[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5721172B2 - Chip-type solid electrolytic capacitor and manufacturing method thereof - Google Patents

Chip-type solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP5721172B2
JP5721172B2 JP2011088813A JP2011088813A JP5721172B2 JP 5721172 B2 JP5721172 B2 JP 5721172B2 JP 2011088813 A JP2011088813 A JP 2011088813A JP 2011088813 A JP2011088813 A JP 2011088813A JP 5721172 B2 JP5721172 B2 JP 5721172B2
Authority
JP
Japan
Prior art keywords
cathode
terminal
anode
internal
electrode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011088813A
Other languages
Japanese (ja)
Other versions
JP2012222262A (en
Inventor
健志 目黒
健志 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2011088813A priority Critical patent/JP5721172B2/en
Publication of JP2012222262A publication Critical patent/JP2012222262A/en
Application granted granted Critical
Publication of JP5721172B2 publication Critical patent/JP5721172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、チップ型の固体電解コンデンサ及びその製造方法に関するものである。   The present invention relates to a chip-type solid electrolytic capacitor and a method for manufacturing the same.

従来から、タンタル、ニオブ等を用いた固体電解コンデンサは、静電容量が大きく、周波数特性に優れていることから、CPUのデカップリング回路あるいは電源回路等に広く使用されている。また、近年では、応用電子機器の小型化や薄型化に伴って、電子部品の高密度実装が求められている。そのため、固体電解コンデンサでも高密度実装が可能な表面実装型(チップ型)の固体電解コンデンサが要求されている。   Conventionally, solid electrolytic capacitors using tantalum, niobium, etc. have been widely used in CPU decoupling circuits or power supply circuits because of their large capacitance and excellent frequency characteristics. Further, in recent years, with the miniaturization and thinning of applied electronic devices, high-density mounting of electronic components is required. Therefore, there is a demand for a surface mount type (chip type) solid electrolytic capacitor capable of high-density mounting even with a solid electrolytic capacitor.

ここで、一般的なチップ型の固体電解コンデンサを図面を用いて説明する。図3は従来のチップ型の固体電解コンデンサの断面図であり、内部構造の一例を示している。弁作用金属からなる陽極体2からは、陽極部となる線状または板状の陽極導出リード1が導出されている。陽極体2の表面には酸化膜からなる誘電体層が形成され、誘電体層の表面には固体電解質層である導電性高分子層が形成され、さらに、導電性高分子層の表面には陰極部となるグラファイト層と銀層が形成され、コンデンサ素子11が構成されている。   Here, a general chip-type solid electrolytic capacitor will be described with reference to the drawings. FIG. 3 is a sectional view of a conventional chip-type solid electrolytic capacitor, showing an example of the internal structure. From the anode body 2 made of a valve metal, a linear or plate-like anode lead 1 serving as an anode portion is led out. A dielectric layer made of an oxide film is formed on the surface of the anode body 2, a conductive polymer layer that is a solid electrolyte layer is formed on the surface of the dielectric layer, and further, a surface of the conductive polymer layer is formed on the surface of the conductive polymer layer. A capacitor layer 11 is formed by forming a graphite layer and a silver layer as a cathode portion.

電極基板4は、絶縁部材部10を介して、一方の面にコンデンサ素子11と電気的に接続する、内部陽極端子6a及び内部陰極端子7aからなる内部電極端子を有し、もう一方の面には外部基板と電気的に接続する、外部陽極端子6c及び外部陰極端子7cからなる外部電極端子を有し、それぞれを陽極ビア6b、陰極ビア7bで電気的に接続した構造となっている。   The electrode substrate 4 has an internal electrode terminal composed of an internal anode terminal 6a and an internal cathode terminal 7a, which is electrically connected to the capacitor element 11 on one surface via the insulating member portion 10, and on the other surface. Has an external electrode terminal composed of an external anode terminal 6c and an external cathode terminal 7c that is electrically connected to an external substrate, and has a structure in which each is electrically connected by an anode via 6b and a cathode via 7b.

コンデンサ素子11の陽極部である陽極導出リード1には、金属からなる導電材3が溶接等で接続され、さらに、導電材3は導電性接着剤5を介して内部陽極端子6aに接続されている。また、陰極部である銀層は導電性接着剤5を介して内部陰極端子7aに接続される。なお、図3に示したチップ型の固体電解コンデンサは一般的に小型の形状のものが多い。したがって、図示していないが、図3の電極基板の領域が複数個形成された大判の電極基板に、それぞれコンデンサ素子が配置され、接続される場合が多い。   A conductive material 3 made of metal is connected to the anode lead 1 which is an anode part of the capacitor element 11 by welding or the like, and further, the conductive material 3 is connected to the internal anode terminal 6 a via a conductive adhesive 5. Yes. Further, the silver layer as the cathode portion is connected to the internal cathode terminal 7 a through the conductive adhesive 5. Note that the chip-type solid electrolytic capacitor shown in FIG. 3 is generally small in size. Therefore, although not shown in the figure, capacitor elements are often arranged and connected to large electrode substrates in which a plurality of electrode substrate regions in FIG. 3 are formed.

その後、電極基板4に搭載したコンデンサ素子11をモールド成形等を用いて外装樹脂8で封止し外装とする。そして、外装が完了した大判の電極基板を製品の形状に切断することによってチップ型の固体電解コンデンサが得られる。このようなチップ型の固体電解コンデンサは、例えば、特許文献1に記載されている。   Thereafter, the capacitor element 11 mounted on the electrode substrate 4 is sealed with the exterior resin 8 using molding or the like to form an exterior. Then, a chip-type solid electrolytic capacitor is obtained by cutting the large-sized electrode substrate whose exterior has been completed into a product shape. Such a chip-type solid electrolytic capacitor is described in Patent Document 1, for example.

図4は、従来のチップ型の固体電解コンデンサに使用する電極基板の斜視図であり、前述した構造となっている。   FIG. 4 is a perspective view of an electrode substrate used in a conventional chip-type solid electrolytic capacitor, and has the structure described above.

特開2002−110458号公報JP 2002-110458 A

一般的に電子部品には、実装時のリフロー工程での加熱や使用環境による温度差、動作時のコンデンサへ印加される電力の変化などで、部品を構成する材料に膨張や収縮が生じる。チップ型の固体電解コンデンサでは、特に、絶縁部材部と外装樹脂の接合面で、これらの応力の影響を受け易く、接合面での剥離発生の懸念や、内在する電気的な接続部分における等価直列抵抗(以下、ESRと称す)が上昇する場合があるという課題があった。   In general, electronic components are expanded or contracted due to heating in a reflow process at the time of mounting, a temperature difference due to a use environment, a change in electric power applied to a capacitor during operation, or the like. Chip-type solid electrolytic capacitors are particularly susceptible to the effects of these stresses at the joint surface between the insulating member and the exterior resin, and there is a risk of delamination at the joint surface and the equivalent series connection at the existing electrical connection part. There existed a subject that resistance (henceforth ESR) might raise.

本発明は、電極基板の一方の面と外装樹脂の接合面の剥離を減少させ、ESRの上昇を抑制したチップ型の固体電解コンデンサを提供することを目的とする。   An object of the present invention is to provide a chip-type solid electrolytic capacitor in which peeling of one surface of an electrode substrate and a joint surface of an exterior resin is reduced and an increase in ESR is suppressed.

上記課題を解決するために、本発明のチップ型の固体電解コンデンサは、電極基板の一方の面に内部陽極端子及び内部陰極端子を有し、前記電極基板の他方の面に陽極ビアを介して前記内部陽極端子と導通する外部陽極端子と、陰極ビアを介して前記内部陰極端子と導通する外部陰極端子を有し、前記電極基板の一方の面に、陽極導出リードを備え、弁作用金属からなる陽極体の表面に誘電体層と固体電解質層と陰極層を順次形成し、前記陰極層を陰極部とするコンデンサ素子を搭載し、前記陽極導出リードと前記内部陽極端子並びに前記陰極部と前記内部陰極端子をそれぞれ電気的に接続し、前記コンデンサ素子を外装樹脂で外装してなるチップ型の固体電解コンデンサであって、前記電極基板の一方の面と前記外装樹脂の接合する面のすくなくとも一部に、弾性接着部材からなる弾性接続部を備え、前記弾性接着部材は前記外装樹脂よりも弾性率が小さいことを特徴とする。 In order to solve the above problems, a chip-type solid electrolytic capacitor of the present invention has an internal anode terminal and an internal cathode terminal on one surface of an electrode substrate, and an anode via on the other surface of the electrode substrate. An external anode terminal electrically connected to the internal anode terminal, and an external cathode terminal electrically connected to the internal cathode terminal via a cathode via, and having an anode lead-out lead on one surface of the electrode substrate; A dielectric layer, a solid electrolyte layer, and a cathode layer are sequentially formed on the surface of the anode body, and a capacitor element having the cathode layer as a cathode portion is mounted, the anode lead out, the internal anode terminal, the cathode portion, and the cathode A chip-type solid electrolytic capacitor in which internal cathode terminals are electrically connected and the capacitor element is packaged with an exterior resin, and the surface of one surface of the electrode substrate and the exterior resin is joined to each other. The least part, an elastic connecting portion formed of an elastic adhesive member, the elastic adhesive member is characterized in that elastic modulus than the outer resin is small.

本発明のチップ型の固体電解コンデンサは、電極基板の一方の面に内部陽極端子及び内部陰極端子を有し、前記電極基板の他方の面に陽極ビアを介して前記内部陽極端子と導通する外部陽極端子と、陰極ビアを介して前記内部陰極端子と導通する外部陰極端子を有し、前記電極基板の一方の面に、両端部に陽極部を備え、弁作用金属からなる陽極体の中央部の表面に誘電体層と固体電解質層と陰極層を順次形成し、前記陰極層を陰極部とする3端子型のコンデンサ素子を搭載し、前記陽極部と前記内部陽極端子並びに前記陰極部と前記内部陰極端子をそれぞれ電気的に接続し、前記コンデンサ素子を外装樹脂で外装してなる3端子型の固体電解コンデンサであって、前記電極基板の一方の面と前記外装樹脂の接合する面のすくなくとも一部に、弾性接着部材からなる弾性接続部を備え、前記弾性接着部材は前記外装樹脂よりも弾性率が小さいことを特徴とする。 The chip-type solid electrolytic capacitor of the present invention has an internal anode terminal and an internal cathode terminal on one surface of an electrode substrate, and is electrically connected to the internal anode terminal through an anode via on the other surface of the electrode substrate. An anode terminal and an external cathode terminal that is electrically connected to the internal cathode terminal via a cathode via, and has an anode portion at both ends on one surface of the electrode substrate, and a central portion of an anode body made of a valve metal A dielectric layer, a solid electrolyte layer, and a cathode layer are sequentially formed on the surface of the substrate, and a three-terminal capacitor element having the cathode layer as a cathode portion is mounted. The anode portion, the internal anode terminal, the cathode portion, and the cathode A three-terminal solid electrolytic capacitor in which internal cathode terminals are electrically connected and the capacitor element is packaged with an exterior resin, wherein at least one surface of the electrode substrate and the surface where the exterior resin is joined are at least In part An elastic connecting portion formed of an elastic adhesive member, the elastic adhesive member is characterized by a small elastic modulus than the outer resin.

本発明のチップ型の固体電解コンデンサは、前記弾性接着部材が変成シリコーン樹脂であることが望ましく、特に、実装時のリフロー工程での耐熱性に優れることからエポキシ変成シリコーン樹脂であればなお良い。   In the chip-type solid electrolytic capacitor of the present invention, it is desirable that the elastic adhesive member is a modified silicone resin. In particular, an epoxy-modified silicone resin is more preferable because it has excellent heat resistance in a reflow process during mounting.

本発明のチップ型の固体電解コンデンサの製造方法は、陽極導出リードが導出された弁作用金属からなる陽極体の表面に、誘電体層、固体電解質層を順次形成し、前記固体電解質層の表面に陰極層からなる陰極部を有するコンデンサ素子を形成する工程と、一方の面に内部陽極端子及び内部陰極端子を有し、他方の面に陽極ビアを介して前記内部陽極端子と導通する外部陽極端子と、陰極ビアを介して前記内部陰極端子と導通する外部陰極端子を有する電極基板を用意し、前記電極基板の一方の面の外装樹脂を接合する面のすくなくとも一部に、弾性接着部材を塗布する工程と、前記電極基板の一方の面に、前記コンデンサ素子を搭載し、前記陽極導出リードと前記内部陽極端子並びに前記陰極部と前記内部陰極端子をそれぞれ電気的に接続し、前記コンデンサ素子を外装樹脂で外装する工程を含むことを特徴とする。 In the method of manufacturing a chip-type solid electrolytic capacitor of the present invention, a dielectric layer and a solid electrolyte layer are sequentially formed on a surface of an anode body made of a valve metal from which an anode lead is derived, and the surface of the solid electrolyte layer is formed. external to conduct a step of forming a capacitor element having a cathode part comprising a cathode layer, has an internal anode terminal and the internal cathode terminal on one surface, and the internal anode terminal via the anode via the surface of the other side to An electrode substrate having an anode terminal and an external cathode terminal electrically connected to the internal cathode terminal through a cathode via is prepared, and an elastic adhesive member is formed on at least a part of a surface to which the exterior resin on one surface of the electrode substrate is bonded The capacitor element is mounted on one surface of the electrode substrate, and the anode lead-out lead and the internal anode terminal, and the cathode portion and the internal cathode terminal are electrically connected to each other. , Characterized in that it comprises a step of sheathing the capacitor element with an exterior resin.

本発明のチップ型の固体電解コンデンサの製造方法は、両端部に陽極部を備え、弁作用金属からなる陽極体の中央部の表面に、誘電体層、固体電解質層を順次形成し、前記固体電解質層の表面に陰極層からなる陰極部を有する3端子型のコンデンサ素子を形成する工程と、一方の面に内部陽極端子及び内部陰極端子を有し、他方の面に陽極ビアを介して前記内部陽極端子と導通する外部陽極端子と、陰極ビアを介して前記内部陰極端子と導通する外部陰極端子を有する電極基板を用意し、前記電極基板の一方の面の外装樹脂を接合する面のすくなくとも一部に、弾性接着部材を塗布する工程と、前記電極基板の一方の面に、前記コンデンサ素子を搭載し、前記陽極と前記内部陽極端子並びに前記陰極部と前記内部陰極端子をそれぞれ電気的に接続し、前記コンデンサ素子を外装樹脂で外装する工程を含むことを特徴とする。 The method for producing a chip-type solid electrolytic capacitor of the present invention includes anode portions at both ends, and sequentially forming a dielectric layer and a solid electrolyte layer on the surface of the central portion of an anode body made of a valve metal, forming a 3-terminal type capacitor element having a cathode part comprising a cathode layer on the surface of the electrolyte layer, having an internal anode terminal and the internal cathode terminal on one surface, through the anode via the surface of the other side An electrode substrate having an external anode terminal electrically connected to the internal anode terminal and an external cathode terminal electrically connected to the internal cathode terminal via a cathode via is prepared, and the surface of the surface on which the exterior resin on one surface of the electrode substrate is bonded At least a part of the step of applying an elastic adhesive member, and mounting the capacitor element on one surface of the electrode substrate, electrically connecting the anode part and the internal anode terminal, and the cathode part and the internal cathode terminal, respectively. Target Connected, characterized in that it comprises a step of sheathing the capacitor element with an exterior resin.

上記構成からなる本発明は、電極基板の一方の面と外装樹脂の接合する面のすくなくとも一部に、弾性接着部材からなる弾性接続部を有した構造を備えている。そのため、加熱等でコンデンサの構成部材に膨張や収縮による応力が発生しても、弾性接続部によりその応力を吸収や緩和させることが可能となり、接合面での剥離を減少させ、ESRの上昇を抑制したチップ型の固体電解コンデンサを提供することが出来る。   The present invention configured as described above has a structure having an elastic connecting portion made of an elastic adhesive member on at least a part of one surface of the electrode substrate and the surface where the exterior resin is joined. Therefore, even if stress due to expansion or contraction occurs in the capacitor component due to heating or the like, it becomes possible to absorb or relieve the stress by the elastic connection part, reduce peeling at the joint surface, and increase ESR. A suppressed chip-type solid electrolytic capacitor can be provided.

本発明の実施の形態に係るチップ型の固体電解コンデンサの断面図。1 is a cross-sectional view of a chip-type solid electrolytic capacitor according to an embodiment of the present invention. 本発明の実施の形態に係るチップ型の固体電解コンデンサに使用する電極基板の斜視図。The perspective view of the electrode substrate used for the chip type solid electrolytic capacitor concerning an embodiment of the invention. 従来のチップ型の固体電解コンデンサの断面図。Sectional drawing of the conventional chip-type solid electrolytic capacitor. 従来のチップ型の固体電解コンデンサに使用する電極基板の斜視図。The perspective view of the electrode substrate used for the conventional chip type solid electrolytic capacitor.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態に係るチップ型の固体電解コンデンサの断面図であり、図2は、本発明の実施の形態に係るチップ型の固体電解コンデンサに使用する電極基板の斜視図である。   FIG. 1 is a cross-sectional view of a chip-type solid electrolytic capacitor according to an embodiment of the present invention, and FIG. 2 is a perspective view of an electrode substrate used for the chip-type solid electrolytic capacitor according to an embodiment of the present invention. It is.

図1に示す本発明のコンデンサ素子11は、図3に示す従来技術と同様の構造をしており、陽極導出リード1と、タンタル等の弁作用金属からなる陽極体2の表面に形成された陰極部(図示せず)を備えている。図2は、コンデンサ素子を搭載する前の電極基板4の状態を表している。   A capacitor element 11 of the present invention shown in FIG. 1 has the same structure as that of the prior art shown in FIG. 3, and is formed on the surface of an anode lead 1 and an anode body 2 made of a valve metal such as tantalum. A cathode part (not shown) is provided. FIG. 2 shows the state of the electrode substrate 4 before mounting the capacitor element.

図1及び図2で示すように、本発明の実施の形態の電極基板4は、絶縁部材部10を介して内部陽極端子6a及び内部陰極端子7aからなる内部電極端子と、外部陽極端子6c及び外部陰極端子7cからなる外部電極端子を有している。さらに、内部電極端子と外部電極端子は、それぞれ、陽極ビア6b、陰極ビア7bを介して電気的に接続されている。   As shown in FIGS. 1 and 2, the electrode substrate 4 according to the embodiment of the present invention includes an internal electrode terminal composed of an internal anode terminal 6a and an internal cathode terminal 7a, an external anode terminal 6c, It has an external electrode terminal composed of an external cathode terminal 7c. Furthermore, the internal electrode terminal and the external electrode terminal are electrically connected through an anode via 6b and a cathode via 7b, respectively.

この時、本発明の構成として従来技術と相違する点は、電極基板4の絶縁部材部10の樹脂にて外装する面に、弾性接続部9を形成していることである。   At this time, the configuration of the present invention is different from the prior art in that the elastic connection portion 9 is formed on the surface of the insulating member portion 10 of the electrode substrate 4 which is covered with resin.

つまり、電極基板4の内部電極端子が設けられた面において、内部陽極端子6a及び内部陰極端子7aを除いた絶縁部材部10の表面に、弾性接着部材を塗布し、弾性接続部9を形成している。   That is, on the surface of the electrode substrate 4 on which the internal electrode terminals are provided, an elastic adhesive member is applied to the surface of the insulating member portion 10 excluding the internal anode terminal 6a and the internal cathode terminal 7a to form the elastic connection portion 9. ing.

その後、コンデンサ素子11の陽極部となる陽極導出リード1に、銅などの金属からなる導電材3を溶接等で接続する。さらに、導電材3を導電性ペースト等からなる導電性接着剤5を介して内部陽極端子6aに接続し、陰極部である銀層は導電性接着剤5を介して内部陰極端子7aに接続する。   Thereafter, the conductive material 3 made of metal such as copper is connected to the anode lead 1 serving as the anode part of the capacitor element 11 by welding or the like. Further, the conductive material 3 is connected to the internal anode terminal 6 a through the conductive adhesive 5 made of a conductive paste or the like, and the silver layer as the cathode portion is connected to the internal cathode terminal 7 a through the conductive adhesive 5. .

続いて、ガラスフィラーを含んだエポキシ樹脂等からなる外装樹脂8で、コンデンサ素子11を搭載した電極基板4の面にモールド成形等の方法で外装を行う。その後、個辺へ切断する工程で製品の形状に加工し、本発明のチップ型の固体電解コンデンサが完成する。 なお、本発明の弾性接続部は、コンデンサ素子を個別に樹脂モールドする大型形状のコンデンサに適用することも可能である。   Subsequently, the exterior resin 8 made of an epoxy resin or the like containing a glass filler is used for exterior packaging by a method such as molding on the surface of the electrode substrate 4 on which the capacitor element 11 is mounted. Thereafter, it is processed into a product shape in a process of cutting into individual sides, and the chip-type solid electrolytic capacitor of the present invention is completed. The elastic connecting portion of the present invention can also be applied to a large-sized capacitor in which capacitor elements are individually resin-molded.

また、本発明の弾性接続部は、板状または箔状の拡面化したアルミニウム等の弁作用金属を陽極体とし、陽極体の両端部に陽極部を形成し、中央部に陰極部を形成した、3端子型のコンデンサ素子を搭載する外部電極端子が3端子型の固体電解コンデンサにも適用することが可能である。   The elastic connecting portion of the present invention uses a plate-like or foil-like expanded metal such as aluminum as an anode body, forms anode portions at both ends of the anode body, and forms cathode portions at the central portion. The external electrode terminal on which the three-terminal capacitor element is mounted can also be applied to a three-terminal solid electrolytic capacitor.

チップ型の固体電解コンデンサの外装樹脂8と絶縁部材部10の面の間に、弾性接続部9を介在させることによって、リフロー時の加熱等で発生した応力を吸収や緩和させることが出来る。この作用効果によって、接合面での剥離を減少させ、ESRの上昇を抑制したチップ型の固体電解コンデンサを得ることが可能となる。   By interposing the elastic connection portion 9 between the surface of the exterior resin 8 and the insulating member portion 10 of the chip-type solid electrolytic capacitor, it is possible to absorb or relax the stress generated by heating or the like during reflow. With this function and effect, it is possible to obtain a chip-type solid electrolytic capacitor in which peeling at the joint surface is reduced and an increase in ESR is suppressed.

なお、密着性や接続強度が良好に得られることと、応力を吸収や緩和を十分に行う点から、弾性接続部9の厚みは、0.05mmから0.25mmが望ましい。 また、弾性接続部9を形成する弾性接着部材は、応力を吸収や緩和させることから、外装樹脂よりも弾性率が小さいことが好ましい。   In addition, the thickness of the elastic connection part 9 is desirably 0.05 mm to 0.25 mm from the viewpoint of obtaining good adhesion and connection strength and sufficiently absorbing and relaxing stress. In addition, the elastic adhesive member forming the elastic connection portion 9 preferably absorbs or relaxes stress, and therefore has a smaller elastic modulus than the exterior resin.

弾性接着部材としては、変成シリコーン樹脂などが選択でき、実装時のリフロー工程での耐熱性に優れることからエポキシ変成シリコーン樹脂が望ましい。また、プライマー処理の必要性や張り合わせ可能時間に応じて選定してよい。   As the elastic adhesive member, a modified silicone resin or the like can be selected, and an epoxy modified silicone resin is desirable because of excellent heat resistance in a reflow process at the time of mounting. Moreover, you may select according to the necessity of primer processing, and the time which can be bonded together.

弾性接着部材の塗布方法は、チューブ液剤塗布装置(オートチューブ)やディスペンサー等を用いることができる。弾性接続部9の形成パターンは特に限定されず、内部陽極端子6a及び内部陰極端子7aの表面を除いた絶縁部材部10の表面に、べた塗布、線状に塗布、島状に点在させても良く、外装樹脂との接着が十分得られ、発生する応力を吸収や緩和が可能であれば良い。   As a method for applying the elastic adhesive member, a tube liquid application device (auto tube), a dispenser, or the like can be used. The formation pattern of the elastic connection portion 9 is not particularly limited, and is applied to the surface of the insulating member portion 10 excluding the surfaces of the internal anode terminal 6a and the internal cathode terminal 7a. It is sufficient that the adhesion with the exterior resin can be sufficiently obtained and the generated stress can be absorbed or relaxed.

電極基板4の絶縁部材部10はガラスエポキシ等を主剤とした絶縁材料で構成される。また、内部電極端子と外部電極端子を構成する材料としては、銅箔、または銅メッキなどが用いられる。さらに銅メッキに加えてニッケル、パラジウム、金のメッキ等も用いられる。   The insulating member portion 10 of the electrode substrate 4 is made of an insulating material mainly composed of glass epoxy or the like. Moreover, as a material which comprises an internal electrode terminal and an external electrode terminal, copper foil, copper plating, etc. are used. In addition to copper plating, nickel, palladium, gold plating or the like is also used.

以下に本発明の実施例を詳述する。   Examples of the present invention are described in detail below.

(実施例)
まず、図1及び図2を用いて説明する。陽極導出リード1を具備したタンタル焼結体からなる陽極体2に、公知の方法で誘電体層、固体電解質層、陰極部を形成したコンデンサ素子11を作製した。
(Example)
First, it demonstrates using FIG.1 and FIG.2. A capacitor element 11 in which a dielectric layer, a solid electrolyte layer, and a cathode portion were formed on an anode body 2 made of a tantalum sintered body provided with an anode lead 1 by a known method was produced.

次に、用意していた、主にガラスエポキシ樹脂を材料とした絶縁部材部10からなる電極基板4の内部電極端子が設けられた面に、内部陽極端子6a及び内部陰極端子7aを除く絶縁部材部10の表面に、弾性接着部材であるエポキシ変成シリコーン樹脂をオートチューブにより塗布し、弾性接続部9を形成した。尚、電極基板4の寸法は長さ160mm、幅60mmのものを用いた。弾性接続部9の厚みは0.2mmとした。   Next, the prepared insulating member excluding the internal anode terminal 6a and the internal cathode terminal 7a is provided on the surface provided with the internal electrode terminal of the electrode substrate 4 composed of the insulating member portion 10 mainly made of glass epoxy resin. An epoxy modified silicone resin, which is an elastic adhesive member, was applied to the surface of the portion 10 with an autotube to form an elastic connection portion 9. The electrode substrate 4 has a length of 160 mm and a width of 60 mm. The thickness of the elastic connection part 9 was 0.2 mm.

次に、陽極導出リード1と導電材3とを抵抗溶接し、導電材3とコンデンサ素子11の陰極部を、それぞれ内部陽極端子6a及び内部陰極端子7aに導電性接着剤5で接続した。続いて、ガラスフィラーを含む液状エポキシ樹脂からなる外装樹脂8でモールド成形を実施し、150℃で240秒間保持し、加熱硬化させ、外装を完了した。その後、個片に切断し、本発明のチップ型の固体電解コンデンサを完成させた。なお、用いた弾性接着部材は、塗布後の張り合わせ可能な時間を15分程度有しているので、その時間内に外装まで完了させた。サンプルは10000個作製した。   Next, the anode lead 1 and the conductive material 3 were resistance-welded, and the conductive material 3 and the cathode portion of the capacitor element 11 were connected to the internal anode terminal 6a and the internal cathode terminal 7a by the conductive adhesive 5, respectively. Subsequently, molding was performed with the exterior resin 8 made of a liquid epoxy resin containing a glass filler, held at 150 ° C. for 240 seconds, and heat cured to complete the exterior. Thereafter, it was cut into individual pieces to complete the chip-type solid electrolytic capacitor of the present invention. The elastic adhesive member used had a time for pasting after application of about 15 minutes, so that the exterior was completed within that time. 10,000 samples were produced.

(比較例)
電極基板4の絶縁部材部10の表面に、弾性接着部材を塗布しなかった以外は、実施例1と同様の方法で従来技術を用いたチップ型の固体電解コンデンサを作製した。サンプルは10000個作製した。
(Comparative example)
A chip-type solid electrolytic capacitor using a conventional technique was produced in the same manner as in Example 1 except that the elastic adhesive member was not applied to the surface of the insulating member portion 10 of the electrode substrate 4. 10,000 samples were produced.

次に、実施例及び比較例における、チップ型の固体電解コンデンサのサンプルのESRの上昇率の評価を行なった。実施例及び従来例のチップ型の固体電解コンデンサを、それぞれ実装用配線基板に接続し、実装前と実装後のESRを各々測定してESRの上昇率を算出した。実装環境となるリフロー時の加熱条件はピーク温度を270℃とし、ピーク温度での加熱時間10秒間とした。表1に実装後のESRの上昇率の結果を示す。なお、ESRの上昇率の測定数はそれぞれ100個とした。   Next, the ESR increase rate of the sample of the chip-type solid electrolytic capacitor in the examples and comparative examples was evaluated. The chip-type solid electrolytic capacitors of the example and the conventional example were respectively connected to the wiring board for mounting, and the ESR before and after mounting were measured to calculate the rate of increase in ESR. The heating conditions at the time of reflow as a mounting environment were a peak temperature of 270 ° C. and a heating time at the peak temperature of 10 seconds. Table 1 shows the increase rate of ESR after mounting. The number of measured ESR increase rates was 100.

Figure 0005721172
Figure 0005721172

表1から明らかなように、実施例は比較例より、実装後のESRの上昇率が小さい。   As is apparent from Table 1, the increase rate of ESR after mounting is smaller in the example than in the comparative example.

これは、外装樹脂8と絶縁部材部10の面の間に弾性接続部9を介在させることによって、リフロー時の加熱等で発生した応力を吸収や緩和させる役目を果たし、ESRの上昇を抑制したためと考えられる。   This is because the elastic connecting portion 9 is interposed between the surface of the exterior resin 8 and the insulating member portion 10 to absorb or relieve stress generated by heating or the like during reflow, thereby suppressing an increase in ESR. it is conceivable that.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なし得るであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, the present invention also includes various variations and modifications that could be made by those skilled in the art.

1 陽極導出リード
2 陽極体
3 導電材
4 電極基板
5 導電性接着剤
6a 内部陽極端子
6b 陽極ビア
6c 外部陽極端子
7a 内部陰極端子
7b 陰極ビア
7c 外部陰極端子
8 外装樹脂
9 弾性接続部
10 絶縁部材部
11 コンデンサ素子
DESCRIPTION OF SYMBOLS 1 Anode lead 2 Anode body 3 Conductive material 4 Electrode board 5 Conductive adhesive 6a Internal anode terminal 6b Anode via 6c External anode terminal 7a Internal cathode terminal 7b Cathode via 7c External cathode terminal 8 Exterior resin 9 Elastic connecting part 10 Insulating member Part 11 Capacitor element

Claims (5)

電極基板の一方の面に内部陽極端子及び内部陰極端子を有し、前記電極基板の他方の面に陽極ビアを介して前記内部陽極端子と導通する外部陽極端子と、陰極ビアを介して前記内部陰極端子と導通する外部陰極端子を有し、前記電極基板の一方の面に、陽極導出リードを備え、弁作用金属からなる陽極体の表面に誘電体層と固体電解質層と陰極層を順次形成し、前記陰極層を陰極部とするコンデンサ素子を搭載し、前記陽極導出リードと前記内部陽極端子並びに前記陰極部と前記内部陰極端子をそれぞれ電気的に接続し、前記コンデンサ素子を外装樹脂で外装してなるチップ型の固体電解コンデンサであって、前記電極基板の一方の面と前記外装樹脂の接合する面のすくなくとも一部に、弾性接着部材からなる弾性接続部を備え、前記弾性接着部材は前記外装樹脂よりも弾性率が小さいことを特徴とするチップ型の固体電解コンデンサ。   An external anode terminal having an internal anode terminal and an internal cathode terminal on one surface of the electrode substrate, and being electrically connected to the internal anode terminal via an anode via on the other surface of the electrode substrate, and the internal via a cathode via An external cathode terminal electrically connected to the cathode terminal, having an anode lead out on one surface of the electrode substrate, and sequentially forming a dielectric layer, a solid electrolyte layer, and a cathode layer on the surface of the anode body made of a valve metal And mounting a capacitor element having the cathode layer as a cathode part, electrically connecting the anode lead-out lead and the internal anode terminal, and the cathode part and the internal cathode terminal, and packaging the capacitor element with an exterior resin. A chip-type solid electrolytic capacitor comprising an elastic connection portion made of an elastic adhesive member on at least a part of one surface of the electrode substrate and the surface to which the exterior resin is bonded; Chip type solid electrolytic capacitor element is characterized in that smaller elastic modulus than the outer resin. 電極基板の一方の面に内部陽極端子及び内部陰極端子を有し、前記電極基板の他方の面に陽極ビアを介して前記内部陽極端子と導通する外部陽極端子と、陰極ビアを介して前記内部陰極端子と導通する外部陰極端子を有し、前記電極基板の一方の面に、両端部に陽極部を備え、弁作用金属からなる陽極体の中央部の表面に誘電体層と固体電解質層と陰極層を順次形成し、前記陰極層を陰極部とする3端子型のコンデンサ素子を搭載し、前記陽極部と前記内部陽極端子並びに前記陰極部と前記内部陰極端子をそれぞれ電気的に接続し、前記コンデンサ素子を外装樹脂で外装してなる3端子型の固体電解コンデンサであって、前記電極基板の一方の面と前記外装樹脂の接合する面のすくなくとも一部に、弾性接着部材からなる弾性接続部を備え、前記弾性接着部材は前記外装樹脂よりも弾性率が小さいことを特徴とするチップ型の固体電解コンデンサ。   An external anode terminal having an internal anode terminal and an internal cathode terminal on one surface of the electrode substrate, and being electrically connected to the internal anode terminal via an anode via on the other surface of the electrode substrate, and the internal via a cathode via An external cathode terminal electrically connected to the cathode terminal, provided with anode portions at both ends on one surface of the electrode substrate, and a dielectric layer and a solid electrolyte layer on the surface of the central portion of the anode body made of a valve metal A cathode layer is sequentially formed, and a three-terminal capacitor element having the cathode layer as a cathode portion is mounted, and the anode portion and the internal anode terminal and the cathode portion and the internal cathode terminal are electrically connected respectively. A three-terminal solid electrolytic capacitor in which the capacitor element is packaged with an exterior resin, wherein at least a part of one surface of the electrode substrate and the surface to which the exterior resin is bonded is formed by an elastic connection member made of an elastic adhesive member Part Serial elastic adhesive member chip type solid electrolytic capacitor, wherein the modulus of elasticity than the outer resin is small. 前記弾性接着部材が、変成シリコーン樹脂であることを特徴とする請求項1または2に記載のチップ型の固体電解コンデンサ。   The chip-type solid electrolytic capacitor according to claim 1, wherein the elastic adhesive member is a modified silicone resin. 陽極導出リードが導出された弁作用金属からなる陽極体の表面に、誘電体層、固体電解質層を順次形成し、前記固体電解質層の表面に陰極層からなる陰極部を有するコンデンサ素子を形成する工程と、一方の面に内部陽極端子及び内部陰極端子を有し、他方の面に陽極ビアを介して前記内部陽極端子と導通する外部陽極端子と、陰極ビアを介して前記内部陰極端子と導通する外部陰極端子を有する電極基板を用意し、前記電極基板の一方の面の外装樹脂を接合する面のすくなくとも一部に、前記外装樹脂よりも弾性率の小さい弾性接着部材を塗布する工程と、前記電極基板の一方の面に、前記コンデンサ素子を搭載し、前記陽極導出リードと前記内部陽極端子並びに前記陰極部と前記内部陰極端子をそれぞれ電気的に接続し、前記コンデンサ素子を外装樹脂で外装する工程を含むチップ型の固体電解コンデンサの製造方法。 A dielectric layer and a solid electrolyte layer are sequentially formed on the surface of an anode body made of a valve metal from which an anode lead is led out, and a capacitor element having a cathode portion made of a cathode layer is formed on the surface of the solid electrolyte layer. a step has an internal anode terminal and the internal cathode terminal on one surface, and an external anode terminal conductive with the internal anode terminal via the anode via the surface of the other side, and the internal cathode terminal via the cathode via Preparing an electrode substrate having a conductive external cathode terminal, and applying an elastic adhesive member having a smaller elastic modulus than the exterior resin to at least a portion of the surface of the electrode substrate to which the exterior resin is bonded; Mounting the capacitor element on one surface of the electrode substrate, electrically connecting the anode lead-out lead and the internal anode terminal, and the cathode portion and the internal cathode terminal, respectively, The method for producing a solid electrolytic capacitor of a chip type comprising the step of sheathing the child exterior resin. 両端部に陽極部を備え、弁作用金属からなる陽極体の中央部の表面に、誘電体層、固体電解質層を順次形成し、前記固体電解質層の表面に陰極層からなる陰極部を有する3端子型のコンデンサ素子を形成する工程と、一方の面に内部陽極端子及び内部陰極端子を有し、他方の面に陽極ビアを介して前記内部陽極端子と導通する外部陽極端子と、陰極ビアを介して前記内部陰極端子と導通する外部陰極端子を有する電極基板を用意し、前記電極基板の一方の面の外装樹脂を接合する面のすくなくとも一部に、前記外装樹脂よりも弾性率の小さい弾性接着部材を塗布する工程と、前記電極基板の一方の面に、前記3端子型のコンデンサ素子を搭載し、前記陽極と前記内部陽極端子並びに前記陰極部と前記内部陰極端子をそれぞれ電気的に接続し、前記コンデンサ素子を外装樹脂で外装する工程を含むチップ型の固体電解コンデンサの製造方法。 3 having an anode portion at both ends, a dielectric layer and a solid electrolyte layer sequentially formed on the surface of the central portion of the anode body made of a valve metal, and a cathode portion comprising a cathode layer on the surface of the solid electrolyte layer. forming a terminal type capacitor element has an internal anode terminal and the internal cathode terminal on one surface, and an external anode terminal conductive with the internal anode terminal via the anode via the face of the other hand, the cathode via An electrode substrate having an external cathode terminal electrically connected to the internal cathode terminal is prepared, and at least a part of the surface to which the exterior resin on one surface of the electrode substrate is bonded has a lower elastic modulus than the exterior resin. The step of applying an elastic adhesive member, and mounting the three-terminal capacitor element on one surface of the electrode substrate, electrically connecting the anode part and the internal anode terminal, and the cathode part and the internal cathode terminal, respectively. Connect to The method for producing a solid electrolytic capacitor of a chip type comprising the step of sheathing the capacitor element with an exterior resin.
JP2011088813A 2011-04-13 2011-04-13 Chip-type solid electrolytic capacitor and manufacturing method thereof Active JP5721172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011088813A JP5721172B2 (en) 2011-04-13 2011-04-13 Chip-type solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011088813A JP5721172B2 (en) 2011-04-13 2011-04-13 Chip-type solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012222262A JP2012222262A (en) 2012-11-12
JP5721172B2 true JP5721172B2 (en) 2015-05-20

Family

ID=47273431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011088813A Active JP5721172B2 (en) 2011-04-13 2011-04-13 Chip-type solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5721172B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050112A1 (en) 2012-09-28 2014-04-03 三洋電機株式会社 Solid electrolytic capacitor and production method therefor
JP6221071B2 (en) * 2012-09-28 2017-11-01 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor
JP6705641B2 (en) 2015-11-10 2020-06-03 ローム株式会社 Solid electrolytic capacitor
KR102680001B1 (en) * 2019-11-27 2024-07-02 삼성전기주식회사 Tantalum capacitor
WO2024197003A1 (en) * 2023-03-22 2024-09-26 KYOCERA AVX Components Corporation Low inductance electrolytic capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103607B2 (en) * 2005-11-04 2012-12-19 国立大学法人東京農工大学 Release layer removal method
JP4889037B2 (en) * 2006-11-29 2012-02-29 Necトーキン株式会社 Surface mount electrolytic capacitor and manufacturing method thereof
JP4803744B2 (en) * 2007-05-22 2011-10-26 Necトーキン株式会社 Thin solid electrolytic capacitor
JP2010212600A (en) * 2009-03-12 2010-09-24 Nec Tokin Corp Solid electrolytic capacitor and method of manufacturing the same
JP2010251643A (en) * 2009-04-20 2010-11-04 Nec Tokin Corp Manufacturing method of stacked capacitor

Also Published As

Publication number Publication date
JP2012222262A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
JP4440911B2 (en) Solid electrolytic capacitor
US8213160B2 (en) Solid electrolytic capacitor and method of manufacturing same
US8062385B2 (en) Solid electrolytic capacitor with improved volumetric efficiency method of making
EP3226270B1 (en) Solid electrolytic capacitor
JP5721172B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
JP2009099913A (en) Multi terminal type solid-state electrolytic capacitor
WO2018143354A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP3888523B2 (en) Three-terminal thin aluminum solid electrolytic capacitor
JP4214763B2 (en) Solid electrolytic capacitor
KR101232241B1 (en) Ceramic electronic component
US7619876B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP4817458B2 (en) Solid electrolytic capacitor
JP4915856B2 (en) Solid electrolytic capacitor
JP2012038873A (en) Semiconductor device
WO2014068923A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP5469960B2 (en) Bottom electrode type solid electrolytic capacitor and manufacturing method thereof
JP4952766B2 (en) Electronic component and method for manufacturing electronic component
JP2003142335A (en) Thin solid electrolytic capacitor and manufacturing method therefor
JP5009122B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
JP2003257798A (en) Resin package type electronic component and its producing method
JP5210672B2 (en) Capacitor parts
JP5201688B2 (en) Semiconductor device
JP5734075B2 (en) Solid electrolytic capacitor
JP2010278032A (en) Surface mounted capacitor
JP2006332403A (en) Lead frame, manufacturing method of solid electrolytic capacitor of lower-side electrode type employing the same, and solid electrolytic capacitor of lower-side electrode type manufactured by the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150319

R150 Certificate of patent or registration of utility model

Ref document number: 5721172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250