[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5728451B2 - Organic solid-state imaging device and manufacturing method thereof - Google Patents

Organic solid-state imaging device and manufacturing method thereof Download PDF

Info

Publication number
JP5728451B2
JP5728451B2 JP2012205368A JP2012205368A JP5728451B2 JP 5728451 B2 JP5728451 B2 JP 5728451B2 JP 2012205368 A JP2012205368 A JP 2012205368A JP 2012205368 A JP2012205368 A JP 2012205368A JP 5728451 B2 JP5728451 B2 JP 5728451B2
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
counter electrode
organic photoelectric
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012205368A
Other languages
Japanese (ja)
Other versions
JP2014060315A (en
Inventor
英樹 浅野
英樹 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012205368A priority Critical patent/JP5728451B2/en
Priority to PCT/JP2013/005295 priority patent/WO2014045540A1/en
Publication of JP2014060315A publication Critical patent/JP2014060315A/en
Application granted granted Critical
Publication of JP5728451B2 publication Critical patent/JP5728451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、有機材料からなる光電変換部を備えた有機固体撮像素子およびその製造方法に関するものである。   The present invention relates to an organic solid-state imaging device including a photoelectric conversion unit made of an organic material and a method for manufacturing the same.

テジタルスチルカメラ、デジタルビデオカメラ、携帯電話用カメラ、内視鏡用カメラ等に利用されているイメージセンサとして、シリコン(Si)などの半導体基板にフォトダイオードを含む画素を配列し、各画素のフォトダイオードで発生した光電子に対応する信号電荷をCCD型やCMOS型読出し回路で取得する、固体撮像素子(所謂CCDセンサやCMOSセンサ)が広く知られている。   As an image sensor used in digital still cameras, digital video cameras, mobile phone cameras, endoscope cameras, etc., pixels including photodiodes are arranged on a semiconductor substrate such as silicon (Si), and a photo of each pixel is arranged. Solid-state imaging devices (so-called CCD sensors and CMOS sensors) that acquire signal charges corresponding to photoelectrons generated by diodes using a CCD type or CMOS type readout circuit are widely known.

近年、有機材料を用いた、受光した光に応じて電荷を生成する有機光電変換層を備えた光電変換部を有する有機固体撮像素子が検討されている(特許文献1、2)。   In recent years, an organic solid-state imaging device having a photoelectric conversion unit including an organic photoelectric conversion layer that generates an electric charge according to received light using an organic material has been studied (Patent Documents 1 and 2).

有機固体撮像素子は、信号読出し回路が形成された半導体基板上に形成された画素電極と、画素電極上に形成された有機光電変換層と、有機光電変換層上に形成された対向電極(上部電極)とからなる有機光電変換部を備え、さらに、光電変換部上に光電変換部を保護する絶縁膜やカラーフィルタ等を備えた構成を有している。   The organic solid-state imaging device includes a pixel electrode formed on a semiconductor substrate on which a signal readout circuit is formed, an organic photoelectric conversion layer formed on the pixel electrode, and a counter electrode (upper part) formed on the organic photoelectric conversion layer. An organic photoelectric conversion unit including an electrode), and an insulating film, a color filter, and the like for protecting the photoelectric conversion unit on the photoelectric conversion unit.

このような固体撮像素子においては、画素電極と対向電極との間にバイアス電圧を印加することで、有機光電変換層内で発生した励起子が電子と正孔に解離して、バイアス電圧に従って画素電極に移動した電子又は正孔の電荷に応じた信号が、CCD型やCMOS型の信号読出し回路で取得される。   In such a solid-state imaging device, by applying a bias voltage between the pixel electrode and the counter electrode, excitons generated in the organic photoelectric conversion layer are dissociated into electrons and holes, and the pixel is applied according to the bias voltage. A signal corresponding to the charge of electrons or holes transferred to the electrode is acquired by a CCD or CMOS type signal readout circuit.

特開2010−177632号公報JP 2010-177632 A 特開2007−012796号公報JP 2007-012796 A

Siフォトダイードを有する通常の固体撮像素子の製造ではシリコン半導体の微細化技術が用いられている。つまり微細なパターン形成にはフォトレジストを塗布し、マスクを通して紫外線を照射して露光、現像、エッチングの工程を繰り返して素子を作製している。   In the manufacture of a normal solid-state imaging device having a Si photodiode, a silicon semiconductor miniaturization technique is used. That is, for forming a fine pattern, a photoresist is applied, and ultraviolet rays are irradiated through a mask to repeat the steps of exposure, development, and etching, thereby producing an element.

一方、有機膜上にフォトレジストを塗布すると有機膜が溶け出したり、逆に溶剤成分が染み有機膜の劣化に繋がり、同様に現像液、レジスト剥離液、洗浄に用いる水によっても有機膜の劣化を生じさせたりすることとなるため、有機膜に対しては上記微細化技術が適用できない。有機EL発光素子やペンタセン等を用いた有機トランジスタを作製する際にも同様の問題を抱えており、これが有機材料を用いた素子を製造する上での最大の課題である。   On the other hand, when a photoresist is applied on the organic film, the organic film dissolves or conversely, the solvent component penetrates and the organic film deteriorates. Similarly, the organic film deteriorates due to the developer, the resist stripping solution, and the water used for washing. Therefore, the above-described miniaturization technique cannot be applied to the organic film. Similar problems are encountered when manufacturing organic transistors using organic EL light-emitting elements and pentacene, and this is the greatest problem in manufacturing elements using organic materials.

そのため、特許文献1では有機材料を成膜する際にメタルマスクを用いて、選択的に膜を形成する手法が採られている。特許文献1に記載の有機光電変換部を備えた固体撮像素子およびその製造方法について図面を用いて説明する。   For this reason, Patent Document 1 employs a method of selectively forming a film using a metal mask when forming an organic material. The solid-state image sensor provided with the organic photoelectric conversion part of patent document 1, and its manufacturing method are demonstrated using drawing.

図8は従来の有機材料を用いた固体撮像素子の断面構造図である。この固体撮像素子は、回路を有する半導体基板100上に設けられた複数の画素電極(下部電極)102と、画素電極102上を覆うように設けられた有機光電変換層103と、有機光電変換層103を完全に封止するように設けられた対向電極層(上部電極)104と、対向電極層104を完全に封止するように設けられた透明絶縁層105とを備え、画素電極102、有機光電変換層103、対向電極層104及び透明絶縁層105が積層されてなる画素が複数配列された有効画素領域を有する。   FIG. 8 is a cross-sectional structure diagram of a solid-state imaging device using a conventional organic material. The solid-state imaging device includes a plurality of pixel electrodes (lower electrodes) 102 provided on a semiconductor substrate 100 having a circuit, an organic photoelectric conversion layer 103 provided so as to cover the pixel electrode 102, and an organic photoelectric conversion layer. A counter electrode layer (upper electrode) 104 provided so as to completely seal 103, and a transparent insulating layer 105 provided so as to completely seal the counter electrode layer 104. It has an effective pixel region in which a plurality of pixels in which the photoelectric conversion layer 103, the counter electrode layer 104, and the transparent insulating layer 105 are stacked are arranged.

図9および図10は、図8に示した固体撮像素子の製造工程を示すものである。半導体基板100上の絶縁層101表面に画素電極102、及び対向電極接続パッド107を形成した(図9のa)後、有機光電変換層用メタルマスク115をウェハ上にセット(図9のb)し、図示しない蒸着機にて有機材料を選択的に成膜する(図9のc)。続いて有機光電変換層用メタルマスク115を取り外して、対向電極用メタルマスク116をセット(図10のd)し、スパッタにより対向電極層104(例えば、ITO)を選択的に成膜する。その後、対向電極用メタルマスク116を取りはずし、最後にウェハ全面に透明絶縁膜を成膜する(図10のf)。ここまで真空一貫、もしくはAr,Nの雰囲気中で行い、酸素、水に触れることのないように管理する必要がある。なお、図9および10においてメタルマスクは基板に接触していないが、実際には、ウェハに密着させた状態で蒸着するのが一般的である。 9 and 10 show the manufacturing process of the solid-state imaging device shown in FIG. After the pixel electrode 102 and the counter electrode connection pad 107 are formed on the surface of the insulating layer 101 on the semiconductor substrate 100 (FIG. 9A), the organic photoelectric conversion layer metal mask 115 is set on the wafer (FIG. 9B). Then, an organic material is selectively formed by a vapor deposition machine (not shown) (c in FIG. 9). Subsequently, the organic photoelectric conversion layer metal mask 115 is removed, the counter electrode metal mask 116 is set (d in FIG. 10), and the counter electrode layer 104 (for example, ITO) is selectively formed by sputtering. Thereafter, the counter electrode metal mask 116 is removed, and finally a transparent insulating film is formed on the entire surface of the wafer (f in FIG. 10). Up to this point, it is necessary to carry out in a consistent vacuum or in an atmosphere of Ar, N 2 so as not to come into contact with oxygen and water. In FIGS. 9 and 10, the metal mask is not in contact with the substrate, but in practice, the metal mask is generally deposited while being in close contact with the wafer.

ところがメタルマスクは加工精度が低く、微細なパターン形成、すなわち小型化には限界がある。またメタルマスクを基板に接触させることになるため基板にキズが入ったり、メタルマスクに付着しているゴミ(コンタミ、塵挨)などが転写され欠陥を発生させたりする原因になる。画素数の多い固体撮像素子の製造ではゴミによる欠陥により歩留まりが下がり、結果としてメタルマスクを用いた製造方法はコスト高になる。   However, the metal mask has low processing accuracy, and there is a limit to forming a fine pattern, that is, downsizing. Further, since the metal mask is brought into contact with the substrate, the substrate is scratched, or dust (contamination, dust) or the like adhering to the metal mask is transferred to cause a defect. In the manufacture of a solid-state imaging device having a large number of pixels, the yield is reduced due to defects due to dust, and as a result, the manufacturing method using a metal mask becomes expensive.

一方、特許文献2には、有機光電変換素子を備えた固体撮像素子の製造に、通常のシリコン半導体素子の製造で使われているフォトリソグラフィおよびエッチングによる微細加工技術を用いることが提案されている。特許文献2には、有機光電変換層上に透明導電膜(対向電極)、保護膜(透明絶縁層)を形成し有機光電変換膜を保護した上で、保護膜上にレジストパターンを形成し、保護膜、透明導電膜および有機光電変換膜をエッチングして、有機光電変換部を形成する方法が開示されている。この方法であれば、フォトレジストを有機光電変換膜に直接形成しないので、有機膜を劣化させずにパターニングが可能であり、メタルマスクを用いた場合に問題となるゴミの付着も抑制することができると考えられる。   On the other hand, Patent Document 2 proposes to use a microfabrication technique by photolithography and etching, which are used in the manufacture of a normal silicon semiconductor element, in the manufacture of a solid-state imaging device including an organic photoelectric conversion element. . In Patent Document 2, a transparent conductive film (counter electrode) and a protective film (transparent insulating layer) are formed on the organic photoelectric conversion layer to protect the organic photoelectric conversion film, and then a resist pattern is formed on the protective film. A method of forming an organic photoelectric conversion part by etching a protective film, a transparent conductive film and an organic photoelectric conversion film is disclosed. With this method, since the photoresist is not directly formed on the organic photoelectric conversion film, patterning is possible without degrading the organic film, and it is possible to suppress the adhesion of dust that becomes a problem when a metal mask is used. It is considered possible.

しかしながら、実際に上記製造方法にて素子を作製すると画素領域の周辺部で感度劣化や画素欠陥が多発し、製品化できないことが本発明者らの研究により判明した。図11は、実際に特許文献2に記載の製法を用い、有機光電変換層、上部電極および透明絶縁層を成膜した後、フォトレジストを用いてパターニング(ここでは、ウェットエッチング)を行い試作した固体撮像素子(後述の図5に示す素子と同様構成の素子)に微弱な光を当てた時に各画素から検出された電流値を二次元的に視覚化した図である。図11に示すように、この方法で作製した素子では、有効画素領域の周辺部で強度が弱くなっている、つまり感度劣化が起きていることが分かった。   However, the inventors have found that when an element is actually manufactured by the above manufacturing method, sensitivity deterioration and pixel defects frequently occur in the periphery of the pixel region, and the product cannot be manufactured. FIG. 11 shows a prototype manufactured by actually forming the organic photoelectric conversion layer, the upper electrode, and the transparent insulating layer using the manufacturing method described in Patent Document 2 and then patterning (here, wet etching) using a photoresist. It is the figure which visualized two-dimensionally the electric current value detected from each pixel when weak light was applied to a solid-state image sensor (element of the same composition as an element shown in Drawing 5 mentioned below). As shown in FIG. 11, it was found that in the element manufactured by this method, the strength is weak in the peripheral portion of the effective pixel region, that is, the sensitivity is deteriorated.

本発明は、上記事情を鑑みてなされたものであり、高精細なパターン形成が可能であり且つ高い歩留で作製可能な有機固体撮像素子およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an organic solid-state imaging device capable of forming a high-definition pattern and capable of being manufactured at a high yield, and a method for manufacturing the same.

本発明の有機固体撮像素子は、信号読出回路を有する基板と、基板上に行列状に配列形成された複数の画素電極と、複数の画素電極上に共通膜として順次積層された、有機光電変換層、対向電極層および透明絶縁層とを備えた有機固体撮像素子であって、
有機光電変換層、対向電極層および透明絶縁層が、複数の画素電極が形成された有効画素領域の端から200μm以上延伸形成されてなる、有効画素領域を囲む額縁領域を備え、
額縁領域の外周側壁は、有機光電変換層、対向電極層、および透明絶縁層がエッチングにより除去された痕を備えてなり、
さらに、額縁領域の外周側壁を覆う保護膜を備えていることを特徴とするものである。
The organic solid-state imaging device according to the present invention includes a substrate having a signal readout circuit, a plurality of pixel electrodes arranged in a matrix on the substrate, and an organic photoelectric conversion sequentially stacked as a common film on the plurality of pixel electrodes. An organic solid-state imaging device comprising a layer, a counter electrode layer, and a transparent insulating layer,
The organic photoelectric conversion layer, the counter electrode layer, and the transparent insulating layer are provided with a frame region surrounding the effective pixel region formed by extending 200 μm or more from the end of the effective pixel region in which the plurality of pixel electrodes are formed,
The outer peripheral side wall of the frame region is provided with a mark in which the organic photoelectric conversion layer, the counter electrode layer, and the transparent insulating layer are removed by etching,
Furthermore, it has a protective film that covers the outer peripheral side wall of the frame region.

本発明の有機固体撮像素子の製造方法は、信号読出回路を有する基板と、基板上に行列状に配列形成された複数の画素電極と、複数の画素電極上に共通膜として順次積層された、有機光電変換層、対向電極層および透明絶縁層とを備えた有機固体撮像素子の製造方法であって、
有機光電変換層、対向電極層および透明絶縁層を、複数の画素電極が形成された基板の全面に順次成膜し、
有機光電変換層、対向電極層および透明絶縁層からなる積層膜の、複数の画素電極が形成されている有効画素領域の端から200μm以上離れた外周領域をエッチング除去し、
エッチング除去の後に残されている積層膜の少なくとも外周壁を覆うように、保護膜を成膜することを特徴とする。
The organic solid-state imaging device manufacturing method of the present invention includes a substrate having a signal readout circuit, a plurality of pixel electrodes arranged in a matrix on the substrate, and sequentially stacked as a common film on the plurality of pixel electrodes. A method for producing an organic solid-state imaging device comprising an organic photoelectric conversion layer, a counter electrode layer, and a transparent insulating layer,
An organic photoelectric conversion layer, a counter electrode layer, and a transparent insulating layer are sequentially formed on the entire surface of the substrate on which a plurality of pixel electrodes are formed,
Etching and removing an outer peripheral region of the laminated film composed of the organic photoelectric conversion layer, the counter electrode layer, and the transparent insulating layer that is separated by 200 μm or more from the end of the effective pixel region where the plurality of pixel electrodes are formed,
A protective film is formed so as to cover at least the outer peripheral wall of the laminated film remaining after etching removal.

本発明の有機固体撮像素子およびその製造方法によれば、有機光電変換層のパターニングに通常の半導体微細化技術を用いるので、成膜時にメタルマスクを用いる必要がない。メタルマスクを用いる場合と比較してトータルの工程数は増えるものの、高価なメタルマスクを用いないことで低コスト化ができる。またメタルマスクはキズやゴミの原因で歩留低下の主要因であったが、本発明の製造方法ではメタルマスクを用いないので歩留まりも向上し、更にコスト低減が実現できる。また蒸着機内にメタルマスクと基板をアライメントする機構も不要になるために装置コストの抑制、処理時間の短縮を図ることができる。   According to the organic solid-state imaging device and the method for manufacturing the same of the present invention, since a normal semiconductor miniaturization technique is used for patterning the organic photoelectric conversion layer, it is not necessary to use a metal mask during film formation. Although the total number of steps is increased as compared with the case of using a metal mask, the cost can be reduced by not using an expensive metal mask. Metal masks are the main cause of yield reduction due to scratches and dust. However, since the metal mask is not used in the manufacturing method of the present invention, the yield can be improved and further cost reduction can be realized. Further, since a mechanism for aligning the metal mask and the substrate is not required in the vapor deposition machine, the apparatus cost can be reduced and the processing time can be shortened.

本発明の有機固体撮像素子は、額縁領域の幅を200μm以上としているので、エッチング端部から有機光電変換膜の劣化が進んでも有効画素領域においては画素欠陥はほとんど生じず、歩留まり高く製造することができる。   In the organic solid-state imaging device of the present invention, the width of the frame region is set to 200 μm or more, so that even if the organic photoelectric conversion film is deteriorated from the etching end, there is almost no pixel defect in the effective pixel region, and the manufacturing is performed with a high yield Can do.

