JP5720996B2 - Coated member with excellent film adhesion and method for producing the same - Google Patents
Coated member with excellent film adhesion and method for producing the same Download PDFInfo
- Publication number
- JP5720996B2 JP5720996B2 JP2011069894A JP2011069894A JP5720996B2 JP 5720996 B2 JP5720996 B2 JP 5720996B2 JP 2011069894 A JP2011069894 A JP 2011069894A JP 2011069894 A JP2011069894 A JP 2011069894A JP 5720996 B2 JP5720996 B2 JP 5720996B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- film
- titanium
- coating
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 104
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 102
- 238000000576 coating method Methods 0.000 claims description 94
- 239000011248 coating agent Substances 0.000 claims description 90
- 239000010936 titanium Substances 0.000 claims description 57
- 229910052719 titanium Inorganic materials 0.000 claims description 57
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 56
- 239000000463 material Substances 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 13
- 230000007423 decrease Effects 0.000 claims description 10
- 230000003247 decreasing effect Effects 0.000 claims description 9
- 238000005240 physical vapour deposition Methods 0.000 claims description 6
- 238000004993 emission spectroscopy Methods 0.000 claims description 3
- 238000001336 glow discharge atomic emission spectroscopy Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000007373 indentation Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 2
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- -1 titanium metals Chemical class 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は、自動車部品や金型等に適用される皮膜密着性に優れた硬質皮膜を有する被覆部材およびその製造方法に関するものである。 The present invention relates to a covering member having a hard film excellent in film adhesion applied to automobile parts, molds and the like, and a method for producing the same.
従来、各種金属からなる自動車部品や金型などへの表面処理は、硬質皮膜としてクロム系窒化物膜やチタン系窒化物膜などが用いられてきた。近年、これらの皮膜に換えて摺動特性と耐摩耗特性に優れているダイヤモンドライクカーボン皮膜の適用が提案されるようになってきた。しかし、ダイヤモンドライクカーボン皮膜は、クロム系窒化物膜やチタン系窒化物膜よりも皮膜密着性が乏しいため、そのダイヤモンドライクカーボン自体が持つ優れた摺動特性が十分に発揮されていないという問題があった。 Conventionally, a chromium nitride film, a titanium nitride film, or the like has been used as a hard coating for surface treatment of automobile parts or molds made of various metals. In recent years, it has been proposed to apply a diamond-like carbon film having excellent sliding characteristics and wear resistance characteristics in place of these films. However, since the diamond-like carbon film has poorer film adhesion than the chromium-based nitride film and the titanium-based nitride film, the excellent sliding characteristics of the diamond-like carbon itself are not fully exhibited. there were.
この問題に対して、特許文献1には、ダイヤモンドライクカーボン皮膜の密着性を向上させる手法として、母材表面にチタンを含む層と、ダイヤモンドライクカーボンの最表層とを有する皮膜構造でなり、母材表面のチタン層と最表層との間に、チタンおよび炭化チタンの少なくとも一種と、ダイヤモンドライクカーボンとの比率を連続的に変化させた混合傾斜皮膜を形成した構造が開示されている。 To solve this problem, Patent Document 1 discloses, as a technique for improving the adhesion of a diamond-like carbon film, a film structure having a layer containing titanium on the surface of a base material and an outermost layer of diamond-like carbon. There is disclosed a structure in which a mixed gradient film is formed in which the ratio of at least one of titanium and titanium carbide and diamond-like carbon is continuously changed between the titanium layer on the material surface and the outermost layer.
上記する、混合傾斜皮膜の上にダイヤモンドライクカーボン皮膜を形成する硬質皮膜構造は、ダイヤモンドライクカーボン皮膜を単層で形成するよりも密着性が改善され、優れた摺動特性と耐摩耗特性を兼ね備える。
しかし、本発明者の検討によると、クロム系窒化物膜やチタン系窒化物膜に比べてはその密着性は十分ではない場合もあり、密着性の改善に余地があった。そこで本発明は、上記の課題に鑑み、ダイヤモンドライクカーボン皮膜の密着性を大きく改善した被覆部材およびその製造方法を提供することを目的とする。
The hard film structure that forms a diamond-like carbon film on a mixed gradient film as described above has improved adhesion compared with the case where a diamond-like carbon film is formed as a single layer, and has excellent sliding characteristics and wear resistance characteristics. .
However, according to the study of the present inventor, there is a case where the adhesion is not sufficient as compared with the chromium nitride film or the titanium nitride film, and there is room for improvement in the adhesion. Then, in view of said subject, this invention aims at providing the coating | coated member which improved the adhesiveness of the diamond-like carbon membrane | film | coat largely, and its manufacturing method.
本発明は、ダイヤモンドライクカーボン皮膜の密着性を改善するために詳細な検討を重ねた。その結果、ダイヤモンドライクカーボン皮膜と母材との間に、チタンと炭素の混合傾斜皮膜を形成するとともに、その混合傾斜皮膜中の被覆条件を見直すことで、チタンと炭素の存在形態が適正化され、密着性が飛躍的に改善できることを突きとめた。 The present invention has been studied in detail to improve the adhesion of the diamond-like carbon film. As a result, a titanium and carbon mixed gradient coating is formed between the diamond-like carbon coating and the base material, and the existence of titanium and carbon is optimized by reviewing the coating conditions in the mixed gradient coating. I found out that the adhesion can be improved dramatically.
