[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5707043B2 - Pressurization method of liquefied hydrogen container in mobile hydrogen station - Google Patents

Pressurization method of liquefied hydrogen container in mobile hydrogen station Download PDF

Info

Publication number
JP5707043B2
JP5707043B2 JP2010003580A JP2010003580A JP5707043B2 JP 5707043 B2 JP5707043 B2 JP 5707043B2 JP 2010003580 A JP2010003580 A JP 2010003580A JP 2010003580 A JP2010003580 A JP 2010003580A JP 5707043 B2 JP5707043 B2 JP 5707043B2
Authority
JP
Japan
Prior art keywords
liquefied hydrogen
storage tank
hydrogen
liquefied
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010003580A
Other languages
Japanese (ja)
Other versions
JP2011144814A (en
Inventor
泰弘 小路
泰弘 小路
和之 応本
和之 応本
良平 村戸
良平 村戸
勝弘 木下
勝弘 木下
小川 敬
敬 小川
徹 小松平
徹 小松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP2010003580A priority Critical patent/JP5707043B2/en
Publication of JP2011144814A publication Critical patent/JP2011144814A/en
Application granted granted Critical
Publication of JP5707043B2 publication Critical patent/JP5707043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は液化水素コンテナの加圧方法に係り、特に、移動式液化水素コンテナでの加圧方法に関する。   The present invention relates to a method for pressurizing a liquefied hydrogen container, and more particularly to a method for pressurizing a mobile liquefied hydrogen container.

水素エネルギーの利用拡大を図るため、数十MPaという高圧ガスの形で水素を貯蔵する圧縮水素タイプと、液化水素の形で水素を貯蔵する液化水素タイプという2つの異なるタイプで移動式水素ステーションの開発が現在進められている。中でも、液水素を用いるタイプは、圧縮水素を用いるタイプと比較して、1回当たりに移動できる水素量が多く、今後の移動式水素ステーションとしての期待度が高い。 In order to expand the use of hydrogen energy, there are two different types of mobile hydrogen stations: a compressed hydrogen type that stores hydrogen in the form of high-pressure gas of several tens of MPa, and a liquefied hydrogen type that stores hydrogen in the form of liquefied hydrogen. Development is ongoing. Among them, the type using liquid hydrogen, as compared to the type using compressed hydrogen, is large and a high degree of expectation for future mobile hydrogen station hydrogen amount that can be moved in per.

液化水素を用いるタイプの移動式水素ステーションは、前記したように1回当たりに移動させることの出来る水素量が多く、その点において効率が高いのであるが、燃料電池車等へ水素を充填する際には、配管や昇圧ポンプを予め冷却(プレクール)する必要があり充填準備時間が長くかかるうえ、その冷却時に発生する気化ガス(ベントガス)を大気に放出することから、水素の利用効率を下げてしまうという問題がある。   A mobile hydrogen station of the type using liquefied hydrogen has a large amount of hydrogen that can be moved at one time as described above, and is highly efficient in that respect. However, when filling hydrogen into a fuel cell vehicle or the like, In this case, it is necessary to cool (precool) the piping and the booster pump in advance, and it takes a long time for filling, and the vaporized gas (vent gas) generated at the time of cooling is released to the atmosphere. There is a problem of end.

本発明は、このような点に着目してなされたもので、液化水素を使用しての水素ガス充填作業時での充填準備時間を短縮するとともに、水素ガスのロスを減少させることの出来る液化水素コンテナの加圧方法を提供することを目的とする。   The present invention has been made paying attention to such points, and liquefaction that can reduce the hydrogen gas loss while shortening the filling preparation time at the time of filling the hydrogen gas using liquefied hydrogen. It aims at providing the pressurization method of a hydrogen container.

このような点に鑑み本発明は、液化水素貯蔵槽から導出した液化水素を液化水素圧送ポンプ、気化器を経て、水素ガス受入容器に供給する移動式水素ステーションで水素供給をするにあたり、
液化水素圧送ポンプを起動する前に、液化水素貯蔵槽と液化水素圧送ポンプとの間を連通接続する液化水素導出路及び液化水素圧送ポンプを液化水素によって冷却するとともに気化したガスをベントガス排出路、連通路および加圧用供給路を介して液化水素貯蔵槽に返送して液化水素貯蔵槽を昇圧するプレクール工程と、
水素供給の開始時に気化器で気化したガスをバイパス路、ベントガス排出路、連通路および加圧用供給路を介して液化水素貯蔵槽に返送し、液化水素貯蔵槽に返送し液化水素貯蔵槽を急速に加圧する急速加圧工程と、
蓄圧器から加圧用供給路を介して水素ガスを液化水素貯蔵槽に供給して、液化水素貯蔵槽をさらに昇圧させる追い加圧工程と、
により液化水素貯蔵槽内を加圧するように構成した加圧工程を有することを特徴としている。
Such Kan seen present invention in that the liquid hydrogen liquefied hydrogen pressure pump derived from liquefied hydrogen storage tank, through the vaporizer, when the hydrogen supply by the mobile hydrogen station which supplies a hydrogen gas receiving vessel,
Before starting the liquefied hydrogen pressure pump, the liquefied hydrogen lead-out passage that connects the liquefied hydrogen storage tank and the liquefied hydrogen pressure feed pump and the liquefied hydrogen pressure feed pump are cooled by liquefied hydrogen and the vaporized gas is vented to the vent gas discharge passage, A precooling step of returning the pressure to the liquefied hydrogen storage tank by returning to the liquefied hydrogen storage tank via the communication path and the pressurizing supply path;
The gas vaporized in the vaporizer at the start of hydrogen supply is returned to the liquefied hydrogen storage tank via the bypass path, vent gas discharge path, communication path, and pressurization supply path, and then returned to the liquefied hydrogen storage tank. A rapid pressurizing step to pressurize
A supplementary pressurization step of supplying hydrogen gas to the liquefied hydrogen storage tank from the pressure accumulator through the pressurization supply path to further pressurize the liquefied hydrogen storage tank;
It has the pressurization process comprised so that the inside of a liquefied hydrogen storage tank might be pressurized by this.

本発明では、液化水素圧送ポンプを起動する前に、液化水素貯蔵槽と液化水素圧送ポンプとのとの間を連通接続する液化水素導出路及び液化水素加圧ポンプを液化水素によって冷却(プレクール)するとともに、この液化水素圧送ポンプのプレクールにより気化した低温の水素ガスを液化水素貯蔵槽に返送することで、プレクールに使用したガスを有効に使用することができるうえ、液化水素圧送ポンプ及び液化水素圧送ポンプまでの液化水素導出路を短時間に低温にすることができ、プレクールの時間を短縮することができる。また、気化器で気化したガスを液化水素貯蔵槽に返送することで大量の気化ガスを液化水素貯蔵槽に返送することで液化ガス貯蔵槽に供給することができるから、液化水素貯蔵槽を急速に加圧することができる。さらに、蓄圧器から水素ガスを液化水素貯蔵槽に供給することで、急速加圧のみでは液化水貯蔵槽の内圧が不足することがあっても、速やかに必要な圧力まで加圧することができる。 In the present invention, before starting the liquefied hydrogen pump, the liquefied hydrogen lead-out path and the liquefied hydrogen pressurizing pump that communicate between the liquefied hydrogen storage tank and the liquefied hydrogen pump are cooled by liquefied hydrogen (precool). In addition, by returning the low-temperature hydrogen gas vaporized by the precooling of this liquefied hydrogen pump to the liquefied hydrogen storage tank, the gas used for the precool can be used effectively, and the liquefied hydrogen pump and liquefied hydrogen can be used. The liquefied hydrogen lead-out path to the pressure pump can be lowered in a short time, and the precooling time can be shortened. In addition, by returning the gas vaporized in the vaporizer to the liquefied hydrogen storage tank, a large amount of the vaporized gas can be supplied to the liquefied gas storage tank by returning it to the liquefied hydrogen storage tank. Can be pressurized. Furthermore, by supplying hydrogen gas from the pressure accumulator to the liquefied hydrogen storage tank, even if rapid pressurization alone may cause the internal pressure of the liquefied water storage tank to be insufficient, the pressure can be quickly increased to the required pressure.

液化水素コンテナ設備の一例を示す概略図である。It is the schematic which shows an example of a liquefied hydrogen container installation. 液化水素充填時の準備作業1の手順を示すフローチャートである。It is a flowchart which shows the procedure of the preparation work 1 at the time of liquefied hydrogen filling. 液化水素充填時の準備作業2の手順を示すフローチャートである。It is a flowchart which shows the procedure of the preparation work 2 at the time of liquefied hydrogen filling.

この液化水素コンテナ設備は、液化水素を貯蔵している液化水素貯蔵槽(1)と液化水素圧送ポンプ(2)の吸込口とを液化水素導出路(3)で連通接続し、液化水素圧送ポンプ(2)の吐出口から導出した液化水素圧送路(4)を気化器(5)に連通接続し、気化器(5)で気化した水素ガスを流量制御器(6)を介して燃料電池自動車等の水素ガス受入容器(7)に水素ガス供給路(8)で連通接続し、液化水素貯蔵槽(1)に蓄圧器(9)から導出した加圧用ガス供給路(10)が連通接続してある。   In this liquefied hydrogen container facility, the liquefied hydrogen storage tank (1) storing the liquefied hydrogen is connected to the suction port of the liquefied hydrogen pressure pump (2) through the liquefied hydrogen lead-out path (3), and the liquefied hydrogen pressure pump is connected. The liquefied hydrogen pressure feed path (4) led out from the discharge port of (2) is connected to the vaporizer (5), and the hydrogen gas vaporized by the vaporizer (5) is connected to the fuel cell vehicle via the flow rate controller (6). A hydrogen gas supply passage (8) is connected to a hydrogen gas receiving vessel (7) such as a hydrogen gas supply passage (8), and a pressurized gas supply passage (10) led from a pressure accumulator (9) is connected to a liquefied hydrogen storage tank (1). It is.

そして、液化水素圧送路(4)から分岐導出したベントガス排出路(11)に気化器(5)から導出したバイパス路(12)を合流させ、この合流部分より下流側のベントガス排出路(11)と加圧用ガス供給路(10)とを連通路(13)で連通接続してある。   Then, the bypass gas passage (12) led out from the vaporizer (5) is joined to the vent gas discharge passage (11) branched and led out from the liquefied hydrogen pressure feed passage (4), and the vent gas discharge passage (11) downstream from the joining portion. And a pressurizing gas supply path (10) are connected in communication by a communication path (13).

加圧用ガス供給路(10)の連通路(13)との接続個所よりも蓄圧器(9)側には第1流路開閉弁(V1)が、連通路(13)に第2流路開閉弁(V2)が、連通路(13)との接続個所よりも下流側のベントガス排出路(11)に第3流路開閉弁(V3)が、連通路(13)との接続個所よりも上流側のベントガス排出路(11)に第4流路開閉弁(V4)が、バイパス路(12)に第5流路開閉弁(V5)がそれぞれ装着してある。   The first flow path opening / closing valve (V1) is closer to the pressure accumulator (9) side than the connection point with the communication path (13) of the pressurizing gas supply path (10), and the second flow path opening / closing is connected to the communication path (13). The valve (V2) is located downstream of the connection point with the communication path (13) and the third gas passage opening / closing valve (V3) is upstream of the connection point with the communication path (13). A fourth passage opening / closing valve (V4) is attached to the vent gas discharge passage (11) on the side, and a fifth passage opening / closing valve (V5) is attached to the bypass passage (12).

これら各流路開閉弁(V1〜V5)は、液化水素貯蔵槽(1)での気化ガスを放出する初期状態と、液化水素導出路(3)及び液化水素圧送ポンプ(2)を冷却するプレクール段階、液化水素貯蔵槽(1)内を急速に加圧する急速加圧段階、実際に液化水素貯蔵槽(1)内の圧力を充填作業圧力まで加圧する追い加圧段階、実際に液化水素貯蔵槽(1)に貯蔵されている液化水素をガス化して水素ガス受入容器(7)に移送する充填状態、及び待機状態では以下に述べるように切換制御される。   Each of these flow path opening / closing valves (V1 to V5) has an initial state for releasing the vaporized gas in the liquefied hydrogen storage tank (1), and a precool for cooling the liquefied hydrogen lead-out path (3) and the liquefied hydrogen pressure pump (2). Stage, rapid pressurization stage to rapidly pressurize the inside of the liquefied hydrogen storage tank (1), additional pressure pressurization stage to actually pressurize the pressure in the liquefied hydrogen storage tank (1) to the filling work pressure, actually the liquefied hydrogen storage tank In the filling state in which the liquefied hydrogen stored in (1) is gasified and transferred to the hydrogen gas receiving container (7) and in the standby state, switching control is performed as described below.

初期状態では、第2流路開閉弁(V2)と第3流路開閉弁(V3)とが開弁し、他の流路開閉弁(V1)(V4)(V5)は閉じている。したがって、液化水素貯蔵槽(1)の内部の気相部分がベントガス排出路(11)を介して外部に連通することから、液化水素貯蔵槽(1)の気化ガス(ボイルオフガス:BOG)は放出されている。   In the initial state, the second flow path opening / closing valve (V2) and the third flow path opening / closing valve (V3) are opened, and the other flow path opening / closing valves (V1), (V4), (V5) are closed. Therefore, the gas phase inside the liquefied hydrogen storage tank (1) communicates with the outside via the vent gas discharge passage (11), so the vaporized gas (boil-off gas: BOG) in the liquefied hydrogen storage tank (1) is released. Has been.

プレクール段階では、第2流路開閉弁(V2)と第4流路開閉弁(V4)とが開弁し、他の流路開閉弁(V1)(V3)(V5)は閉じている。したがって、この状態では、液化水素導出路(3)及び液化水素圧送ポンプ(2)は液化水素によって冷却され、この液化水素導出路(3)及び液化水素圧送ポンプ(2)で気化したガスはベントガス排出路(11)、連通路(13)、加圧用ガス供給路(10)を通って液化水素貯蔵槽(1)に返送され、液化水素貯蔵槽(1)内を昇圧することになる。   In the precool stage, the second flow path opening / closing valve (V2) and the fourth flow path opening / closing valve (V4) are opened, and the other flow path opening / closing valves (V1, V3, V5) are closed. Therefore, in this state, the liquefied hydrogen lead-out path (3) and the liquefied hydrogen pressure feed pump (2) are cooled by liquefied hydrogen, and the gas vaporized in the liquefied hydrogen lead-out path (3) and the liquefied hydrogen pressure feed pump (2) is vent gas. The liquid is returned to the liquefied hydrogen storage tank (1) through the discharge path (11), the communication path (13), and the pressurizing gas supply path (10), and the pressure in the liquefied hydrogen storage tank (1) is increased.

急速加圧段階では、第2流路開閉弁(V2)と第5流路開閉弁(V5)とが開弁し、他の流路開閉弁(V1)(V3)(V4)は閉じている。したがって、この状態では、気化器(5)で気化したガスは、バイパス路(12)、ベントガス排出路(11)、連通路(13)、加圧用ガス供給路(10)を通って液化水素貯蔵槽(1)に返送され、液化水素貯蔵槽(1)内を急速に加圧することになる。   In the rapid pressurization stage, the second flow path opening / closing valve (V2) and the fifth flow path opening / closing valve (V5) are opened, and the other flow path opening / closing valves (V1, V3, V4) are closed. . Therefore, in this state, the gas vaporized by the vaporizer (5) is stored in the liquefied hydrogen through the bypass passage (12), the vent gas discharge passage (11), the communication passage (13), and the pressurization gas supply passage (10). Returned to the tank (1), the inside of the liquefied hydrogen storage tank (1) is rapidly pressurized.

追い加圧段階では、第1流路開閉弁(V1)と第3流路開閉弁(V3)とが開弁し、他の流路開閉弁(V2)(V4)(V5)は閉じている。したがって、この状態では、蓄圧器(9)から水素ガスを液化水素貯蔵槽(1)に供給して、液化水素貯蔵槽(1)内をさらに昇圧させることになる。   In the additional pressurization stage, the first flow path opening / closing valve (V1) and the third flow path opening / closing valve (V3) are opened, and the other flow path opening / closing valves (V2, V4, V5) are closed. . Therefore, in this state, hydrogen gas is supplied from the pressure accumulator (9) to the liquefied hydrogen storage tank (1) to further increase the pressure in the liquefied hydrogen storage tank (1).

液化水素貯蔵槽(1)から液化水素圧送ポンプ(2)、気化器(5)、流量制御器(6)を介して水素ガス受入容器(7)に水素ガスを充填する充填時には、すべての流路開閉弁(V1〜V5)は閉じている。したがって、液化水素圧送ポンプ(2)により送出された液化水素は、気化器(5)で熱交換して気化し、流量制御器(6)で流量を制御されて水素ガス受入容器(7)に供給されることになる。 When filling hydrogen gas into the hydrogen gas receiving container (7) from the liquefied hydrogen storage tank (1) through the liquefied hydrogen pressure pump (2), vaporizer (5), and flow rate controller (6), way shut valve (V1~V 5) is closed. Therefore, the liquefied hydrogen delivered by the liquefied hydrogen pressure pump (2) is vaporized by exchanging heat in the vaporizer (5), and the flow rate is controlled by the flow rate controller (6) to the hydrogen gas receiving container (7). Will be supplied.

また、待機時には、プレクール段階と同様、第2流路開閉弁(V2)と第4流路開閉弁(V4)とが開弁し、他の流路開閉弁(V1)(V3)(V5)は閉じている。したがって、この状態では、液化水素導出路(3)及び液化水素圧送ポンプ(2)は液化水素によって冷却され、低温状態を維持することになる。   During standby, as in the precooling stage, the second flow path opening / closing valve (V2) and the fourth flow path opening / closing valve (V4) are opened, and the other flow path opening / closing valves (V1), (V3), (V5). Is closed. Therefore, in this state, the liquefied hydrogen lead-out path (3) and the liquefied hydrogen pressure feed pump (2) are cooled by the liquefied hydrogen and maintained at a low temperature.

上記の各段階での各流路開閉弁(V1〜V5)の開閉状態を表1に示す。

Figure 0005707043
Table 1 shows the open / close states of the flow path on-off valves (V1 to V5) at the above-described stages.
Figure 0005707043

次に、液化水素充填時の準備作業1の手順を図2を参照しながら説明する。
初期状態においては、液化水素貯蔵槽(1)の内圧(P)と、液化水素圧送ポンプ(2)の温度(T)を測定する(ステップS1)。
Next, the procedure of the preparatory work 1 at the time of filling liquefied hydrogen will be described with reference to FIG.
In the initial state, the internal pressure (P) of the liquefied hydrogen storage tank (1) and the temperature (T) of the liquefied hydrogen pressure pump (2) are measured (step S1).

プレクール段階では、第2流路開閉弁(V2)と第4流路開閉弁(V4)とを開弁するとともに、他の流路開閉弁(V1)(V3)(V5)を閉弁し(ステップS2)、液化水素圧送ポンプ(2)の温度(T)を測定し、検出した液化水素圧送ポンプ(2)の温度(T)が予め設定した温度(Ts)、例えば−100℃よりも低い温度となるまでその状態を維持する(ステップS3)。   In the pre-cooling stage, the second flow path opening / closing valve (V2) and the fourth flow path opening / closing valve (V4) are opened, and the other flow path opening / closing valves (V1, V3, V5) are closed ( Step S2), the temperature (T) of the liquefied hydrogen pressure pump (2) is measured, and the detected temperature (T) of the liquefied hydrogen pressure pump (2) is lower than a preset temperature (Ts), for example, −100 ° C. This state is maintained until the temperature is reached (step S3).

液化水素圧送ポンプ(2)の温度(T)が予め設定した温度(Ts)よりも低くなると、第4流路開閉弁(V4)を閉弁するとともに、第5流路開閉弁(V5)を開弁して(ステップS4)、急速加圧段階に入る。   When the temperature (T) of the liquefied hydrogen pressure pump (2) becomes lower than the preset temperature (Ts), the fourth flow path opening / closing valve (V4) is closed and the fifth flow path opening / closing valve (V5) is opened. The valve is opened (step S4) and the rapid pressurization stage is entered.

上記ではプレクール段階の終了時期を検出した温度(T)が設定温度(Ts)以下になるまでとしたが、より早く次の急速段階へ移行するために、設定温度(Ts)の温度設定を上げたり、プレクール段階の時間を設定(例えば3分間)したりするようにしてもよい。また、プレクール段階を経ずに直接急速加圧段階へ移行するようにしてもよい。   In the above, the temperature (T) at which the end time of the precool stage is detected is set to be lower than the set temperature (Ts). However, in order to shift to the next rapid stage earlier, the temperature setting of the set temperature (Ts) is increased. Alternatively, the precool stage time may be set (for example, 3 minutes). Moreover, you may make it transfer to a rapid pressurization stage directly, without passing through a precool stage.

急速加圧段階では、液化水素貯蔵槽(1)の内圧(P)を測定し、検出した液化水素貯蔵槽(1)の内圧(P)が予め設定した圧力(Ps)、例えば0.5MPa以上の圧力になるまでその状態を維持する(ステップS5)。   In the rapid pressurization stage, the internal pressure (P) of the liquefied hydrogen storage tank (1) is measured, and the detected internal pressure (P) of the liquefied hydrogen storage tank (1) is a preset pressure (Ps), for example, 0.5 MPa or more. This state is maintained until the pressure becomes (step S5).

液化水素貯蔵槽(1)の内圧(P)が予め設定した圧力(Ps)以上になると、第1流路開閉弁(V1)を開弁するとともに、第2流路開閉弁(V2)と第5流路開閉弁(V5)を閉弁して(ステップS6)、追い加圧段階に入る。追い加圧段階では、液化水素貯蔵槽(1)の内圧(P)を測定し、検出した液化水素貯蔵槽(1)の内圧(P)が予め設定した充填時設定圧力(Pe)、例えば0.6MPa以上の圧力になるまでその状態を維持する(ステップS7)。   When the internal pressure (P) of the liquefied hydrogen storage tank (1) exceeds a preset pressure (Ps), the first flow path opening / closing valve (V1) is opened and the second flow path opening / closing valve (V2) The five-path opening / closing valve (V5) is closed (step S6), and the additional pressurization stage is entered. In the additional pressurization stage, the internal pressure (P) of the liquefied hydrogen storage tank (1) is measured, and the detected internal pressure (P) of the liquefied hydrogen storage tank (1) is set to a preset set pressure (Pe), for example, 0 This state is maintained until a pressure of .6 MPa or higher is reached (step S7).

液化水素貯蔵槽(1)の内圧(P)が予め設定した圧力(Pe)以上になると、すべての流路開閉弁(V1〜V5)を閉弁して、充填状態に入る。   When the internal pressure (P) of the liquefied hydrogen storage tank (1) becomes equal to or higher than a preset pressure (Pe), all the flow path opening / closing valves (V1 to V5) are closed to enter the filling state.

加えて、液化水素コンテナ設備と同じくして、異なる液化水素充填時の準備作業2の手順について、図3を参照しながら説明する。
本作業手順2では、プレクール段階・追い加圧段階における各バルブの開閉は前述の作業手順1と同様であるが、急速加圧段階に留まる時間(t)を測定するステップ(ステップS8)が新たに設けられている。そして、急速加圧段階に留まる時間(t)があらかじめ設定した時間(ts)、例えば3分間以内の時間を越えた場合には、前述の作業手順1と同様に、液化水素貯蔵槽(1)の内圧(P)が予め設定した圧力(Pe)になるまでその状態を維持する(ステップS7)。
In addition, as in the case of the liquefied hydrogen container facility, the procedure of the preparatory work 2 at the time of different liquefied hydrogen filling will be described with reference to FIG.
In this work procedure 2, the opening and closing of each valve in the pre-cooling stage and the additional pressurization stage is the same as in the above-described work procedure 1, but a step (step S8) for measuring the time (t) remaining in the rapid pressurization stage is newly added. Is provided. When the time (t) remaining in the rapid pressurization stage exceeds a preset time (ts), for example, a time within 3 minutes, the liquefied hydrogen storage tank (1) as in the above-described work procedure 1 This state is maintained until the internal pressure (P) reaches a preset pressure (Pe) (step S7).

なお、液化水素貯蔵槽(1)から水素ガス受入容器(7)に水素ガスを充填する充填作業が終わると、第2流路開閉弁(V2)と第4流路開閉弁(V4)を開弁したプレクール段階と同様の状態で待機姿勢に入る。この待機姿勢では、液化水素導出路(3)と液化水素圧送ポンプ(2)とを冷たい状態に維持しておくことができる。   When the filling operation of filling hydrogen gas from the liquefied hydrogen storage tank (1) into the hydrogen gas receiving container (7) is completed, the second flow path opening / closing valve (V2) and the fourth flow path opening / closing valve (V4) are opened. The stand-by posture is entered in the same state as the precool stage. In this standby posture, the liquefied hydrogen lead-out path (3) and the liquefied hydrogen pressure feed pump (2) can be kept cold.

さらに、気化器(5)からの気化ガスを液化水素貯蔵槽(1)に返送した場合には、水素ガス受入容器(7)に水素ガスを充填することで低下する液化水素貯蔵槽(1)での内圧減少を補充するとともに、液化水素の供給系路の温度上昇を抑制することができ、充填準備時間の短縮を図ることができるうえ、水素ガスのロス(放出量)の減少を図ることができる。   Furthermore, when the vaporized gas from the vaporizer (5) is returned to the liquefied hydrogen storage tank (1), the liquefied hydrogen storage tank (1) is lowered by filling the hydrogen gas receiving container (7) with hydrogen gas. In addition to supplementing the decrease in internal pressure at the tank, the temperature rise in the liquefied hydrogen supply system can be suppressed, the preparation time for filling can be shortened, and the loss (release amount) of hydrogen gas can be reduced. Can do.

本発明は、燃料電池自動車等の水素ガス受入容器への水素充填に使用する移動式液化水素コンテナの加圧に利用することができる。   The present invention can be used for pressurization of a mobile liquefied hydrogen container used for filling hydrogen into a hydrogen gas receiving container such as a fuel cell vehicle.

1…液化水素貯蔵槽、2…液化水素圧送ポンプ、3…液化水素導出路、4…液化水素圧送路、5…気化器、7…水素ガス受入容器、10…加圧ガス供給路、11…ベントガス排出路、12…バイパス路。   DESCRIPTION OF SYMBOLS 1 ... Liquefied hydrogen storage tank, 2 ... Liquefied hydrogen pumping pump, 3 ... Liquefied hydrogen lead-out path, 4 ... Liquefied hydrogen pressure feeding path, 5 ... Vaporizer, 7 ... Hydrogen gas receiving container, 10 ... Pressurized gas supply path, 11 ... Vent gas discharge path, 12 ... bypass path.

Claims (1)

液化水素貯蔵槽(1)から導出した液化水素を液化水素圧送ポンプ(2)、気化器(5)を経て、水素ガス受入容器(7)に供給する移動式水素ステーションでの水素供給方法であって、
液化水素圧送ポンプ(2)を起動する前に、液化水素貯蔵槽(1)と液化水素圧送ポンプ(2)との間を連通接続する液化水素導出路(3)及び液化水素圧送ポンプ(2)を液化水素によって冷却するとともに気化したガスをベントガス排出路(11)、連通路(13)および加圧用供給路(10)を介して液化水素貯蔵槽(1)に返送して液化水素貯蔵槽(1)を昇圧するプレクール工程と、
水素供給の開始時に気化器(5)で気化したガスをバイパス路(12)、ベントガス排出路(11)、連通路(13)および加圧用供給路(10)を介して液化水素貯蔵槽(1)に返送し、液化水素貯蔵槽(1)に返送し液化水素貯蔵槽(1)を急速に加圧する急速加圧工程と、
蓄圧器(9)から加圧用供給路(10)を介して水素ガスを液化水素貯蔵槽(1)に供給して、液化水素貯蔵槽(1)をさらに昇圧させる追い加圧工程と、
により液化水素貯蔵槽(1)内を加圧するように構成した加圧工程と、
を有することを特徴とする移動式水素ステーションでの液化水素コンテナの加圧方法。
This is a hydrogen supply method in a mobile hydrogen station that supplies liquefied hydrogen derived from the liquefied hydrogen storage tank (1) to the hydrogen gas receiving vessel (7) through the liquefied hydrogen pressure pump (2) and vaporizer (5). And
Before starting the liquefied hydrogen pressure pump (2), the liquefied hydrogen lead-out path (3) and the liquefied hydrogen pressure feed pump (2) for connecting the liquefied hydrogen storage tank (1) and the liquefied hydrogen pressure pump (2) in communication with each other Is cooled by liquefied hydrogen and the vaporized gas is returned to the liquefied hydrogen storage tank (1) via the vent gas discharge path (11), the communication path (13) and the pressurization supply path (10) to return to the liquefied hydrogen storage tank ( A pre-cooling step for boosting 1);
The gas vaporized in the vaporizer (5) at the start of hydrogen supply is stored in the liquefied hydrogen storage tank (1) via the bypass passage (12), vent gas discharge passage (11), communication passage (13), and pressurization supply passage (10). A rapid pressurizing step of returning to the liquefied hydrogen storage tank (1) and rapidly pressurizing the liquefied hydrogen storage tank (1);
A supplementary pressurizing step of supplying hydrogen gas to the liquefied hydrogen storage tank (1) from the pressure accumulator (9) via the pressurization supply path (10) to further pressurize the liquefied hydrogen storage tank (1);
A pressurizing step configured to pressurize the inside of the liquefied hydrogen storage tank (1) by
A method for pressurizing a liquefied hydrogen container in a mobile hydrogen station.
JP2010003580A 2010-01-12 2010-01-12 Pressurization method of liquefied hydrogen container in mobile hydrogen station Active JP5707043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010003580A JP5707043B2 (en) 2010-01-12 2010-01-12 Pressurization method of liquefied hydrogen container in mobile hydrogen station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003580A JP5707043B2 (en) 2010-01-12 2010-01-12 Pressurization method of liquefied hydrogen container in mobile hydrogen station

Publications (2)

Publication Number Publication Date
JP2011144814A JP2011144814A (en) 2011-07-28
JP5707043B2 true JP5707043B2 (en) 2015-04-22

Family

ID=44459851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003580A Active JP5707043B2 (en) 2010-01-12 2010-01-12 Pressurization method of liquefied hydrogen container in mobile hydrogen station

Country Status (1)

Country Link
JP (1) JP5707043B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004270A1 (en) * 2022-06-29 2024-01-04 三菱重工業株式会社 Hydrogen station and refrigerator system for hydrogen station

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928109A (en) * 2020-09-01 2020-11-13 中国海洋石油集团有限公司 Boil-off gas recovery system of hydrogenation station
CN113085980B (en) * 2021-04-23 2024-03-15 吴莉 Transfer device capable of effectively preventing collision for precise instrument

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687776A (en) * 1992-12-07 1997-11-18 Chicago Bridge & Iron Technical Services Company Method and apparatus for fueling vehicles with liquefied cryogenic fuel
JP2003148695A (en) * 2001-11-12 2003-05-21 Toho Gas Co Ltd Liquefied natural gas
JP2005226750A (en) * 2004-02-13 2005-08-25 Iwatani Internatl Corp Liquefied gas feeding apparatus and method of operating the same
JP2005299819A (en) * 2004-04-13 2005-10-27 Iwatani Internatl Corp Low-temperature liquefied gas filling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004270A1 (en) * 2022-06-29 2024-01-04 三菱重工業株式会社 Hydrogen station and refrigerator system for hydrogen station

Also Published As

Publication number Publication date
JP2011144814A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP7387394B2 (en) Methods and equipment for storing and distributing liquefied hydrogen
CN108561749B (en) Mixed filling system applied to liquid hydrogen hydrogenation station
US11953157B2 (en) Method and facility for storing and distributing liquefied hydrogen
JP6567333B2 (en) Apparatus and method for supplying fluid
JP6114676B2 (en) Hydrogen station
CN104456071B (en) A kind of LNG Liquefied natural gas tank car discharge mechanism and method
CN113531388A (en) System and method for recycling cold energy of liquid hydrogen refueling station
JP2013231457A (en) Hydrogen gas filling method
JP5707043B2 (en) Pressurization method of liquefied hydrogen container in mobile hydrogen station
FI3640128T3 (en) Re-liquefaction system of evaporative gas and ship
CN105179930A (en) Liquefied natural gas tank car unloading device of liquefied natural gas and compressed natural gas cooperative station and application
CN113983352A (en) Hydrogen cooling system of hydrogenation and liquefied natural gas combined station
CN103343881A (en) Technology of BOG recovery and device thereof
CN114109659A (en) LPG fuel pipeline control method
CN108953988B (en) Liquid hydrogen vaporization and self-pressurization device
KR20200015907A (en) Filling stations and methods for recharging pressurized gas tanks
CN216480236U (en) Hydrogen cooling system of hydrogenation and liquefied natural gas combined station
CN104165266A (en) Filling system of pressure differential liquefied natural gas filling station and method thereof
CN201651755U (en) Liquid argon conveyer
CN209356323U (en) A kind of test device of pressure vessel resistance to pressure
CN217208898U (en) Control system of hydrogen production and hydrogenation integrated station
CN117346577A (en) Water heat storage and release system, voltage stabilizing device and voltage stabilizing method thereof
JP4121899B2 (en) Hydrogen filling method and hydrogen filling apparatus for pressure hydrogen tank
CN210319389U (en) LNG device of unloading
CN205137064U (en) Liquefied natural gas tank wagon that liquefied natural gas and CNG built station jointly device of unloading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140715

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141010

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5707043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250