本発明の実施形態の固体撮像素子の断面模式図Schematic cross-sectional view of a solid-state image sensor according to an embodiment of the present invention 本発明の実施形態の固体撮像素子の平面模式図Schematic plan view of a solid-state imaging device according to an embodiment of the present invention 本発明の実施形態の固体撮像素子の製造方法(その1)Manufacturing method of solid-state image sensor of embodiment of this invention (the 1) 本発明の実施形態の固体撮像素子の製造方法(その2)Manufacturing method of solid-state image sensor of embodiment of this invention (the 2) 本発明の実施形態の固体撮像素子の製造方法(その3)Manufacturing method of the solid-state image sensor of embodiment of this invention (the 3) 本発明の検討の際に作製した固体撮像素子の断面模式図Schematic cross-sectional view of a solid-state imaging device produced during the study of the present invention 製法2で作製した固体撮像素子に微弱光を当てた際に各画素で生じた電流値を視覚化した図The figure which visualized the electric current value which occurred in each pixel when weak light was applied to the solid-state image sensor produced by manufacturing method 2. 異なる製法で試作した固体撮像素子における、有機光電変換膜端からの距離と規格化感度との相関を示す図Diagram showing the correlation between the distance from the edge of the organic photoelectric conversion film and the normalized sensitivity in solid-state image sensors prototyped by different manufacturing methods メタルマスクを用いて作製した固体撮像素子の断面模式図Cross-sectional schematic diagram of a solid-state image sensor fabricated using a metal mask メタルマスクを用いた固体撮像素子の製造方法(その1)Manufacturing method of solid-state imaging device using metal mask (part 1) メタルマスクを用いた固体撮像素子の製造方法(その2)Manufacturing method of solid-state imaging device using metal mask (part 2) 半導体微細技術を用いて試作した固体撮像素子に微弱光を当てた際に各画素で生じた電流値を視覚化した図Visualization of the current value generated in each pixel when weak light is applied to a solid-state image sensor fabricated using semiconductor micro technology

以下、添付の図面を参照しながら、本発明の実施の形態について説明する
図1Aは、本発明の実施形態の固体撮像素子を示す断面模式図であり、図1Bはその平面模式図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1A is a schematic cross-sectional view showing a solid-state imaging device according to an embodiment of the present invention, and FIG. 1B is a schematic plan view thereof.

図1Aおよび図1Bに示す固体撮像素子1は、読出し回路が形成された基板10上に、2次元状に配列形成された複数の画素電極(下部電極)12、この複数の画素電極12を覆うように設けられた有機光電変換層13、対向電極層(上部電極)14および透明絶縁層15が順次積層された有効画素領域30と、その有効画素領域30の周囲に、有効画素領域30から延伸形成されている有機光電変換層13、対向電極層14および透明絶縁層15が積層されてなる幅200μm以上の額縁領域40とを備えている。   A solid-state imaging device 1 shown in FIGS. 1A and 1B covers a plurality of pixel electrodes (lower electrodes) 12 that are two-dimensionally arranged on a substrate 10 on which a readout circuit is formed, and covers the plurality of pixel electrodes 12. An effective pixel region 30 in which the organic photoelectric conversion layer 13, the counter electrode layer (upper electrode) 14, and the transparent insulating layer 15 are sequentially stacked, and the effective pixel region 30 is extended from the effective pixel region 30. And a frame region 40 having a width of 200 μm or more formed by laminating the formed organic photoelectric conversion layer 13, the counter electrode layer 14, and the transparent insulating layer 15.

固体撮像素子1は、有効画素領域30および額縁領域40上の全体に保護膜としての第2の透明絶縁層16が形成され、さらに平坦化層19と平坦化層19の上に設けられたカラーフィルタ20とカラーフィルタ20の周辺に設けられた遮光層21、及びカラーフィルタ20の上面に設けられたマイクロレンズ22とを備えている。   In the solid-state imaging device 1, the second transparent insulating layer 16 as a protective film is formed over the effective pixel region 30 and the frame region 40, and a color provided on the planarizing layer 19 and the planarizing layer 19. The filter 20 includes a light shielding layer 21 provided around the color filter 20 and a microlens 22 provided on the upper surface of the color filter 20.

有効画素領域30において、画素電極12、有機光電変換層13、対向電極層14、透明絶縁層15、16、カラーフィルタ20およびマイクロレンズ22が積層された部分がそれぞれ画素を形成しており、これら複数の画素が2次元状に配列されている。有効画素領域30の周囲に形成された額縁領域40は、有機光電変換層13、対向電極層14、透明絶縁層15および16、平坦化層19、遮光層21が積層された領域である。この領域40には画素電極12が形成されておらず、画素が構成されていない。   In the effective pixel region 30, the portion where the pixel electrode 12, the organic photoelectric conversion layer 13, the counter electrode layer 14, the transparent insulating layers 15 and 16, the color filter 20, and the microlens 22 are stacked forms a pixel. A plurality of pixels are arranged two-dimensionally. A frame region 40 formed around the effective pixel region 30 is a region in which the organic photoelectric conversion layer 13, the counter electrode layer 14, the transparent insulating layers 15 and 16, the planarization layer 19, and the light shielding layer 21 are stacked. The pixel electrode 12 is not formed in this region 40, and no pixel is configured.

この額縁領域40は、有効画素領域30の端部から200μm以上の幅Dで形成されている。有効画素領域30の端部は、最端に配置されている画素の端部位置で定義する。図1の光電変換素子においては、カラーフィルタ20と遮光層21との境界が有効画素領域30の端部である。なお、額縁領域40の有効画素領域30端からの幅Dは、200μm以上であれば一定でなくてもよい。なお、額縁領域40の幅Dは、素子の小型化の観点から400μm以下、さらには300μm以下であることが好ましい。   The frame area 40 is formed with a width D of 200 μm or more from the end of the effective pixel area 30. The end of the effective pixel region 30 is defined by the end position of the pixel arranged at the extreme end. In the photoelectric conversion element of FIG. 1, the boundary between the color filter 20 and the light shielding layer 21 is an end portion of the effective pixel region 30. The width D from the end of the effective pixel region 30 of the frame region 40 may not be constant as long as it is 200 μm or more. The width D of the frame region 40 is preferably 400 μm or less, more preferably 300 μm or less, from the viewpoint of miniaturization of the element.

本実施形態の固体撮像素子1は、有機光電変換層13、対向電極層14および第1の透明絶縁層15が基板上に順次一様に形成された後、額縁領域40の外側領域の第1の透明絶縁層15、対向電極層14および有機光電変換層13がエッチング処理により同時に除去されて形成されたものであり、額縁領域40の外周側壁にはこれらの層がエッチング処理により除去された際のエッチング処理痕が残っている。このエッチングにより形成された側壁はマスク蒸着等により各層が成膜されて形成される側壁と異なることについては、SEM画像等により視覚的に確認することができる。エッチング処理痕は、具体的には有機光電変換層13と対向電極層14と第1の透明絶縁層15とがほぼ同じ箇所で終端しており、且つ終端部の形状が垂直、もしくは膜厚相当のゆらぎを持ったテーパ形状をしているのが特徴である。これに対してマスク蒸着法で製作した素子の側壁は有機光電変換層13、及び対向電極14の終端部が離れており、更に終端部では膜厚が徐々に薄くなっていくテーパ領域を備えており、さらにそのテーパ領域の長さは数μmあり、膜厚と比較してはるかに大きな値になっているのが特徴である。   In the solid-state imaging device 1 of the present embodiment, the organic photoelectric conversion layer 13, the counter electrode layer 14, and the first transparent insulating layer 15 are sequentially and uniformly formed on the substrate, and then the first region in the outer region of the frame region 40. The transparent insulating layer 15, the counter electrode layer 14 and the organic photoelectric conversion layer 13 are simultaneously removed by an etching process. When these layers are removed by an etching process on the outer peripheral side wall of the frame region 40. The etching process trace remains. It can be visually confirmed by an SEM image or the like that the side wall formed by this etching is different from the side wall formed by forming each layer by mask vapor deposition or the like. Specifically, the etching trace is such that the organic photoelectric conversion layer 13, the counter electrode layer 14, and the first transparent insulating layer 15 are terminated at substantially the same location, and the shape of the termination portion is vertical or equivalent to the film thickness. It is characterized by a tapered shape with fluctuations. On the other hand, the side wall of the element manufactured by the mask vapor deposition method has a tapered region in which the organic photoelectric conversion layer 13 and the terminal portion of the counter electrode 14 are separated from each other, and the film thickness gradually decreases at the terminal portion. Furthermore, the length of the taper region is several μm, and is characterized by a much larger value than the film thickness.

カラーフィルタ20は、画素毎に特定の色(ここでは、赤、青、あるいは緑)の光を透過させるものである。   The color filter 20 transmits light of a specific color (here, red, blue, or green) for each pixel.

半導体基板10の上面には、有効画素領域の端から所定の間隔を置いて対向電極パッド17が設けられている。この対向電極パッド17は、金属配線18を介して対向電極層14と導通されている。金属配線18は対向電極層14上に設けられている透明絶縁層15および16を一部除去した部分に形成されて対向電極層14の上面から対向電極パッド17上面に亘って形成されている。   A counter electrode pad 17 is provided on the upper surface of the semiconductor substrate 10 at a predetermined interval from the end of the effective pixel region. The counter electrode pad 17 is electrically connected to the counter electrode layer 14 through the metal wiring 18. The metal wiring 18 is formed in a portion where the transparent insulating layers 15 and 16 provided on the counter electrode layer 14 are partially removed, and is formed from the upper surface of the counter electrode layer 14 to the upper surface of the counter electrode pad 17.

なお、図面では、省略されているが駆動回路が半導体基板10中に形成されており、画素電極12および対向電極層14は駆動回路に接続されている。   Although not shown in the drawing, a drive circuit is formed in the semiconductor substrate 10, and the pixel electrode 12 and the counter electrode layer 14 are connected to the drive circuit.

有機光電変換層13は、有機光電変換材料から形成されており、画素電極12及び対向電極層14に挟まれた箇所が、受光部として機能する。マイクロレンズ22、カラーフィルタ20、透明絶縁層15および16を通って光が入射すると、有機光電変換層13がその入射光を吸収し励起子を生成する。画素電極12と対向電極層14との間に電圧を印加することで、励起子が電子と正孔に分離されて、それぞれが印加した電圧に応じて画素電極12あるいは対向電極層14へと移動する。   The organic photoelectric conversion layer 13 is made of an organic photoelectric conversion material, and a portion sandwiched between the pixel electrode 12 and the counter electrode layer 14 functions as a light receiving unit. When light enters through the microlens 22, the color filter 20, and the transparent insulating layers 15 and 16, the organic photoelectric conversion layer 13 absorbs the incident light and generates excitons. By applying a voltage between the pixel electrode 12 and the counter electrode layer 14, excitons are separated into electrons and holes, and each moves to the pixel electrode 12 or the counter electrode layer 14 according to the applied voltage. To do.

駆動回路はCCD型やCMOS型の信号読出回路であり、画素電極および対向電極間で発生した電荷を信号として読出し、転送する。   The drive circuit is a CCD type or CMOS type signal readout circuit, and reads and transfers the charge generated between the pixel electrode and the counter electrode as a signal.

以下、本実施形態の固体撮像素置の製造方法について図2〜4を参照して具体的に説明する。
固体撮像素子の製造工程は大きく分けて、駆動回路形成工程、電極およびパッド形成工程、有機光電変換部形成工程、カラーフィルタ形成工程からなる。各工程について順次説明する。
Hereinafter, the manufacturing method of the solid-state imaging device of the present embodiment will be specifically described with reference to FIGS.
The manufacturing process of the solid-state imaging device is roughly divided into a drive circuit forming process, an electrode and pad forming process, an organic photoelectric conversion part forming process, and a color filter forming process. Each process will be described sequentially.

[駆動回路形成工程]
駆動回路形成工程では、先ず半導体基板にCCDあるいはCMOS等の信号読出回路が公知の半導体集積回路製造技術によって形成される。この駆動回路および駆動回路の形成工程については図示していない。
本実施形態においては、半導体基板としては、n型Si基板と、このn型Si基板上にpウェル層が形成されたものを使用する。半導体基板としては、p型Si基板を使用しても良い。なお、本実施形態では基板として半導体基板を用いているが、この基板は、ガラス基板や石英基板等、基板内部及び基板上に電子回路を設置できるものであれば良い。
なお、以下において、基板と称しているのは、本工程により駆動回路が形成された基板である。
[Drive circuit formation process]
In the drive circuit formation step, first, a signal readout circuit such as a CCD or CMOS is formed on a semiconductor substrate by a known semiconductor integrated circuit manufacturing technique. The drive circuit and the process for forming the drive circuit are not shown.
In the present embodiment, an n-type Si substrate and a substrate in which a p-well layer is formed on the n-type Si substrate are used as the semiconductor substrate. A p-type Si substrate may be used as the semiconductor substrate. In the present embodiment, a semiconductor substrate is used as the substrate. However, this substrate may be any glass substrate, quartz substrate, or the like that can install an electronic circuit inside and on the substrate.
In the following, the substrate is a substrate on which a driving circuit is formed by this process.

[画素電極および電極パッド形成工程]
駆動回路形成工程の次に、画素電極および電極パッド形成工程が行われる。
本工程では、図2のaに示すように、基板10の上面に各種PVD法やCVD法などにより画素電極12および対向電極パッド17を形成する。なお、画素電極12および対向電極パッド17をより微細なパターンで形成する場合は、各種PVD法やCVD法などで基板10の全面に電極層を形成した後、ドライエッチング法によって画素電極および対向電極パッドを残し、それ以外の領域を除去するようにパターン形成するようにしてもよい。なお、画素電極12および対向電極パッド17は、基板10に設けられている駆動回路と接続される。
基板10の表面に電極12および電極パッド17を形成した後、それらの隙間には絶縁性の平坦化層11を埋め込み、平坦化層11と電極12および対向電極パッド17の表面が面一となるように処理する。
[Pixel electrode and electrode pad forming step]
Following the drive circuit formation step, a pixel electrode and electrode pad formation step is performed.
In this step, as shown in FIG. 2a, the pixel electrode 12 and the counter electrode pad 17 are formed on the upper surface of the substrate 10 by various PVD methods, CVD methods, or the like. When forming the pixel electrode 12 and the counter electrode pad 17 in a finer pattern, after forming an electrode layer on the entire surface of the substrate 10 by various PVD methods, CVD methods, etc., the pixel electrode and the counter electrode are formed by dry etching. The pattern may be formed so as to leave the pad and remove other regions. The pixel electrode 12 and the counter electrode pad 17 are connected to a driving circuit provided on the substrate 10.
After the electrode 12 and the electrode pad 17 are formed on the surface of the substrate 10, the insulating flattening layer 11 is embedded in the gap therebetween, and the surfaces of the flattening layer 11, the electrode 12, and the counter electrode pad 17 are flush with each other. Process as follows.

なお、画素電極12および対向電極パッド17は半導体集積回路で一般的に使用されている配線材料やAg、Pt、Au等の貴金属、または酸化インジウム錫(ITO)などに代表される透明導電膜が好ましい。ドライエッチングによる高精度なパターニングが可能なAl、Ti、Mo、Ta、Wやそれらの合金、導電性の珪化物、窒化物または多結晶Siが特に好ましい。   The pixel electrode 12 and the counter electrode pad 17 are made of a wiring material generally used in a semiconductor integrated circuit, a noble metal such as Ag, Pt, Au, or a transparent conductive film typified by indium tin oxide (ITO). preferable. Al, Ti, Mo, Ta, W, alloys thereof, conductive silicides, nitrides, or polycrystalline Si that can be patterned with high precision by dry etching are particularly preferable.

[光電変換部形成工程]
光電変換部形成工程では、電極が形成された基板上全面に蒸着法で有機光電変換材料からなる有機光電変換層13、対向電極層14、第1の透明絶縁層15を連続して成膜する(図2のb参照)。
[Photoelectric conversion part forming step]
In the photoelectric conversion part forming step, the organic photoelectric conversion layer 13, the counter electrode layer 14, and the first transparent insulating layer 15 made of an organic photoelectric conversion material are continuously formed on the entire surface of the substrate on which the electrodes are formed by vapor deposition. (See b in FIG. 2).

有機光電変換層13は、光電変換部位、電子輸送部位、正孔輸送部位、電子阻止部位、正孔阻止部位、結晶化防止部位、層間接触改良部位等の積層もしくは混合から形成される。光電変換部位は有機光電変換材料を含み、有機p形化合物および/又は有機n形化合物を含有することが好ましい。特開2010−103457号公報に記載されているように、例えば、下記化学式1の化合物を正孔輸送部位(膜厚0.1μm)として蒸着してから、下記化学式2の化合物を光電変換部位(膜厚0.4μm)として蒸着し有機光電変換層13を形成することが好ましい。いずれの蒸着工程も真空度が1×10−4Pa以下であることが特に好ましい。化学式1および2の化合物を用いた有機光電変換層は、画素電極側に正孔を、対向電極側に電子を移動させ信号を読出す方式の光電変換素子を構成するものである。 The organic photoelectric conversion layer 13 is formed by stacking or mixing photoelectric conversion sites, electron transport sites, hole transport sites, electron blocking sites, hole blocking sites, crystallization preventing sites, interlayer contact improving sites, and the like. The photoelectric conversion site contains an organic photoelectric conversion material, and preferably contains an organic p-type compound and / or an organic n-type compound. As described in JP 2010-103457 A, for example, a compound of the following chemical formula 1 is deposited as a hole transport site (film thickness: 0.1 μm), and then a compound of the following chemical formula 2 is converted to a photoelectric conversion site ( It is preferable to form the organic photoelectric conversion layer 13 by vapor deposition as a film thickness of 0.4 μm. In any vapor deposition step, the degree of vacuum is particularly preferably 1 × 10 −4 Pa or less. The organic photoelectric conversion layer using the compounds of the chemical formulas 1 and 2 constitutes a photoelectric conversion element of a type that reads signals by moving holes to the pixel electrode side and electrons to the counter electrode side.

対向電極層14は、対向電極層14側から有機光電変換層13へ光を入射させるために透明導電層であることが好ましい。対向電極層14の材料としては、透明導電材料から形成することが好ましく、例えば、高周波マグネトロンスパッタリングによりArガスを導入した真空度1Paの雰囲気でITOを対向電極層14として有機光電変換層13の上に成膜することが好ましい。   The counter electrode layer 14 is preferably a transparent conductive layer for allowing light to enter the organic photoelectric conversion layer 13 from the counter electrode layer 14 side. The material of the counter electrode layer 14 is preferably formed of a transparent conductive material. For example, ITO is used as the counter electrode layer 14 in an atmosphere having a degree of vacuum of 1 Pa into which Ar gas has been introduced by high frequency magnetron sputtering. It is preferable to form a film.

第1の透明絶縁層15は、外気に曝露すると顕著に劣化する有機光電変換部を封止できるように酸化アルミニウム、酸化珪素、窒化珪素、窒化酸化珪素等、及びこれらのうちのいずれかを積層した積層膜をスパッタリングなどのPVD法や、プラズマCVD法、触媒CVD法、原子層堆積(ALD)法で成膜することが好ましく、例えば、高周波マグネトロンスパッタリングによりArガスとOガスを導入した真空度1Paの雰囲気で酸化アルミニウムを透明絶縁層15として対向電極層14の上に成膜することが好ましい。 The first transparent insulating layer 15 is formed by stacking aluminum oxide, silicon oxide, silicon nitride, silicon nitride oxide, or the like, and any of these so as to seal the organic photoelectric conversion portion that significantly deteriorates when exposed to the outside air. The laminated film is preferably formed by a PVD method such as sputtering, a plasma CVD method, a catalytic CVD method, or an atomic layer deposition (ALD) method. For example, a vacuum in which Ar gas and O 2 gas are introduced by high-frequency magnetron sputtering. It is preferable to form aluminum oxide as a transparent insulating layer 15 on the counter electrode layer 14 in an atmosphere of 1 Pa.

なお、有機材料を含む有機光電変換層13、対向電極層14、第1の透明絶縁層15の形成工程は、真空中またはAr・N等の不活性ガス中で、基板を一切外気に曝露せず、連続して実施することが、有機光電変換層の劣化因子(水分子など)混入防止の観点から好ましい。例えば、有機材料を含む有機光電変換層13を成膜する真空蒸着装置と、ITO対向電極層14を成膜するスパッタ装置と、第1の透明絶縁層15を成膜するスパッタ装置や各種CVD装置が真空度1×10−4Pa以下のクラスタ型真空搬送系にそれぞれ直結されている作製装置を利用することが特に好ましい。 Note that the organic photoelectric conversion layer 13 containing an organic material, the counter electrode layer 14, the step of forming the first transparent insulating layer 15, an inert gas such as vacuum or Ar · N 2, at all exposed to the outside air of the substrate It is preferable to carry out continuously, from the viewpoint of preventing deterioration factors (such as water molecules) from mixing in the organic photoelectric conversion layer. For example, a vacuum deposition apparatus for forming the organic photoelectric conversion layer 13 containing an organic material, a sputtering apparatus for forming the ITO counter electrode layer 14, a sputtering apparatus for forming the first transparent insulating layer 15, and various CVD apparatuses It is particularly preferable to use production apparatuses that are directly connected to a cluster type vacuum transfer system having a degree of vacuum of 1 × 10 −4 Pa or less.

続いてフォトレジスト26を全面に塗布し、有効画素領域、及び額縁領域上にレジストを選択的にパターニングして(図2のc参照)、ドライエッチング装置にて有機画素領域および額縁領域以外の第1の透明絶縁層15、対向電極層14および有機光電変換層13をエッチングする(図2のd参照)。このとき、額縁領域40の幅は200μm以上とする。この時、額縁領域40の外周側壁40aにはエッチング痕が残る。また、この時に額縁領域40の外周側壁40aにおいて有機光電変換層13の一部が大気に露出されるため、大気に触れた箇所から酸化が始まり、水が浸透してくることで有機材料の分解が始まる。ただ水や酸素の浸透速度は遅いために数時間〜1日程度の露出であれば有効画素領域まで浸透することはなく、端面から50〜100μmの領域のみの劣化で防ぐことができる。また端面で有機光電変換層が大気暴露され、積層化による応力が解放された状態で、ドライエッチングによる温度上昇にてアニール処理された状態になり、このため端面近傍のみでアモルファスであった有機膜の一部が再配列化により結晶化が起こり、有機光電変換層が変質する。本実施形態のように額縁領域を200μm以上設けていれば、有効画素領域までその影響が及ぶことはない。   Subsequently, a photoresist 26 is applied on the entire surface, the resist is selectively patterned on the effective pixel region and the frame region (see c in FIG. 2), and a dry etching apparatus is used to apply a resist pattern other than the organic pixel region and the frame region. 1 transparent insulating layer 15, counter electrode layer 14 and organic photoelectric conversion layer 13 are etched (see d in FIG. 2). At this time, the width of the frame region 40 is set to 200 μm or more. At this time, etching marks remain on the outer peripheral side wall 40a of the frame region 40. Further, at this time, a part of the organic photoelectric conversion layer 13 is exposed to the atmosphere on the outer peripheral side wall 40a of the frame region 40, so that oxidation starts from a place exposed to the atmosphere and water penetrates and decomposes the organic material. Begins. However, since the permeation rate of water and oxygen is slow, if it is exposed for several hours to one day, it does not penetrate to the effective pixel region, and can be prevented by deterioration only in the region of 50 to 100 μm from the end face. In addition, the organic photoelectric conversion layer is exposed to the atmosphere at the end face, and the stress due to lamination is released, and it is annealed by the temperature rise due to dry etching. Therefore, the organic film that is amorphous only near the end face A part of crystallization occurs due to rearrangement, and the organic photoelectric conversion layer is altered. If the frame area is provided to 200 μm or more as in the present embodiment, the effective pixel area is not affected.

続いて保護膜として、第1の透明絶縁層15と同様の材料からなる第2の透明絶縁層16を第1の透明絶縁層15および露出している基板10上全面に成膜する(図3のe参照)。これにより有機光電変換層13の露出部が封止されるので、以降新たな酸素、水の浸透を防ぐことができ、熱処理に伴う結晶化を抑制することもできる。額縁領域40に閉じ込められた酸素、水は引き続き額縁領域内にある有機光電変換層13を分解させていくが、残量が少ないために分解により消費されることで有効画素領域30まで影響を及ぼすことはない。   Subsequently, as a protective film, a second transparent insulating layer 16 made of the same material as that of the first transparent insulating layer 15 is formed on the entire surface of the first transparent insulating layer 15 and the exposed substrate 10 (FIG. 3). E). As a result, the exposed portion of the organic photoelectric conversion layer 13 is sealed, so that new oxygen and water can be prevented from penetrating thereafter, and crystallization accompanying heat treatment can be suppressed. Oxygen and water confined in the frame region 40 continue to decompose the organic photoelectric conversion layer 13 in the frame region, but since the remaining amount is small, it is consumed by the decomposition and affects the effective pixel region 30. There is nothing.

なお、保護膜としては、少なくとも有機光電変換層13の端部を水、酸素等から保護できればよいので、有機光電変換層13、対向電極層14および第1の透明絶縁層15の積層体の上記エッチングにより形成された外周側壁40aを覆うものであればよい。なお、保護膜を有効画素領域上に形成する場合には、透明であることが必須であり、本実施形態のように透明絶縁層15と同様の材料からなる第2の透明絶縁層16として形成するが、有効画素領域上に形成しない場合には、必ずしも透明である必要はなく、有機膜を水、酸素等から保護する保護機能を有する絶縁層であればよい。   In addition, as a protective film, since at least the edge part of the organic photoelectric converting layer 13 should just be protected from water, oxygen, etc., the said laminated body of the organic photoelectric converting layer 13, the counter electrode layer 14, and the 1st transparent insulating layer 15 is the said. What is necessary is just to cover the outer peripheral side wall 40a formed by the etching. In addition, when forming a protective film on an effective pixel area, it is essential that it is transparent, and it is formed as the second transparent insulating layer 16 made of the same material as the transparent insulating layer 15 as in this embodiment. However, in the case where it is not formed on the effective pixel region, it is not necessarily transparent, and any insulating layer having a protective function for protecting the organic film from water, oxygen, or the like may be used.

続いて対向電極層14と基板10上の対向電極パッド17とを結線するために、額縁領域40の一部において、透明絶縁層15、16を選択的にエッチングして対向電極層14の上面を露出させる開口28を設け、対向電極パッド17上の透明絶縁層16を選択的にエッチングしてパッド17上面を露出させる開口29を設け(図3のf参照)、その後、Al等の金属を成膜し、再度フォトレジスト塗布、露光、現像、エッチングの工程を経て対向電極層14と対向電極パッド17とを電気的に接続する金属配線18を形成する(図3のg参照)。   Subsequently, in order to connect the counter electrode layer 14 and the counter electrode pad 17 on the substrate 10, the transparent insulating layers 15, 16 are selectively etched in a part of the frame region 40 so that the upper surface of the counter electrode layer 14 is removed. An opening 28 to be exposed is provided, and the transparent insulating layer 16 on the counter electrode pad 17 is selectively etched to provide an opening 29 that exposes the upper surface of the pad 17 (see f in FIG. 3). Thereafter, a metal such as Al is formed. Then, a metal wiring 18 that electrically connects the counter electrode layer 14 and the counter electrode pad 17 is formed through the steps of photoresist coating, exposure, development, and etching again (see g in FIG. 3).

[カラーフィルタ形成工程]
次に、図4のhに示すように、第2の透明絶縁層16および金属配線18上を含む全面に、スピンコータを用いて平坦化層19を形成する。平坦化層19は塗布後、200℃にて硬化させる。
[Color filter forming process]
Next, as shown in FIG. 4h, a planarizing layer 19 is formed on the entire surface including the second transparent insulating layer 16 and the metal wiring 18 using a spin coater. The flattening layer 19 is cured at 200 ° C. after application.

続いてカラーレジストを用いて赤(R)、緑(G)、青(B)色のカラーフィルタ20を形成する。カラーフィルタ20は各色ごとにカラーレジストを塗布、露光、現像、硬化させる工程を行うことで所望のパターンで形成することができる(図4のi参照)。   Subsequently, color filters 20 of red (R), green (G), and blue (B) are formed using a color resist. The color filter 20 can be formed in a desired pattern by performing a process of applying, exposing, developing, and curing a color resist for each color (see i in FIG. 4).

次に遮光層21を形成する黒着色剤を含有する組成物を塗布する。これも露光、現像することで選択的にパターニングを行う。その後ホットプレートを用いて、雰囲気温度が200℃〜250℃、5〜10分間加熱処理し、塗布膜を硬化させて遮光層21を形成する(図4のi参照)。遮光層21は、チタンブラック、もしくはカーボンブラック材のいずれかを分散させた黒着色剤組成物からなることが好ましい。   Next, a composition containing a black colorant that forms the light shielding layer 21 is applied. This is also selectively patterned by exposure and development. Thereafter, using a hot plate, the ambient temperature is 200 ° C. to 250 ° C. for 5 to 10 minutes, the coating film is cured, and the light shielding layer 21 is formed (see i in FIG. 4). The light shielding layer 21 is preferably made of a black colorant composition in which either titanium black or carbon black material is dispersed.

続いてマイクロレンズ22を形成する。先に作製したカラーフィルタ20上に透明のレジストを塗布、露光、現像し、250℃の温度で30分間ベークすることにより凸レンズを形成することができる。透明レジストをベークすることにより熱の影響で軟化が起こり、凸レンズ状とすることができる(図4のj参照)。   Subsequently, the microlens 22 is formed. A convex lens can be formed by coating, exposing and developing a transparent resist on the previously produced color filter 20 and baking at a temperature of 250 ° C. for 30 minutes. By baking the transparent resist, softening occurs under the influence of heat, and a convex lens shape can be obtained (see j in FIG. 4).

以上の工程により図1Aおよび図1Bに示す本実施形態の固体撮像素子1を製造することができる。
ここでは、本発明の固体撮像素子の製造方法の一例を示したが、本発明の固体撮像素子は、光電変換部形成工程において、従来のようなメタルマスクを用いることなく、全面への有機光電変換層、対向電極層および透明電極層の成膜後、その積層体の有効領域および額縁領域を残してエッチングにより除去する工程を用いれば、他の工程については特に制限されるものではなく、本願発明の効果を得ることができる。
Through the above steps, the solid-state imaging device 1 of the present embodiment shown in FIGS. 1A and 1B can be manufactured.
Here, an example of the manufacturing method of the solid-state imaging device of the present invention has been shown. However, the solid-state imaging device of the present invention can be applied to the entire surface without using a conventional metal mask in the photoelectric conversion portion forming step. After the conversion layer, the counter electrode layer, and the transparent electrode layer are formed, the other steps are not particularly limited as long as the step of removing by etching leaving the effective region and the frame region of the laminate is used. The effects of the invention can be obtained.

本実施形態の固体撮像素子は、メタルマスクを用いることなく、一般的な半導体回路形成技術を用いて作製することができるので、メタルマスクを用いる場合に生じる傷やゴミ付着等の問題を回避することができ、歩留まりを向上させることができる。
また、メタルマスクを用いる場合、メタルマスクの作製精度はフォトリソグラフィおよびエッチングによる微細加工技術の精度ほど高くないため、有効画素領域に対して十分に広い額縁領域を設ける必要があった。少なくとも有効画素領域との境界から400μmを超える幅の額縁領域が必要とされているため、メタルマスクを用いる場合には、上述したコンタミ、塵挨の付着の他、サイズの小型化が十分にできないという問題もあった。
Since the solid-state imaging device according to the present embodiment can be manufactured using a general semiconductor circuit forming technique without using a metal mask, problems such as scratches and dust adhesion that occur when using a metal mask are avoided. And the yield can be improved.
Further, when a metal mask is used, the metal mask is not as accurate as the precision of microfabrication techniques using photolithography and etching, and therefore it is necessary to provide a sufficiently large frame region with respect to the effective pixel region. Since a frame region having a width of more than 400 μm from the boundary with the effective pixel region is required, when using a metal mask, it is not possible to sufficiently reduce the size in addition to the above-mentioned contamination and dust adhesion. There was also a problem.

本発明の固体撮像素子の製造方法では、メタルマスクを用いず、フォトリソグラフィおよびエッチングを用いているのでパターニング精度を向上させることができ、額縁領域の幅を400μm以下とした場合には、歩留まり高く、従来より小型化した体撮像素子を得ることができる。   The solid-state imaging device manufacturing method of the present invention uses photolithography and etching without using a metal mask, so that the patterning accuracy can be improved. When the width of the frame region is 400 μm or less, the yield is high. Thus, it is possible to obtain a body imaging device that is smaller than the conventional one.

以下に、本発明の固体撮像素子およびその製造方法において、額縁領域として200μm以上確保することで周辺部での画素欠陥や感度劣化を防ぐことができるとした根拠を示す。   Below, in the solid-state imaging device and the manufacturing method thereof according to the present invention, the grounds that pixel defects and sensitivity deterioration in the peripheral portion can be prevented by securing 200 μm or more as the frame region will be described.

発明者は開発当初起きていた周辺部の画素欠陥に関し、いろいろな角度から分析を試みた。図5は本検討を行った際に作製した固体撮像素子の断面模式図である。図5に示す固体撮像素子は、画素電極12が形成された基板全面に有機光電変換層13、対向電極層14、第1の透明絶縁層15を連続して成膜した後、有効画素領域の外周部をエッチングにより除去した後、上記実施形態と同様にして第2の透明絶縁層16を形成し、金属配線18を形成したものである。ここでは、有機光電変換層13の端部位置Aを基準としている。   The inventor tried to analyze the pixel defect in the peripheral portion that occurred at the beginning of development from various angles. FIG. 5 is a schematic cross-sectional view of a solid-state imaging device produced when this study is performed. In the solid-state imaging device shown in FIG. 5, after the organic photoelectric conversion layer 13, the counter electrode layer 14, and the first transparent insulating layer 15 are continuously formed on the entire surface of the substrate on which the pixel electrode 12 is formed, After the outer peripheral portion is removed by etching, the second transparent insulating layer 16 is formed in the same manner as in the above embodiment, and the metal wiring 18 is formed. Here, the end position A of the organic photoelectric conversion layer 13 is used as a reference.

開発当初の段階では、劣化の原因は加工中に端部において有機膜が一旦大気にさらされることにあり、有機膜が酸化や加水分解しているのではないかと考えた。特許文献2にも記載されている通り、有機材料は特に酸素、水が存在することで分解が生じるからである。そこでエッチング工程から第2の透明絶縁膜を成膜するまでの間で、酸素と水に触れないように装置や運搬に工夫をして素子を作製した(後記製法2)。図6は、実際に製法2で試作した固体撮像素子に微弱な光を当てたときに各画素から取得された電流値を二次元状に視覚化し示したものである。酸素と水を遮断して作製しているため、図11と比較すると、周辺部の劣化は大幅に低減しているように見える。しかしながら、周辺部の劣化はなくなってはいないことが判明した。本結果から端部近傍での白キズ増加に関しては複数の要因が存在しているものと推測し、再検討した。   At the initial stage of development, the cause of deterioration was that the organic film was once exposed to the atmosphere during processing, and the organic film was thought to be oxidized or hydrolyzed. This is because, as described in Patent Document 2, the organic material is decomposed particularly in the presence of oxygen and water. Therefore, from the etching process until the second transparent insulating film was formed, an element was fabricated by devising the apparatus and transportation so as not to come into contact with oxygen and water (post-production method 2). FIG. 6 is a two-dimensional visualization of the current values acquired from each pixel when weak light is applied to the solid-state imaging device actually manufactured by the manufacturing method 2. Since it is produced by blocking oxygen and water, the deterioration of the peripheral portion seems to be greatly reduced as compared with FIG. However, it has been found that the deterioration of the peripheral part has not disappeared. From this result, it was speculated that there were multiple factors related to the increase in white scratches near the edges, and was reexamined.

従来のメタルマスクを用いて有機光電変換膜、対向電極層および透明絶縁層を作製する手法とメタルマスクを用いない製法との最も大きな違いは、エッチング工程の有無にある。このエッチング工程から第2の透明絶縁膜を形成するまでの工程は、メタルマスクを用いた場合と以下の点で異なる。
(1)大気(酸素、水)にさらされる。
(2)ドライエッチングを行った場合、フッ素系ガスやアルゴンイオン等にさらされると共に、基板温度が上昇する。
(3)ウェットエッチングを行った場合、酸・アルカリ・有機溶剤にさらされる。
(4)ウェットによるレジスト剥離を行った場合有機溶剤にさらされると共に、洗浄後の乾燥ベークで100℃程度の高温処理がある。
(5)工程の時間が長くなる。
The biggest difference between a method for producing an organic photoelectric conversion film, a counter electrode layer, and a transparent insulating layer using a conventional metal mask and a production method not using a metal mask are in the presence or absence of an etching step. The steps from this etching step to the formation of the second transparent insulating film differ from the case where a metal mask is used in the following points.
(1) Exposure to the atmosphere (oxygen, water).
(2) When dry etching is performed, the substrate temperature rises while being exposed to fluorine-based gas or argon ions.
(3) When wet etching is performed, it is exposed to acid, alkali, and organic solvent.
(4) When the resist is removed by wet, the resist is exposed to an organic solvent, and there is a high temperature treatment of about 100 ° C. by dry baking after washing.
(5) The process time becomes longer.

そこでこれらの要因を切り分けるため、図5に示す固体撮像素子を、エッチング条件が異なる製法1〜5で作製し、端部位置Aからの距離dと素子性能の相関を調べる実験を行った。   Therefore, in order to isolate these factors, the solid-state imaging device shown in FIG. 5 was manufactured by manufacturing methods 1 to 5 having different etching conditions, and an experiment was conducted to examine the correlation between the distance d from the end position A and the device performance.

表1は、各製法と劣化要因の有無をまとめたものである。表1では、各製法においてエッチング工程から第2の透明絶縁膜を形成するまでの工程において、酸素、水、高温のそれぞれについて遮断されている場合を○(OK)、遮断されていない場合を×(NG)として示している。
Table 1 summarizes each manufacturing method and the presence or absence of deterioration factors. In Table 1, in the process from the etching step to the formation of the second transparent insulating film in each manufacturing method, ○ (OK) when oxygen, water, and high temperature are blocked, and × when not blocked (NG).

製法1は上記実施形態で述べた製造工程の光電変換部形成工程において、ドライエッチング装置内でレジスト剥離まで行い、その後に第2の透明絶縁層を形成したものである。大気開放は行っていないので水は遮断できているが、アッシングを酸素雰囲気で行っているため酸化の影響は残っており、ドライエッチング時に基板温度が上昇するので短時間ではあるが、100℃程度まで温度が上昇する条件になっている。   In manufacturing method 1 in the photoelectric conversion part forming step of the manufacturing process described in the above embodiment, resist removal is performed in a dry etching apparatus, and then a second transparent insulating layer is formed. Since it is not open to the atmosphere, water can be shut off, but since ashing is performed in an oxygen atmosphere, the effect of oxidation remains, and the substrate temperature rises during dry etching, so it is a short time, but about 100 ° C The temperature rises up to

製法2は製法1に対し、アッシングの工程をアルゴンイオンによるミリング処理にて置き換えた形になり、酸素を遮断したものである。   Manufacturing method 2 is the same as manufacturing method 1, except that the ashing process is replaced by a milling process using argon ions to block oxygen.

製法3は製法2のレジスト剥離工程をウェット処理に置き換えたもので、有機溶剤でレジスト剥離を行った後、水性、脱水、ベーク処理したものである。レジスト剥離工程は窒素を100%充填したグローブボックス内で行っており、酸素を遮断した状態とした。   In manufacturing method 3, the resist stripping process in manufacturing method 2 is replaced with a wet process, and the resist is stripped with an organic solvent, followed by aqueous, dehydration, and baking processes. The resist stripping step was performed in a glove box filled with 100% nitrogen, and oxygen was blocked.

製法4は製法3に対し、エッチング工程をウェット処理に置き換えたものである。透明絶縁層のエッチングにアルカリ溶液を、上部電極のエッチングに酸溶液を、有機光電変換層のエッチングに有機溶剤を用いたものである。ここでもエッチング処理は窒素充填したグローブボックス内で行っている。   Manufacturing method 4 is a method in which the etching process is replaced with wet processing as compared with manufacturing method 3. An alkaline solution is used for etching the transparent insulating layer, an acid solution is used for etching the upper electrode, and an organic solvent is used for etching the organic photoelectric conversion layer. Again, the etching process is performed in a glove box filled with nitrogen.

製法5は製法4に対し、最後のベーク処理をなくしたもので、高温に曝すことなくプロセスをおこなったものである。   Production method 5 is the same as production method 4 except that the final baking treatment is eliminated, and the process is performed without exposure to high temperature.

上記各製法で試作した固体撮像素子について、端部位置Aからの距離dと規格化感度との相関を評価した結果を図7に示す。本結果を分析すると感度劣化の原因は大きく分けて2つの現象になって現れていることが分かった。一つは激しく劣化させているものの、端部から50〜100μm程度までで止まっているものであり、もうひとつは劣化の度合いは小さいけれど端面から200μm程度までの長い領域まで影響を及ぼしているものである。前者の原因は酸素、水、酸、アルカリ、有機溶剤のうちのどれか、もしくは複数のものが関係しているものと考えられる。後者の原因は温度が関係していると考えられる。   FIG. 7 shows the result of evaluating the correlation between the distance d from the end position A and the normalized sensitivity for the solid-state imaging device prototyped by the above manufacturing methods. Analysis of this result shows that the cause of sensitivity degradation is roughly divided into two phenomena. One is severely deteriorated, but it stops at about 50 to 100 μm from the end, and the other is less affected but affects the long region from the end surface to about 200 μm. It is. The former cause is considered to be related to one or more of oxygen, water, acid, alkali, and organic solvent. The cause of the latter is thought to be related to temperature.

後者の温度による劣化メカニズムについて更に詳細な解析を行った。製法3と製法5で試作した素子の画素領域の端面近傍にて、顕微鏡を用いてのフォトルミネッセンス、ラマン分析、透過型電子顕微鏡による分子配向測定等で解析し比較した。その結果、もともとアモルファス状態であった有機分子が熱処理を加えたことで結晶化していることが明らかになった。具体的に言うと一部の有機分子が鎖状に整列しており、それが局所的に多数発生して、全体では針状結晶がより集まったような形態に変化しており、端面から200μm程度の領域まで及んでいることを初めて解明した。これは端面近傍の応力が開放された領域にて高い温度にさらされた際に有機分子が動きやすくなり、より安定なエネルギー状態を求め結晶系に再配列したと考えられる。   A more detailed analysis was conducted on the degradation mechanism due to the latter temperature. In the vicinity of the end face of the pixel region of the element fabricated by manufacturing method 3 and manufacturing method 5, analysis and comparison were performed by photoluminescence using a microscope, Raman analysis, molecular orientation measurement using a transmission electron microscope, and the like. As a result, it became clear that organic molecules that were originally in an amorphous state were crystallized by heat treatment. Specifically, some organic molecules are arranged in a chain, and a large number of them are generated locally, and the whole changes to a form in which needle-like crystals are gathered, and 200 μm from the end face. It was clarified for the first time that it has reached a certain level. This is thought to be because the organic molecules easily move when exposed to a high temperature in a region where the stress in the vicinity of the end face is released and rearranged into a crystal system in order to obtain a more stable energy state.

以上の結果から従来のメタルマスクを用いる代わりに通常の半導体微細化技術を用いて素子を作製する製造方法を用いた場合には次の点に留意することがポイントとなることが分かった。
(1)酸素、水、酸、アルカリ、有機溶剤の存在により端面から50〜100μmに亘る領域で劣化が生じる。
(2)高温処理により端面から200μm程度に亘る領域で有機材料の結晶化が生じる。
From the above results, it was found that the following points are important to note when using a manufacturing method for fabricating an element using a normal semiconductor miniaturization technique instead of using a conventional metal mask.
(1) Due to the presence of oxygen, water, acid, alkali, and organic solvent, deterioration occurs in a region extending from 50 to 100 μm from the end face.
(2) Crystallization of the organic material occurs in a region extending from the end face to about 200 μm by the high temperature treatment.

コストと量産性を考慮した製造方法で上記原因である酸素、水、酸、アルカリ、有機溶剤、高温処理の全てを完全に取り除くことは現実的ではない。以上のようにして、本発明者は、画素領域の周辺に200μm以上の犠牲領域(額縁領域)を余分に設けてやることで安定した製造が可能であることを突き止めた。   It is not realistic to completely remove all of the above causes of oxygen, water, acid, alkali, organic solvent, and high-temperature treatment in a production method that takes cost and mass productivity into consideration. As described above, the present inventor has found that stable manufacture is possible by providing an extra sacrifice region (frame region) of 200 μm or more around the pixel region.

1 固体撮像素子
10 半導体回路基板
11 平滑化層
12 画素電極
13 有機光電変換層
14 対向電極層
15 第1の透明絶縁層
16 第2の透明絶縁層(保護膜)
17 対向電極用パッド
18 金属配線
19 平坦化層
20 カラーフィルタ
21 遮蔽層
22 マイクロレンズ
25 メタルマスク
26 フォトレジスト
30 有効画素領域
40 額縁領域
DESCRIPTION OF SYMBOLS 1 Solid-state image sensor 10 Semiconductor circuit board 11 Smoothing layer 12 Pixel electrode 13 Organic photoelectric conversion layer 14 Counter electrode layer 15 1st transparent insulating layer 16 2nd transparent insulating layer (protective film)
17 Pad for counter electrode 18 Metal wiring 19 Flattening layer 20 Color filter 21 Shielding layer 22 Micro lens 25 Metal mask 26 Photo resist 30 Effective pixel area 40 Frame area

Claims (2)

信号読出回路を有する基板と、該基板上に行列状に配列形成された複数の画素電極と、該複数の画素電極上に共通膜として順次積層された、有機光電変換層、対向電極層および透明絶縁層とを備えた固体撮像素子であって、
前記有機光電変換層、前記対向電極層および前記透明絶縁層が、前記複数の画素電極が形成された有効画素領域の端から200μm以上延伸形成されてなる、前記有効画素領域を囲む額縁領域を備え、
該額縁領域の外周側壁は、前記有機光電変換層、前記対向電極層、および前記透明絶縁層がエッチングにより除去された痕を備えてなり、
さらに、前記額縁領域の外周側壁を覆う保護膜を備えていることを特徴とする固体撮像素子。
A substrate having a signal readout circuit, a plurality of pixel electrodes arranged in a matrix on the substrate, an organic photoelectric conversion layer, a counter electrode layer, and a transparent layer sequentially stacked as a common film on the plurality of pixel electrodes A solid-state imaging device comprising an insulating layer,
The organic photoelectric conversion layer, the counter electrode layer, and the transparent insulating layer include a frame region surrounding the effective pixel region, which is formed by extending 200 μm or more from an end of the effective pixel region where the plurality of pixel electrodes are formed. ,
The outer peripheral side wall of the frame region is provided with a mark in which the organic photoelectric conversion layer, the counter electrode layer, and the transparent insulating layer are removed by etching,
Furthermore, the solid-state image sensor provided with the protective film which covers the outer peripheral side wall of the said frame area | region.
信号読出回路を有する基板と、該基板上に行列状に配列形成された複数の画素電極と、該複数の画素電極上に共通膜として順次積層された、有機光電変換層、対向電極層および透明絶縁層とを備えた固体撮像素子の製造方法であって、
前記有機光電変換層、前記対向電極層および前記透明絶縁層を、前記複数の画素電極が形成された基板の全面に順次成膜し、
前記有機光電変換層、前記対向電極層および前記透明絶縁層からなる積層膜の、前記複数の画素電極が形成されている有効画素領域の端から200μm以上離れた外周領域をエッチング除去し、
前記エッチング除去の後に残されている前記積層膜の少なくとも外周壁を覆うように、保護膜を成膜することを特徴とする固体撮像素子の製造方法。
A substrate having a signal readout circuit, a plurality of pixel electrodes arranged in a matrix on the substrate, an organic photoelectric conversion layer, a counter electrode layer, and a transparent layer sequentially stacked as a common film on the plurality of pixel electrodes A method of manufacturing a solid-state imaging device comprising an insulating layer,
The organic photoelectric conversion layer, the counter electrode layer, and the transparent insulating layer are sequentially formed on the entire surface of the substrate on which the plurality of pixel electrodes are formed,
Etching and removing the outer peripheral region of the laminated film composed of the organic photoelectric conversion layer, the counter electrode layer, and the transparent insulating layer that is separated by 200 μm or more from the end of the effective pixel region where the plurality of pixel electrodes are formed,
A method for manufacturing a solid-state imaging device, comprising forming a protective film so as to cover at least an outer peripheral wall of the laminated film left after the etching removal.
JP2012205368A 2012-09-19 2012-09-19 Organic solid-state imaging device and manufacturing method thereof Active JP5728451B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012205368A JP5728451B2 (en) 2012-09-19 2012-09-19 Organic solid-state imaging device and manufacturing method thereof
PCT/JP2013/005295 WO2014045540A1 (en) 2012-09-19 2013-09-06 Organic solid-state imaging element and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012205368A JP5728451B2 (en) 2012-09-19 2012-09-19 Organic solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014060315A JP2014060315A (en) 2014-04-03
JP5728451B2 true JP5728451B2 (en) 2015-06-03

Family

ID=50340882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012205368A Active JP5728451B2 (en) 2012-09-19 2012-09-19 Organic solid-state imaging device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5728451B2 (en)
WO (1) WO2014045540A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9754984B2 (en) * 2014-09-26 2017-09-05 Visera Technologies Company Limited Image-sensor structures
US11616093B2 (en) 2017-12-28 2023-03-28 Sony Semiconductor Solutions Corporation Light receiving element and electronic apparatus
US20190214427A1 (en) * 2018-01-10 2019-07-11 Panasonic Intellectual Property Management Co., Ltd. Image sensor including pixel electrodes, control electrode, photoelectric conversion film, transparent electrode, and connector
CN110098218B (en) * 2018-01-31 2024-11-01 松下知识产权经营株式会社 Image pickup apparatus
CN110197875A (en) 2018-02-26 2019-09-03 松下知识产权经营株式会社 Photo-electric conversion element and its manufacturing method
WO2019239851A1 (en) * 2018-06-14 2019-12-19 パナソニックIpマネジメント株式会社 Image sensor provided with control electrode, transparent electrode, and connection layer electrically connecting control electrode and side surface of transparent electrode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018187A (en) * 1998-10-19 2000-01-25 Hewlett-Packard Cmpany Elevated pin diode active pixel sensor including a unique interconnection structure
JP4911445B2 (en) * 2005-06-29 2012-04-04 富士フイルム株式会社 Organic and inorganic hybrid photoelectric conversion elements
JP2008244251A (en) * 2007-03-28 2008-10-09 Toshiba Corp Amorphous silicon photodiode, manufacturing method thereof and x-ray imaging apparatus
KR100935771B1 (en) * 2007-11-28 2010-01-06 주식회사 동부하이텍 Image Sensor and Method for Manufacturing Thereof
US20120217498A1 (en) * 2009-09-01 2012-08-30 Rohm Co., Ltd. Photoelectric converter and method for manufacturing the same

Also Published As

Publication number Publication date
WO2014045540A1 (en) 2014-03-27
JP2014060315A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP5253799B2 (en) Photosensor and method for manufacturing photosensor
JP5728451B2 (en) Organic solid-state imaging device and manufacturing method thereof
TWI509782B (en) Image pickup device and image pickup apparatus
US8530268B2 (en) Organic light-emitting display device and method of manufacturing the same
JP2018081903A (en) Organic light-emitting display device and manufacturing method thereof
US9991305B2 (en) Stacked type solid state imaging apparatus and imaging system
US7268009B2 (en) Method for fabricating a CMOS image sensor
TWI548084B (en) Organic light emitting device
TW201126709A (en) Solid-state imaging device, process of making solid state imaging device, digital still camera, digital video camera, mobile phone, and endoscope
TWI611613B (en) Organic light emitting device and method of manufacturing the device
JP2014060380A (en) Photoelectric conversion device
US20150132919A1 (en) Photomask and method for forming dual sti structure by using the same
JP2011114310A (en) Photoelectric conversion device, and method of manufacturing the same
US9093578B2 (en) Solid-state image sensor, method of manufacturing the same, and camera
JP2005167215A (en) Tft transistor and its manufacturing method
US20200219917A1 (en) Ray detector array substrate, manufacturing thereof, and ray detector
WO2016078248A1 (en) Array substrate and manufacturing method therefor, and display device
JP2015041711A (en) Semiconductor device manufacturing method
JP5488525B2 (en) Thin film transistor and manufacturing method thereof
US20130277787A1 (en) Backside illumination cmos image sensor and method for fabricating the same
US20060141654A1 (en) Method for fabricating a CMOS image sensor
US20110045626A1 (en) Method for Fabricating Optical Device
JP2006147811A (en) Thin film transistor and method of manufacturing the same
KR100789623B1 (en) Cmos image sensor and method for manufacturing thereof
JP4849509B2 (en) SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC INFORMATION DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5728451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250