すなわち本発明は、母材の表面に物理蒸着法によって硬質皮膜が被覆された被覆部材であって、前記硬質皮膜は、ダイヤモンドライクカーボン皮膜と、該ダイヤモンドライクカーボン皮膜と母材との間にあって、母材側から前記ダイヤモンドライクカーボン皮膜に向かってチタンの含有量が減少していくチタンと炭素の混合傾斜皮膜からなり、該混合傾斜皮膜中のチタン量と炭素量は、膜厚方向のグロー放電発光分光分析によるそれぞれの最大ピーク強度をITi、Icとした時に、1.2<Ic/(ITi×10)<2.0の関係を満たす皮膜密着性に優れた摺動部材である。 That is, the present invention is a coating member in which the surface of the base material is coated with a hard film by physical vapor deposition, the hard film is between the diamond-like carbon film, the diamond-like carbon film and the base material, It consists of a titanium and carbon mixed gradient coating in which the titanium content decreases from the base material side toward the diamond-like carbon coating, and the titanium content and carbon content in the mixed gradient coating are determined by glow discharge in the film thickness direction. A sliding member with excellent film adhesion satisfying the relationship of 1.2 <I c / (I Ti × 10) <2.0, where I Ti and I c are the maximum peak intensities by emission spectroscopic analysis. is there.
更には、1.3<Ic/(ITi×10)<1.5の関係を満たすことが好ましい。また、ダイヤモンドライクカーボン皮膜の硬度がHV1500〜4500であることが好ましい。 Furthermore, it is preferable to satisfy the relationship of 1.3 <I c / (I Ti × 10) <1.5. Moreover, it is preferable that the hardness of a diamond-like carbon film is HV1500-4500.
上述した本発明の被覆部材の製造方法には、物理蒸着法によって、チタンターゲットと炭素ターゲットとを用い、母材の温度を室温以上250℃以下に維持して母材側からチタンの含有量が減少していくチタンと炭素の混合傾斜皮膜を形成し、該混合傾斜皮膜の形成工程の後段では、チタンターゲットへの投入電力は減少させていく一方で、炭素ターゲットへの投入電力は増加させないか、もしくは、増加率を0.15kW/min以下とし、次いで炭素ターゲットによりダイヤモンドライクカーボン皮膜を形成することが好ましい。更には、母材の温度を室温以上230℃以下に維持することが好ましい。 In the manufacturing method of the covering member of the present invention described above, a titanium target and a carbon target are used by a physical vapor deposition method, and the temperature of the base material is maintained at room temperature to 250 ° C. Does the mixed gradient coating of titanium and carbon decrease, and in the latter stage of the mixed gradient coating formation process, the input power to the titanium target is decreased while the input power to the carbon target is not increased? Alternatively, it is preferable that the increase rate is 0.15 kW / min or less, and then a diamond-like carbon film is formed with a carbon target. Furthermore, it is preferable to maintain the temperature of the base material at room temperature or higher and 230 ° C. or lower.
本発明によれば、従来よりもダイヤモンドライクカーボン皮膜の密着性に優れた被覆部材を提供できるため、ダイヤモンドライクカーボン皮膜の本来有する優れた摺動特性や耐摩耗特性を有効に利用することができ、被覆部材として利用される自動車部品や金型の特性改善に有効な技術となる。 According to the present invention, it is possible to provide a coating member having better adhesion of a diamond-like carbon film than in the past, and therefore, it is possible to effectively use the excellent sliding characteristics and wear resistance inherent in the diamond-like carbon film. This is an effective technique for improving the characteristics of automobile parts and molds used as covering members.
本発明の最大の特徴は、母材上に被覆されたダイヤモンドライクカーボン(以下、DLCと記述する)皮膜と、母材との間には、該DLC皮膜側に向かってチタンの含有量が減少していくチタンと炭素の混合傾斜皮膜を被覆した上では、その混合傾斜皮膜の被覆条件を見直すことで、その混合傾斜皮膜中のチタンと炭素の濃度比率および炭素の結合状態を改善し、皮膜密着性を飛躍的に向上させた点にある。 The greatest feature of the present invention is that the content of titanium decreases between the diamond-like carbon (hereinafter referred to as DLC) film coated on the base material and the base material toward the DLC film side. After coating the mixed gradient coating of titanium and carbon, the coating conditions of the mixed gradient coating are reviewed to improve the titanium and carbon concentration ratio and the carbon bonding state in the mixed gradient coating. It is in the point which improved adhesiveness drastically.
DLC皮膜は、炭素または炭素と水素から成る皮膜組成であるため、混合傾斜皮膜を適用しない場合、母材との親和性が低く、密着性が乏しくなる。そのため、母材側からDLC皮膜に向かって、チタン成分含有量を減少していくチタンと炭素の混合傾斜皮膜を設けることで密着性の改善が図られる。そして、この混合傾斜皮膜とその上に被覆される金属元素等を含有しない単層からなるDLC皮膜との密着性を向上するためには、DLC皮膜と混合傾斜皮膜中の炭素が同じDLC構造を取るのが好ましい。しかし、実質炭素からなるDLC構造にその炭素以外の、例えばDLCを形成しない余剰な炭素が含まれると、そのDLC結合状態は不安定となる。
そこで、DLC皮膜と混合傾斜皮膜との密着性を改善するには、母材側から前記ダイヤモンドライクカーボン皮膜に向かってチタンを斬減させていることに加えて、混合傾斜皮膜内においてDLCを形成しない余剰な炭素こそを低減する必要がある。
なお、上記の混合傾斜皮膜において母材との密着性を確保する上では、母材側のチタン濃度が十分に高いことが好ましい。そのため、母材直上には母材密着性に優れた炭素を含まないチタンのみの成分組成からなる皮膜を被覆することがより好ましいものとなる。
Since the DLC film has a film composition composed of carbon or carbon and hydrogen, when the mixed gradient film is not applied, the affinity with the base material is low and the adhesion is poor. Therefore, adhesion is improved by providing a mixed gradient coating of titanium and carbon that decreases the titanium component content from the base material side toward the DLC coating. In order to improve the adhesion between the mixed gradient coating and the DLC coating consisting of a single layer not containing a metal element or the like coated thereon, the DLC structure and the carbon in the mixed gradient coating have the same DLC structure. It is preferable to take. However, if the DLC structure composed of substantial carbon includes, for example, surplus carbon that does not form DLC other than the carbon, the DLC bond state becomes unstable.
