[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5718920B2 - 車両周辺監視装置 - Google Patents

車両周辺監視装置 Download PDF

Info

Publication number
JP5718920B2
JP5718920B2 JP2012526390A JP2012526390A JP5718920B2 JP 5718920 B2 JP5718920 B2 JP 5718920B2 JP 2012526390 A JP2012526390 A JP 2012526390A JP 2012526390 A JP2012526390 A JP 2012526390A JP 5718920 B2 JP5718920 B2 JP 5718920B2
Authority
JP
Japan
Prior art keywords
image
edge
outer shape
composite
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012526390A
Other languages
English (en)
Other versions
JPWO2012014627A1 (ja
Inventor
洋介 坂本
洋介 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012526390A priority Critical patent/JP5718920B2/ja
Publication of JPWO2012014627A1 publication Critical patent/JPWO2012014627A1/ja
Application granted granted Critical
Publication of JP5718920B2 publication Critical patent/JP5718920B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Traffic Control Systems (AREA)
  • Closed-Circuit Television Systems (AREA)

Description

本発明は、車載カメラを使用して、車両の外部に存在する物体を検出する車両周辺監視装置に関する。
車両の走行支援等を目的として、車載カメラによって車両周辺の撮像画像を取得し、その撮像画像を基に、車両の外部に存在する物体を監視する技術が従来より知られている。
例えば特許文献1には、2台の車載カメラによって取得した車両前方のステレオ画像を基に、車両前方に存在する物体の三次元的な位置を算出し、この三次元的な位置情報を基に、車両が走行している道路の白線や、側壁物の位置を検出する技術が開示されている。
また、例えば特許文献2には、車載カメラによって取得した撮像画像における物体の形状を基に、ドット・ボッツ、キャッツアイ等の鋲状のレーンマークを検出する技術が記載されている。
特許第3324821号 特許第4358147号
車両周辺の撮像画像を基に、車両の外部に存在する物体を監視する場合に、ある特定の(所定種類の)構造物を、他の物体と区別して検出する必要が生じる場合がある。
例えば、撮像画像から、白線等の走行区分線を検出する場合に、道路の工事領域等を示すために配列されるパイロンが走行区分線として検出されるのを防止するために、撮像画像中に含まれる物体がパイロンであるか否かを特定する必要が生じる場合がある。
この場合、前記特許文献1に見られる技術では、物体の高さに基づいて、路面上の白線と、側壁物との区別はしている。ただし、特許文献1に見られる技術は、側壁物がどのような種類の構造物によって構成されたものであるかを特定するものではない。
一方、撮像画像中の物体の種類を特定する場合、通常、特許文献2に記載されている如く、撮像画像中の物体の形状を検出し、この形状に基づいて物体の種類を特定することが行なわれる。
このように物体の形状を検出する場合、撮像画像の輝度成分に基づいて、その輝度の不連続的な変化部としての輝度エッジを抽出し、この輝度エッジにより物体の形状を認識する手法が一般に知られている。
しかるに、物体の外形線(物体とその周囲の背景との境界線)を示すものとしての輝度エッジは、撮像画像における物体とその周囲の背景との輝度差が顕著に発生する場合にのみ抽出し得るものである。このため、物体に対する光の当たり具合や、物体とのその背景との色合いによっては、物体の外形線の一部でしか、輝度エッジを抽出できない場合も多々ある。
例えば、物体の一側面に光が当たり、反対側の側面が影になっているような場合には、反対側の側面の外形線に対応する輝度エッジは抽出され難い。また、例えば、物体の色とその周囲の背景色とが共に暗めの色合いである場合には、それらの色の境界での輝度エッジは抽出され難い。
そして、このように物体の外形線の一部でしか、輝度エッジが抽出されない場合には、該物体の外形状を正しく認識することができない。このため、該物体の種別を正しく特定することができないという不都合がある。
本発明は、かかる背景に鑑みてなされたものであり、車載カメラにより取得された撮像画像中の物体の種類の特定精度を高めることができる車両周辺監視装置を提供することを目的とする。
本発明の車両周辺監視装置は、かかる目的を達成するために、車載カメラにより取得された車両周辺の撮像画像に基づいて、車両の外部に存在する物体を検出する車両周辺監視装置において、前記撮像画像の輝度成分に基づいて、該輝度成分の値の不連続的な変化部としての第1エッジを前記撮像画像から抽出し、その抽出された第1エッジにより構成される画像である第1エッジ画像を生成する第1エッジ画像生成手段と、前記撮像画像の色相成分又は彩度成分に基づいて、該色相成分又は彩度成分の値の不連続的な変化部としての第2エッジを抽出し、その抽出された第2エッジにより構成される画像である第2エッジ画像を生成する第2エッジ画像生成手段と、前記生成された第1エッジ画像と第2エッジ画像とを合成してなる合成エッジ画像を生成する合成エッジ画像生成手段と、前記生成された合成エッジ画像のうち、前記撮像画像に含まれる物体の外形線を構成する画像である物体外形画像により示される該物体の外形状が所定種類の構造物の外形状に合致するか否かを判定し、少なくとも該判定結果に基づいて、該物体が前記所定種類の構造物であるか否かを特定する物体種別特定手段とを備え、前記所定種類の構造物は、その外表面が、該外表面上で互いに平行に水平方向もしくは斜め方向に延在する複数の境界線によって複数の着色領域に区分けされていると共に各境界線を挟んで互いに隣合う着色領域が互いに異なる色で着色されている構造物であり、前記物体種別特定手段は、前記物体外形画像により示される物体の外形状が前記所定種類の構造物の外形状に合致し、且つ、該物体外形画像の内側に、互いに平行に水平方向もしくは斜め方向に延在する複数の前記第1エッジ又は第2エッジが存在する場合に、該物体が前記所定種類の構造物であると判定することを特徴とする。
かかる本発明において、前記第1エッジ画像生成手段が、前記撮像画像から抽出する前記第1エッジは、前記撮像画像の輝度成分の値の不連続的な変化部(輝度成分の値の大きさが比較的急激に変化する部分)として抽出されるエッジである。従って、該第1エッジは、前記撮像画像の輝度成分の分布に依存して抽出されるエッジである。
一方、前記第2エッジ画像生成手段が前記撮像画像から抽出する前記第2エッジは、前記撮像画像の色相成分又は彩度成分の値の不連続的な変化部(色相成分又は彩度成分の値の大きさが比較的急激に変化する部分)として抽出されるエッジである。従って、該第2エッジは、前記撮像画像の色相成分又は彩度成分の分布に依存して抽出されるエッジである。
この場合、前記撮像画像の色相成分又は彩度成分の分布は、一般には、該撮像画像の輝度成分の分布とは相違する。このため、撮像画像中の物体の外形線のうち、前記第1エッジとして抽出されない部分であっても、第2エッジとして抽出される確率が高まる。また、逆に、前記撮像画像中の物体の外形線のうち、第2エッジとして抽出されない部分が、第1エッジとして抽出される場合もある。
従って、前記第1エッジ画像と第2エッジ画像とを前記合成エッジ画像生成手段により合成してなる合成エッジ画像においては、前記撮像画像に含まれる物体の外形線の全体もしくは多くの部分が第1エッジ又は第2エッジとして含まれるようになる。
そこで、本発明では、前記物体種別特定手段は、前記生成された合成エッジ画像のうち、前記撮像画像に含まれる物体の外形線を構成する画像である物体外形画像により示される該物体の外形状が所定種類の構造物の外形状に合致するか否かを判定する。そして、物体種別特定手段は、少なくとも該判定結果に基づいて、該物体が前記所定種類の構造物であるか否かを特定する。
この場合、前記物体外形画像により示される物体の外形状の信頼性が高いものとなる。このため、物体外形画像により示される該物体の外形状が所定種類の構造物の外形状に合致するか否かの判定結果の信頼性が高まる。これにより本発明によれば、車載カメラにより取得された撮像画像中の物体の種類の特定精度を高めることができる。
かかる本発明においては、前記所定種類の構造物としては、その外表面が、該外表面上で互いに平行に水平方向もしくは斜め方向に延在する複数の境界線によって複数の着色領域に区分けされていると共に各境界線を挟んで互いに隣合う着色領域が互いに異なる色で着色されている構造物(例えばパイロン)が挙げられる。そして、この場合、前記物体種別特定手段は、前記物体外形画像により示される物体の外形状が前記所定種類の構造物の外形状に合致し、且つ、該物体外形画像の内側に、互いに平行に水平方向もしくは斜め方向に延在する複数の前記第1エッジ又は第2エッジが存在する場合に、該物体が前記所定種類の構造物であると判定する。
本発明によれば、前記物体外形画像により示される物体の外形状が前記所定種類の構造物の外形状に合致するものであることに加えて、該物体外形画像の内側に、互いに平行に水平方向もしくは斜め方向に延在する複数の前記第1エッジ又は第2エッジが存在する場合に、該物体が前記所定種類の構造物であると判定される。このため、該物体が前記所定種類の構造物であるか否かの特定精度をより一層高めることができる。
本発明の車両周辺監視装置において、前記物体種別特定手段は、前記生成された合成エッジ画像において、前記車載カメラの撮像領域内の物体までの検出距離がほぼ同一となる合成エッジ画像領域に含まれる合成エッジを抽出し、該抽出した合成エッジに基づいて、当該物体の外形状が所定種類の構造物の外形状に合致するか否かを判定することが好ましい。
本発明の実施形態における車両周辺監視装置の要部構成を示すブロック図。 所定種類の物体(パイロン)を含む撮像画像の例を示す図。 図2の撮像画像から得られる第1エッジ画像の例を示す図。 図2の撮像画像から得られる第2エッジ画像の例を示す図。 図3の第1エッジ画像と図4の第2エッジ画像とを合成してなる合成エッジ画像の例を示す図。 図2の物体とは異なる種類の物体(パイロン)を含む撮像画像の例を示す図。 図2の物体とは異なる種類の物体(パイロン)を含む撮像画像の例を示す図。
本発明の一実施形態を図1〜図5を参照して説明する。
図1を参照して、本実施形態の車両周辺監視装置1は、車両(図示省略)に搭載されたものであり、車載カメラ2と、画像処理ユニット3とを備える。
車載カメラ2は、車両の前部に搭載されている。そして、車載カメラ2は、車両前方の画像を撮像する。この車載カメラ2は、CCDカメラ等により構成される。この場合、車載カメラ2は、車両前方の画像をカラー画像として撮像するカメラである。従って、車載カメラ2は、カラー映像の画像信号を生成して出力する。なお、車載カメラ2は、車両の後方又は側方の画像を撮像するカメラであってもよい。
画像処理ユニット3は、図示を省略するCPU、RAM、ROM、インターフェース回路等を含む電子回路ユニットである。そして、画像処理ユニット3には、車載カメラ2で生成されたカラー映像の画像信号が入力される。
この画像処理ユニット3は、実装されたプログラムを実行することによって実現される機能として、画像取得部4、第1エッジ画像生成部5、第2エッジ画像生成部6、画像合成部7及び物体種別特定部8を備える。
以下に、画像処理ユニット3の各機能部の処理を含めて、該画像処理ユニット3の全体処理の詳細を説明する。
車載カメラ2で生成されるカラー映像の画像信号は、所定の演算処理周期で画像処理ユニット3の画像取得部4に取り込まれる。この画像取得部4は、車載カメラ2から入力されるアナログ信号である画像信号(各画素毎の画像信号)をデジタルデータに変換し、図示しない画像メモリに記憶保持する。
より詳しくは、画像取得部4は、入力されるカラー映像の画像信号のうちの輝度成分をデジタルデータに変換してなる輝度成分画像と、該画像信号のうちの色相成分及び彩度成分のいずれか一方、例えば色相成分をデジタルデータに変換してなる色相成分画像とを画像メモリに記憶保持する。これにより、車載カメラ2により取得された撮像画像のうちの輝度成分としての輝度成分画像(各画素の値が輝度成分の値となる画像)と、色相成分としての色相成分画像(各画素の値が色相成分の値となる画像)とが画像メモリに記憶保持される。
上記輝度成分画像と色相成分画像とは、それぞれ、第1エッジ画像生成部5、第2エッジ画像生成部6に与えられる。そして、これらの第1エッジ画像生成部5、第2エッジ画像生成部6の処理が次に実行される。これらの第1エッジ画像生成部5、第2エッジ画像生成部6は、それぞれ、本発明における第1エッジ画像生成手段、第2エッジ画像生成手段としての機能を有するものである。
輝度成分画像が与えられる第1エッジ画像生成部5は、該輝度成分画像に、微分フィルタ等の公知のエッジ抽出用フィルタの処理を施す。これにより、第1エッジ画像生成部5は、撮像画像における輝度成分の値の不連続的な変化部(輝度成分の値が比較的急激に変化する部分)としての第1エッジを抽出する。さらに、第1エッジ画像生成部5は、この第1エッジにより構成される画像(2値化画像)である第1エッジ画像を生成する。そして、第1エッジ画像生成部5は、この第1エッジ画像を図示しない画像メモリに記憶保持する。
また、色相成分画像が与えられる第2エッジ画像生成部6は、該色相成分画像に、上記エッジ抽出用フィルタと同様の処理を施す。これにより、第2エッジ画像生成部6は、撮像画像における色相成分の値の不連続的な変化部(色相成分の値が比較的急激に変化する部分)としての第2エッジを抽出する。さらに、第2エッジ画像生成部6は、この第2エッジにより構成される画像(2値化画像)である第2エッジ画像を生成する。そして、第2エッジ画像生成部6は、この第2エッジ画像を図示しない画像メモリに記憶保持する。
ここで、車載カメラ2により取得される撮像画像の一例と、この撮像画像から得られる上記第1エッジ画像及び第2エッジ画像の一例を図2〜図4に示す。
図2は、車載カメラ2により取得される撮像画像の一例を示している。この例では、道路51上に設置されたパイロン52とその周辺の画像が撮像されている。図示例のパイロン52は、基台53と、この基台53上に突設された円錐状の本体部54(コーン部)とを備える構造物である。なお、参照符号51a,51bを付した部分は、道路51の白線を示している。
この場合、パイロン52の本体部54の外表面は、赤及び白の2色で着色されている。より詳しくは、本体部54の外表面は、該外表面上で互いに平行に水平方向に延在する複数(図示例では2つ)の境界線55a,55bによって、上下方向に複数(図示例では3つ)の着色領域56a,56b,56cに区分けされている。境界線55a,55bは、本体部54と同軸心の円環状の線である。
そして、図2において点描を付した着色領域である最上段の着色領域56aと最下段の着色領域56cとが赤色に着色されていると共に、これらの着色領域56a,56cの間に位置する中段の着色領域56bが白色に着色されている。従って、各境界線55a,55bを挟んで互いに隣合う着色領域(56a,56b)、(56b,56c)が互いに異なる色で着色されている。なお、パイロン52の基台53の色は、黒もしくはそれに近い色である。
図3は、図2に示す撮像画像から前記第1エッジ画像生成部5により生成される第1エッジ画像の例を示している。この図3における白抜き部分が抽出された第1エッジを示している。この例では、図2の撮像画像中のパイロン52の本体部54の外形線の一部が、参照符号57a,57b,57c,57dで示す第1エッジとして抽出されている。さらに、パイロン52の本体部54の境界線55a,55bが、参照符号57e,57fで示す第1エッジとして抽出されている。
この場合、パイロン52の本体部54の白色の着色領域56b(特に光が当たっている側)は、道路51や、赤色の着色領域56a,56cとの輝度差が比較的顕著に生じやすい。そのため、その白色の着色領域56bにおける本体部54の外形線や境界線55a,55bの多くの部分が第1エッジ57a〜57fとして抽出される。
一方、パイロン52の本体部54の赤色の着色領域56a,56cや基台53は、道路51との輝度差が生じ難い。そのため、赤色の着色領域56a,56cにおける本体部52の外形線や基台53の外形線は、第1エッジとして抽出され難くなる。
なお、図3中で、参照符号57g,57hで示す第1エッジは、道路51の白線51a,51bに相当する第1エッジである。また、参照符号57iで示す第1エッジは、道路51の側方の草むら等の画像から抽出される第1エッジである。
図4は、図2に示す撮像画像から前記第2エッジ画像生成部6により生成される第2エッジ画像の例を示している。この図4における白抜き部分が抽出された第2エッジを示している。この例では、図2の撮像画像中のパイロン52の本体部54の外形線の一部が、参照符号58a,58b,58c,58d,58e,58fで示す第2エッジとして抽出されている。さらに、パイロン52の本体部54の境界線55a,55bが、参照符号58g,58hで示す第2エッジとして抽出されている。
この場合、パイロン52の本体部54の赤色の着色領域56a,56cは、道路51や、白色の着色領域56bとの色相差が比較的顕著に生じやすい。そのため、その赤色の着色領域56bにおける本体部54の外形線や境界線55a,55bの多くの部分が第2エッジとして抽出される。
一方、パイロン52の本体部54の白色の着色領域56bは、道路51との色相差が生じ難い。そのため、白色の着色領域56bにおける本体部54の外形線は、第2エッジとして抽出され難くなる。
なお、図4中で、参照符号58iで示す第2エッジは、パイロン52の基台53の外形線に相当する第1エッジである。また、参照符号58jで示す第2エッジは、道路51の側方の草むら等の画像から抽出される第2エッジである。
上記の如く生成・記憶保持された第1エッジ画像と第2エッジ画像とは、画像合成部7に与えられる。そして、この画像生成部7の処理が次に実行される。この画像合成部7は、本発明における合成エッジ画像生成手段としての機能を有するものである。
画像合成部7は、第1エッジ画像と第2エッジ画像とを合成する(より詳しくは、両エッジ画像の互いに対応する画素の値を合成する)ことによって、合成エッジ画像(2値化画像)を生成する。そして、画像合成部7は、その合成エッジ画像を図示しない画像メモリに記憶保持する。
具体的には、画像合成部7は、合成エッジ画像の各画素の値(エッジが存在するか否かを示す値)を、その画素に対応する第1エッジ画像の画素の値と、第2エッジ画像の画素の値とに応じて設定する。すなわち、画像合成部7は、合成エッジ画像の各画素に対して、該画素に対応する第1エッジ画像の画素の値が第1エッジの存在を示す値であるか、又は、該画素に対応する第2エッジ画像の画素の値が第2エッジの存在を示す値である場合には、合成エッジ画像の該画素の値を、該画素の位置にエッジが存在することを示す値に設定する。
また、画像合成部7は、合成エッジ画像の各画素に対して、該画素に対応する第1エッジ画像の画素の値が、第1エッジが存在しないことを示す値であり、且つ、該画素に対応する第2エッジ画像の画素の値が、第2エッジが存在しないことを示す値である場合には、合成エッジ画像の該画素の値を、該画素の位置にエッジが存在しないことを示す値に設定する。
これにより、第1エッジ画像と第2エッジ画像とを合成してなる合成エッジ画像が生成される。従って、該合成エッジ画像において、エッジとなる部分は、第1エッジ及び第2エッジのうちの少なくともいずれか一方が抽出された部分である。また、エッジとならない部分は、第1エッジ及び第2エッジの両方が抽出されない部分である。以降、合成エッジ画像におけるエッジを合成エッジという。
図5は、上記の如く生成される合成エッジ画像の一例を示している。この図示例は、図3及び図4にそれぞれ示した第1エッジ画像と第2エッジ画像とを合成してなる合成エッジ画像である。この場合、図2の撮像画像中のパイロン52の本体部54の外形線の一部が、参照符号59a,59b,59c,59d,59e,59fで示す合成エッジにより表される。また、パイロン52の本体部54の境界線55a,55bが、参照符号59g,59hで示す合成エッジにより表される。
なお、図5中で、参照符号59iで示す合成エッジは、パイロン52の基台53の外形線に相当する合成エッジである。また、参照符号59j,59kで示す合成エッジは、道路51の白線51a,51bに相当する合成エッジである。また、参照符号59mで示す合成エッジは、道路51の側方の草むら等の画像に相当する合成エッジである。
上記の如く生成・記憶保持された合成エッジ画像は、物体種別特定部8に与えられる。そして、この物体種別特定部8の処理が次に実行される。この物体種別特定部8は、本発明における物体種別特定手段としての機能を有するものである。該物体種別特定部8は、車載カメラ2により取得した撮像画像中に含まれる物体が、所定種類の構造物であるか否かを特定する。
この場合、本実施形態では、図2に示した構造のパイロン52を、上記所定種類の構造物の1つとする。そして、物体種別特定部8は、車載カメラ2により取得した撮像画像中に含まれる物体が、図2に示した構造のパイロン52と同一種類の物体であるか否かを特定する機能を有している。
この物体種別特定部8の処理は次のように行われる。すなわち、物体種別特定部8は、まず、与えられた合成エッジ画像から、同一物体の構成要素となる合成エッジ(以下、物体構成合成エッジという)を抽出する。
この場合、例えばステレオ画像やレーダ等を基に、車載カメラ2の撮像領域内の物体までの距離を検出することができる場合には、合成エッジ画像内において、当該距離がほぼ同一となる領域に含まれる合成エッジを抽出する。これにより、同一物体の構成要素となる合成エッジ(物体構成合成エッジ)を抽出することができる。
図5に示した合成エッジ画像の例では、合成エッジ59a〜59iが物体構成合成エッジとして抽出される。
次いで、物体種別特定部8は、抽出した物体構成合成エッジのうちの、物体の外形線に相当する物体構成合成エッジによって示さる物体の外形状(二次元的な外形状)が、パイロン52の外形状に合致するか否かの判定(以下、形状判定という)を行なう。
この形状判定では、物体種別特定部8は、物体構成合成エッジのうちの物体の外形線に相当する物体構成合成エッジ(これは本発明における物体外形画像に相当する。以下、物体外形合成エッジという)をつなぎ合わせる。これにより、物体種別特定部8は、物体の外形状を示す画像を作成する。そして、物体種別特定部8は、この画像の形状を、パイロン52の外形状を示すものとしてあらかじめ設定された形状パターンと比較することによって、該画像の形状が、パイロン52の外形状に合致するか否かを判定する。
この場合、物体の外形状を示す画像が、例えば、ある角度範囲の頂角を有する二等辺三角形に近似する形状を有する場合に、該画像の形状が、パイロン52の外形状に合致すると判定される。
図5に示した合成エッジ画像の例では、物体構成合成エッジ59a〜59iのうちの合成エッジ59a〜59fと、合成エッジ59iの外周部とが物体外形合成エッジとされる。そして、これらの物体外形合成エッジをつなぎ合わせてなる画像の形状が、パイロン52の外形状を示すものとしてあらかじめ設定された形状パターンと比較される。そして、この場合は、該画像の形状は、パイロン52の外形状に合致するものと判定されることとなる。従って、前記形状判定の判定結果が肯定的となる。
さらに物体種別特定部8は、物体構成合成エッジのうちの物体外形合成エッジの内側(物体外形合成エッジにより囲まれた領域)に、互いに平行に水平方向に延在する複数の物体構成合成エッジ(以下、物体内水平合成エッジという)が存在するか否かの判定(以下、模様判定という)を行なう。なお、物体内水平合成エッジは、厳密に水平方向に延在するものである必要はない。該物体内水平合成エッジは、水平方向に対して、ゼロ近傍の所定角度範囲内で、傾斜した方向に延在するものであってもよい。
図5に示した合成エッジ画像の例では、物体構成合成エッジ59a〜59iのうちの合成エッジ59g,59hが物体内水平合成エッジとして抽出される。そして、この場合には、物体外形合成エッジの内側に、互いに平行に水平方向に延在する複数の物体内水平合成エッジが存在するものと判定されることとなる。従って、前記模様判定の判定結果が肯定的となる。
なお、前記形状判定の判定結果が否定的となる場合には、前記模様判定を行なうことを省略してもよい。
物体種別特定部8は、上記の如く形状判定及び模様判定を行なった後、これらの判定結果に基づいて、撮像画像中の物体の種類が、前記パイロン52と同一であるか否かを特定する。
すなわち、物体種別特定部8は、前記形状判定及び模様判定の両方の判定結果が肯定的となる場合に、撮像画像中の物体の種類がパイロン52と同一であると特定する。また、物体種別特定部8は、前記形状判定及び模様判定のいずれかの判定結果が否定的となる場合に、撮像画像中の物体の種類がパイロン52と異なるものであると特定する。
図5に示した合成エッジ画像の例では、前記した如く形状判定及び模様判定の両方の判定結果が肯定的となる。このため、図2に示す如く車載カメラ2により取得された撮像画像中の物体の種類がパイロン52と同じであると特定されることとなる。
以上が本実施形態における画像処理ユニット3が実行する処理の詳細である。かかる本実施形態によれば、撮像カメラ2により取得した撮像画像の輝度成分に基づき生成した第1エッジ画像と、該撮像画像の色相成分に基づき生成した第2エッジ画像とを合成してなる合成エッジ画像を使用して、該撮像画像中の物体の種類がパイロン52と同一であるか否かが特定される。
この場合、撮像画像の輝度成分と色相成分とは、一般には、互いに異なる分布パターンとなる。このため、第1エッジ画像に含まれないエッジが第2エッジとして第2エッジ画像に含まれたり、あるいは、第2エッジ画像に含まれないエッジが第1エッジとして第1エッジ画像に含まれるようになる。このため、これらの第1エッジ画像と第2エッジ画像とを合成することによって、第1エッジ画像生成部5及び第2エッジ画像生成部6のそれぞれの処理では抽出されないエッジを相互に補完してなる画像としての合成エッジ画像を生成することができる。すなわち、該合成エッジ画像は、撮像画像内の物体の外形線や着色領域の境界線の多くの部分を合成エッジとして含むような画像となる。
そして、かかる合成エッジ画像を使用して、前記した形状判定及び模様判定を行なうことにより、これらの判定結果の信頼性を高めることができる。ひいては、撮像画像内の物体の種類の特定を高い信頼性で行なうことができる。
また、撮像画像内の物体がパイロン52と同一種類であるか否かの特定を高い信頼性で行なうことができる。そのため、パイロン52の画像が、他の物体や道路の白線等と混同して認識してしまうようなことを防止することができる。ひいては、撮像画像から、パイロン52以外の物体や道路の白線をパイロン52と区別して検出することができる。
次に、以上説明した実施形態の変形態様をいくつか説明する。
前記実施形態では、第2エッジ画像生成部6は、車載カメラ2により取得された撮像画像のうちの色相成分としての色相成分画像から、前記第2エッジ画像を生成した。ただし、該撮像画像のうちの彩度成分としての彩度成分画像から、前記第2エッジ画像を生成するようにしてもよい。ここで、撮像画像の彩度成分は、色相成分の場合と同様に、一般には、該撮像画像の輝度成分と互いに異なる分布パターンとなる。このため、彩度成分画像から第2エッジ画像を生成するようにしても、色相成分画像から第2エッジ画像を生成する場合と同様の効果を得ることができる。
また、前記実施形態では、撮像画像中の物体が図2に示した構造のパイロン52と同一の種類の構造物であるか否かを特定するようにした。ただし、該物体の種類が、パイロン52と異なる構造の他の種類のパイロンと同一であるか否かを特定するようにすることもできる。
例えば、特定しようとする種類のパイロンが、図6に示す構造のパイロン71や、図7に示す構造のパイロン81であってもよい。
図6に例示するパイロン71は、基台72と、この基台72上に突設された円柱状の本体部73とを備える構造物である。このパイロン71の本体部73の外表面は、赤及び白の2色で着色されている。より詳しくは、本体部73の外表面は、該外表面上で互いに平行に斜め方向に(螺旋状に)延在する複数(図示例では2つ)の境界線75a,74bによって、複数(図示例では2つ)の着色領域75a,75bに区分けされている。
そして、図6において点描を付した着色領域である着色領域75aが赤色に着色されていると共に、この着色領域75aに隣接する着色領域75bが白色に着色されている。
車載カメラ2により取得された撮像画像中の物体が、図6に示すパイロン71と同一種類であるか否かを特定する場合には、画像処理ユニット3は、前記実施形態と同様に、画像取得部4、第1エッジ画像生成部5、第2エッジ画像生成部6、画像合成部7の処理を実行する。
一方、物体種別特定部8の処理では、画像合成部7により生成した合成エッジ画像における物体構成合成エッジのうちの物体外形合成エッジをつなぎ合わせてなる画像(物体の外形状を示す画像)を、パイロン71の外形状を示すものとしてあらかじめ設定された形状パターンと比較する。これにより、物体種別特定部8は、該画像の形状が、パイロン71の外形状に合致するか否かの形状判定を行なう。
さらに、物体種別特定部8の処理では、物体構成合成エッジのうちの物体外形合成エッジの内側に、互いに平行に斜め方向に延在する複数の物体内水平合成エッジが存在するか否かの模様判定を行なう。
そして、前記実施形態と同様に、形状判定及び模様判定の両方の判定結果が肯定的となる場合に、撮像画像中の物体の種類がパイロン71と同一であると特定する。また、形状判定及び模様判定のいずれかの判定結果が否定的となる場合に、撮像画像中の物体の種類がパイロン71と異なるものであると特定する。
また、図7に例示するパイロン81は、基台82と、この基台82上に突設された樽型の本体部83とを備える構造物である。このパイロン81の本体部83の外表面は、赤及び白の2色で着色されている。より詳しくは、本体部83の外表面は、該外表面上で互いに平行に水平方向に延在する複数(図示例では4つ)の境界線(環状線)84a,84b,84c,84dによって、複数(図示例では5つ)の着色領域85a,85b,85c,85d,85eに区分けされている。
そして、図6において点描を付した着色領域である着色領域85a,85c,85eが赤色に着色されている。さらに、この赤色の着色領域85a,85cの間に挟まれた着色領域85bと、赤色の着色領域85c,85eの間に挟まれた着色領域85dとが白色に着色されている。
車載カメラ2により取得された撮像画像中の物体が、図7に示すパイロン81と同一種類であるか否かを特定する場合には、画像処理ユニット3は、前記実施形態と同様に、画像取得部4、第1エッジ画像生成部5、第2エッジ画像生成部6、画像合成部7の処理を実行する。
一方、物体種別特定部8の処理では、画像合成部7により生成した合成エッジ画像における物体構成合成エッジのうちの物体外形合成エッジをつなぎ合わせてなる画像(物体の外形状を示す画像)を、パイロン81の外形状を示すものとしてあらかじめ設定された形状パターンと比較する。これにより、物体種別特定部8は、該画像の形状が、パイロン81の外形状に合致するか否かの形状判定を行なう。
さらに、物体種別特定部8の処理では、物体構成合成エッジのうちの物体外形合成エッジの内側に、互いに平行に水平方向に延在する複数の物体内水平合成エッジが存在するか否かの模様判定を行なう。
そして、前記実施形態と同様に、形状判定及び模様判定の両方の判定結果が肯定的となる場合に、撮像画像中の物体の種類がパイロン81と同一であると特定する。また、形状判定及び模様判定のいずれかの判定結果が否定的となる場合に、撮像画像中の物体の種類がパイロン81と異なるものであると特定する。
また、前記実施形態における物体種別特定部8の処理では、形状判定と模様判定とを行なうようにした。これに対して、形状判定だけを行い、該形状判定の判定結果が肯定的となる場合に、撮像画像中の物体がパイロン52(又はパイロン71又はパイロン81)と同一種類であると特定するようにしてもよい。但し、パイロン52,71,81のように複数の色で着色されている構造物を特定する場合には、その特定精度を高める上では、形状判定に加えて、模様判定を行なうことが望ましい。
本発明は、車載カメラによる撮像画像から車両の外部に存在する物体の種別を精度よく特定し得るものとして有用である。
1…車両周辺監視装置、2…車載カメラ、5…該1エッジ画像生成部(第1エッジ画像生成手段)、6…第2エッジ画像生成部(第2エッジ画像生成手段)、7…画像合成部(合成エッジ画像生成手段)、8…物体種別特定部(物体種別特定手段)、52,71,81…パイロン(所定種類の構造物)。

Claims (2)

  1. 車載カメラにより取得された車両周辺の撮像画像に基づいて、車両の外部に存在する物体を検出する車両周辺監視装置において、
    前記撮像画像の輝度成分に基づいて、該輝度成分の値の不連続的な変化部としての第1エッジを前記撮像画像から抽出し、その抽出された第1エッジにより構成される画像である第1エッジ画像を生成する第1エッジ画像生成手段と、
    前記撮像画像の色相成分又は彩度成分に基づいて、該色相成分又は彩度成分の値の不連続的な変化部としての第2エッジを抽出し、その抽出された第2エッジにより構成される画像である第2エッジ画像を生成する第2エッジ画像生成手段と、
    前記生成された第1エッジ画像と第2エッジ画像とを合成してなる合成エッジ画像を生成する合成エッジ画像生成手段と、
    前記生成された合成エッジ画像のうち、前記撮像画像に含まれる物体の外形線を構成する画像である物体外形画像により示される該物体の外形状が所定種類の構造物の外形状に合致するか否かを判定し、少なくとも該判定結果に基づいて、該物体が前記所定種類の構造物であるか否かを特定する物体種別特定手段とを備え
    前記所定種類の構造物は、その外表面が、該外表面上で互いに平行に水平方向もしくは斜め方向に延在する複数の境界線によって複数の着色領域に区分けされていると共に各境界線を挟んで互いに隣合う着色領域が互いに異なる色で着色されている構造物であり、
    前記物体種別特定手段は、前記物体外形画像により示される物体の外形状が前記所定種類の構造物の外形状に合致し、且つ、該物体外形画像の内側に、互いに平行に水平方向もしくは斜め方向に延在する複数の前記第1エッジ又は第2エッジが存在する場合に、該物体が前記所定種類の構造物であると判定することを特徴とする車両周辺監視装置。
  2. 請求項1記載の車両周辺監視装置において、
    前記物体種別特定手段は、前記生成された合成エッジ画像において、前記車載カメラの撮像領域内の物体までの検出距離がほぼ同一となる合成エッジ画像領域に含まれる合成エッジを抽出し、該抽出した合成エッジに基づいて、当該物体の外形状が所定種類の構造物の外形状に合致するか否かを判定することを特徴とする車両周辺監視装置。
JP2012526390A 2010-07-29 2011-06-30 車両周辺監視装置 Active JP5718920B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012526390A JP5718920B2 (ja) 2010-07-29 2011-06-30 車両周辺監視装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010170045 2010-07-29
JP2010170045 2010-07-29
JP2012526390A JP5718920B2 (ja) 2010-07-29 2011-06-30 車両周辺監視装置
PCT/JP2011/065092 WO2012014627A1 (ja) 2010-07-29 2011-06-30 車両周辺監視装置

Publications (2)

Publication Number Publication Date
JPWO2012014627A1 JPWO2012014627A1 (ja) 2013-09-12
JP5718920B2 true JP5718920B2 (ja) 2015-05-13

Family

ID=45529846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012526390A Active JP5718920B2 (ja) 2010-07-29 2011-06-30 車両周辺監視装置

Country Status (5)

Country Link
US (1) US8867788B2 (ja)
EP (1) EP2557540B1 (ja)
JP (1) JP5718920B2 (ja)
CN (1) CN102985947B (ja)
WO (1) WO2012014627A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180117882A (ko) * 2017-04-20 2018-10-30 현대자동차주식회사 자동차 주변의 장애물 검출 방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251793B1 (ko) * 2010-11-26 2013-04-08 현대자동차주식회사 차량내 운전자 실제 얼굴 인증 방법
CA2810540C (en) 2012-03-28 2020-06-16 Schlumberger Canada Limited Seismic attribute color model transform
CN107924625B (zh) * 2015-08-19 2021-11-12 三菱电机株式会社 车道识别装置以及车道识别方法
EP3323237A4 (en) * 2015-08-26 2019-07-31 Zhejiang Dahua Technology Co., Ltd METHODS AND SYSTEMS FOR MONITORING TRAFFIC
EP3291133B1 (en) * 2016-08-31 2021-09-29 Veoneer Sweden AB Vision system and method for a motor vehicle
DE102017215718B4 (de) 2017-09-07 2019-06-13 Audi Ag Verfahren zum Auswerten eines optischen Erscheinungsbildes in einer Fahrzeugumgebung und Fahrzeug
WO2019239535A1 (ja) 2018-06-13 2019-12-19 富士通株式会社 取得方法、生成方法、取得プログラム、生成プログラムおよび情報処理装置
CN109993046B (zh) * 2018-06-29 2021-04-09 长城汽车股份有限公司 基于视觉摄像机的自阴影物体边缘识别方法、装置及车辆
JP7129270B2 (ja) * 2018-08-13 2022-09-01 Kyb株式会社 画像処理装置、画像処理方法及び画像処理システム
JP7244301B2 (ja) * 2019-03-01 2023-03-22 フォルシアクラリオン・エレクトロニクス株式会社 画像処理装置
JP7483790B2 (ja) * 2022-05-19 2024-05-15 キヤノン株式会社 画像処理装置、画像処理方法、移動体、及びコンピュータプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683962A (ja) * 1992-05-21 1994-03-25 Sanyo Electric Co Ltd 画像認識方法
JP2001145092A (ja) * 1999-11-18 2001-05-25 Meidensha Corp 映像監視システムおよび映像監視方法
JP2005285006A (ja) * 2004-03-30 2005-10-13 Toshiba Solutions Corp 画像処理装置および画像処理方法
JP2009151602A (ja) * 2007-12-21 2009-07-09 Shima Seiki Mfg Ltd 輪郭抽出装置と輪郭抽出方法及び輪郭抽出プログラム
JP2010109451A (ja) * 2008-10-28 2010-05-13 Panasonic Corp 車両周囲監視装置及び車両周囲監視方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493392A (en) * 1992-12-15 1996-02-20 Mcdonnell Douglas Corporation Digital image system for determining relative position and motion of in-flight vehicles
JP3324821B2 (ja) 1993-03-12 2002-09-17 富士重工業株式会社 車輌用車外監視装置
US5638116A (en) * 1993-09-08 1997-06-10 Sumitomo Electric Industries, Ltd. Object recognition apparatus and method
JP2986439B2 (ja) * 1998-01-12 1999-12-06 松下電器産業株式会社 車両用画像処理装置
JP4358147B2 (ja) 2005-04-28 2009-11-04 本田技研工業株式会社 車両及びレーンマーク認識装置
JP4365350B2 (ja) * 2005-06-27 2009-11-18 本田技研工業株式会社 車両及び車線認識装置
JP4365352B2 (ja) * 2005-07-06 2009-11-18 本田技研工業株式会社 車両及びレーンマーク認識装置
JP4632987B2 (ja) * 2006-03-28 2011-02-16 株式会社パスコ 道路画像解析装置及び道路画像解析方法
JP5083658B2 (ja) * 2008-03-26 2012-11-28 本田技研工業株式会社 車両用車線認識装置、車両、及び車両用車線認識プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683962A (ja) * 1992-05-21 1994-03-25 Sanyo Electric Co Ltd 画像認識方法
JP2001145092A (ja) * 1999-11-18 2001-05-25 Meidensha Corp 映像監視システムおよび映像監視方法
JP2005285006A (ja) * 2004-03-30 2005-10-13 Toshiba Solutions Corp 画像処理装置および画像処理方法
JP2009151602A (ja) * 2007-12-21 2009-07-09 Shima Seiki Mfg Ltd 輪郭抽出装置と輪郭抽出方法及び輪郭抽出プログラム
JP2010109451A (ja) * 2008-10-28 2010-05-13 Panasonic Corp 車両周囲監視装置及び車両周囲監視方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180117882A (ko) * 2017-04-20 2018-10-30 현대자동차주식회사 자동차 주변의 장애물 검출 방법
KR102275310B1 (ko) 2017-04-20 2021-07-12 현대자동차주식회사 자동차 주변의 장애물 검출 방법

Also Published As

Publication number Publication date
US8867788B2 (en) 2014-10-21
JPWO2012014627A1 (ja) 2013-09-12
US20130083968A1 (en) 2013-04-04
EP2557540A4 (en) 2013-12-11
CN102985947B (zh) 2015-06-10
EP2557540B1 (en) 2014-11-12
CN102985947A (zh) 2013-03-20
WO2012014627A1 (ja) 2012-02-02
EP2557540A1 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5718920B2 (ja) 車両周辺監視装置
JP4456086B2 (ja) 車両周辺監視装置
JP5254102B2 (ja) 環境認識装置
CN104952254B (zh) 车辆识别方法、装置和车辆
JP4930046B2 (ja) 路面判別方法および路面判別装置
JP5922257B2 (ja) 車両周辺監視装置
US9197860B2 (en) Color detector for vehicle
JPWO2016113983A1 (ja) 画像処理装置、画像処理方法、プログラム及びシステム
WO2009130827A1 (ja) 車両周辺監視装置
JP2007323578A (ja) 車両周辺監視装置
JP2009070344A (ja) 画像認識装置、画像認識方法および電子制御装置
JP4644273B2 (ja) 車両周辺監視装置
JP2011076214A (ja) 障害物検出装置
JP2003028635A (ja) 画像測距装置
JP4813304B2 (ja) 車両周辺監視装置
JP6375911B2 (ja) カーブミラー検出装置
CN109727188A (zh) 图像处理方法及其装置、安全驾驶方法及其装置
JP2009230530A (ja) 車両認識装置、車両、及び車両認識用プログラム
JP6173962B2 (ja) レーンマーク認識装置
US11138445B2 (en) Vision system and method for a motor vehicle
JP4887539B2 (ja) 物体種別判定装置
JP2011221613A (ja) 物体認識装置
JP5182589B2 (ja) 障害物検出装置
CN114175110A (zh) 信息处理设备、信息处理方法及信息处理程序
JP2014191684A (ja) 画像処理装置および画像処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150319

R150 Certificate of patent or registration of utility model

Ref document number: 5718920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150