film that is irradiated with light, and a layer of the same type 2 represents a value for a different kind of layer. )
前記製造方法が、請求項1〜5のいずれか一項に記載の測定方法によって前記光学異方性膜のレターデーションを測定することを含む、光学異方性膜の製造方法。The manufacturing method of the optically anisotropic film | membrane including the said manufacturing method including measuring the retardation of the said optically anisotropic film | membrane by the measuring method as described in any one of Claims 1-5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010265105A JP5728904B2 (en) | 2010-11-29 | 2010-11-29 | Method for measuring retardation of optically anisotropic film, and method for producing optically anisotropic film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010265105A JP5728904B2 (en) | 2010-11-29 | 2010-11-29 | Method for measuring retardation of optically anisotropic film, and method for producing optically anisotropic film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012117828A JP2012117828A (en) | 2012-06-21 |
JP5728904B2 true JP5728904B2 (en) | 2015-06-03 |
Family
ID=46500848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010265105A Active JP5728904B2 (en) | 2010-11-29 | 2010-11-29 | Method for measuring retardation of optically anisotropic film, and method for producing optically anisotropic film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5728904B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116361714B (en) * | 2023-06-01 | 2023-08-04 | 山东科技大学 | Non-isotropic horizontal troposphere delay classification method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0752153B2 (en) * | 1987-11-09 | 1995-06-05 | 株式会社日立製作所 | Ellipsometry |
JPH08201277A (en) * | 1995-01-31 | 1996-08-09 | New Oji Paper Co Ltd | Method and apparatus for measuring double refraction |
JP4760442B2 (en) * | 2006-02-23 | 2011-08-31 | 日本ゼオン株式会社 | Test method for optically anisotropic film |
JP5287489B2 (en) * | 2008-06-05 | 2013-09-11 | 凸版印刷株式会社 | Three-dimensional refractive index measuring method and three-dimensional refractive index measuring apparatus |
-
2010
- 2010-11-29 JP JP2010265105A patent/JP5728904B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012117828A (en) | 2012-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5585747B1 (en) | Laminated retardation film and method for producing the same | |
US20200012027A1 (en) | Polarizer | |
KR102346876B1 (en) | Broadband wavelength film, manufacturing method thereof, and manufacturing method of circularly polarized film | |
KR101555713B1 (en) | Method for producing retardation film | |
JP5399099B2 (en) | Liquid crystal display | |
JP5104373B2 (en) | Production method of retardation plate | |
KR20130131211A (en) | Optical laminate and liquid crystal display device | |
JP7413997B2 (en) | Method for manufacturing broadband wavelength film and method for manufacturing circularly polarizing film | |
US20160193794A1 (en) | Phase difference plate manufacturing method, phase difference plate, and liquid crystal display device | |
JP2609139B2 (en) | Laminated retarder | |
CN208283681U (en) | Optical film | |
JPWO2018079745A1 (en) | Broadband wavelength film, method for producing the same, and method for producing a circularly polarizing film | |
WO2015072486A1 (en) | Method for producing retardation film | |
JP5728904B2 (en) | Method for measuring retardation of optically anisotropic film, and method for producing optically anisotropic film | |
JP6131620B2 (en) | Laminated retardation film and method for producing laminated retardation film | |
JP2012150107A (en) | Evaluation method of optical anisotropic film, measuring apparatus for optical characteristics of optical anisotropic film and manufacturing method of optical anisotropic film | |
WO2013133102A1 (en) | Retarder manufacturing method | |
KR101640281B1 (en) | Method for producing wave plate | |
JP2013200408A (en) | Retardation plate and manufacturing method of the same | |
JP7439711B2 (en) | Method for manufacturing a long broadband wavelength film and method for manufacturing a long circularly polarizing film | |
KR20080044778A (en) | Transparent film, polarizing plate, and liquid crystal dispaly device | |
JP2017227790A (en) | Liquid crystal display device and method for manufacturing the same | |
TW202321667A (en) | Inspection method and method of manufacturing elliptical polarizing plate | |
KR102043492B1 (en) | Preparing method for the optical film, optical mamber and optical film by the same method, polarizing plate and liquid crystal display comprising the same | |
JP2002341139A (en) | Polymer film, polarizing plate using the same and liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130913 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140924 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20140926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150310 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150323 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5728904 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |