[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5723971B2 - Composite copper foil and method for producing the same - Google Patents

Composite copper foil and method for producing the same Download PDF

Info

Publication number
JP5723971B2
JP5723971B2 JP2013507239A JP2013507239A JP5723971B2 JP 5723971 B2 JP5723971 B2 JP 5723971B2 JP 2013507239 A JP2013507239 A JP 2013507239A JP 2013507239 A JP2013507239 A JP 2013507239A JP 5723971 B2 JP5723971 B2 JP 5723971B2
Authority
JP
Japan
Prior art keywords
layer
copper
copper foil
thickness
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013507239A
Other languages
Japanese (ja)
Other versions
JPWO2012132573A1 (en
Inventor
敬亮 山西
敬亮 山西
賢吾 神永
賢吾 神永
亮 福地
亮 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013507239A priority Critical patent/JP5723971B2/en
Publication of JPWO2012132573A1 publication Critical patent/JPWO2012132573A1/en
Application granted granted Critical
Publication of JP5723971B2 publication Critical patent/JP5723971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0635In radial cells
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、エッチングにより電子回路の形成に適した複合銅箔とその製造方法に関する。   The present invention relates to a composite copper foil suitable for forming an electronic circuit by etching and a method for producing the same.

電子・電気機器に印刷回路用銅箔が広く使用されているが、この印刷回路用銅箔は、一般に合成樹脂ボードやフイルム等の基材に接着剤を介して、あるいは接着剤を用いずに高温高圧下で接着して銅張積層板を製造し、その後、目的とする回路を形成するためにレジスト塗布及び露光工程により回路を印刷し、さらに銅箔の不要部分を除去するエッチング処理を経て、また、さらに各種の素子が半田付けされてエレクトロデバイス用の印刷回路が形成されている。   Copper foil for printed circuits is widely used in electronic and electrical equipment, but this copper foil for printed circuits is generally used with a base material such as a synthetic resin board or film with or without an adhesive. Bonding under high temperature and high pressure to produce a copper clad laminate, then printing the circuit by resist coating and exposure process to form the desired circuit, and further through an etching process to remove unnecessary portions of the copper foil Further, various elements are soldered to form a printed circuit for an electro device.

近年、印刷配線板は、配線密度が高くなり、電子部品の接続端子の間隔が小さくなっている。必然的に、銅張り積層板の銅箔の厚さを薄くすることが要求されている。また、積層板の多層構造化も時代の流れとして、銅箔には厚銅箔/バリア層/薄銅箔のような複合銅箔が要求されてきている。このような構造を有する銅張り積層板を製作する場合の出発材料となる銅箔が重要な機能を備える必要があることは言うまでもない。  In recent years, a printed wiring board has a high wiring density and a small interval between connection terminals of electronic components. Inevitably, it is required to reduce the thickness of the copper foil of the copper-clad laminate. In addition, as multilayered structures of laminated plates are developed, composite copper foils such as thick copper foils / barrier layers / thin copper foils have been required for copper foils. It goes without saying that the copper foil as a starting material in manufacturing a copper-clad laminate having such a structure must have an important function.

厚銅箔/ニッケル層/薄銅箔との3層構造を有する銅箔としては、ベース(担持体)の材料として厚手の圧延銅箔又は電解銅箔を使用し、その上に薄いニッケル被膜を形成、さらにその上に薄い銅層を形成する。このような構成を有する複合銅箔としては、担持体付き銅箔が知られている(特許文献1、特許文献2、特許文献3、特許文献5参照)。    As a copper foil having a three-layer structure of thick copper foil / nickel layer / thin copper foil, a thick rolled copper foil or electrolytic copper foil is used as a base (support) material, and a thin nickel film is formed thereon. Form a thin copper layer on top of it. As the composite copper foil having such a configuration, a copper foil with a carrier is known (see Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 5).

担持体付き銅箔は、薄い銅層がエッチングにより回路を形成する基本材料とするため、最終的には、圧延銅箔又は電解銅箔のベースとなる銅層はエッチングにより除去され、ニッケル層も除去される。そして薄い銅層側に電子回路を形成される。この場合の圧延銅箔又は電解銅箔のベースとなる銅層は回路構成用の薄い銅箔の取扱を助ける役割をするもので、ニッケル層は中間層の役割を果たすものであるため、回路形成時に除去される。  Since the copper foil with a carrier is a basic material in which a thin copper layer forms a circuit by etching, the copper layer that becomes the base of the rolled copper foil or electrolytic copper foil is finally removed by etching, and the nickel layer is also formed. Removed. An electronic circuit is formed on the thin copper layer side. In this case, the copper layer serving as the base of the rolled copper foil or the electrolytic copper foil serves to assist the handling of the thin copper foil for the circuit configuration, and the nickel layer serves as an intermediate layer, so that the circuit is formed. Sometimes removed.

したがって、これらの目的を有する厚銅箔/ニッケル層/薄銅箔との3層構造である複合銅箔には、ニッケル層と薄い銅箔との間の密着性は、とり扱い中に剥離したりしなければ良いレベルでよく、あまり重要ではない。
一方、銅層とニッケル層との密着性に着目した文献もある。特許文献6では、このため、ニッケル層と接触する銅層の表面粗さを特定の条件として、耐剥離性を向上させるという提案がなされている。
Therefore, in the composite copper foil having a three-layer structure of thick copper foil / nickel layer / thin copper foil having these purposes, the adhesion between the nickel layer and the thin copper foil is peeled off during handling. If not, it's fine and isn't important.
On the other hand, there is also a document that focuses on the adhesion between the copper layer and the nickel layer. For this reason, in Patent Document 6, a proposal has been made to improve the peel resistance, with the surface roughness of the copper layer in contact with the nickel layer as a specific condition.

ニッケル層の上にはわずかでも酸化膜が形成されるために、その上に銅をめっきした場合に、ニッケル層とその上に形成された銅層との密着性は、表面を粗くしても、この酸化膜が原因で剥離しやすさを大きくは向上しない。
さらに、ニッケル層の上に薄く密着性向上層として、例えば銅層を形成し、その銅層と厚手の銅箔とを圧接する提案がなされている(特許文献4参照)。
Since even a slight oxide film is formed on the nickel layer, the adhesion between the nickel layer and the copper layer formed on the nickel layer is rough even when the surface is roughened. The oxide film does not greatly improve the ease of peeling.
Further, a proposal has been made to form, for example, a copper layer as a thin adhesion improving layer on the nickel layer and press-contact the copper layer with a thick copper foil (see Patent Document 4).

この他、ニッケルを中間に挟んだ銅の圧延によるクラッド材(特許文献7、特許文献8参照)が提案されている。しかしながら、めっき工程と圧延工程の異種工程が組み合わさる場合には、製造コストが大きくなり、また、このような機械的な方法では、均一な厚みでかつ出来るだけ薄い銅の積層構造を得ることが難しいという問題がある。   In addition, a clad material obtained by rolling copper with nickel sandwiched between them (see Patent Document 7 and Patent Document 8) has been proposed. However, when the different processes of the plating process and the rolling process are combined, the manufacturing cost increases, and with such a mechanical method, it is possible to obtain a copper laminated structure with a uniform thickness and as thin as possible. There is a problem that it is difficult.

また、圧延することで、圧延ロールと接する銅箔表面は滑らかになるため、樹脂との密着が必要な場合には粗化処理を施すことが必要となる。
いずれにしても、今日、印刷配線板の配線密度が高くなり、電子部品の接続端子の間隔を小さくすることが要求され、さらにこれらを低コストで作製するという課題を解決することは、現在のところ無いと考えられていた。
Moreover, since the copper foil surface which touches a rolling roll becomes smooth by rolling, when close_contact | adherence with resin is required, it is necessary to perform a roughening process.
In any case, today, the printed wiring board has a high wiring density, and it is required to reduce the interval between the connection terminals of the electronic components. It was thought that there was no place.

特開昭58−108785号公報JP 58-108785 A 特許第3680321号公報Japanese Patent No. 3680321 特許第3543348号公報Japanese Patent No. 3543348 特開2005−72425号公報JP-A-2005-72425 特許第4191977号公報Japanese Patent No. 4191977 特開平8−181432号公報JP-A-8-181432 国際公開WO00−05934号公報International Publication WO 00-05934 特許第4195162号公報Japanese Patent No. 4195162

本発明は、銅/ニッケル/銅からなる複合銅箔の製造に際し、ニッケルと銅、または銅と銅の層間における接合強度を向上させ、さらには銅層の板厚精度が優れた、エッチングによる電子回路の形成に適した複合銅箔とその製造方法を得ることを課題とする。   The present invention improves the bonding strength between nickel and copper or between copper and copper when manufacturing a copper / nickel / copper composite copper foil, and further improves the thickness accuracy of the copper layer by etching. It is an object to obtain a composite copper foil suitable for forming a circuit and a method for producing the same.

本発明者らは、銅とニッケルめっきの工程を工夫することにより、従来の複合銅箔の弱点であるニッケルと銅の接合強度不足を改善することにより、従来の問題を解決できるとの知見を得た。さらに板厚精度の優れた銅層を形成できることの知見を得た。   The present inventors have found that the conventional problems can be solved by improving the nickel and copper bonding strength, which is a weak point of the conventional composite copper foil, by devising the copper and nickel plating process. Obtained. Furthermore, the knowledge that a copper layer with excellent plate thickness accuracy can be formed was obtained.

本発明はこの知見に基づいて、
(1)厚さが10〜150μmの圧延銅箔又は電解銅箔の両面又は片面に、厚さ0.5〜3μmのニッケル層、厚さ5.1μm以上の銅層からなる複合銅箔で、前記銅層の板厚精度が±5%未満で、剥離強度が0.5kg/cm以上であることを特徴とする複合銅箔、を提供する。
The present invention is based on this finding,
(1) A composite copper foil comprising a nickel layer having a thickness of 0.5 to 3 μm and a copper layer having a thickness of 5.1 μm or more on both sides or one side of a rolled copper foil or an electrolytic copper foil having a thickness of 10 to 150 μm. Provided is a composite copper foil characterized in that the thickness accuracy of the copper layer is less than ± 5% and the peel strength is 0.5 kg / cm or more.

また、本発明は、
(2)前記銅層が、薄銅層(C)と厚銅層(D)の2層からなることを特徴とする上記(1)に記載の複合銅箔、を提供する。
The present invention also provides:
(2) Provided is the composite copper foil as described in (1) above, wherein the copper layer comprises two layers of a thin copper layer (C) and a thick copper layer (D).

また、本発明は、
(3)薄銅層(C)の厚さ0.1〜5μm、さらに厚銅層(D)の厚さが5μm以上であることを特徴とする銅/ニッケル/薄銅/厚銅からなる上記2に記載の複合銅箔、を提供する。
The present invention also provides:
(3) The above-mentioned copper / nickel / thin copper / thick copper, wherein the thickness of the thin copper layer (C) is 0.1 to 5 μm, and the thickness of the thick copper layer (D) is 5 μm or more. The composite copper foil of 2 is provided.

また、本発明は、
(4)前記薄銅層(C)及び/又は厚銅層(D)の上に、Cr含有量が10〜50μg/dmである防錆層を備えることを特徴とする上記2又は3記載の複合銅箔、を提供する。
The present invention also provides:
(4) The above 2 or 3, wherein a rust preventive layer having a Cr content of 10 to 50 μg / dm 2 is provided on the thin copper layer (C) and / or the thick copper layer (D). Of composite copper foil.

また、本発明は、
(5)厚さが10〜150μmの圧延銅箔又は電解銅箔(A)の両面又は片面に、厚さ0.5〜3μmのニッケル層(B)を電気めっきにより形成し、該ニッケル層(B)のめっき直後に、連続して薄銅層(C)を電気めっきにより形成し、さらにこの薄銅層(C)の上に、非連続工程において厚銅層(D)を電気めっきにより形成することを特徴とする複合銅箔の製造方法、を提供する。
The present invention also provides:
(5) A nickel layer (B) having a thickness of 0.5 to 3 μm is formed on both surfaces or one surface of a rolled copper foil or electrolytic copper foil (A) having a thickness of 10 to 150 μm by electroplating, and the nickel layer ( Immediately after plating in B), a thin copper layer (C) is continuously formed by electroplating, and a thick copper layer (D) is formed on this thin copper layer (C) by electroplating in a discontinuous process. A method for producing a composite copper foil is provided.

また、本発明は、
(6)厚さが10〜150μmの圧延銅箔又は電解銅箔(A)の両面又は片面に、厚さ0.5〜3μmのニッケル層(B)を電気めっきにより形成し、該ニッケル層(B)のめっき直後に、連続して厚さ0.1〜5μmの薄銅層(C)を電気めっきにより形成し、さらにこの薄銅層(C)の上に、非連続工程において5μm以上の厚銅層(D)を電気めっきにより形成することを特徴とする複合銅箔の製造方法、を提供する。
The present invention also provides:
(6) A nickel layer (B) having a thickness of 0.5 to 3 μm is formed on both surfaces or one surface of a rolled copper foil or electrolytic copper foil (A) having a thickness of 10 to 150 μm by electroplating, and the nickel layer ( Immediately after the plating of B), a thin copper layer (C) having a thickness of 0.1 to 5 μm is continuously formed by electroplating. Further, on the thin copper layer (C), a thickness of 5 μm or more is formed in a discontinuous process. Provided is a method for producing a composite copper foil, wherein a thick copper layer (D) is formed by electroplating.

また、本発明は、
(7)前記薄銅層(C)及び/又は厚銅層(D)の上に、Cr含有量が10〜50μg/dmである防錆層を形成することを特徴とする上記(5)又は(6)記載の複合銅箔の製造方法、を提供する。
The present invention also provides:
(7) The above-mentioned (5), wherein a rust preventive layer having a Cr content of 10 to 50 μg / dm 2 is formed on the thin copper layer (C) and / or the thick copper layer (D). Or the manufacturing method of the composite copper foil of (6) description is provided.

また、本発明は、
(8)前記薄銅層(C)の上に、予めCr含有量が10〜50μg/dmである防錆層を形成し、その後厚銅層(D)を形成することを特徴とする上記(5)〜(7)のいずれか一項に記載の複合銅箔の製造方法、を提供する。
The present invention also provides:
(8) A rust preventive layer having a Cr content of 10 to 50 μg / dm 2 is previously formed on the thin copper layer (C), and then a thick copper layer (D) is formed. The manufacturing method of the composite copper foil as described in any one of (5)-(7) is provided.

また、本発明は、
(9)前記厚銅層(D)層の上に、Cr含有量が10〜50μg/dmである防錆層を形成することを特徴とする上記(5)〜(7)のいずれか一項に記載の複合銅箔の製造方法、を提供する。
The present invention also provides:
(9) The rust preventive layer having a Cr content of 10 to 50 μg / dm 2 is formed on the thick copper layer (D) layer, any one of (5) to (7) above The manufacturing method of the composite copper foil as described in an item.

また、本発明は、
(10)前記薄厚銅層(D)を、ドラム型電極を用いて電気めっきにより形成することを特徴とする上記(5)〜(9)のいずれか一項記載の複合銅箔の製造方法、を提供する。
なお、本発明では、薄い銅層上に、薄い銅層に比較してやや厚めの銅層を形成することが特徴であるが、この2層を区別するため、薄い銅層を、「薄銅層(C)」、薄銅層(C)に比較してやや厚めの銅層を「厚銅層(D)」と表現する。
The present invention also provides:
(10) The method for producing a composite copper foil according to any one of (5) to (9) above, wherein the thin copper layer (D) is formed by electroplating using a drum-type electrode, I will provide a.
The present invention is characterized in that a slightly thicker copper layer is formed on the thin copper layer than the thin copper layer. In order to distinguish these two layers, the thin copper layer is referred to as “thin copper layer”. (C) ”, a copper layer slightly thicker than the thin copper layer (C) is expressed as“ thick copper layer (D) ”.

本発明は、銅/ニッケル/銅からなる複合銅箔の製造に際し、ニッケルと銅との接合強度を向上させることのでき、エッチングにより電子回路の形成に適した複合銅箔とその製造方法を得ることができるという著しい効果を有する。  The present invention can improve the bonding strength between nickel and copper when producing a copper / nickel / copper composite copper foil, and obtain a composite copper foil suitable for forming an electronic circuit by etching and a method for producing the same. It has a remarkable effect that it can be.

銅/ニッケル/銅からなる複合銅箔を製造する場合に使用する九十九折(つづらおり)式の電気めっき装置の例を示す図である。It is a figure which shows the example of the electroplating apparatus of a ninety nine fold (Tsurazuori) type used when manufacturing the composite copper foil which consists of copper / nickel / copper. 薄い銅層(C)に比較して、やや厚めの銅層(D)を形成する場合に使用するドラム型電極を用いた装置の例を示す図である。It is a figure which shows the example of the apparatus using the drum-type electrode used when forming a slightly thicker copper layer (D) compared with a thin copper layer (C).

本発明の銅/ニッケル/銅からなる複合銅箔を製造するには、図1に示すような九十九折(つづらおり)式の電気めっき装置を用いることができる。出発材料となる銅箔としては、厚さが10〜150μmの圧延銅箔又は電解銅箔(A)を使用する。この箔(A)の両面又は片面に、電気ニッケルめっきを施す。  In order to produce the copper / nickel / copper composite copper foil of the present invention, a ninety-nine fold type electroplating apparatus as shown in FIG. 1 can be used. As a copper foil used as a starting material, a rolled copper foil or an electrolytic copper foil (A) having a thickness of 10 to 150 μm is used. Electro-nickel plating is performed on both sides or one side of the foil (A).

図1において、図1の左側からめっき層に入り、右に移行して所定厚さのニッケルめっき層、すなわち厚さ0.5〜3μmのニッケル層(B)を形成する。この場合、ニッケル層の下限値である0.5μm未満では、ピンホールが発生し易くなり、また上限値である3μmを超えると、最終的にニッケル層を剥離又は溶解する際の負担が大きくなり、生産効率が悪くなるからである。  In FIG. 1, a plating layer enters from the left side of FIG. 1 and moves to the right to form a nickel plating layer having a predetermined thickness, that is, a nickel layer (B) having a thickness of 0.5 to 3 μm. In this case, if it is less than 0.5 μm, which is the lower limit of the nickel layer, pinholes are likely to occur, and if it exceeds 3 μm, which is the upper limit, the burden when finally peeling or dissolving the nickel layer increases. This is because production efficiency deteriorates.

図1に示すように、このニッケル層(B)のめっき直後に、連続して厚さ0.1〜5μmの薄銅層(C)を電気めっきにより形成する。この薄い銅層をまず、形成するのが特徴であるが、この薄銅層が重要な機能を有する。
この薄銅層(C)は、先のニッケル層(B)の酸化を抑制し、密着性を良好にする大きな役割を担うからである。この銅層自体は、耐酸化性に富む。この効果を生むための必要最低限の厚さは、0.1μmである。薄銅層(C)の厚さが5μmを超えると表面凹凸が大きくなり、膜厚の均一性が低下するため、上記の数値の膜厚とすることが最適である。
As shown in FIG. 1, immediately after plating of this nickel layer (B), a thin copper layer (C) having a thickness of 0.1 to 5 μm is continuously formed by electroplating. This thin copper layer is characterized in that it is formed first, but this thin copper layer has an important function.
This is because the thin copper layer (C) plays a major role in suppressing the oxidation of the nickel layer (B) and improving the adhesion. The copper layer itself is rich in oxidation resistance. The minimum thickness necessary for producing this effect is 0.1 μm. When the thickness of the thin copper layer (C) exceeds 5 μm, the surface irregularities become large and the uniformity of the film thickness is lowered.

前記薄銅層(C)上に、さらにCr含有量が10〜50μg/dmである防錆層を形成することができる。これは、一般にクロム層若しくはクロメート層と言われているものである。
図1では、この防錆層を形成する工程も図示しているが、この工程は必須ではない。しかし、銅めっき層の若干の酸化を抑制すること、又は腐食性物質の付着を予防する意味では効果がある。したがって、この防錆工程は、好ましい形態である。
Cr含有量が10μg/dm未満では、防錆層の制御が難しくなるので、これ以上とする。また、Cr含有量が50μg/dmを超えると、効果が飽和し、工程増による負荷が大きくなるので、上限値を前記の通りとするのが望ましい。
A rust preventive layer having a Cr content of 10 to 50 μg / dm 2 can be formed on the thin copper layer (C). This is generally called a chromium layer or a chromate layer.
In FIG. 1, the process of forming the rust prevention layer is also illustrated, but this process is not essential. However, it is effective in the sense of suppressing some oxidation of the copper plating layer or preventing the adhesion of corrosive substances. Therefore, this rust prevention process is a preferable form.
If the Cr content is less than 10 μg / dm 2 , the control of the rust preventive layer becomes difficult, so the content is made more than this. Further, if the Cr content exceeds 50 μg / dm 2 , the effect is saturated and the load due to the increase in the process becomes large, so it is desirable that the upper limit value is as described above.

これらの工程を過ぎた銅箔は、表面の酸化は殆ど起こらない。その後、厚銅層(D)を形成する。すなわち、前記(A)、(B)、(C)の上に、非連続工程において5μm以上の厚銅層(D)を電気めっきにより形成する。すなわち、薄銅層(C)と厚銅層(D)は、いずれも銅層ではあるが、それぞれ独立しためっき銅層となる。
これを図2に示す。この図2に示す工程は、ドラム型電極を用い、この電極の周囲に銅箔を周回させて、電気めっきを行うもので、前記九十九折式の銅めっき方法に比べて厚さの精度は極めて高い。具体的には、図2では1回のめっきを実施しているが、この工程に制限されることはなく、1回又は2回以上とすることが可能である。
The copper foil that has passed through these steps hardly undergoes surface oxidation. Thereafter, a thick copper layer (D) is formed. That is, on the (A), (B), and (C), a thick copper layer (D) of 5 μm or more is formed by electroplating in a discontinuous process. That is, although the thin copper layer (C) and the thick copper layer (D) are both copper layers, they are independent plated copper layers.
This is shown in FIG. The process shown in FIG. 2 uses a drum-type electrode and circulates a copper foil around the electrode to perform electroplating. The thickness accuracy is higher than that of the 99-fold type copper plating method. Is extremely expensive. Specifically, in FIG. 2, the plating is performed once, but is not limited to this step, and can be performed once or twice or more.

厚銅層(D)は、エッチングにより電子回路を形成する銅部分であるため、その厚みの制御が重要であり、具体的には、板厚精度は±5%未満であることが望ましい。(なお、本明細書における「板厚精度」は、特に記載する場合には、「±」を意味する。)そのため、薄銅層(C)に対して5μm以上形成する必要がある。上限は限定されるものではないが、電子回路を形成する層であることから20μm以下が望ましい。  Since the thick copper layer (D) is a copper portion that forms an electronic circuit by etching, control of the thickness is important. Specifically, it is desirable that the thickness accuracy is less than ± 5%. (Note that “plate thickness accuracy” in the present specification means “±” when specifically described.) Therefore, it is necessary to form 5 μm or more on the thin copper layer (C). The upper limit is not limited, but it is preferably 20 μm or less because it is a layer forming an electronic circuit.

なお、本発明では、厚銅層(D)の厚み精度が重要であるが、ニッケル層(B)と薄銅層(C)は薄いためばらつきへの影響度は小さく、圧延銅箔又は電解銅箔(A)は、圧延銅箔または電解銅箔して製品化されており、その板厚精度は5%未満であるため、圧延銅箔又は電解銅箔(A)、ニッケル層(B)、薄銅層(C)、厚銅層(D)の合計の板厚を複合銅箔として、複合銅箔の板厚精度は5%未満が確保されれば、厚銅層(D)の板厚精度は±5%未満であるとして評価した。  In the present invention, the thickness accuracy of the thick copper layer (D) is important, but since the nickel layer (B) and the thin copper layer (C) are thin, the influence on the variation is small, and the rolled copper foil or electrolytic copper The foil (A) has been commercialized as a rolled copper foil or electrolytic copper foil, and its thickness accuracy is less than 5%, so the rolled copper foil or electrolytic copper foil (A), nickel layer (B), If the total thickness of the thin copper layer (C) and the thick copper layer (D) is the composite copper foil, and the thickness accuracy of the composite copper foil is ensured to be less than 5%, the thickness of the thick copper layer (D) The accuracy was evaluated as being less than ± 5%.

以上、上記のように、ニッケル層(B)の上に、薄銅層(C)の上に、薄銅層(C)と違えて、板厚精度の高い電解めっき方法を用いることで厚みを制御した厚銅層(D)を形成することになり、さらに、ニッケル層(B)、薄銅層(C)、厚銅層(D)間では、剥離は全く見られない複合銅箔となる。これが、本願発明の大きな特徴である。  As described above, on the nickel layer (B), on the thin copper layer (C), unlike the thin copper layer (C), the thickness can be increased by using an electrolytic plating method with high plate thickness accuracy. A controlled thick copper layer (D) will be formed, and furthermore, there will be a composite copper foil in which no delamination is observed between the nickel layer (B), thin copper layer (C), and thick copper layer (D). . This is a major feature of the present invention.

前記(D)層の上に、さらに防錆層を形成することもできる。これは任意であり、好ましい条件ではあるが、必須ではない。なお、防錆層の形成条件は、上記と同様である。この場合、パターンエッチング液に対するエッチング速度の相異が生ずる可能性はあるが、この量を適宜選択することにより、厚銅層(D)の表面の酸化を、さらに抑制できるので、安定した回路幅のパターンの形成が可能となる。  A rust preventive layer can be further formed on the (D) layer. This is optional and is a preferred condition but not essential. In addition, the formation conditions of a rust prevention layer are the same as the above. In this case, there may be a difference in etching rate with respect to the pattern etching solution, but by appropriately selecting this amount, oxidation of the surface of the thick copper layer (D) can be further suppressed, so that a stable circuit width can be obtained. The pattern can be formed.

下記に代表的かつ好適なめっき条件の例を示す。
(銅めっき(九十九折式))
銅:10〜50g/l
硫酸:50〜100g/l
温度:40〜60℃
電流密度:1〜5A/dm2
Examples of typical and preferable plating conditions are shown below.
(Copper plating (ninety-nine folding))
Copper: 10-50 g / l
Sulfuric acid: 50-100 g / l
Temperature: 40-60 ° C
Current density: 1-5A / dm2

(銅めっき(ドラム式))
Cu: 90g/L
SO:80g/L
Cl: 60ppm
液温: 55〜57℃
添加剤:ビス(3−スルフォプロピル)ジスルファイド2ナトリウム(RASCHIG社製 CPS) 50ppm
添加剤:ジベンジルアミン変性物 50ppm
(Copper plating (drum type))
Cu: 90 g / L
H 2 SO 4 : 80 g / L
Cl: 60ppm
Liquid temperature: 55-57 degreeC
Additive: Bis (3-sulfopropyl) disulfide disodium (CPS manufactured by RASCHIG) 50 ppm
Additive: Dibenzylamine modified 50ppm

(ニッケルめっき)
硫酸ニッケル:250〜300g/L
塩化ニッケル:35〜45g/L
酢酸ニッケル:10〜20g/L
クエン酸三ナトリウム:15〜30g/L
光沢剤:サッカリン、ブチンジオールなど
ドデシル硫酸ナトリウム:30〜100ppm
pH:4〜6
浴温:50〜70°C
(Nickel plating)
Nickel sulfate: 250-300 g / L
Nickel chloride: 35 to 45 g / L
Nickel acetate: 10-20g / L
Trisodium citrate: 15-30 g / L
Brightener: Saccharin, butynediol, etc. Sodium dodecyl sulfate: 30 to 100 ppm
pH: 4-6
Bath temperature: 50-70 ° C

(クロメート処理の条件)
浸漬クロメート処理
Cr(NaCr或いはCrO):0.1〜5g/リットル
pH :2〜13
温度 :常温〜60℃
時間 :5〜30秒
(Conditions for chromate treatment)
Immersion chromate treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 0.1 to 5 g / liter pH: 2 to 13
Temperature: normal temperature to 60 ° C
Time: 5-30 seconds

(アルカリエッチングの条件)
NHOH:6モル/リットル
NHCl:5モル/リットル
CuCl:2モル/リットル
液温:50℃
(Alkaline etching conditions)
NH 4 OH: 6 mol / liter NH 4 Cl: 5 mol / liter CuCl 2 : 2 mol / liter Liquid temperature: 50 ° C.

(ニッケルおよびクロムの付着量分析方法)
サンプルを濃度30%の硝酸にて少なくともニッケル層が溶けるまで溶解させ、ビーカー中の溶解液を適宜稀釈し、原子吸光分析によりニッケルおよびクロムの定量分析を行う。
(Nickel and chromium adhesion analysis method)
The sample is dissolved in nitric acid with a concentration of 30% until at least the nickel layer is dissolved, the solution in the beaker is diluted as appropriate, and quantitative analysis of nickel and chromium is performed by atomic absorption spectrometry.

上記複合銅箔を用いて銅張り積層板を作製し、この銅張り積層板を用いた回路形成に際しては、厚銅層(D)上に回路形成用のレジストパターンを形成し、さらにエッチング液を用いて、前記レジストパターンが付された部分以外の前記厚銅層(D)および薄銅層(C)の積層部の不必要部分をニッケル層(B)表面まで除去する。あるいは樹脂側にビアを形成したりして、多層回路を形成する。  A copper-clad laminate is produced using the composite copper foil. When forming a circuit using this copper-clad laminate, a resist pattern for circuit formation is formed on the thick copper layer (D), and an etching solution is further added. The unnecessary portion of the laminated portion of the thick copper layer (D) and thin copper layer (C) other than the portion provided with the resist pattern is removed to the surface of the nickel layer (B). Alternatively, a multilayer circuit is formed by forming a via on the resin side.

一方、圧延銅箔または電解銅箔(A)側では(A)上にバンプ形成用のレジストパターンを形成し、エッチングによりレジストパターン部以外の(A)の不要部分をニッケル層(B)表面まで除去する。その後、必要に応じて(B)の不要部を除去する。このレジストパターンの形成から不要な銅箔の除去は、一般的に行われている手法なので、多くを説明する必要はないので省略する。  On the other hand, on the rolled copper foil or electrolytic copper foil (A) side, a resist pattern for bump formation is formed on (A), and unnecessary portions of (A) other than the resist pattern portion are etched to the surface of the nickel layer (B). Remove. Then, the unnecessary part of (B) is removed as needed. The removal of the unnecessary copper foil from the formation of the resist pattern is a commonly performed technique, and therefore, it is not necessary to explain much and is omitted.

なお、本発明は、圧延銅箔または電解銅箔(A)、ニッケル層(B)、薄銅層(C)、厚銅層(D)間では、剥離は全く見られないことから、(A)はバンプ形成層、(D)+(C)は回路形成層の同時の活用が可能であることが特徴であるが、(D)表面に樹脂層を形成した後に、(A)、場合によっては(B)を除去し、(C)も含んで(D)に回路を形成する従来の用途として用いてもよい。  In the present invention, no peeling is observed between the rolled copper foil or electrolytic copper foil (A), nickel layer (B), thin copper layer (C), and thick copper layer (D). ) Is a bump forming layer, and (D) + (C) is characterized by the simultaneous use of a circuit forming layer. (D) After forming a resin layer on the surface, (A), in some cases May be used as a conventional application in which (B) is removed and (C) is included to form a circuit in (D).

また、特許文献7,8のような密着性を向上させるための圧接加工を行っていないため、(D)表面は(D)形成の際の電着粒がそのまま活用でき、粗化処理を施すことなく、樹脂との密着性に優れている。なお、粗化処理を施してもよい。  Moreover, since the press-contact process for improving adhesiveness like patent document 7 and 8 is not performed, the (D) surface can use the electrodeposition grain at the time of (D) formation as it is, and a roughening process is performed. And excellent adhesion to the resin. A roughening treatment may be performed.

銅箔を使用する場合、電解銅箔の粗化面(M面)又は光沢面(S面)にも同様に適用できるが、エッチングされる面は、通常光沢面側あるいは光沢面と同等以上に平滑な銅箔のM面を使用する。圧延銅箔を使用する場合は、高純度圧延銅箔又は強度を向上させた圧延合金銅箔を使用することもできる。本件発明はこれらの銅箔の全てを包含する。
また、本願発明の実施に際しては、本願発明に矛盾しない限り、上記に述べた公知の技術は全て利用できるものである。
When using copper foil, it can be applied to the roughened surface (M surface) or glossy surface (S surface) of electrolytic copper foil as well, but the surface to be etched is usually equal to or greater than the glossy surface side or glossy surface. Use smooth copper M-plane. When using a rolled copper foil, a high purity rolled copper foil or a rolled alloy copper foil with improved strength can also be used. The present invention includes all of these copper foils.
In carrying out the present invention, all of the known techniques described above can be used as long as they do not contradict the present invention.

次に、本発明の実施例及び比較例について説明する。なお、本実施例は理解を容易にするための例であり、下記の例に制限されるものではない。すなわち、本発明は、本明細書に記載する技術思想の範囲内で、下記に示す実施例以外の態様あるいは変形を全て包含するものである。   Next, examples and comparative examples of the present invention will be described. In addition, a present Example is an example for making an understanding easy, and is not restrict | limited to the following example. That is, the present invention encompasses all aspects or modifications other than the examples shown below within the scope of the technical idea described in the present specification.

(実施例1)
ベース箔として、70μm厚の電解銅箔(A)を用いた。この電解銅箔を、図1に示すめっき装置を使用し、上記めっき条件を使用して0.7μmのニッケルめっき(B)を施した。次に、このニッケルめっき層(B)上に、連続して0.2μmの中間電気銅めっき層(C)を形成した。
さらに、図2に示す装置(ドラム型電極)を用いて、10μmの電気銅めっき層を形成した。これにより、銅/ニッケル/薄銅/厚銅からなる複合銅箔を製造した。
Example 1
As the base foil, an electrolytic copper foil (A) having a thickness of 70 μm was used. This electrolytic copper foil was subjected to nickel plating (B) of 0.7 μm using the plating conditions shown in FIG. Next, an intermediate electrolytic copper plating layer (C) having a thickness of 0.2 μm was continuously formed on the nickel plating layer (B).
Furthermore, a 10 μm electrolytic copper plating layer was formed using the apparatus (drum-type electrode) shown in FIG. Thereby, the composite copper foil which consists of copper / nickel / thin copper / thick copper was manufactured.

薄銅/厚銅からなる銅層の厚みの測定は以下のように行った。薄銅/厚銅からなる銅層の反対面(ベース箔側)をFR−4樹脂へプレスし、マスキングする。そのサンプルをアルカリエッチングにて薄銅/厚銅からなる銅層が溶けるまで溶解させ、溶解前後の重量変化から単位面積当たりの銅の重量厚みを測定する。更に、銅の比重8.93g/(m・μm)で割り返せば厚み(μm)を算出することができる。The thickness of the copper layer made of thin copper / thick copper was measured as follows. The opposite surface (base foil side) of the copper layer made of thin copper / thick copper is pressed into FR-4 resin and masked. The sample is dissolved by alkali etching until the copper layer made of thin copper / thick copper is dissolved, and the weight thickness of copper per unit area is measured from the weight change before and after the dissolution. Furthermore, the thickness (μm) can be calculated by dividing by the specific gravity of copper of 8.93 g / (m 2 · μm).

精度良く厚みを求めるためには、20cm以上の面積に対して測定することが望ましい。測定は10カ所の板厚を求め、平均値を算出し、ばらつきは、(最大値―平均値)/平均値×100か(平均値―最小値)/平均値×100のいずれか大きい方とした。評価は、5%未満を「○」、5%以上10%未満を「△」、10%以上を「×」とした。In order to obtain the thickness with high accuracy, it is desirable to measure over an area of 20 cm 2 or more. The measurement is to obtain the plate thickness at 10 locations, calculate the average value, and the variation is (maximum value−average value) / average value × 100 or (average value−minimum value) / average value × 100, whichever is larger did. The evaluation was evaluated as “◯” when less than 5%, “Δ” when 5% or more but less than 10%, and “×” when 10% or more.

密着性については、極薄銅箔側に150℃以上で基材に積層し、剥離強度を測定した。剥離が可能で剥離強度が0.5kg/cm未満で剥離した場合には「×」とした。剥離しない或いは剥離強度が0.5kg/cm以上の場合には、「○」とした。
以上の結果、板厚制度は5%未満と良好であり、また、剥離強度が0.5kg/cm以上で密着性は良好であった。この結果を、同様に表1に示す。
About adhesiveness, it laminated | stacked on the base material at 150 degreeC or more on the ultra-thin copper foil side, and measured peeling strength. When peeling was possible and the peeling strength was less than 0.5 kg / cm, “x” was given. When it did not peel or peel strength was 0.5 kg / cm or more, it was set as “◯”.
As a result, the plate thickness system was good at less than 5%, and the peel strength was 0.5 kg / cm or more, and the adhesion was good. The results are also shown in Table 1.

(実施例2)
ベース箔として、12μm厚の圧延銅箔(A)を用いた。この圧延銅箔を、図1に示すめっき装置を使用し、上記めっき条件を使用して0.6μmのニッケルめっき(B)を施した。次に、このニッケルめっき層(B)上に、連続して0.1μmの中間電気銅めっき層(C)を形成した。
さらに、図2に示す装置(ドラム型電極)を用いて、5μmの電気銅めっき層を形成した。これにより、銅/ニッケル/薄銅/厚銅からなる複合銅箔を製造した。他の試験条件は、実施例1と同様である。
(Example 2)
A rolled copper foil (A) having a thickness of 12 μm was used as the base foil. This rolled copper foil was subjected to nickel plating (B) of 0.6 μm using the plating apparatus shown in FIG. Next, an intermediate electrolytic copper plating layer (C) having a thickness of 0.1 μm was continuously formed on the nickel plating layer (B).
Furthermore, a 5 μm electrolytic copper plating layer was formed using the apparatus (drum type electrode) shown in FIG. Thereby, the composite copper foil which consists of copper / nickel / thin copper / thick copper was manufactured. Other test conditions are the same as in Example 1.

以上の結果、板厚制度は5%未満と良好であり、また、剥離強度が0.5kg/cm以上で密着性は良好であった。この結果を、同様に表1に示す。   As a result, the plate thickness system was good at less than 5%, and the peel strength was 0.5 kg / cm or more, and the adhesion was good. The results are also shown in Table 1.

(実施例3)
ベース箔として、18μm厚の圧延銅箔(A)を用いた。この圧延銅箔を、図1に示すめっき装置を使用し、上記めっき条件を使用して1μmのニッケルめっき(B)を施した。次に、このニッケルめっき層(B)上に、連続して2μmの中間電気銅めっき層(C)を形成した。
さらに、図2に示す装置(ドラム型電極)を用いて、10μmの電気銅めっき層を形成した。これにより、銅/ニッケル/薄銅/厚銅からなる複合銅箔を製造した。他の試験条件は、実施例1と同様である。
(Example 3)
As the base foil, a rolled copper foil (A) having a thickness of 18 μm was used. The rolled copper foil was subjected to 1 μm nickel plating (B) using the plating conditions shown in FIG. 1 and the above plating conditions. Next, an intermediate electrolytic copper plating layer (C) having a thickness of 2 μm was continuously formed on the nickel plating layer (B).
Furthermore, a 10 μm electrolytic copper plating layer was formed using the apparatus (drum-type electrode) shown in FIG. Thereby, the composite copper foil which consists of copper / nickel / thin copper / thick copper was manufactured. Other test conditions are the same as in Example 1.

以上の結果、板厚制度は5%未満と良好であり、また、剥離強度が0.5kg/cm以上で密着性は良好であった。この結果を、同様に表1に示す。   As a result, the plate thickness system was good at less than 5%, and the peel strength was 0.5 kg / cm or more, and the adhesion was good. The results are also shown in Table 1.

(実施例4)
ベース箔として、35μm厚の圧延銅箔(A)を用いた。この圧延銅箔を、図1に示すめっき装置を使用し、上記めっき条件を使用して3μmのニッケルめっき(B)を施した。次に、このニッケルめっき層(B)上に、連続して4μmの中間電気銅めっき層(C)を形成した。
さらに、上記浸漬条件を用いてクロメート処理をした後、図2に示す装置(ドラム型電極)を用いて、20μmの電気銅めっき層を形成した。なお、銅めっき層(C)と電気めっき層(D)の間のCr量は、15μg/dmであった。これにより、銅/ニッケル/薄銅/防錆層/厚銅からなる複合銅箔を製造した。他の試験条件は、実施例1と同様である。
Example 4
As the base foil, a rolled copper foil (A) having a thickness of 35 μm was used. The rolled copper foil was subjected to nickel plating (B) of 3 μm using the plating apparatus shown in FIG. 1 and the above plating conditions. Next, an intermediate electrolytic copper plating layer (C) having a thickness of 4 μm was continuously formed on the nickel plating layer (B).
Furthermore, after chromating using the above immersion conditions, a 20 μm electrolytic copper plating layer was formed using the apparatus (drum type electrode) shown in FIG. The amount of Cr between the copper plating layer (C) and the electroplating layer (D) was 15 μg / dm 2 . Thereby, the composite copper foil which consists of copper / nickel / thin copper / rust prevention layer / thick copper was manufactured. Other test conditions are the same as in Example 1.

以上の結果、板厚制度は5%未満と良好であり、また、剥離強度が0.5kg/cm以上で密着性は良好であった。この結果を、同様に表1に示す。   As a result, the plate thickness system was good at less than 5%, and the peel strength was 0.5 kg / cm or more, and the adhesion was good. The results are also shown in Table 1.

(実施例5)
ベース箔として、18μm厚の圧延銅箔(A)を用いた。この圧延銅箔を、図1に示すめっき装置を使用し、上記めっき条件を使用して1μmのニッケルめっき(B)を施した。次に、このニッケルめっき層(B)上に、連続して2μmの中間電気銅めっき層(C)を形成した。
さらに、上記浸漬条件を用いてクロメート処理をした後、図2に示す装置(ドラム型電極)を用いて、10μmの電気銅めっき層を形成した。なお、銅めっき層(C)と電気めっき層(D)の間のCr量は、45μg/dmであった。これにより、銅/ニッケル/薄銅/防錆層/厚銅からなる複合銅箔を製造した。他の試験条件は、実施例1と同様である。
(Example 5)
As the base foil, a rolled copper foil (A) having a thickness of 18 μm was used. The rolled copper foil was subjected to 1 μm nickel plating (B) using the plating conditions shown in FIG. 1 and the above plating conditions. Next, an intermediate electrolytic copper plating layer (C) having a thickness of 2 μm was continuously formed on the nickel plating layer (B).
Furthermore, after chromating using the above immersion conditions, a 10 μm electrolytic copper plating layer was formed using the apparatus (drum-type electrode) shown in FIG. The amount of Cr between the copper plating layer (C) and the electroplating layer (D) was 45 μg / dm 2 . Thereby, the composite copper foil which consists of copper / nickel / thin copper / rust prevention layer / thick copper was manufactured. Other test conditions are the same as in Example 1.

以上の結果、板厚制度は5%未満と良好であり、また、剥離強度が0.5kg/cm以上で密着性は良好であった。この結果を、同様に表1に示す。   As a result, the plate thickness system was good at less than 5%, and the peel strength was 0.5 kg / cm or more, and the adhesion was good. The results are also shown in Table 1.

(実施例6)
ベース箔として、18μm厚の電解銅箔(A)を用いた。この圧延銅箔を、図1に示すめっき装置を使用し、上記めっき条件を使用して1μmのニッケルめっき(B)を施した。次に、このニッケルめっき層(B)上に、連続して2μmの中間電気銅めっき層(C)を形成した。
さらに、図2に示す装置(ドラム型電極)を用いて、10μmの電気銅めっき層(D)を形成した後、上記浸漬条件を用いてクロメート処理をした。なお、電気めっき層(D)上のCr量は、30μg/dmであった。これにより、銅/ニッケル/薄銅/厚銅/防錆層からなる複合銅箔を製造した。他の試験条件は、実施例1と同様である。
(Example 6)
As the base foil, an electrolytic copper foil (A) having a thickness of 18 μm was used. The rolled copper foil was subjected to 1 μm nickel plating (B) using the plating conditions shown in FIG. 1 and the above plating conditions. Next, an intermediate electrolytic copper plating layer (C) having a thickness of 2 μm was continuously formed on the nickel plating layer (B).
Furthermore, after forming a 10-micrometer electroplating layer (D) using the apparatus (drum-type electrode) shown in FIG. 2, it chromate-treated using the said immersion conditions. The amount of Cr on the electroplating layer (D) was 30 μg / dm 2 . Thereby, the composite copper foil which consists of copper / nickel / thin copper / thick copper / rust prevention layer was manufactured. Other test conditions are the same as in Example 1.

以上の結果、板厚制度は5%未満と良好であり、また、剥離強度が0.5kg/cm以上で密着性は良好であった。この結果を、同様に表1に示す  As a result, the plate thickness system was good at less than 5%, and the peel strength was 0.5 kg / cm or more, and the adhesion was good. The results are also shown in Table 1.

(比較例1)
ベース箔として、70μm厚の電解銅箔(A)を用いた。この電解銅箔を、図1に示すめっき装置を使用し、上記めっき条件を使用して1μmのニッケルめっき(B)を施した。この(B)上に、図2に示す装置(ドラム型電極)を用いて、10μmの電気銅めっき層を形成した。これにより、銅/ニッケル/厚銅からなる複合銅箔を製造した。他の試験条件は、実施例1と同様である。
(Comparative Example 1)
As the base foil, an electrolytic copper foil (A) having a thickness of 70 μm was used. This electrolytic copper foil was subjected to 1 μm nickel plating (B) using the plating conditions shown in FIG. 1 and the above plating conditions. On this (B), the 10-micrometer electroplating layer was formed using the apparatus (drum-type electrode) shown in FIG. Thereby, the composite copper foil which consists of copper / nickel / thick copper was manufactured. Other test conditions are the same as in Example 1.

以上の結果、板厚制度は5%未満と良好であったが、剥離強度が0.5kg/cm未満で密着性は不十分であった。この結果を、同様に表1に示す   As a result, the plate thickness system was good at less than 5%, but the peel strength was less than 0.5 kg / cm and the adhesion was insufficient. The results are also shown in Table 1.

(比較例2)
ベース箔として、70μm厚の圧延銅箔(A)を用いた。この圧延銅箔を、図1に示すめっき装置を使用し、上記めっき条件を使用して3μmのニッケルめっき(B)を施した。次に、このニッケルめっき層(B)上に、連続して0.01μmの中間電気銅めっき層(C)を形成した。
さらに、この層(C)上に、図2に示す装置(ドラム型電極)を用いて、10μmの電気銅めっき層を形成した。これにより、銅/ニッケル薄銅/薄銅/厚銅からなる複合銅箔を製造した。他の試験条件は、実施例1と同様である。
(Comparative Example 2)
As the base foil, a rolled copper foil (A) having a thickness of 70 μm was used. The rolled copper foil was subjected to nickel plating (B) of 3 μm using the plating apparatus shown in FIG. 1 and the above plating conditions. Next, an intermediate electrolytic copper plating layer (C) having a thickness of 0.01 μm was continuously formed on the nickel plating layer (B).
Further, an electrolytic copper plating layer having a thickness of 10 μm was formed on this layer (C) using the apparatus (drum type electrode) shown in FIG. Thereby, the composite copper foil which consists of copper / nickel thin copper / thin copper / thick copper was manufactured. Other test conditions are the same as in Example 1.

以上の結果、板厚制度は5%未満と良好であり、また、剥離強度が0.5kg/cm未満で密着性が不十分であった。これは、中間電気銅めっき層(C)の厚さが不十分であったことが原因と考えられる。この結果を、同様に表1に示す。   As a result, the plate thickness system was good at less than 5%, and the peel strength was less than 0.5 kg / cm and the adhesion was insufficient. This is considered to be because the thickness of the intermediate electrolytic copper plating layer (C) was insufficient. The results are also shown in Table 1.

(比較例3)
ベース箔として、12μm厚の電解銅箔(A)を用いた。この電解銅箔を、図1に示すめっき装置を使用し、上記めっき条件を使用して1μmのニッケルめっき(B)を施した。次に、このニッケルめっき層(B)上に、連続して20μmの電気銅めっき層(C)を形成した。10μmの電気銅めっき層を形成した。これにより、銅/ニッケル/厚銅からなる複合銅箔を製造した。他の試験条件は、実施例1と同様である。
(Comparative Example 3)
As the base foil, an electrolytic copper foil (A) having a thickness of 12 μm was used. This electrolytic copper foil was subjected to 1 μm nickel plating (B) using the plating conditions shown in FIG. 1 and the above plating conditions. Next, an electrolytic copper plating layer (C) having a thickness of 20 μm was continuously formed on the nickel plating layer (B). A 10 μm electrolytic copper plating layer was formed. Thereby, the composite copper foil which consists of copper / nickel / thick copper was manufactured. Other test conditions are the same as in Example 1.

以上の結果、工程中、ニッケル層と銅層との間での剥離は全く認められなかったが、板厚制度は10%以上となった。これは、板厚精度の悪い図1のめっき装置で厚めっきをおこなったことが原因と考えられる。この結果を、同様に表1に示す。   As a result, no peeling between the nickel layer and the copper layer was observed during the process, but the plate thickness system was 10% or more. This is thought to be because thick plating was performed with the plating apparatus of FIG. The results are also shown in Table 1.

(比較例4)
ベース箔として、12μm厚の圧延銅箔(A)を用いた。この圧延銅箔を、図1に示すめっき装置を使用し、上記めっき条件を使用して0.7μmのニッケルめっき(B)を施した。次に、このニッケルめっき層(B)上に、連続して6μmの中間電気銅めっき層(C)を形成した。さらに、図2に示す装置(ドラム型電極)を用いて、10μmの電気銅めっき層を形成した。これにより、銅/ニッケル/薄銅/厚銅からなる複合銅箔を製造した。他の試験条件は、実施例1と同様である
(Comparative Example 4)
A rolled copper foil (A) having a thickness of 12 μm was used as the base foil. This rolled copper foil was subjected to nickel plating (B) of 0.7 μm using the plating conditions shown in FIG. Next, an intermediate electrolytic copper plating layer (C) of 6 μm was continuously formed on the nickel plating layer (B). Furthermore, a 10 μm electrolytic copper plating layer was formed using the apparatus (drum-type electrode) shown in FIG. Thereby, the composite copper foil which consists of copper / nickel / thin copper / thick copper was manufactured. Other test conditions are the same as in Example 1.

以上の結果、剥離強度が0.5kg/cm以上で密着性は良好であったが、板厚精度は5%以上10%未満となった。これは、板厚精度の悪い薄銅層を厚くなった分板厚精度が悪くなったと考えられる。この結果を、同様に表1に示す。   As a result, the peel strength was 0.5 kg / cm or more and the adhesion was good, but the plate thickness accuracy was 5% or more and less than 10%. This is thought to be due to the fact that the thickness accuracy of the thin copper layer with poor plate thickness accuracy is increased. The results are also shown in Table 1.

本発明は、銅/ニッケル/銅からなる複合銅箔の製造に際し、ニッケルと銅との接合強度を向上させることのでき、エッチングにより電子回路の形成に適した複合銅箔とその製造方法を得ることができるという著しい効果を有する。  The present invention can improve the bonding strength between nickel and copper when producing a copper / nickel / copper composite copper foil, and obtain a composite copper foil suitable for forming an electronic circuit by etching and a method for producing the same. It has a remarkable effect that it can be.

Claims (9)

厚さが10〜150μmの圧延銅箔又は電解銅箔の両面又は片面に、厚さ0.5〜3μmのニッケル層、厚さ0.1〜5μmの薄銅層(C)及び厚銅層(D)を備えた複合銅箔で、前記厚銅層(D)の板厚精度が±5%未満で、前記ニッケル層と前記薄銅層(C)との間の剥離強度が0.5kg/cm以上であることを特徴とする複合銅箔。 A nickel layer having a thickness of 0.5 to 3 μm, a thin copper layer (C) having a thickness of 0.1 to 5 μm and a thick copper layer (on both sides or one side of a rolled copper foil or an electrolytic copper foil having a thickness of 10 to 150 μm ( D), the thickness accuracy of the thick copper layer (D) is less than ± 5%, and the peel strength between the nickel layer and the thin copper layer (C) is 0.5 kg / A composite copper foil characterized by being at least cm. 銅層(D)の厚さが5μm以上であることを特徴とする請求項に記載の複合銅箔。 Composite foil according to Motomeko 1 you wherein the thickness of the thick copper layer (D) is 5μm or more. 前記薄銅層(C)及び/又は厚銅層(D)の上に、Cr含有量が10〜50μg/dm2である防錆層を備えることを特徴とする請求項1又は2に記載の複合銅箔。 Wherein on the thin copper layer (C) and / or heavy copper layer (D), Cr content according to claim 1 or 2, characterized in that it comprises the anticorrosive layer is 10-50 / dm 2 Composite copper foil. 厚さが10〜150μmの圧延銅箔又は電解銅箔(A)の両面又は片面に、厚さ0.5〜3μmのニッケル層(B)を電気めっきにより形成し、該(B)層のめっき直後に、連続して薄銅層(C)を電気めっきにより形成し、さらにこの(C)層の上に、非連続工程において板厚精度が±5%未満の厚銅層(D)を電気めっきにより形成することを特徴とする複合銅箔の製造方法。 A nickel layer (B) having a thickness of 0.5 to 3 μm is formed on both sides or one side of a rolled copper foil or electrolytic copper foil (A) having a thickness of 10 to 150 μm by electroplating, and plating of the (B) layer is performed. Immediately after, a thin copper layer (C) is continuously formed by electroplating, and a thick copper layer (D) having a thickness accuracy of less than ± 5% in a non-continuous process is further formed on this (C) layer. A method for producing a composite copper foil, which is formed by plating. 厚さが10〜150μmの圧延銅箔又は電解銅箔(A)の両面又は片面に、厚さ0.5〜3μmのニッケル層(B)を電気めっきにより形成し、該(B)層のめっき直後に、連続して厚さ0.1〜5μmの薄銅層(C)を電気めっきにより形成し、さらにこの薄銅層(C)の上に、非連続工程において5μm以上で板厚精度が±5%未満の厚銅層(D)を電気めっきにより形成することを特徴とする複合銅箔の製造方法。 A nickel layer (B) having a thickness of 0.5 to 3 μm is formed on both sides or one side of a rolled copper foil or electrolytic copper foil (A) having a thickness of 10 to 150 μm by electroplating, and plating of the (B) layer is performed. Immediately thereafter, a thin copper layer (C) having a thickness of 0.1 to 5 μm is continuously formed by electroplating, and the thickness accuracy is more than 5 μm on the thin copper layer (C) in a discontinuous process. A method for producing a composite copper foil, comprising forming a thick copper layer (D) of less than ± 5% by electroplating. 前記薄銅層(C)及び/又は厚銅層(D)の上に、Cr含有量が10〜50μg/dm2である防錆層を形成することを特徴とする請求項4又は5に記載の複合銅箔の製造方法。 Wherein on the thin copper layer (C) and / or heavy copper layer (D), according to claim 4 or 5 Cr content and forming a rust-preventive layer is 10-50 / dm 2 Manufacturing method of composite copper foil. 前記薄銅層(C)の上に、予めCr含有量が10〜50μg/dm2である防錆層を形成し、その後、厚銅層(D)を形成することを特徴とする請求項4〜6のいずれか一項に記載の複合銅箔の製造方法。 Wherein on the thin copper layer (C), pre Cr content forming the anticorrosive layer is 10-50 / dm 2, then according to claim 4, characterized in that to form a Atsudoso (D) The manufacturing method of the composite copper foil as described in any one of -6 . 前記厚銅層(D)の上に、Cr含有量が10〜50μg/dm2である防錆層を形成することを特徴とする請求項4〜6のいずれか一項に記載の複合銅箔の製造方法。 The composite copper foil according to any one of claims 4 to 6 , wherein a rust prevention layer having a Cr content of 10 to 50 µg / dm 2 is formed on the thick copper layer (D). Manufacturing method. 前記薄銅層(C)を、ドラム型電極を用いて電気めっきにより形成することを特徴とする請求項4〜8のいずれか一項記載の複合銅箔の製造方法。 The thin copper layer (C), the method of producing composite copper foil as claimed in any one of claims 4-8, characterized in that formed by electroplating using a drum-type electrode.
JP2013507239A 2011-03-25 2012-02-10 Composite copper foil and method for producing the same Active JP5723971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507239A JP5723971B2 (en) 2011-03-25 2012-02-10 Composite copper foil and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011066859 2011-03-25
JP2011066859 2011-03-25
PCT/JP2012/053103 WO2012132573A1 (en) 2011-03-25 2012-02-10 Composite copper foil and method for producing same
JP2013507239A JP5723971B2 (en) 2011-03-25 2012-02-10 Composite copper foil and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2012132573A1 JPWO2012132573A1 (en) 2014-07-24
JP5723971B2 true JP5723971B2 (en) 2015-05-27

Family

ID=46930337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013507239A Active JP5723971B2 (en) 2011-03-25 2012-02-10 Composite copper foil and method for producing the same

Country Status (3)

Country Link
JP (1) JP5723971B2 (en)
TW (1) TWI485061B (en)
WO (1) WO2012132573A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5175992B1 (en) * 2012-07-06 2013-04-03 Jx日鉱日石金属株式会社 Ultrathin copper foil, method for producing the same, and ultrathin copper layer
JP5481586B1 (en) * 2013-02-28 2014-04-23 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6438208B2 (en) * 2013-04-03 2018-12-12 Jx金属株式会社 Copper foil with carrier, copper-clad laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
US9707738B1 (en) * 2016-01-14 2017-07-18 Chang Chun Petrochemical Co., Ltd. Copper foil and methods of use
JP7085394B2 (en) * 2018-04-13 2022-06-16 東洋鋼鈑株式会社 Laminated electrolytic foil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169181A (en) * 2002-10-31 2004-06-17 Furukawa Techno Research Kk Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP2005260250A (en) * 2005-03-23 2005-09-22 Mitsui Mining & Smelting Co Ltd Surface treatment copper foil and copper clad laminate using it
JP2007186797A (en) * 2007-02-15 2007-07-26 Furukawa Circuit Foil Kk Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
WO2011028004A2 (en) * 2009-09-01 2011-03-10 일진소재산업(주) Copper foil for an embedded pattern for forming a microcircuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200420208A (en) * 2002-10-31 2004-10-01 Furukawa Circuit Foil Ultra-thin copper foil with carrier, method of production of the same, and printed circuit board using ultra-thin copper foil with carrier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169181A (en) * 2002-10-31 2004-06-17 Furukawa Techno Research Kk Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP2005260250A (en) * 2005-03-23 2005-09-22 Mitsui Mining & Smelting Co Ltd Surface treatment copper foil and copper clad laminate using it
JP2007186797A (en) * 2007-02-15 2007-07-26 Furukawa Circuit Foil Kk Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
WO2011028004A2 (en) * 2009-09-01 2011-03-10 일진소재산업(주) Copper foil for an embedded pattern for forming a microcircuit

Also Published As

Publication number Publication date
WO2012132573A1 (en) 2012-10-04
TW201242762A (en) 2012-11-01
JPWO2012132573A1 (en) 2014-07-24
TWI485061B (en) 2015-05-21

Similar Documents

Publication Publication Date Title
US7892655B2 (en) Ultrathin copper foil with carrier and printed circuit board using same
JP6342356B2 (en) Copper foil with carrier, printed wiring board, laminate, laminated board, electronic device and method for producing printed wiring board
TWI539875B (en) An electronic circuit and an electrolytic copper foil or rolled copper foil using a method of forming such electronic circuits
TWI530234B (en) Printed wiring board with copper foil and the use of its laminated body, printed wiring board and electronic components
JP5723971B2 (en) Composite copper foil and method for producing the same
CN108702847B (en) Copper foil for manufacturing printed wiring board, copper foil with carrier, copper-clad laminate, and method for manufacturing printed wiring board using same
TWI486487B (en) The formation of electronic circuits
JP2005260058A (en) Carrier-attached very thin copper foil, manufacturing method of carrier-attached very thin copper foil, and wiring board
KR101822251B1 (en) Copper foil, copper foil with carrier, copper-clad laminate, printed circuit board, circuit forming substrate for semiconductor package, semiconductor package, electronic device, resin substrate, circuit forming method, semiadditive method, and printed circuit board manufacturing method
WO2017141983A1 (en) Printed circuit board production method
TWI487437B (en) Electronic circuit and method for forming the same, and copper composite sheet for forming electronic circuit
JP6134569B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board
JP2016194112A (en) Metal foil with carrier, laminate, printed wiring board, electronic device, manufacturing method of metal foil with carrier and manufacturing method of printed wiring board
JP2011210993A (en) Copper foil for printed wiring board and layered body which have superior etching property
JP5727592B2 (en) Composite copper foil and method for producing the same
JP6158573B2 (en) Copper foil with carrier, method for producing copper-clad laminate and method for producing printed wiring board
JP6438208B2 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6254357B2 (en) Copper foil with carrier
JP2013080735A (en) Copper foil for printed wiring board having excellent productivity and laminate sheet using the same
JP2012167354A (en) Copper foil for printed wiring board, laminated body and printed wiring board
JP2011207092A (en) Laminate of copper foil or copper layer and insulating substrate for printed wiring board, having excellent etching property
JP2012235062A (en) Laminate and printed wiring board using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R150 Certificate of patent or registration of utility model

Ref document number: 5723971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250