Therefore, in order to improve the adhesion between the DLC film and the mixed gradient film, in addition to reducing the titanium from the base material side toward the diamond-like carbon film, DLC is formed in the mixed gradient film. It is necessary to reduce the excess carbon that does not.
In addition, it is preferable that the titanium concentration on the base material side is sufficiently high in order to ensure adhesion with the base material in the mixed gradient coating. Therefore, it is more preferable to coat a film made of only a titanium-free component composition that does not contain carbon, which is excellent in adhesion to the base material, just above the base material.
本発明者は検討により、密着性に優れた具体的な皮膜形態が、膜厚方向のグロー放電発光分光分析(以下、GD−OESと記述する)によるチタンと炭素のピーク強度で特定できることを突きとめた。つまり、母材からDLC皮膜に向かってチタン含有量を減少させた混合傾斜皮膜において、その前段でのチタン濃度と、その後段での炭素濃度およびDLC結合状態とがGD−OESの結果に反映されるため、この値を制御することで皮膜密着性に優れた硬質皮膜を得ることができたのである。以下、詳しく説明する。 The present inventor has found that a specific film form excellent in adhesion can be identified by the peak intensity of titanium and carbon by glow discharge emission spectroscopic analysis in the film thickness direction (hereinafter referred to as GD-OES). I stopped. That is, in the mixed gradient coating in which the titanium content is decreased from the base material toward the DLC coating, the titanium concentration at the previous stage, the carbon concentration at the subsequent stage, and the DLC bonding state are reflected in the GD-OES results. Therefore, by controlling this value, a hard film excellent in film adhesion could be obtained. This will be described in detail below.
GD−OESは、グロー放電領域のカソードスパッタリングを用いて、硬質皮膜を表面から順次スパッタリングし、スパッタされた皮膜構成原子のArプラズマ中における発光を分光測定する手法であり、膜厚に対する該含有元素の同定が可能である。また、皮膜表面をスパッタリングして行うため、皮膜組成の結合状態により発光強度が左右される。そして、混合傾斜皮膜中の炭素のうち、その結合構造がDLCではない炭化物やフリーカーボンであるものは結合状態が不安定であるため、スパッタリングされやすく、炭素の発光強度が大きくなる。
よって、GD−OESによる混合傾斜皮膜中の発光強度の内、その前段に現れるチタンの最大発光強度ピークと、その後段に現れる炭素の最大発光強度ピークを調節することで、混合傾斜皮膜のチタンと炭素の濃度分布および結合状態を制御することができる。
しかし、最大発光強度ピークは、形状や測定条件等の影響を受け易いため、同一の試料であってもその値が変動する場合があり、各々の最大発光強度ピークの値で皮膜特性を定量的に管理することは困難である。しかし、個々のピーク強度の値は変動するにしても、相対強度は実質変化しない。
そこで、本発明者は、GD−OESにおいて、測定条件等の影響は受けない相対強度、つまり、混合傾斜皮膜での炭素の最大発光強度ピークと、チタンの最大発光強度ピークの比で管理することで、測定条件等の影響を受けずに皮膜特性を定量的に把握できることを見出した。そして、その値を所定の範囲に制御することにより、混合傾斜皮膜と母材およびDLC皮膜との密着性を改善できることを見出し、密着性の優れた表面被覆部品を発明するに至った。
GD-OES is a technique in which a hard film is sequentially sputtered from the surface using cathode sputtering in a glow discharge region, and the emission of the sputtered film constituent atoms in Ar plasma is spectroscopically measured. Can be identified. In addition, since the surface of the film is sputtered, the light emission intensity depends on the bonding state of the film composition. Of the carbon in the mixed gradient coating, carbides or free carbons whose bonding structure is not DLC are unstable in bonding state, so that they are easily sputtered, and the emission intensity of carbon increases.
Therefore, by adjusting the maximum emission intensity peak of titanium appearing in the preceding stage and the maximum emission intensity peak of carbon appearing in the subsequent stage of the emission intensity in the mixed gradient film by GD-OES, The concentration distribution and bonding state of carbon can be controlled.
However, since the maximum emission intensity peak is easily affected by the shape, measurement conditions, etc., the value may vary even for the same sample, and the film characteristics are quantitatively determined by the value of each maximum emission intensity peak. It is difficult to manage. However, even if individual peak intensity values vary, the relative intensity does not change substantially.
Therefore, the present inventor manages in GD-OES the relative intensity that is not affected by the measurement conditions, that is, the ratio of the maximum emission intensity peak of carbon and the maximum emission intensity peak of titanium in the mixed gradient coating. Thus, it was found that the film properties can be quantitatively grasped without being affected by the measurement conditions. And it discovered that the adhesiveness of a mixed gradient film, a base material, and a DLC film could be improved by controlling the value to a predetermined range, and came to invent the surface coating component excellent in adhesiveness.
具体的には、本発明においては、混合傾斜皮膜中のチタン量と炭素量は、膜厚方向のグロー放電発光分光分析によるそれぞれの最大ピーク強度をITi、Icとした時に、1.2<Ic/(ITi×10)<2.0の関係を満たすようにする。より好ましくは、1.3<Ic/(ITi×10)<1.5とする。
ここで、チタンは発光強度が低い元素種である。そのために便宜上チタンの最大強度を10倍した値を用いた。
Ic/(ITi×10)の値が2.0以上の場合には、DLCを構成していない炭素含有量が多すぎるため、混合傾斜皮膜中の後段で安定なDLC構造が少なく、すなわち、DLC皮膜との密着性が低下する。あるいは、前段のチタン含有量が少なくなるか、前段に余剰な炭素が多くなるかして母材との密着性が低下する。
Ic/(ITi×10)の値が1.2以下の場合には、混合傾斜皮膜の前段でチタン量を富化したとしても(炭素を含まないチタン領域を形成したとしても)、皮膜中のDLCを構成する炭素量自体が不足するため、密着性が低くなる。
Specifically, in the present invention, the amount of titanium and the amount of carbon in the mixed gradient coating are 1.2 when the respective maximum peak intensities by glow discharge emission spectrometry in the film thickness direction are I Ti and I c. The relationship of <I c / (I Ti × 10) <2.0 is satisfied. More preferably, 1.3 <I c / (I Ti × 10) <1.5.
Here, titanium is an element species with low emission intensity. Therefore, for convenience, a value obtained by multiplying the maximum strength of titanium by 10 is used.
When the value of I c / (I Ti × 10) is 2.0 or more, since the carbon content that does not constitute DLC is too much, there is little stable DLC structure in the later stage in the mixed gradient coating, Adhesiveness with a DLC film falls. Or, the titanium content in the previous stage decreases, or excess carbon increases in the previous stage, so that the adhesiveness with the base material decreases.
When the value of I c / (I Ti × 10) is 1.2 or less, even if the amount of titanium is enriched before the mixed gradient coating (even if a titanium region not containing carbon is formed), the coating Since the carbon amount itself constituting the DLC is insufficient, the adhesion is lowered.
本発明のチタンと炭素の最適な混合傾斜皮膜を形成することにより、DLC皮膜の密着性は飛躍的に向上し、その最表層に皮膜硬さHV4000にも達するDLC皮膜を被覆した場合にも、十分な密着性が確保できる。
摺動部材として本発明の被覆部材を適用した場合、高面圧の条件にて摺動する環境である場合には、コーティング被覆する仕事面に摩耗が進行し易い。よって、DLC皮膜が有する優れた摺動特性と、高面圧の使用環境にて耐摩耗性を向上させるために、摺動部材に被覆するDLC皮膜の硬度がHV1500〜4500であることが好ましい。より好ましくはHV2000〜4000である。
By forming an optimal mixed gradient film of titanium and carbon of the present invention, the adhesion of the DLC film is dramatically improved, and even when the DLC film reaching the film hardness HV4000 is coated on the outermost layer, Sufficient adhesion can be secured.
When the covering member of the present invention is applied as the sliding member, wear tends to proceed on the work surface to be coated and coated in an environment where sliding is performed under high surface pressure conditions. Therefore, it is preferable that the hardness of the DLC film coated on the sliding member is HV 1500 to 4500 in order to improve the excellent sliding characteristics of the DLC film and the wear resistance in the usage environment of high surface pressure. More preferably, it is HV2000-4000.
本発明の硬質皮膜はスパッタリング法やアークイオンプレーティング法による物理蒸着法(PVD)により被覆できる。
そして、そのうち、混合傾斜皮膜の被覆工程においては、チタンターゲットと炭素ターゲットとを用い、母材側からチタンの含有量が減少していくチタンと炭素の混合傾斜皮膜を形成する。この時、母材の温度を250℃以下に保持することが必要である。なお、母材は室温未満に冷却する必要はない。母材の温度が高いと、他の条件を変えても、本発明で規定するピーク強度比は得られず、密着性は改善されない。この原因は母材の温度を250℃以下に保持するのは、それよりも高温だとDLC構造が崩れ密着性が低下するためと考えられる。より好ましくは230℃以下に保持する。母材の温度は、ターゲットへの投入電力等で調整することができる。一定の成膜レートを確保するために、210℃以上で成膜することが好ましい。
The hard coating of the present invention can be coated by physical vapor deposition (PVD) by sputtering or arc ion plating.
Of these, in the coating step of the mixed gradient coating, a titanium and carbon mixed gradient coating in which the titanium content decreases from the base material side is formed using a titanium target and a carbon target. At this time, it is necessary to keep the temperature of the base material at 250 ° C. or lower. Note that the base material need not be cooled to below room temperature. If the temperature of the base material is high, the peak intensity ratio defined in the present invention cannot be obtained even if other conditions are changed, and the adhesion is not improved. This is presumably because the temperature of the base material is kept at 250 ° C. or lower because the DLC structure collapses and the adhesion decreases at a temperature higher than that. More preferably, it is kept at 230 ° C. or lower. The temperature of the base material can be adjusted by the input power to the target. In order to ensure a constant film formation rate, it is preferable to form a film at 210 ° C. or higher.
更に、本発明では、母材の温度を250℃以下に保持した上では、混合傾斜皮膜の被覆工程の後段における炭素ターゲットへの電力の投入方法が極めて重要となる。
つまり、混合傾斜皮膜の後段では、炭素ターゲットへの投入電力を増加させずに一定に保持する。チタンターゲットへの投入電力を減少させていく一方で炭素ターゲットへの投入電力を増加させないのは、余剰な炭素が含有されることを抑制して、後段での混合傾斜皮膜とDLC皮膜の炭素結合状態を安定にし、皮膜の密着性を改善するためである。
Furthermore, in the present invention, a method for supplying electric power to the carbon target in the subsequent stage of the mixed gradient coating coating step is extremely important while maintaining the temperature of the base material at 250 ° C. or lower.
That is, in the subsequent stage of the mixed gradient coating, the input power to the carbon target is kept constant without increasing. The reason why the input power to the titanium target is reduced while the input power to the carbon target is not increased is to suppress the inclusion of excess carbon, and the carbon bonding of the mixed gradient coating and the DLC coating in the subsequent stage This is to stabilize the state and improve the adhesion of the film.
あるいは、混合傾斜皮膜の後段で炭素ターゲットへの投入電力を上げる場合でも、余剰な炭素を含有させないために、炭素ターゲットへの投入電力を急激に上昇させないことが必要である。後段での炭素ターゲットへの電力の増加量が急激になると、混合傾斜皮膜の後段で余剰な炭素が含有され過ぎて、DLC皮膜との密着性が低下する。そのため、混合傾斜皮膜の形成の後段では、チタンターゲットへの投入電力は減少させていく一方で、炭素ターゲットへの投入電力の増加量を0.15kW/min以下とする。 Alternatively, even when the input power to the carbon target is increased after the mixed gradient coating, it is necessary not to increase the input power to the carbon target rapidly in order to prevent excessive carbon from being contained. When the amount of increase in power to the carbon target in the subsequent stage becomes abrupt, excess carbon is excessively contained in the subsequent stage of the mixed gradient coating, and the adhesion with the DLC coating decreases. Therefore, in the latter stage of the formation of the mixed gradient coating, the input power to the titanium target is decreased, while the increase amount of the input power to the carbon target is set to 0.15 kW / min or less.
また、混合傾斜皮膜の前段でも、余剰な炭素が含有されて母材との密着性が低下しないように、炭素ターゲットへの投入電力を急激に上昇させないことが好ましい。そのため、チタンターゲットへの投入電力を減少させていく一方で、炭素ターゲットへの投入電力の増加量を0.25kW/min以下とすることが好ましい。 In addition, it is preferable not to increase the input power to the carbon target abruptly even before the mixed gradient coating so that excessive carbon is contained and the adhesion to the base material is not lowered. For this reason, it is preferable to reduce the input power to the titanium target while decreasing the input power to the carbon target to 0.25 kW / min or less.
本発明においては、炭素ターゲットによりダイヤモンドライクカーボン皮膜を形成することができる。
また、混合傾斜皮膜の形成工程の前段においては、その開始時において炭素ターゲットを作動させずにチタン金属のみからなる領域を被覆することが好ましい。
本発明においては、混合傾斜皮膜の形成工程の前段とは、炭素ターゲットへの電力投入開始時から混合傾斜皮膜の被覆完了までに要する総時間の半分より前の被覆工程を示す。混合傾斜皮膜の形成工程の後段とは、その半分よりも後の被覆工程を示す。
In the present invention, a diamond-like carbon film can be formed with a carbon target.
Moreover, it is preferable to coat | cover the area | region which consists only of titanium metals in the front | former stage of the formation process of a mixed gradient film, without operating a carbon target at the time of the start.
In the present invention, the pre-stage of the formation process of the mixed gradient coating refers to a coating step prior to half of the total time required from the start of power application to the carbon target until the completion of the coating of the mixed gradient coating. The latter part of the step of forming the mixed gradient coating means a coating step after half of the step.
本発明に供する母材は、その材質について特段に定めるものではないが、例えば冷間ダイス鋼、熱間ダイス鋼、高速度鋼および超硬合金等が使用できる。特には工具鋼が好ましい。これについては、JIS等による規格金属種(鋼種)を含め、従来摺動部品への使用が可能な鋼種として提案されてきた改良鋼種も適用できる。 The base material provided for the present invention is not particularly defined for the material, but for example, cold die steel, hot die steel, high speed steel and cemented carbide can be used. In particular, tool steel is preferred. In this regard, improved steel types that have been proposed as steel types that can be used for conventional sliding parts, including standard metal types (steel types) according to JIS and the like, can also be applied.
[試料作製]
表面処理を行う母材として、硬さ64HRCに調整したJIS高速度工具鋼SKH51の円盤状試験片(直径20mm×厚み5mm)を準備した。これらの試験片平面を鏡面機械研磨した後、アルカリ超音波洗浄を行った。上記のように作製した母材を、チャンバ容積が1.4m3(処理品の挿入空間は0.3m3)のスパッタリング装置内に設置して、温度300℃、圧力1×10−3Paの真空中で加熱脱ガスを十分行った後、300℃の温度において、母材へ印加するBias電圧を−300Vにして、2.0Paの圧力でアルゴンガスプラズマによるボンバード処理を10分間行った。
[Sample preparation]
A disk-shaped test piece (diameter 20 mm × thickness 5 mm) of JIS high-speed tool steel SKH51 adjusted to a hardness of 64 HRC was prepared as a base material for surface treatment. These test piece planes were mirror-polished and then subjected to alkaline ultrasonic cleaning. The base material produced as described above is placed in a sputtering apparatus having a chamber volume of 1.4 m 3 (the insertion space for the processed product is 0.3 m 3 ), and the temperature is 300 ° C. and the pressure is 1 × 10 −3 Pa. After sufficient heat degassing in a vacuum, at a temperature of 300 ° C., a Bias voltage applied to the base material was set to −300 V, and a bombardment treatment with argon gas plasma was performed at a pressure of 2.0 Pa for 10 minutes.
そして、母材を同チャンバ内に維持した状態のままで、チタンターゲットと炭素ターゲットを用いた非平衡マグネトロンスパッタリング法により、試料No.1〜12の硬質皮膜のコーティングを行った。
混合傾斜皮膜の被覆工程では、最初にチタンターゲットのみに2分間の電力印加をして、チタン金属のみでなる領域を形成した。なお、その際にはチタンターゲットへ投入する電力は試料No.8では10kWとした以外では、5kWとした。そしてチタンターゲットへの投入電力は漸減させる一方で、炭素ターゲットを稼動させ、その投入電力を漸増させて、チタンと炭素の混合傾斜皮膜を被覆した。
なお、チタンターゲットへの投入電力は、炭素ターゲットに電力投入を開始すると同時に漸減させていき、混合傾斜皮膜の被覆終了時に投入電力が0になるようにした。
Then, while maintaining the base material in the same chamber, the sample No. 1 was obtained by non-equilibrium magnetron sputtering using a titanium target and a carbon target. 1-12 hard coatings were applied.
In the coating process of the mixed gradient coating, first, electric power was applied for 2 minutes only to the titanium target to form a region made of only titanium metal. In this case, the power supplied to the titanium target is the sample No. In the case of 8 except for 10 kW, it was 5 kW. While the input power to the titanium target was gradually decreased, the carbon target was operated and the input power was gradually increased to cover the mixed gradient coating of titanium and carbon.
The power input to the titanium target was gradually decreased at the same time as the power input to the carbon target was started, so that the power input became zero when the coating of the mixed gradient coating was completed.
続いて、炭素ターゲットへの投入電力について説明する。図1には混合傾斜皮膜の被覆工程における、炭素ターゲットへの投入電力チャートを示す。
試料No.1、4、5、10、11は、混合傾斜皮膜の被覆開始から45分間で、炭素ターゲットへの投入電力を3kWから5kWに増加させ、その後、炭素の投入電力を5kWと一定に保持して45分間被覆した。
試料No.3は、混合傾斜皮膜の被覆開始から15分間で、炭素ターゲットへの投入電力を3kWから5kWに増加させ、その後、炭素の投入電力を5kWと一定に保持して15分間被覆した。
試料No.6は、混合傾斜皮膜の被覆開始から30分間で、炭素ターゲットへの投入電力を3kWから5kWに増加させ、その後、炭素の投入電力を5kWと一定に保持して30分間被覆した。
試料No.9は、混合傾斜皮膜の被覆開始から45分間で、炭素ターゲットへの投入電力を3kWから15kWに増加させ、その後、炭素の投入電力を15kWと一定に保持して45分間被覆した。
試料No.2、7、8、12は、その後段においても炭素ターゲットへの投入電力を増加させて被覆した。
また、表1にはその一連の混合傾斜皮膜被覆時の母材に印加したBias電圧と母材の温度を示す。
Next, input power to the carbon target will be described. FIG. 1 shows an input power chart to the carbon target in the coating step of the mixed gradient coating.
Sample No. 1, 4, 5, 10, and 11 increase the input power to the carbon target from 3 kW to 5 kW in 45 minutes from the start of coating of the mixed gradient coating, and then keep the input power of carbon constant at 5 kW. Covered for 45 minutes.
Sample No. In No. 3, the input power to the carbon target was increased from 3 kW to 5 kW in 15 minutes from the start of the coating of the mixed gradient coating, and then the carbon input power was kept constant at 5 kW for 15 minutes.
Sample No. In No. 6, the input power to the carbon target was increased from 3 kW to 5 kW in 30 minutes from the start of coating of the mixed gradient coating, and then the carbon input power was kept constant at 5 kW and coating was performed for 30 minutes.
Sample No. No. 9 was 45 minutes after the start of the coating of the mixed gradient coating, and the input power to the carbon target was increased from 3 kW to 15 kW, and then the carbon input power was kept constant at 15 kW for 45 minutes.
Sample No. 2, 7, 8, and 12 were coated by increasing the input power to the carbon target even in the subsequent stage.
Table 1 shows the Bias voltage applied to the base material at the time of the series of mixed gradient coating coatings and the temperature of the base material.
そして、混合傾斜皮膜の被覆後は、炭素ターゲットのみ稼動させ、各試料の最表層に皮膜硬さ約HV3000を有するDLC皮膜を被覆し、総皮膜厚さが2.0μmになるように調節した。 Then, after the coating of the mixed gradient coating, only the carbon target was operated, the DLC coating having a coating hardness of about HV3000 was coated on the outermost layer of each sample, and the total coating thickness was adjusted to 2.0 μm.
(1)GD−OES
試料No.1〜12の皮膜表面から母材にかけてGD−OESによる構造分析を行った。分析には、スパッタリング用ガスとしてArを用いて、圧力600Pa、出力35W、モジュール6V、フェーズ4V、アノード径4mmにて行った。そして、その分析結果から、チタン量が検出される領域で定義される混合傾斜皮膜において、それぞれの最大ピーク強度をITi、Icとし、Ic/(ITi×10)の比率を算出した。試料No.1、2、7のGD−OES分析結果を図2〜4に示す。
(1) GD-OES
Sample No. The structural analysis by GD-OES was performed from the surface of 1-12 to the base material. The analysis was performed using Ar as a sputtering gas at a pressure of 600 Pa, an output of 35 W, a module of 6 V, a phase of 4 V, and an anode diameter of 4 mm. Then, from the analysis results, the ratio of I c / (I Ti × 10) was calculated with the maximum peak intensities being I Ti and I c in the mixed gradient coating defined in the region where the amount of titanium was detected. . Sample No. The GD-OES analysis results of 1, 2, and 7 are shown in FIGS.
(2)スクラッチ皮膜密着性評価
試料No.1〜12の皮膜表面(DLC皮膜)に対し、スクラッチ試験機(CSM製RST)でCスケールのダイヤモンド圧子を用いて、測定荷重99.25N/min、10mm/minの条件で120Nまでの試験を行った。そして、スクラッチ痕から発生するクラックを確認し、クラック発生初期の臨界荷重値を評価した。図5、6にその測定加重が40N及び60Nの時の試料No.1、7のスクラッチ痕形成後の顕微鏡写真を示す。
(2) Scratch film adhesion evaluation Sample No. Using a C-scale diamond indenter with a scratch tester (CSM RST), the test surface of 1 to 12 (DLC film) can be tested up to 120N under the conditions of measuring load 99.25N / min, 10mm / min. went. And the crack which generate | occur | produces from a scratch mark was confirmed, and the critical load value of the crack generation initial stage was evaluated. 5 and 6 show sample Nos. When the measurement weights are 40N and 60N. The photomicrograph after 1 and 7 formation of scratch marks is shown.
(3)皮膜密着性の評価
試料No.1〜12の皮膜表面(DLC皮膜)に対し、ロックウェル硬さ試験機(ミツトヨ製AR−10)でCスケールのダイヤモンド圧子を用いて圧痕を付けた。そして、その圧痕部位を光学顕微鏡にて観察することで皮膜の密着性を評価した。圧痕の周辺に発生する剥離状況は図9に示す基準で評価し、皮膜密着性の優劣(優:A←→劣:F)を調査した。図7、8に試料No.1、10のロックウェル圧痕周辺の顕微鏡写真を示す。
(3) Evaluation of film adhesion Sample No. Indentations were made on 1 to 12 coating surfaces (DLC coating) using a C-scale diamond indenter with a Rockwell hardness tester (AR-10 manufactured by Mitutoyo Corporation). And the adhesiveness of the film | membrane was evaluated by observing the indentation part with an optical microscope. The peeling state generated around the indentation was evaluated according to the criteria shown in FIG. In FIGS. Micrographs around 1 and 10 Rockwell indentations are shown.
表2にGD−OESの分析結果とスクラッチ皮膜密着性およびロックウェル圧痕による密着性の評価結果を示す。 Table 2 shows the results of GD-OES analysis, scratch film adhesion, and adhesion evaluation results based on Rockwell indentations.
本発明の部材である試料No.1〜6は、ロックウェル圧痕試験での剥離はほとんど無く、皮膜への負荷が大きいスクラッチ試験では、40Nよりも高い良好な密着性を示し、混合傾斜皮膜層のIc/(ITi×10)の値が1.36〜1.91であった。
中でも、母材の温度を230℃以下とし、混合傾斜皮膜の形成工程の後段において、チタンターゲットへの投入電力は減少させていく一方で、炭素ターゲットへの投入電力は増加させずに一定に保持して作製した試料No.1、3、6は、ロックウェル圧痕による剥離は全く無く、かつスクラッチ密着性も60N以上と、密着性が極めて優れた。
従来例である試料No.7、12は、その混合傾斜皮膜の形成工程の前段においては、母材との密着性に優れるチタン領域を形成しているにもかかわらず、その直後には炭素ターゲットの投入電力を急激に増加しているため(図4においてチタン最大ピークが低いのはこのためである)、負荷が大きいスクラッチ密着性の臨界荷重値は本発明の部材より低く、Ic/(ITi×10)の値が本発明よりも高くなった。
比較例である試料No.8〜11は、本発明の部材より密着性が低下しており、1.2<Ic/(ITi×10)<2.0の範囲を外れていた。
Sample No. which is a member of the present invention. Nos. 1 to 6 show almost no peeling in the Rockwell indentation test, and show good adhesion higher than 40 N in the scratch test with a large load on the film, and I c / (I Ti × 10 of the mixed gradient film layer ) Was 1.36 to 1.91.
Above all, the temperature of the base material is set to 230 ° C. or less, and the input power to the titanium target is decreased in the later stage of the formation process of the mixed gradient coating, while the input power to the carbon target is kept constant without increasing. Sample No. Nos. 1, 3 and 6 had no peeling due to Rockwell indentation, and scratch adhesion was 60 N or more, and the adhesion was extremely excellent.
Sample No. which is a conventional example. 7 and 12, in the previous stage of the process of forming the mixed gradient coating, a titanium region having excellent adhesion to the base material is formed, but immediately after that, the input power of the carbon target is rapidly increased. (This is the reason why the maximum titanium peak is low in FIG. 4). Therefore, the critical load value of the scratch adhesion with a large load is lower than that of the member of the present invention, and the value of I c / (I Ti × 10) Became higher than the present invention.
Sample No. which is a comparative example. Nos. 8 to 11 had lower adhesion than the members of the present invention, and were outside the range of 1.2 <I c / (I Ti × 10) <2.0.
本発明の被覆部材は、自動車部品や金型等に適用することができる。例えば自動車部品の場合、バルブリフターやニードル、パワーステアリング用のベーン、またはプランジャーへの適用が考えられる。 The covering member of the present invention can be applied to automobile parts and molds. For example, in the case of automobile parts, application to valve lifters, needles, vanes for power steering, or plungers is conceivable.
Claims (5)
該混合傾斜皮膜の形成工程の後段では、チタンターゲットへの投入電力は減少させていく一方で、炭素ターゲットへの投入電力は増加させないか、もしくは、増加率を0.15kW/min以下とし、次いで炭素ターゲットによりダイヤモンドライクカーボン皮膜を形成することを特徴とする皮膜密着性に優れた被覆部材の製造方法。 A method of manufacturing a covering member in which a hard film is coated on a surface of a base material by a physical vapor deposition method, using a titanium target and a carbon target, and maintaining the temperature of the base material at room temperature to 250 ° C. from the base material side Forming a titanium and carbon mixed gradient film with a decreasing titanium content,
In the latter stage of the process of forming the mixed gradient coating, the input power to the titanium target is decreased, while the input power to the carbon target is not increased, or the increase rate is set to 0.15 kW / min or less, A method for producing a coated member having excellent film adhesion, wherein a diamond-like carbon film is formed with a carbon target.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011069894A JP5720996B2 (en) | 2010-03-29 | 2011-03-28 | Coated member with excellent film adhesion and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010075530 | 2010-03-29 | ||
JP2010075530 | 2010-03-29 | ||
JP2011069894A JP5720996B2 (en) | 2010-03-29 | 2011-03-28 | Coated member with excellent film adhesion and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011225982A JP2011225982A (en) | 2011-11-10 |
JP5720996B2 true JP5720996B2 (en) | 2015-05-20 |
Family
ID=45041677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011069894A Active JP5720996B2 (en) | 2010-03-29 | 2011-03-28 | Coated member with excellent film adhesion and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5720996B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013011072A1 (en) * | 2013-07-03 | 2015-01-08 | Oerlikon Trading Ag, Trübbach | target preparation |
WO2015068776A1 (en) * | 2013-11-06 | 2015-05-14 | Dowaサーモテック株式会社 | Method for forming intermediate layer formed between substrate and dlc film, method for forming dlc film, and intermediate layer formed between substrate and dlc film |
JP6647847B2 (en) * | 2015-12-08 | 2020-02-14 | Dowaサーモテック株式会社 | Method for forming intermediate layer formed between base material and DLC layer |
DE102016107874A1 (en) * | 2016-04-28 | 2017-11-16 | Federal-Mogul Burscheid Gmbh | Sliding element, in particular piston ring |
CN113551034B (en) * | 2021-07-28 | 2024-07-23 | 安庆帝伯格茨活塞环有限公司 | Double transition layer diamond-like coating piston ring |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5989397A (en) * | 1996-11-12 | 1999-11-23 | The United States Of America As Represented By The Secretary Of The Air Force | Gradient multilayer film generation process control |
JP4022048B2 (en) * | 2001-03-06 | 2007-12-12 | 株式会社神戸製鋼所 | Diamond-like carbon hard multilayer film molded body and method for producing the same |
JP4284941B2 (en) * | 2002-08-07 | 2009-06-24 | パナソニック株式会社 | Hard carbon film covering member and film forming method |
JP2004137541A (en) * | 2002-10-17 | 2004-05-13 | Tigold Co Ltd | Dlc gradient structural hard film, and its manufacturing method |
JP2008081522A (en) * | 2006-09-26 | 2008-04-10 | Hitachi Ltd | Slide member |
JP5145051B2 (en) * | 2008-01-07 | 2013-02-13 | 松山技研株式会社 | Hard film covering member and method for manufacturing the same |
-
2011
- 2011-03-28 JP JP2011069894A patent/JP5720996B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011225982A (en) | 2011-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4918656B2 (en) | Amorphous hard carbon film | |
JP6362003B2 (en) | Coated cutting tool | |
JP5720996B2 (en) | Coated member with excellent film adhesion and method for producing the same | |
JP6525310B2 (en) | Coated tools | |
JP5730535B2 (en) | Hard film forming member and hard film forming method | |
WO2018235750A1 (en) | Sliding member and coating film | |
CN111270202B (en) | Component structure double-gradient functional coating for cutting tool and preparation method thereof | |
Sharipov et al. | Increasing the resistance of the cutting tool during heat treatment and coating | |
WO2022172954A1 (en) | Coated tool | |
CN103717331A (en) | Surface-modified wc-based cemented carbide member, hard film-coated wc-based cemented carbide member, method for producing surface-modified wc-based cemented carbide member, and method for producing hard film-coated wc-based cemented carbide member | |
JP2017001147A (en) | Coated cutting tool | |
JP2003113463A (en) | COATED MEMBER WITH TiAl ALLOY FILM AND MANUFACTURING METHOD THEREFOR | |
WO2017099112A1 (en) | Intermediate layer formed between substrate and dlc layer and film formation method therefor | |
JP2009006439A (en) | Cutting tool | |
JP2023179643A (en) | Coated tool | |
JP4975481B2 (en) | Die for press | |
JP6463078B2 (en) | Manufacturing method of coated tool | |
JP6155204B2 (en) | Hard coating and method for forming the same | |
JP2012001744A (en) | TiAlN FILM AND TiAlN FILM-FORMED BODY | |
JP5389474B2 (en) | Spheroidal graphite cast iron material having hard coating, press mold, and method for producing spheroidal graphite cast iron material having hard coating | |
JP5924908B2 (en) | Method for producing hard coating member | |
CN114411098A (en) | Coating method of TiNb coating | |
WO2010084982A1 (en) | Member coated with hard film and jig for forming | |
JP6762790B2 (en) | Hard film covering member | |
JP2006169614A (en) | Metal-diamond-like-carbon (dlc) composite film, forming method therefor and sliding member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140618 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20140701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140806 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150312 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5720996 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |