[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5717347B2 - Liquid crystalline resin composition for injection molding, molded product and method for improving blister resistance - Google Patents

Liquid crystalline resin composition for injection molding, molded product and method for improving blister resistance Download PDF

Info

Publication number
JP5717347B2
JP5717347B2 JP2010020314A JP2010020314A JP5717347B2 JP 5717347 B2 JP5717347 B2 JP 5717347B2 JP 2010020314 A JP2010020314 A JP 2010020314A JP 2010020314 A JP2010020314 A JP 2010020314A JP 5717347 B2 JP5717347 B2 JP 5717347B2
Authority
JP
Japan
Prior art keywords
liquid crystalline
resin composition
injection molding
inorganic filler
fibrous inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010020314A
Other languages
Japanese (ja)
Other versions
JP2011157472A (en
Inventor
信彰 佐々木
信彰 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2010020314A priority Critical patent/JP5717347B2/en
Priority to TW100101069A priority patent/TW201200546A/en
Priority to KR1020110007698A priority patent/KR101658621B1/en
Priority to SG2011006863A priority patent/SG173298A1/en
Priority to CN201110035415.9A priority patent/CN102140248B/en
Publication of JP2011157472A publication Critical patent/JP2011157472A/en
Application granted granted Critical
Publication of JP5717347B2 publication Critical patent/JP5717347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • C08K7/20Glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、射出容量が大きい条件で成形してもブリスターの発生を抑えることができる射出成形用液晶性樹脂組成物、当該樹脂組成物を成形してなる成形体及び成形体の耐ブリスター性を向上する方法に関する。   The present invention relates to a liquid crystalline resin composition for injection molding capable of suppressing the generation of blisters even when molded under a condition where the injection capacity is large, the molded product formed by molding the resin composition, and the blister resistance of the molded product. On how to improve.

エンジニアリングプラスチックと呼ばれる一群のプラスチックスは高い強度を有し、金属部品に置き替わりつつある。中でも液晶性樹脂と呼ばれる一群のプラスチックスは、結晶構造を保持しながら溶融するために、結晶構造に基づく高強度と、固化時に結晶構造が大きく変化しないことにより溶融時と固化時との体積変化が小さく、成形収縮が小さいという利点がある。   A group of plastics called engineering plastics has high strength and is being replaced by metal parts. Among them, a group of plastics called liquid crystalline resins melts while maintaining the crystal structure, so the volume changes between melting and solidification due to the high strength based on the crystal structure and the fact that the crystal structure does not change significantly during solidification. Is small and molding shrinkage is small.

上記のような液晶性樹脂は、成形性及び耐熱性に優れ小型電子部品の構成材料として好ましく使用されている。その中でも、液晶性樹脂は、ガスの発生が少なく、耐加水分解性に優れ、さらに電気的特性も良好であることから、コネクター等の電子部品に好適に使用される。特に、コネクター等の電子部品用材料として、液晶性樹脂を使用する場合、荷重たわみ温度を向上させるために、ガラス繊維を含有させる方法が知られている。   The liquid crystalline resin as described above is excellent in moldability and heat resistance, and is preferably used as a constituent material for small electronic components. Among them, the liquid crystalline resin is suitably used for electronic parts such as connectors because it generates less gas, has excellent hydrolysis resistance, and has good electrical characteristics. In particular, when a liquid crystalline resin is used as a material for an electronic component such as a connector, a method of incorporating glass fiber is known in order to improve the deflection temperature under load.

特に、ガラス繊維を含有した液晶性ポリエステルアミド樹脂は、コネクター等の電子部品用材料として非常に好ましい材料である。しかしながら、電子部品の生産性を向上させようとして、射出容量を大きい条件に変更すると、成形時に溶融状態にある射出成形用液晶性樹脂組成物が空気や材料からの発生ガスを巻き込むことで、成形体内部に気泡が含まれる。成形体内部に気泡が含まれると、後の熱処理等で成形品が高温に曝されることにより、気泡内の空気やガスが膨張し、成形品表面が膨れる。この成形品表面の膨れはブリスターと呼ばれる成形不良であり、改善が求められる。   In particular, a liquid crystalline polyesteramide resin containing glass fibers is a very preferable material as a material for electronic parts such as connectors. However, when the injection capacity is changed to a large condition in order to improve the productivity of electronic parts, the liquid crystalline resin composition for injection molding that is in a molten state at the time of molding encloses the gas generated from air or material, thereby forming the molding. Bubbles are contained inside the body. When bubbles are contained inside the molded body, the molded product is exposed to a high temperature by a subsequent heat treatment or the like, whereby air or gas in the bubbles expands and the surface of the molded product expands. The swelling of the surface of the molded product is a molding defect called blister, and improvement is required.

上記のようなブリスターの発生を抑えるための対策として、射出成形用液晶性樹脂組成物の溶融押出時にベント孔から充分に脱気すること、成形の際に成形機に樹脂組成物を長く滞留させないこと等が挙げられる。しかしながら、このような成形時の条件等の変更のみでは充分にブリスターの発生を抑えることはできない。   As countermeasures for suppressing the occurrence of blisters as described above, sufficiently deaerate from the vent hole at the time of melt extrusion of the liquid crystalline resin composition for injection molding, and do not allow the resin composition to stay in the molding machine for a long time during molding. And so on. However, the occurrence of blisters cannot be sufficiently suppressed only by changing the conditions during molding.

そこで、ブリスターの発生を抑えるために、射出成形用液晶性樹脂組成物を改良すること、射出成形用液晶性樹脂組成物を改良するとともに成形条件を改良すること等が行われている。例えば、特許文献1には、被混練材料から揮発分を除去する為の開放口と一対の2条スクリューとを有する混練機で、特定の量の無機充填剤を含む特定の射出成形用液晶性樹脂組成物を溶融混練して得られる荷重たわみ温度230℃以上の成形体の製造方法において、当該混練機のスクリュー噛合率を1.60以上に調整する成形体の製造方法が開示されている。この特許文献1に記載の技術によれば、射出成形用液晶性樹脂組成物の融点・荷重たわみ温度等の基本的耐熱性を保ちながら、耐ブリスター性に優れる射出成形用液晶性樹脂組成物を提供できるとされている。   Therefore, in order to suppress the generation of blisters, improvement of the liquid crystalline resin composition for injection molding, improvement of the liquid crystalline resin composition for injection molding, improvement of molding conditions, and the like have been performed. For example, Patent Document 1 discloses a specific liquid crystal for injection molding containing a specific amount of an inorganic filler in a kneading machine having an open port for removing volatile components from a material to be kneaded and a pair of two screws. In a method for producing a molded product having a deflection temperature under load of 230 ° C. or higher obtained by melt-kneading a resin composition, a method for producing a molded product is disclosed in which the screw engagement rate of the kneader is adjusted to 1.60 or higher. According to the technique described in Patent Document 1, a liquid crystalline resin composition for injection molding having excellent blister resistance while maintaining basic heat resistance such as melting point and deflection temperature under load of the liquid crystalline resin composition for injection molding. It can be provided.

しかしながら、特許文献1に記載の方法は、成形体の製造条件が極めて複雑である。また、液晶性ポリエステルアミド樹脂は、全芳香族ポリエステル樹脂等と比較して、ブリスターを発生しやすい原料である。このため、ブリスターの発生を抑制する効果についてもさらなる改善が求められている。   However, in the method described in Patent Document 1, the manufacturing conditions of the molded body are extremely complicated. Further, the liquid crystalline polyesteramide resin is a raw material that easily generates blisters as compared with a wholly aromatic polyester resin or the like. For this reason, further improvement is requested | required also about the effect which suppresses generation | occurrence | production of a blister.

特開2003−211443号公報JP 2003-211143 A

本発明は以上のような課題を解決するためになされたものであり、その目的は、射出容量が大きい条件であっても、ブリスターの発生を簡単に抑える技術を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a technique for easily suppressing the generation of blisters even under conditions where the injection capacity is large.

本発明者らは上記のような課題を解決するために鋭意研究を重ねた。その結果、液晶性ポリエステルアミド樹脂と、繊維状無機充填剤とガラスビーズとの混合物とを含み、この混合物中の上記繊維状無機充填剤と上記ガラスビーズとの比率が、0.9:1.0から1.0:0.9の射出成形用液晶性樹脂組成物(以下、単に「樹脂組成物」という場合がある)であれば、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には本発明は以下のものを提供する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, it contains a liquid crystalline polyesteramide resin and a mixture of fibrous inorganic filler and glass beads, and the ratio of the fibrous inorganic filler and glass beads in this mixture is 0.9: 1. In order to complete the present invention, it is found that a liquid crystalline resin composition for injection molding of 0 to 1.0: 0.9 (hereinafter sometimes simply referred to as “resin composition”) can solve the above-mentioned problems. It came. More specifically, the present invention provides the following.

(1) 液晶性ポリエステルアミド樹脂と、繊維状無機充填剤とガラスビーズとの混合物を含み、前記混合物中の前記繊維状無機充填剤と前記ガラスビーズとの比率が、0.9:1.0から1.0:0.9である射出成形用液晶性樹脂組成物。   (1) It includes a mixture of a liquid crystalline polyesteramide resin, a fibrous inorganic filler, and glass beads, and the ratio of the fibrous inorganic filler to the glass beads in the mixture is 0.9: 1.0. To 1.0: 0.9, a liquid crystalline resin composition for injection molding.

(2) 前記繊維状無機充填剤がガラス繊維である(1)に記載の射出成形用液晶性樹脂組成物。   (2) The liquid crystalline resin composition for injection molding according to (1), wherein the fibrous inorganic filler is glass fiber.

(3) 前記繊維状無機充填剤の繊維長が200μm以上である(1)又は(2)に記載の射出成形用液晶性樹脂組成物。   (3) The liquid crystalline resin composition for injection molding according to (1) or (2), wherein a fiber length of the fibrous inorganic filler is 200 μm or more.

(4) 前記液晶性ポリエステルアミド樹脂100質量部に対して、前記混合物を39質量部以上69質量部以下含む(1)から(3)のいずれかに記載の射出成形用液晶性樹脂組成物。   (4) The liquid crystalline resin composition for injection molding according to any one of (1) to (3), wherein the mixture is contained in an amount of 39 parts by mass to 69 parts by mass with respect to 100 parts by mass of the liquid crystalline polyesteramide resin.

(5) 前記液晶性ポリエステルアミド樹脂の融点が320℃以上であり、(1)から(4)のいずれかに記載の射出成形用液晶性樹脂組成物を成形してなり、ISO75−1,2に準拠する方法で測定した1.8MPaにおける荷重たわみ温度が260℃以上である成形体。   (5) The melting point of the liquid crystalline polyesteramide resin is 320 ° C. or higher, and the liquid crystalline resin composition for injection molding according to any one of (1) to (4) is molded. A molded article having a deflection temperature under load of 1.8 MPa measured by a method conforming to the above is 260 ° C. or higher.

(6) (1)から(4)のいずれかに記載の射出成形用液晶性樹脂組成物を成形してなり、成形品表層部(成形品表面から0.2mmまで)と成形品中央部(成形品中央0.2mm)の線膨張率の差が、0.7以下である成形体。   (6) The liquid crystalline resin composition for injection molding according to any one of (1) to (4) is molded, and the surface layer of the molded product (from the molded product surface to 0.2 mm) and the central part of the molded product ( A molded product having a difference in linear expansion coefficient at the center of the molded product (0.2 mm) of 0.7 or less.

(7) 液晶性樹脂組成物中に、繊維状無機充填剤とガラスビーズとを含有させ、前記繊維状無機充填剤の含有量と、前記ガラスビーズの含有量とを実質的に等しくすることによって、樹脂成形体の耐ブリスター性を向上する方法。   (7) By containing a fibrous inorganic filler and glass beads in the liquid crystalline resin composition, and making the content of the fibrous inorganic filler substantially equal to the content of the glass beads A method for improving the blister resistance of a resin molded product.

本発明によれば、繊維状無機充填剤と、上記繊維状無機充填剤と実質的に同量のガラスビーズと、を含む射出成形用液晶性樹脂組成物を射出成形することで、射出容量が大きい条件であっても、得られる成形体表面のブリスター発生を抑えることができる。即ち、本発明によれば、高品質な成形体を高い生産性で製造することができる。   According to the present invention, an injection capacity is obtained by injection-molding a liquid crystalline resin composition for injection molding comprising a fibrous inorganic filler and glass beads of substantially the same amount as the fibrous inorganic filler. Even under large conditions, it is possible to suppress the occurrence of blisters on the surface of the obtained molded body. That is, according to the present invention, a high-quality molded product can be produced with high productivity.

ISO1/32’’に基づいて作製した試験片の断面を示す図である。It is a figure which shows the cross section of the test piece produced based on ISO1 / 32 ''. ランナー、スプルー及びノズルが接続された状態を示す図である。It is a figure which shows the state to which the runner, the sprue, and the nozzle were connected.

以下、本発明の一実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, an embodiment of the present invention will be described in detail. However, the present invention is not limited to the following embodiment, and may be implemented with appropriate modifications within the scope of the object of the present invention. it can.

<射出成形用液晶性樹脂組成物>
本発明の射出成形用液晶性樹脂組成物には、液晶性ポリエステルアミド樹脂、繊維状無機充填剤、ガラスビーズを含むことが特徴である。先ず、これらの材料について以下に説明する。
<Liquid crystalline resin composition for injection molding>
The liquid crystalline resin composition for injection molding of the present invention is characterized by containing a liquid crystalline polyesteramide resin, a fibrous inorganic filler, and glass beads. First, these materials will be described below.

[液晶性ポリエステルアミド樹脂]
液晶性樹脂の中でも液晶性ポリエステルアミド樹脂を使用した場合には、成形体にブリスターが生じやすい。本発明の特徴の一つは、ブリスターが発生しやすい液晶性ポリエステルアミド樹脂を用いても、充分にブリスターの発生を抑えることができる点にある。以下に例示する好ましい液晶性ポリエステルアミド樹脂は、得られる成形体の物性を高めることができる点で好ましい樹脂である。本発明は、下記のような好ましい樹脂を用いた場合に、射出容量が大きい条件で成形しても、成形体の物性を維持しつつ(ほとんど低下させないで)、ブリスターの発生を抑制できる点も特徴である。
[Liquid crystalline polyester amide resin]
When a liquid crystalline polyesteramide resin is used among liquid crystalline resins, blisters are likely to occur in the molded product. One of the features of the present invention is that the occurrence of blisters can be sufficiently suppressed even when a liquid crystalline polyester amide resin that easily generates blisters is used. The preferred liquid crystalline polyesteramide resin exemplified below is a preferred resin in that the physical properties of the resulting molded article can be improved. In the present invention, when a preferable resin as described below is used, it is possible to suppress the generation of blisters while maintaining the physical properties of the molded article (almost without reducing) even when molded under conditions with a large injection capacity. It is a feature.

本発明に用いる液晶性ポリエステルアミド樹脂は、特に限定されず従来公知のものを使用することができるが、270〜370℃の範囲に融点を有し、光学異方性溶融相を形成し得る性質を有する溶融加工性ポリエステルアミドが好ましい。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することができる。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明に適用できる液晶性ポリエステルアミド樹脂は直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。   The liquid crystalline polyesteramide resin used in the present invention is not particularly limited, and a conventionally known one can be used, but has a melting point in the range of 270 to 370 ° C. and can form an optically anisotropic melt phase. A melt processable polyesteramide having The property of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by using a Leitz polarizing microscope and observing a molten sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times. When the liquid crystalline polyester amide resin applicable to the present invention is inspected between crossed polarizers, the polarized light is normally transmitted even in a molten stationary state, and optically anisotropic.

本発明に使用する液晶性ポリエステルアミド樹脂は、上記のような光学異方性溶融相を形成し得る性質を有しており、さらに、ある特定の構成単位を有していることが好ましい。   The liquid crystalline polyesteramide resin used in the present invention has a property capable of forming an optically anisotropic melt phase as described above, and preferably has a specific structural unit.

液晶性ポリエステルアミド樹脂を構成するモノマーとして、芳香族ヒドロキシカルボン酸、芳香族カルボン酸、芳香族ジオール等が挙げられる。これらのモノマーに加えて4−アミノフェノール、1,4−フェニレンジアミン、4−アミノ安息香酸及びこれらの誘導体の1種又は2種以上を含むものが好ましい。そして、アミド成分が全結合中に2〜35モル%の割合で含まれるものであることさらに好ましい。また、アミド成分が全結合中に4〜25モル%の割合で含まれるものがさらに好ましい。   Examples of the monomer constituting the liquid crystalline polyesteramide resin include aromatic hydroxycarboxylic acid, aromatic carboxylic acid, aromatic diol and the like. In addition to these monomers, those containing one or more of 4-aminophenol, 1,4-phenylenediamine, 4-aminobenzoic acid and derivatives thereof are preferred. And it is further more preferable that an amide component is contained in the ratio of 2-35 mol% in all the coupling | bondings. Further, it is more preferable that the amide component is contained in the total bond in a proportion of 4 to 25 mol%.

芳香族ヒドロキシカルボン酸としては、4−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸等が挙げられる。また、芳香族カルボン酸としては、テレフタル酸、イソフタル酸、4,4’−ジフェニルジカルボン酸、2,6−ナフタレンジカルボン酸等が挙げられる。また、芳香族ジオールとしては、2,6−ジヒドロキシナフタレン、4,4’−ジヒドロキシビフェニル、ハイドロキノン、レゾルシン等が挙げられる。なお、これらの化合物の誘導体もモノマーとして挙げられる。   Examples of the aromatic hydroxycarboxylic acid include 4-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid. Examples of the aromatic carboxylic acid include terephthalic acid, isophthalic acid, 4,4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and the like. Examples of the aromatic diol include 2,6-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl, hydroquinone, resorcin and the like. In addition, derivatives of these compounds are also exemplified as monomers.

アミド成分を2〜35モル%の割合で含めるためのモノマーとしては、前述の4−アミノフェノール、1,4−フェニレンジアミン、4−アミノ安息香酸及びこれらの誘導体、例えば4−アセトキシ−アミノフェノール等が挙げられる。   Examples of the monomer for including the amide component in a proportion of 2 to 35 mol% include the aforementioned 4-aminophenol, 1,4-phenylenediamine, 4-aminobenzoic acid, and derivatives thereof such as 4-acetoxy-aminophenol. Is mentioned.

具体的には、液晶性ポリエステルアミド樹脂が、下記(i)〜(iii)のモノマーを下記記載の範囲で共重合して得られる全芳香族ポリエステルアミドが好ましい。
(i)6−ヒドロキシ−2−ナフトエ酸;30〜90モル%
(ii)4−アミノフェノール;15〜35モル%
(iii)テレフタル酸;15〜35モル%
また、液晶性ポリエステルアミド樹脂が、下記(i)〜(v)のモノマーを下記記載の範囲で共重合して得られる全芳香族ポリエステルアミドも好ましい。
(i)6−ヒドロキシ−2−ナフトエ酸
(iv)4−ヒドロキシ安息香酸
(i)+(iv)の量が30〜90モル%
(ii)4−アミノフェノール;2〜35モル%
(iii)テレフタル酸;5〜35モル%
(v)ビスフェノール;2〜35モル%
Specifically, the wholly aromatic polyester amide obtained by copolymerizing the following (i) to (iii) monomers within the range described below is preferable as the liquid crystalline polyester amide resin.
(I) 6-hydroxy-2-naphthoic acid; 30-90 mol%
(Ii) 4-aminophenol; 15-35 mol%
(Iii) terephthalic acid; 15-35 mol%
Also preferred are wholly aromatic polyester amides obtained by copolymerizing the following (i) to (v) monomers within the ranges described below.
(I) The amount of 6-hydroxy-2-naphthoic acid (iv) 4-hydroxybenzoic acid (i) + (iv) is 30 to 90 mol%
(Ii) 4-aminophenol; 2-35 mol%
(Iii) Terephthalic acid; 5-35 mol%
(V) Bisphenol; 2 to 35 mol%

[繊維状無機充填剤]
本発明に使用できる繊維状無機充填剤は、特に限定されず従来公知のものを使用することができる。繊維状無機充填剤を含有させる大きな目的の一つは、後述するガラスビーズとの組み合わせでブリスターの発生を抑えることである。また、他の目的は、最終製品になる成形体に充分な荷重たわみ温度等の物性を与えることである。
[Fibrous inorganic filler]
The fibrous inorganic filler that can be used in the present invention is not particularly limited, and conventionally known fillers can be used. One of the major purposes of incorporating the fibrous inorganic filler is to suppress the generation of blisters in combination with glass beads described later. Another object is to give physical properties such as sufficient deflection temperature to the molded product that will be the final product.

使用可能な繊維状無機充填剤としては、ガラス繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリウム繊維、ウォラストナイト、さらにステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物等が挙げられる。これらの中でもガラス繊維の使用が特に好ましい。   Usable fibrous inorganic fillers are glass fiber, asbestos fiber, silica fiber, silica / alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, wollastonite Furthermore, metal fibrous materials such as stainless steel, aluminum, titanium, copper, and brass can be used. Among these, the use of glass fiber is particularly preferable.

繊維状無機充填剤の繊維長は特に限定されないが、成形体に充分な荷重たわみ温度等の物性を付与し且つ良好な流動性を確保するためには、200μm以上700μm以下が好ましく、特に400μm以上650μm以下が好ましい。ここで、繊維長とは射出成形する前の液晶性樹脂組成物の混練ペレット中の繊維長を指す。なお、繊維長は以下の方法で測定した繊維長を採用する。
(測定方法)
測定には、画像処理解析装置LUZEX AP(株式会社ニレコ社製)を使用した。測定は以下の(1)から(6)の手順で行った。
(1)液晶性樹脂組成物の混練ペレット約2gを600℃で3時間加熱し灰化させる。
(2)液晶性樹脂組成物の混練ペレットの灰分を3mg秤量し、ポリエチレングリコール5%水溶液に分散させる。
(3)分散液5mlを採取し、シャーレに均一に注ぎ入れる。
(4)実体顕微鏡(10倍)を用いて画像を取り込む(n=9)
(5)取り込んだ各々の画像を2値化し、上記画像処理解析装置を用いて充填剤のサイズを測定する。その際、ガラスビーズのサイズの影響を受けないように、100μm以下の値はカットする。
(6)測定された値の重量平均を繊維状無機充填剤の繊維長とする。
The fiber length of the fibrous inorganic filler is not particularly limited, but is preferably 200 μm or more and 700 μm or less, particularly 400 μm or more, in order to impart physical properties such as sufficient deflection temperature under load and ensure good fluidity. 650 μm or less is preferable. Here, the fiber length refers to the fiber length in the kneaded pellet of the liquid crystalline resin composition before injection molding. In addition, the fiber length measured with the following method is employ | adopted for fiber length.
(Measuring method)
For the measurement, an image processing analyzer LUZEX AP (manufactured by Nireco Corporation) was used. The measurement was performed according to the following procedures (1) to (6).
(1) About 2 g of the kneaded pellet of the liquid crystalline resin composition is heated at 600 ° C. for 3 hours to be incinerated.
(2) 3 mg of the ash content of the kneaded pellet of the liquid crystalline resin composition is weighed and dispersed in a 5% aqueous solution of polyethylene glycol.
(3) Collect 5 ml of the dispersion and pour it uniformly into a petri dish.
(4) Capture an image using a stereomicroscope (10 ×) (n = 9)
(5) Each captured image is binarized, and the size of the filler is measured using the image processing analyzer. At that time, a value of 100 μm or less is cut so as not to be affected by the size of the glass beads.
(6) The weight average of the measured values is taken as the fiber length of the fibrous inorganic filler.

特にコネクター等の電子部品を成形する場合には、充分な荷重たわみ温度を成形体に付与する必要がある。この場合には、繊維状無機充填剤として、上記の好ましい範囲の繊維長を有するガラス繊維を使用し、ガラス繊維の含有量が液晶性ポリエステルアミド樹脂100質量部に対して10質量部以上100質量部以下であることが好ましい。   In particular, when molding an electronic component such as a connector, it is necessary to apply a sufficient load deflection temperature to the molded body. In this case, glass fibers having a fiber length in the above preferred range are used as the fibrous inorganic filler, and the glass fiber content is 10 parts by mass or more and 100 parts by mass with respect to 100 parts by mass of the liquid crystalline polyesteramide resin. Part or less.

[ガラスビーズ]
本発明に使用できるガラスビーズは、特に限定されず従来公知のものを使用することができる。例えば、平均粒径が5μm以上50μm以下程度のガラスビーズを好ましく使用することができる。
[Glass beads]
The glass beads that can be used in the present invention are not particularly limited, and conventionally known ones can be used. For example, glass beads having an average particle diameter of about 5 μm or more and 50 μm or less can be preferably used.

本願発明の樹脂組成物中に含まれるガラスビーズの好ましい含有量は、上記繊維状無機充填剤の好ましい含有量と、後述する繊維状無機充填剤とガラスビーズの含有比率とから決まる。   The preferred content of the glass beads contained in the resin composition of the present invention is determined by the preferred content of the fibrous inorganic filler and the content ratio of the fibrous inorganic filler and glass beads described later.

[混合物]
混合物とは、上記繊維状無機充填剤と上記ガラスビーズとの混合物である。本願発明は、繊維状無機充填剤とガラスビーズとの混合物を含む射出成形用樹脂組成物にすることに大きな特徴がある。
[blend]
The mixture is a mixture of the fibrous inorganic filler and the glass beads. The present invention is greatly characterized in that it is a resin composition for injection molding containing a mixture of a fibrous inorganic filler and glass beads.

本願明細書では、本発明の射出成形用液晶性樹脂組成物の説明において、液晶性ポリエステルアミド樹脂と、繊維状無機充填剤及びガラスビーズの混合物とに分けて説明しているが、この説明は、予め繊維状無機充填剤とガラスビーズとを混合してなる混合物を得て、さらにこの混合物に液晶性ポリエステルアミド樹脂を混合して得られる樹脂組成物に本発明の樹脂組成物が限定されることを意図するものではない。即ち、本願発明の樹脂組成物には、液晶性ポリエステルアミド樹脂と、繊維状無機充填剤と、ガラスビーズとを含み、繊維状無機充填剤と、ガラスビーズとの含有量比が特定の範囲にあるもの全てが含まれる。   In the present specification, in the description of the liquid crystalline resin composition for injection molding according to the present invention, the liquid crystalline polyester amide resin and the mixture of fibrous inorganic filler and glass beads are described separately. The resin composition of the present invention is limited to a resin composition obtained by previously mixing a fibrous inorganic filler and glass beads, and further mixing a liquid crystalline polyesteramide resin with the mixture. It is not intended. That is, the resin composition of the present invention includes a liquid crystalline polyesteramide resin, a fibrous inorganic filler, and glass beads, and the content ratio of the fibrous inorganic filler and glass beads is within a specific range. Everything is included.

混合物に含まれる繊維状無機充填剤とガラスビーズの含有比率(繊維状無機充填剤:ガラスビーズ)は、0.9:1.0から1.0:0.9である。なお、比率とは、質量比のことを指す。   The content ratio of the fibrous inorganic filler and glass beads contained in the mixture (fibrous inorganic filler: glass beads) is 0.9: 1.0 to 1.0: 0.9. The ratio refers to the mass ratio.

混合物中の繊維状無機充填剤とガラスビーズの含有比率を上記の範囲に調整し、液晶性ポリエステルアミド樹脂と組み合わせて樹脂組成物にして、成形体を製造するとブリスターの発生が抑えられる。これは、混合物中の繊維状無機充填剤とガラスビーズの含有比率を上記の範囲に調整することで、スキン層の線膨張率とコア層の線膨張率との差を小さくできるからである。本願発明は、繊維状無機充填剤、ガラスビーズという無機充填剤に着目し、さらに、これらの含有量比を特定の範囲に調整し、上記線膨張率の差を小さくしたことに大きな特徴がある。即ち、特定の充填剤を選択し、さらに、その特定の充填剤の含有量比を、特定の範囲に調整することで、上記線膨張率の差を小さくできることを見出した点に特徴がある。   When the content ratio of the fibrous inorganic filler and the glass beads in the mixture is adjusted to the above range and combined with a liquid crystalline polyesteramide resin to form a resin composition, the formation of blisters can be suppressed. This is because the difference between the linear expansion coefficient of the skin layer and the linear expansion coefficient of the core layer can be reduced by adjusting the content ratio of the fibrous inorganic filler and the glass beads in the mixture to the above range. The present invention focuses on inorganic fillers such as fibrous inorganic fillers and glass beads, and is further characterized in that the content ratio is adjusted to a specific range and the difference in linear expansion coefficient is reduced. . That is, the present invention is characterized in that the difference in the linear expansion coefficient can be reduced by selecting a specific filler and adjusting the content ratio of the specific filler to a specific range.

ガラスビーズは、等方性の無機充填剤であるため、混合物中のガラスビーズの含有量が多くなるほど、コア層の線膨張率とスキン層の線膨張率との差が小さくなるように予測される。しかしながら、繊維状無機充填剤とガラスビーズとの含有比率が1に近い上記範囲にある方が、上記線膨張率の差は小さくなる。この点を見出したことも本発明の特徴の一つである。   Since glass beads are isotropic inorganic fillers, the difference between the coefficient of linear expansion of the core layer and the coefficient of linear expansion of the skin layer is expected to decrease as the glass bead content in the mixture increases. The However, when the content ratio of the fibrous inorganic filler and the glass beads is in the above range close to 1, the difference in the linear expansion coefficient is small. The finding of this point is also one of the features of the present invention.

「コア層の線膨張率とスキン層の線膨張率との差が小さい」とは、実施例に記載した方法で測定した線膨張率の差が0.7以下であることを指す。   “The difference between the linear expansion coefficient of the core layer and the linear expansion coefficient of the skin layer is small” means that the difference in linear expansion coefficient measured by the method described in the examples is 0.7 or less.

繊維状無機充填剤としてガラス繊維を使用することが好ましい。ガラス繊維とガラスビーズの組み合わせは、ブリスターの発生を抑える効果が高いからである。即ち、ガラス繊維とガラスビーズの組み合わせであれば、上記線膨張率の差が小さくなりやすい傾向にあるからである。   It is preferable to use glass fiber as the fibrous inorganic filler. This is because the combination of glass fiber and glass beads is highly effective in suppressing the generation of blisters. That is, if the combination of glass fiber and glass beads is used, the difference in linear expansion coefficient tends to be small.

本発明の射出成形用液晶性樹脂組成物中の混合物の含有量は、上記液晶性ポリエステルアミド樹脂100質量部に対して、39質量部以上69質量部以下であることが好ましい。本発明の樹脂組成物に充分な量の充填剤を含有させることで、成形体に充分な物性を付与することができる。   The content of the mixture in the liquid crystalline resin composition for injection molding of the present invention is preferably 39 parts by mass or more and 69 parts by mass or less with respect to 100 parts by mass of the liquid crystalline polyesteramide resin. By containing a sufficient amount of filler in the resin composition of the present invention, sufficient physical properties can be imparted to the molded article.

[その他の成分]
本願発明の射出成形用液晶性樹脂組成物は、本発明の効果を害さない範囲で他の熱可塑性樹脂とポリマーブレンドをしたものであってもよい。また、熱可塑性樹脂は2種以上混合して使用することができる。また、これらの樹脂には、機械的、電気的、化学的性質や難燃性等の諸性質を改善するため、必要に応じて種々の添加剤、強化剤を添加することが可能である。
[Other ingredients]
The liquid crystalline resin composition for injection molding of the present invention may be one obtained by polymer blending with another thermoplastic resin as long as the effects of the present invention are not impaired. Further, two or more thermoplastic resins can be mixed and used. Moreover, in order to improve various properties such as mechanical, electrical, chemical properties and flame retardancy, various additives and reinforcing agents can be added to these resins as necessary.

本発明に用いる液晶性樹脂組成物には、本発明の効果を害さない範囲で、核剤、カーボンブラック、無機焼成顔料等の顔料、ガラスビーズ等の上記で説明した充填剤以外の充填剤、酸化防止剤、安定剤、可塑剤、滑剤、離型剤及び難燃剤等の添加剤を添加して、所望の特性を付与した組成物も本発明に用いる液晶性樹脂組成物に含まれる。   In the liquid crystalline resin composition used in the present invention, a filler other than the above-described fillers such as a nucleating agent, a pigment such as carbon black and an inorganic calcined pigment, glass beads, etc., as long as the effects of the present invention are not impaired. Compositions to which desired properties are imparted by adding additives such as antioxidants, stabilizers, plasticizers, lubricants, mold release agents and flame retardants are also included in the liquid crystalline resin composition used in the present invention.

上記の通り他の成分は、本発明の効果を害さない範囲で添加することができるが、他の成分の含有量は、液晶性ポリエステルアミド樹脂100質量部に対して、10質量部以内であることが好ましい。   As described above, other components can be added within a range that does not impair the effects of the present invention, but the content of the other components is within 10 parts by mass with respect to 100 parts by mass of the liquid crystalline polyesteramide resin. It is preferable.

<成形体>
本発明の成形体は、本発明の射出成形用液晶性樹脂組成物を、射出成形法により成形した成形体である。本発明の特徴の一つは非常に大きい射出容量で成形してもブリスターの発生を抑制できることである。先ず、成形体の成形条件について説明し、次いで、成形体について説明する。
<Molded body>
The molded article of the present invention is a molded article obtained by molding the liquid crystalline resin composition for injection molding of the present invention by an injection molding method. One of the features of the present invention is that the generation of blisters can be suppressed even when molding is performed with a very large injection volume. First, the molding conditions of the molded body will be described, and then the molded body will be described.

[成形体の成形条件]
本発明の成形体は、上記の通り、本発明の射出成形用液晶性樹脂組成物を用いて成形された成形体であり、成形条件は特に限定されない。成形条件は、製造する成形体の形状や使用する樹脂等の原料に応じて適宜好ましい条件を決定できる。ただし、本願発明は上記の通り射出容量が大きい条件で製造できることに特徴がある。そこで、以下、射出容量の大きい条件について説明する。
[Molding conditions of molded body]
As above-mentioned, the molded object of this invention is a molded object shape | molded using the liquid crystalline resin composition for injection molding of this invention, and molding conditions are not specifically limited. The molding conditions can be appropriately determined according to the shape of the molded body to be produced and the raw materials such as the resin to be used. However, the present invention is characterized in that it can be manufactured under conditions where the injection capacity is large as described above. Thus, hereinafter, the conditions for a large injection capacity will be described.

通常、射出容量が大きい条件で成形すると、成形体表面にはブリスターが発生する傾向にある。しかし、本発明では、繊維状無機充填剤とガラスビーズとを特定の比率で液晶性ポリエステルアミド樹脂に含有させることで、スキン層の線膨張率とコア層の線膨張率との差を0.7以内に調整する。その結果、大きい射出容量の条件で成形しても成形体表面に生じるブリスターの発生を抑えることができる。したがって、本発明によれば、ブリスターの発生を抑えた高品質な成形体を高い生産性で製造することができる。   Usually, when molding is performed under conditions where the injection capacity is large, blisters tend to occur on the surface of the molded body. However, in the present invention, the difference between the linear expansion coefficient of the skin layer and the linear expansion coefficient of the core layer is reduced to 0. 0 by adding the fibrous inorganic filler and the glass beads to the liquid crystalline polyesteramide resin in a specific ratio. Adjust within 7. As a result, it is possible to suppress the occurrence of blisters that occur on the surface of the molded body even when molded under conditions of a large injection volume. Therefore, according to the present invention, it is possible to manufacture a high-quality molded product with reduced generation of blisters with high productivity.

従来の技術で成形体表面にブリスターが生じてしまうような「大きい射出容量」とは、150cm/sec以上である。 The “large injection capacity” at which blisters are generated on the surface of the molded body by the conventional technique is 150 cm 3 / sec or more.

本発明で問題としているブリスターの発生は、金型内を流れる溶融した樹脂組成物の流速が問題となる。射出容量を上げれば金型内での溶融した樹脂組成物の流速も速まる。金型内を流れる樹脂組成物の流速が7000mm/secを超えると、従来の技術では成形体表面にブリスターが発生しやすい傾向にあり、金型内を流れる樹脂組成物の流速が12000mm/secを超えるとさらに成形体表面にブリスターが生じやすくなる。通常、射出容量を150cm/sec以上の条件にすることは、上記流速が少なくとも7000mm/secを超えることを意味する。本発明の成形体は上記通り、繊維状無機充填剤とガラスビーズとを特定の比率で液晶性ポリエステルアミド樹脂に含有させ、スキン層の線膨張率とコア層の線膨張率との差を0.7以内になるように調整する。このように、コア層の線膨張率とスキン層の線膨張率との差が小さくなるように調整できることで、上記のように金型内での溶融した樹脂組成物の流速が速くなっても成形体表面にブリスターが生じることを抑えることができる。 The occurrence of blisters, which is a problem in the present invention, has a problem with the flow rate of the molten resin composition flowing in the mold. Increasing the injection capacity also increases the flow rate of the molten resin composition in the mold. If the flow rate of the resin composition flowing in the mold exceeds 7000 mm / sec, the conventional technology tends to cause blisters on the surface of the molded body, and the flow rate of the resin composition flowing in the mold is 12000 mm / sec. When it exceeds, it will become easy to produce a blister on the surface of a molded object. Usually, setting the injection capacity to 150 cm 3 / sec or more means that the flow velocity exceeds at least 7000 mm / sec. As described above, the molded article of the present invention contains a fibrous inorganic filler and glass beads in a specific ratio in a liquid crystalline polyesteramide resin, and the difference between the linear expansion coefficient of the skin layer and the linear expansion coefficient of the core layer is 0. Adjust to within 7. As described above, the difference between the linear expansion coefficient of the core layer and the linear expansion coefficient of the skin layer can be adjusted so that the flow rate of the molten resin composition in the mold increases as described above. The occurrence of blisters on the surface of the molded product can be suppressed.

[成形体]
上述の通り、本発明の成形体は、射出容量が大きい条件で製造しても、スキン層の線膨張率とコア層の線膨張率との差が0.7以内であることが特徴である。上記線膨張率の差は、繊維状無機充填剤とガラスビーズとの含有比、等によって調整することができる。
[Molded body]
As described above, the molded article of the present invention is characterized in that the difference between the linear expansion coefficient of the skin layer and the linear expansion coefficient of the core layer is within 0.7 even when manufactured under the condition of a large injection capacity. . The difference in the linear expansion coefficient can be adjusted by the content ratio between the fibrous inorganic filler and the glass beads.

コア層の線膨張率とスキン層の線膨張率について説明する。これらの線膨張率を測定する対象及び方法について説明する。線膨張率を測定する試験片としては、ISO1/32’’に基づいて作製した試験片を用いる。図1には、上記試験片の断面図を示す。表面がスキン層で、内部がコア層である。スキン層の線膨張率の測定においては、スキン層の表面から0.2mmの範囲(図1に示す範囲)を切削して試料を切り出す。コア層の線膨張率の測定においては、コア層の中央の幅0.2mmの範囲(図1に示す範囲)を切削して試料を切り出す。これらの試料を250℃、1時間熱処理したものについて、30℃における寸法を基準値としたときの240℃における膨張率を線膨張率とする。   The linear expansion coefficient of the core layer and the linear expansion coefficient of the skin layer will be described. The object and method for measuring these linear expansion coefficients will be described. As a test piece for measuring the linear expansion coefficient, a test piece manufactured based on ISO 1/32 '' is used. FIG. 1 shows a cross-sectional view of the test piece. The surface is a skin layer and the inside is a core layer. In the measurement of the linear expansion coefficient of the skin layer, a sample is cut out by cutting a range of 0.2 mm (the range shown in FIG. 1) from the surface of the skin layer. In the measurement of the linear expansion coefficient of the core layer, a sample having a width of 0.2 mm at the center of the core layer (range shown in FIG. 1) is cut out. For these samples heat treated at 250 ° C. for 1 hour, the coefficient of expansion at 240 ° C. when the dimension at 30 ° C. is taken as a reference value is taken as the linear expansion coefficient.

本発明の射出成形用液晶性樹脂組成物を成形して成形体を作製すると、射出容量が大きい条件で製造しても、上記のようにして測定したコア層の線膨張率とスキン層の線膨張率との差が、0.7以下になるため、ブリスターが発生しない。   When a molded product is produced by molding the liquid crystalline resin composition for injection molding of the present invention, the linear expansion coefficient of the core layer and the skin layer line measured as described above are obtained even if the molded article is manufactured under a condition where the injection capacity is large. Since the difference from the expansion coefficient is 0.7 or less, no blister is generated.

従来公知の樹脂組成物を用い、大きい射出容量の条件で成形体を作製すると、スキン層の線膨張率とコア層の線膨張率との差が大きくなり、ブリスターが発生してしまう。しかしながら、本発明の樹脂組成物を用いることで、射出容量を大きい条件に設定しても線膨張率の差が大きくなることを抑えることができる。その結果、射出容量が大きい条件で成形体を製造してもブリスターの発生を抑えることができる。   When a conventionally known resin composition is used and a molded body is produced under conditions of a large injection capacity, the difference between the linear expansion coefficient of the skin layer and the linear expansion coefficient of the core layer increases, and blisters are generated. However, by using the resin composition of the present invention, it is possible to suppress an increase in the difference in linear expansion coefficient even when the injection capacity is set to a large condition. As a result, the occurrence of blisters can be suppressed even when the molded body is produced under conditions where the injection capacity is large.

<耐ブリスター性を向上する方法>
本発明の耐ブリスター性を向上する方法は、液晶性ポリエステルアミド樹脂を含む液晶性樹脂組成物中に、繊維状無機充填剤とガラスビーズとを含有させ、繊維状無機充填剤の含有量と、前記ガラスビーズの含有量とを実質的に等しくすることによって、樹脂成形体の耐ブリスター性を向上する方法である。
<Method to improve blister resistance>
The method for improving the blister resistance of the present invention includes a fibrous inorganic filler and glass beads in a liquid crystalline resin composition containing a liquid crystalline polyesteramide resin, the content of the fibrous inorganic filler, In this method, the blister resistance of the resin molded product is improved by making the content of the glass beads substantially equal.

「実質的に等しくする」とは、コア層の線膨張率とスキン層の線膨張率との差が0.7以下になるように、樹脂組成物中の繊維状無機充填剤の含有量とガラスビーズの含有量とを近づけることを指す。   “Substantially equal” means the content of the fibrous inorganic filler in the resin composition so that the difference between the linear expansion coefficient of the core layer and the linear expansion coefficient of the skin layer is 0.7 or less. It refers to bringing the glass bead content closer.

本願発明の大きな特徴の一つは、繊維状無機充填剤(特にガラス繊維)とガラスビーズとを液晶性ポリエステルアミド樹脂に含有させ、繊維状無機充填剤とガラスビーズとの含有量比率(質量比)を1に近づけることで、射出容量が大きい条件で成形体を製造してもスキン層の線膨張率とコア層の線膨張率との差が大きくならないことを見出した点にある。本発明の方法によれば、高い生産性で高品質な成形体を製造することができる。   One of the major features of the present invention is that the fibrous inorganic filler (especially glass fiber) and glass beads are contained in a liquid crystalline polyesteramide resin, and the content ratio (mass ratio) of the fibrous inorganic filler and glass beads. ) Is close to 1, even when a molded body is produced under a condition where the injection capacity is large, the difference between the linear expansion coefficient of the skin layer and the linear expansion coefficient of the core layer does not increase. According to the method of the present invention, a high-quality molded product can be produced with high productivity.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

<材料>
液晶性ポリエステルアミド樹脂(液晶性樹脂):ベクトラE950i(ポリプラスチックス社製)溶融粘度20Pa・secチョップドストランドガラス繊維(ガラス繊維):ECS03T−786H(日本電気硝子社製)、繊維径10μm、繊維長3mm(なお、混練ペレット中での繊維長について、上述の方法で測定した結果を表1に示した)ガラスビーズ:EGB731(ポッターズバロティーニ社製)、平均粒径18μm
<Material>
Liquid crystalline polyesteramide resin (liquid crystalline resin): Vectra E950i (manufactured by Polyplastics) Melt viscosity 20 Pa · sec chopped strand glass fiber (glass fiber): ECS03T-786H (manufactured by Nippon Electric Glass), fiber diameter 10 μm, fiber 3 mm in length (in addition, the result measured by the above-mentioned method about the fiber length in a kneaded pellet was shown in Table 1) Glass beads: EGB731 (made by Potters Barotini), average particle diameter of 18 μm

上に示す材料を表1に示す割合でドライブレンドした後、二軸押出機(「TEX30α型」日本製鋼所製)を用いて混練ペレットを作製した。この実施例及び比較例の液晶性樹脂組成物(混練ペレット)を用いて、荷重たわみ温度の測定、線膨張率の測定、耐ブリスター射出容量の測定を以下のようにして行った。   After dry blending the materials shown above in the proportions shown in Table 1, kneaded pellets were prepared using a twin screw extruder (“TEX30α type” manufactured by Nippon Steel Works). Using the liquid crystalline resin compositions (kneaded pellets) of Examples and Comparative Examples, measurement of deflection temperature under load, measurement of coefficient of linear expansion, and measurement of blister injection resistance were performed as follows.

[荷重たわみ温度の測定]
実施例及び比較例の混練ペレット、射出成形機(住友重機械工業社製、「SE100DU(スクリュー径 Φ36)」)を用いて、以下の成形条件で測定用試験片(4mm×10mm×80mm)を成形した。その後、ISO 75−1,2に準拠した方法で荷重たわみ温度を測定した。荷重たわみ温度の測定結果を表1に示した。(成形条件)シリンダー温度:350℃金型温度:90℃背圧:1.0MPa射出速度:33m/sec
[Measurement of deflection temperature under load]
Using test pellets (4 mm × 10 mm × 80 mm) under the following molding conditions, using the kneaded pellets and injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., “SE100DU (screw diameter Φ36)”) of Examples and Comparative Examples. Molded. Thereafter, the deflection temperature under load was measured by a method based on ISO 75-1,2. Table 1 shows the measurement results of the deflection temperature under load. (Molding conditions) Cylinder temperature: 350 ° C. Mold temperature: 90 ° C. Back pressure: 1.0 MPa Injection speed: 33 m / sec

[線膨張率の測定]
実施例及び比較例の混練ペレット、射出成形機(ファナック社製、「ROBOSHOT α50C成形機(スクリュー径 Φ26)」)を用い、下記の成形条件で、ISO1/32”燃焼試験片を成形した。(成形条件)シリンダー温度:340℃金型温度:80℃射出速度:300mm/sec
[Measurement of linear expansion coefficient]
Using the kneaded pellets and the injection molding machine (manufactured by FANUC, “ROBOSHOT α50C molding machine (screw diameter Φ26)”) of Examples and Comparative Examples, ISO 1/32 ”combustion test pieces were molded under the following molding conditions. Molding conditions) Cylinder temperature: 340 ° C Mold temperature: 80 ° C Injection speed: 300mm / sec

得られた試験片の、表面から0.2mmの部分、中央部0.2mmの部分をそれぞれ切削し試料を取り出した。TAインスツルメント社製線膨張測定器(TMA2940)を用い、切削して得た試料各々の線膨張率の測定を行った。試料は250℃で1時間の加熱処理を施したものを用い、30℃における寸法を基準値としたときの240℃における膨張率を、線膨張率とした。線膨張率、線膨張率の差(スキン層の線膨張率−コア層の線膨張率)の結果は表1に示した。   A 0.2 mm portion and a central 0.2 mm portion of the obtained test piece were cut from the surface, and a sample was taken out. The linear expansion coefficient of each sample obtained by cutting was measured using a linear expansion measuring instrument (TMA2940) manufactured by TA Instruments. A sample subjected to heat treatment at 250 ° C. for 1 hour was used, and an expansion coefficient at 240 ° C. when a dimension at 30 ° C. was used as a reference value was defined as a linear expansion coefficient. The results of the difference between the linear expansion coefficient and the linear expansion coefficient (linear expansion coefficient of the skin layer−linear expansion coefficient of the core layer) are shown in Table 1.

[耐ブリスター射出容量の測定]
実施例の混練ペレット、射出成形機(「α−50−C」ファナック社製)を用い、ISO 1/32’’燃焼試験片を成形した。その際、ノズルの出口径を1.5mmに固定し、スプルー出口径とノズル出口径の比(スプルー出口径/ノズル出口径)を2、その他の成形条件は下記に示す成形条件で、射出成形を行った。ノズルの位置、スプルーの位置は、図2に示す通りである。また、ノズル出口径は図2に示すようにノズル先端出口のノズル内径であり、スプルー出口径はスプルー先端出口の内径である。また、射出容量については、26.5(cm/sec)、39.8(cm/sec)、53.1(cm/sec)、66.3(cm/sec)79.6(cm/sec)、92.9(cm/sec)、106.1(cm/sec)、119.4(cm/sec)、132.7(cm/sec)145.9(cm/sec)、159.2(cm/sec)で、低いものから順に各射出容量の条件について5ショットの成形を行った後、ピーク温度280℃のリフロー処理(詳細な条件は後述する)を施し、5個の成形品の中で、目視観察にてブリスターが発生するものが確認できなければ、さらに大きい射出容量の条件で5ショットの成形を行い、同様のリフロー処理を施し、ブリスターが発生するまで目視にて評価して、ブリスターが発生しない(目視にて全く観察されない)最大の射出容量(耐ブリスター射出容量)を求めた。
(成形条件)
スクリュー径:φ26mm
スクリュー回転数:100rpm
背圧:3MPa
保圧力:50MPa
保圧時間:1秒
冷却時間:5秒
サックバック:3mm
サイクル時間:15秒
シリンダー温度:340℃−340℃−330℃−320℃
金型温度:80℃
(リフロー条件)
装置:赤外線リフロー炉(「RE−300」、日本パルス技術研究所製)
プレヒートゾーン温度設定:150℃×3分
ヒートゾーン温度設定:218℃×2分
加熱炉通過時間:5分
成形品表面ピーク温度:280℃
(成形品表面ピーク温度は、リフロー加熱条件で成形品表面に熱伝対を取り付けて測定した最も高い温度である)
[Measurement of blister resistance]
Using the kneaded pellets of the example, an injection molding machine (“α-50-C” manufactured by FANUC), ISO 1/32 ″ combustion test pieces were molded. At that time, the nozzle outlet diameter is fixed to 1.5 mm, the ratio of the sprue outlet diameter to the nozzle outlet diameter (sprue outlet diameter / nozzle outlet diameter) is 2, and the other molding conditions are the molding conditions shown below. Went. The position of the nozzle and the position of the sprue are as shown in FIG. Further, as shown in FIG. 2, the nozzle outlet diameter is the nozzle inner diameter of the nozzle tip outlet, and the sprue outlet diameter is the inner diameter of the sprue tip outlet. Also, the injection volume, 26.5 (cm 3 /sec),39.8(cm 3 /sec),53.1(cm 3 /sec),66.3(cm 3 / sec) 79.6 ( cm 3 /sec),92.9(cm 3 /sec),106.1(cm 3 /sec),119.4(cm 3 /sec),132.7(cm 3 /sec)145.9(cm 3 / sec), 159.2 (cm 3 / sec), and after molding five shots for each injection capacity in order from the lowest, reflow treatment at a peak temperature of 280 ° C. (detailed conditions will be described later) If no blisters can be confirmed by visual observation among 5 molded products, 5 shots are molded under a larger injection capacity, and the same reflow treatment is performed. Until it occurs The maximum injection capacity (blister resistant injection capacity) where blisters were not generated (not observed at all) was determined by visual evaluation.
(Molding condition)
Screw diameter: φ26mm
Screw rotation speed: 100rpm
Back pressure: 3MPa
Holding pressure: 50 MPa
Holding time: 1 second Cooling time: 5 seconds Suckback: 3 mm
Cycle time: 15 seconds Cylinder temperature: 340 ° C-340 ° C-330 ° C-320 ° C
Mold temperature: 80 ℃
(Reflow conditions)
Equipment: Infrared reflow furnace ("RE-300", manufactured by Nippon Pulse Technology Laboratories)
Preheat zone temperature setting: 150 ° C. × 3 minutes Heat zone temperature setting: 218 ° C. × 2 minutes Heating furnace passage time: 5 minutes Molded product surface peak temperature: 280 ° C.
(The peak temperature of the molded product is the highest temperature measured by attaching a thermocouple to the molded product surface under reflow heating conditions.)

Figure 0005717347
Figure 0005717347

表1から明らかなように、ガラス繊維の含有量とガラスビーズの含有量が同じ場合には、スキン層の線膨張率とコア層の線膨張率との差が0.7以下になり、耐ブリスター射出容量が150cm/secを超える。 As is apparent from Table 1, when the glass fiber content and the glass bead content are the same, the difference between the linear expansion coefficient of the skin layer and the linear expansion coefficient of the core layer is 0.7 or less, and The blister injection capacity exceeds 150 cm 3 / sec.

実施例2、比較例3の結果から明らかなように、ガラスビーズの含有量が多い比較例3より、ガラスビーズの含有量とガラス繊維の含有量とが同じ実施例2の方がコア層の線膨張率とスキン層の線膨張率との差が小さくなった。   As is apparent from the results of Example 2 and Comparative Example 3, Example 2 in which the content of glass beads and the content of glass fiber are the same is higher in Comparative Example 3 than in Comparative Example 3 in which the content of glass beads is large. The difference between the linear expansion coefficient and the linear expansion coefficient of the skin layer was reduced.

Claims (7)

液晶性ポリエステルアミド樹脂と、繊維状無機充填剤とガラスビーズとの混合物を含み、
前記混合物中の前記繊維状無機充填剤と前記ガラスビーズとの比率が、0.9:1.0から1.0:0.9である、射出容量150cm/sec以上で射出成形するための射出成形用液晶性樹脂組成物。
Including a mixture of liquid crystalline polyesteramide resin, fibrous inorganic filler and glass beads,
A ratio of the fibrous inorganic filler to the glass beads in the mixture is 0.9: 1.0 to 1.0: 0.9, for injection molding at an injection capacity of 150 cm 3 / sec or more. Liquid crystalline resin composition for injection molding.
前記繊維状無機充填剤がガラス繊維である請求項1に記載の射出成形用液晶性樹脂組成物。   The liquid crystalline resin composition for injection molding according to claim 1, wherein the fibrous inorganic filler is a glass fiber. 前記繊維状無機充填剤の繊維長が200μm以上である請求項1又は2に記載の射出成形用液晶性樹脂組成物。   The liquid crystalline resin composition for injection molding according to claim 1 or 2, wherein a fiber length of the fibrous inorganic filler is 200 µm or more. 前記液晶性ポリエステルアミド樹脂100質量部に対して、前記混合物を39質量部以上69質量部以下含む請求項1から3のいずれかに記載の射出成形用液晶性樹脂組成物。   The liquid crystalline resin composition for injection molding according to any one of claims 1 to 3, comprising 39 parts by mass or more and 69 parts by mass or less of the mixture with respect to 100 parts by mass of the liquid crystalline polyesteramide resin. 請求項1から4のいずれかに記載の射出成形用液晶性樹脂組成物を射出容量150cm /sec以上で射出成形してなり、30℃における寸法を基準値としたときの240℃における膨張率を線膨張率としたとき、スキン層の線膨張率とコア層の線膨張率との差が、0.7以下である成形体。 5. An expansion coefficient at 240 ° C. when the liquid crystalline resin composition for injection molding according to any one of claims 1 to 4 is injection molded at an injection capacity of 150 cm 3 / sec or more and a dimension at 30 ° C. is used as a reference value. Is a molded body in which the difference between the linear expansion coefficient of the skin layer and the linear expansion coefficient of the core layer is 0.7 or less. 前記液晶性ポリエステルアミド樹脂の融点が320℃以上であり、
ISO75−1,2に準拠する方法で測定した1.8MPaにおける荷重たわみ温度が260℃以上である請求項5に記載の成形体。
The melting point of the liquid crystalline polyesteramide resin is 320 ° C. or higher,
The molded article according to claim 5, wherein a deflection temperature under load at 1.8 MPa measured by a method according to ISO 75-1 or 2 is 260 ° C or higher.
液晶性樹脂組成物中に、繊維状無機充填剤とガラスビーズとを含有させ、
前記繊維状無機充填剤の含有量と、前記ガラスビーズの含有量とを実質的に等しくすることによって、樹脂成形体の耐ブリスター性を向上する方法。
In the liquid crystalline resin composition, a fibrous inorganic filler and glass beads are included,
A method for improving the blister resistance of a resin molded article by making the content of the fibrous inorganic filler and the content of the glass beads substantially the same.
JP2010020314A 2010-02-01 2010-02-01 Liquid crystalline resin composition for injection molding, molded product and method for improving blister resistance Active JP5717347B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010020314A JP5717347B2 (en) 2010-02-01 2010-02-01 Liquid crystalline resin composition for injection molding, molded product and method for improving blister resistance
TW100101069A TW201200546A (en) 2010-02-01 2011-01-12 Liquid crystalline resin composition for injection molding, molded item, and method for improving blister resistance
KR1020110007698A KR101658621B1 (en) 2010-02-01 2011-01-26 Liquid crystalline resin composition for injection molding, molded item, and method for improving blister resistance
SG2011006863A SG173298A1 (en) 2010-02-01 2011-01-31 Liquid crystalline resin composition for injection molding, resin molded article and method for improving blistering resistance
CN201110035415.9A CN102140248B (en) 2010-02-01 2011-02-01 Liquid crystal resin composition, molded object and method for injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020314A JP5717347B2 (en) 2010-02-01 2010-02-01 Liquid crystalline resin composition for injection molding, molded product and method for improving blister resistance

Publications (2)

Publication Number Publication Date
JP2011157472A JP2011157472A (en) 2011-08-18
JP5717347B2 true JP5717347B2 (en) 2015-05-13

Family

ID=44408051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020314A Active JP5717347B2 (en) 2010-02-01 2010-02-01 Liquid crystalline resin composition for injection molding, molded product and method for improving blister resistance

Country Status (5)

Country Link
JP (1) JP5717347B2 (en)
KR (1) KR101658621B1 (en)
CN (1) CN102140248B (en)
SG (1) SG173298A1 (en)
TW (1) TW201200546A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101945912B1 (en) * 2016-04-15 2019-02-08 포리프라스틱 가부시키가이샤 Liquid crystalline resin composition
WO2018074155A1 (en) * 2016-10-21 2018-04-26 ポリプラスチックス株式会社 Composite resin composition, and electronic component formed from said composite resin composition
CN113825792A (en) * 2019-05-14 2021-12-21 巴斯夫欧洲公司 Black polyamide composition with high laser transmission for laser welding applications
JP6796165B1 (en) * 2019-07-09 2020-12-02 ポリプラスチックス株式会社 Molded article, composite molded article, and method for manufacturing the composite molded article
JP6773930B1 (en) * 2019-08-09 2020-10-21 住友化学株式会社 Manufacturing method of liquid crystal polyester resin molded product, liquid crystal polyester resin pellet, and liquid crystal polyester resin pellet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686718B2 (en) * 1995-12-27 2005-08-24 ポリプラスチックス株式会社 Liquid crystalline polymer composition and molded article
JP4118425B2 (en) * 1998-12-18 2008-07-16 ポリプラスチックス株式会社 Liquid crystalline polymer composition for connector and connector
JP3848880B2 (en) 2002-01-25 2006-11-22 新日本石油化学株式会社 Method for producing blister-resistant liquid crystal polyester composition
JP5271479B2 (en) * 2005-12-14 2013-08-21 上野製薬株式会社 Liquid crystalline polyester resin composition
JP5136324B2 (en) * 2007-09-28 2013-02-06 東レ株式会社 Liquid crystalline resin composition and molded article comprising the same

Also Published As

Publication number Publication date
KR101658621B1 (en) 2016-09-22
CN102140248A (en) 2011-08-03
TW201200546A (en) 2012-01-01
JP2011157472A (en) 2011-08-18
CN102140248B (en) 2014-08-20
KR20110089817A (en) 2011-08-09
SG173298A1 (en) 2011-08-29

Similar Documents

Publication Publication Date Title
JP5308800B2 (en) Liquid crystalline polyester resin composition
JPWO2006025538A1 (en) Thermoplastic resin composition
JP6400861B2 (en) Liquid crystalline resin composition
JP5717347B2 (en) Liquid crystalline resin composition for injection molding, molded product and method for improving blister resistance
KR101627243B1 (en) Composite resin composition and flat connector molded from same
JP6837184B2 (en) Liquid crystal resin composition
JP5727229B2 (en) Liquid crystalline resin composition
WO2017110866A1 (en) Composite resin composition and electronic component formed from composite resin composition
EP2206744B1 (en) Liquid crystalline polyester resin composition
WO2005093909A1 (en) Planar connector
JP7038260B2 (en) An electronic component containing a liquid crystal resin composition and a molded product of the liquid crystal resin composition.
JP4932695B2 (en) Liquid crystalline polymer composition
JP5815061B2 (en) Injection molded product and its manufacturing method
JP6189750B2 (en) Totally aromatic polyester, polyester resin composition, and polyester molded article
JP5558738B2 (en) Method for producing molded body and method for suppressing blister generation
JP2006070086A (en) Thermoplastic resin composition
WO2005083007A1 (en) Liquid crystalline resin composition
JP2007119673A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150317

R150 Certificate of patent or registration of utility model

Ref document number: 5717347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250