[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5703997B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5703997B2
JP5703997B2 JP2011144760A JP2011144760A JP5703997B2 JP 5703997 B2 JP5703997 B2 JP 5703997B2 JP 2011144760 A JP2011144760 A JP 2011144760A JP 2011144760 A JP2011144760 A JP 2011144760A JP 5703997 B2 JP5703997 B2 JP 5703997B2
Authority
JP
Japan
Prior art keywords
light
light emitting
sealing member
emitting device
phosphor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011144760A
Other languages
Japanese (ja)
Other versions
JP2013012607A (en
Inventor
末広 好伸
好伸 末広
伸介 中城
伸介 中城
浩二 田角
浩二 田角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2011144760A priority Critical patent/JP5703997B2/en
Publication of JP2013012607A publication Critical patent/JP2013012607A/en
Application granted granted Critical
Publication of JP5703997B2 publication Critical patent/JP5703997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、例えばガラスからなる封止部材によって封止された発光素子を備えた発光装置に関する。   The present invention relates to a light emitting device including a light emitting element sealed by a sealing member made of glass, for example.

周知のように、発光ダイオード(Light Emitting Diode:LED)素子から発せられる光と、この光で蛍光体が励起されて発する波長変換光との混合により白色光を得ることができる発光装置が実用化されている。   As is well known, a light emitting device capable of obtaining white light by mixing light emitted from a light emitting diode (LED) element and wavelength-converted light emitted by exciting a phosphor with this light is put into practical use. Has been.

従来、この種の発光装置には、蛍光体含有のガラスからなる封止部材と、この封止部材によって封止されたLED素子とを備えたものが知られている(例えば特許文献1参照)。   2. Description of the Related Art Conventionally, a light emitting device of this type includes a sealing member made of phosphor-containing glass and an LED element sealed with the sealing member (see, for example, Patent Document 1). .

このような発光装置においては、例えばLED素子として青色光を発する青色LED素子であるとともに、蛍光体として青色光で励起されて黄色光を発する黄色蛍光体であると、LED素子から発せられる青色光とこの青色光で蛍光体が励起されて発する黄色の波長変換光との混合により白色光が得られる。   In such a light emitting device, for example, a blue LED element that emits blue light as an LED element and a yellow phosphor that emits yellow light when excited by blue light as a phosphor emits blue light emitted from the LED element. And white light can be obtained by mixing with the yellow wavelength-converted light emitted when the phosphor is excited by the blue light.

特開2008−71837号公報JP 2008-71837 A

しかしながら、特許文献1に示す発光装置によると、封止部材に含有される蛍光体の容積濃度が高く、このためLED素子から発せられる多くの光が蛍光体での反射によってLED素子に戻り、外部に出射される光が少なくなり、光取出効率が低下するという問題があった。   However, according to the light emitting device shown in Patent Document 1, the volume concentration of the phosphor contained in the sealing member is high, so that a lot of light emitted from the LED element returns to the LED element by reflection on the phosphor, and the external There is a problem that the amount of light emitted from the light source decreases and the light extraction efficiency decreases.

従って、本発明の目的は、光取出効率を高めることができる発光装置を提供することにある。   Accordingly, an object of the present invention is to provide a light emitting device capable of increasing the light extraction efficiency.

本発明は、上記目的を達成するため、(1)〜()の発光装置を提供する。 In order to achieve the above object, the present invention provides the light emitting devices (1) to ( 8 ).

(1)素子搭載基板と、前記素子搭載基板に搭載された発光素子と、前記発光素子を封止する柱形状の封止部材と、前記封止部材の前記発光素子の発光面に対向した面の外部に配置され、前記発光素子から発せられる光を受けて励起されることにより波長変換光を発する外部領域側の蛍光体層と、前記外部領域側の蛍光体層との間で前記封止部材の一部を介して位置し、前記封止部材中に蛍光体が存在しない領域を有するようにして形成され、前記発光素子から発せられる光を受けることにより波長変換光を発する内部領域側の蛍光体層とを有する発光部と、前記発光部を収容する収容孔を有する導光部と、前記発光部を実装する実装部とを備え、前記収容孔は、前記導光板の前記実装部側の端面から他方側の端面に延び、前記導光板の厚さ方向に略平行な内面を有するとともに前記導光板の前記他方側の端面に開口部を有し、前記発光部は、前記導光部の厚さ方向に平行な光軸を有し、前記収容孔の前記内面側に光を放射し、前記封止部材は、1.6以上の屈折率を有し、前記外部領域側の蛍光体層は、前記封止部材の1.6以上の屈折率より小さい屈折率の母材中に前記波長変換光を発する蛍光体を分散させた構成を有する発光装置。 (1) An element mounting substrate, a light emitting element mounted on the element mounting substrate, a columnar sealing member for sealing the light emitting element, and a surface of the sealing member facing the light emitting surface of the light emitting element Between the phosphor layer on the outer region side that emits wavelength-converted light by being excited by receiving light emitted from the light emitting element and the phosphor layer on the outer region side It is located through a part of the member and is formed so as to have a region where the phosphor is not present in the sealing member, and on the inner region side that emits wavelength-converted light by receiving light emitted from the light emitting element. A light emitting portion having a phosphor layer; a light guide portion having an accommodation hole for accommodating the light emission portion; and a mounting portion for mounting the light emitting portion, wherein the accommodation hole is on the mounting portion side of the light guide plate The thickness of the light guide plate extends from the end face to the other end face. The inner surface of the light guide plate and an opening on the other end surface of the light guide plate, the light emitting portion has an optical axis parallel to the thickness direction of the light guide portion, and the receiving hole The inner surface of the sealing member has a refractive index of 1.6 or more, and the phosphor layer on the outer region side has a refractive index of 1.6 or more of the sealing member. A light-emitting device having a configuration in which a phosphor that emits the wavelength-converted light is dispersed in a base material having a small refractive index.

)上記()に記載の発光装置において、前記導光部は、前記実装部側の端面に対する前記収容孔の前記内面の角度をαとし、屈折率をn としたとき、90°−sin−1[{sin(90°−α)}/n]+α≧sin−1(1/n
の式を満たす発光装置。
( 2 ) In the light-emitting device according to ( 1 ) above, the light guide portion is 90 ° when the angle of the inner surface of the accommodation hole with respect to the end surface on the mounting portion side is α and the refractive index is n 1 . −sin −1 [{sin (90 ° −α)} / n 1 ] + α ≧ sin −1 (1 / n 1 )
A light-emitting device that satisfies the formula:

)上記(1)又は2)に記載の発光装置において、前記発光部は、前記外部領域側の蛍光体層の外側に光反射層が配置されている。 ( 3 ) In the light emitting device according to the above (1) or ( 2) , a light reflecting layer is disposed outside the phosphor layer on the outer region side in the light emitting unit.

)上記(1)乃至(3)のいずれかに記載の発光装置において、前記発光部は、前記封止部材が光拡散性を有しない透明材料によって形成されている。 The light emitting device according to any one of (4) above (1) to (3), wherein the light emitting portion, the sealing member that is formed of a transparent material that does not have a light diffusing property.

(5)上記(1)に記載の発光装置において、前記発光部は、前記封止部材の側面の発光面積が前記封止部材の前記他方側の端面の面積2倍以上である。 (5) In the light emitting device according to (1), the light emitting unit has a light emitting area on a side surface of the sealing member that is twice or more than an area of the end surface on the other side of the sealing member.

)上記()に記載の発光装置において、前記発光部は、前記素子搭載基板に形成された素子側の蛍光体層が含まれている。 In the light-emitting device according to (6) above (1), wherein the emitting portion includes a phosphor layer before Symbol element mounting substrate which is formed on the element side.

)上記(1)に記載の発光装置において、前記導光部は、前記収容孔の前記開口部が透明部材からなるカバー部によって閉塞された構成を有する。 ( 7 ) In the light emitting device according to (1), the light guide unit has a configuration in which the opening of the accommodation hole is closed by a cover unit made of a transparent member.

)上記(1)記載の発光装置において、前記導光部は、前記収容孔の前記開口部が透明部材からなるカバー部によって閉塞され、前記透明部材の前記収容孔の対応する位置の前記発光部側に、前記外部領域側の蛍光体層の発光色と異なる、カバー側の蛍光体層が形成された構成を有する。 ( 8 ) In the light emitting device according to the above (1), the light guide portion is configured such that the opening portion of the accommodation hole is closed by a cover portion made of a transparent member, and the light guide portion is located at a position corresponding to the accommodation hole of the transparent member. A phosphor layer on the cover side, which is different from the emission color of the phosphor layer on the external region side, is formed on the light emitting unit side.

)上記(1),()又は()に記載の発光装置において、前記導光部は、前記実装部側に光反射部が配置されている。 ( 9 ) In the light emitting device according to (1), ( 7 ), or ( 8 ), the light guide section includes a light reflection section disposed on the mounting section side.

本発明によれば、光取出効率を高めることができる。   According to the present invention, the light extraction efficiency can be increased.

本発明の第1の実施の形態に係る発光装置の外観を示す斜視図。1 is a perspective view showing an appearance of a light emitting device according to a first embodiment of the invention. 本発明の第1の実施の形態に係る発光装置を示す断面図。1 is a cross-sectional view showing a light emitting device according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る発光装置における発光部の実装状態を示す断面図。Sectional drawing which shows the mounting state of the light emission part in the light-emitting device which concerns on the 1st Embodiment of this invention. (a)及び(b)は、本発明の第1の実施の形態に係る発光装置における発光部の回路パターンを説明するために模式化して示す下面図。(a)は表面パターンを、また(b)は裏面パターンをそれぞれ示す。(A) And (b) is a bottom view which shows typically in order to demonstrate the circuit pattern of the light emission part in the light-emitting device which concerns on the 1st Embodiment of this invention. (A) shows a front surface pattern, and (b) shows a back surface pattern. 本発明の第1の実施の形態に係る発光装置の発光素子を示す断面図。1 is a cross-sectional view showing a light emitting element of a light emitting device according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る発光装置における発光部から光を発した場合のその進行を説明するために模式化して示す平面図。(a)は本実施例を、また(b)及び(c)は比較例をそれぞれ示す。FIG. 3 is a plan view schematically illustrating the progress when light is emitted from a light emitting unit in the light emitting device according to the first embodiment of the present invention. (A) shows this example, and (b) and (c) show comparative examples, respectively. (a)〜(d)は、本発明の第1の実施の形態に係る発光装置における発光部の製造方法を説明するために示す断面図。(a)は封止前ガラスの形成工程を、(b)は外部領域側の蛍光体層の形成工程を、(c)は素子搭載基板の形成工程を、また(d)素子側の蛍光体層の形成工程をそれぞれ示す。(A)-(d) is sectional drawing shown in order to demonstrate the manufacturing method of the light emission part in the light-emitting device which concerns on the 1st Embodiment of this invention. (A) shows the pre-sealing glass forming step, (b) the external region side phosphor layer forming step, (c) the device mounting substrate forming step, and (d) the device side phosphor. The formation process of a layer is shown, respectively. (e)〜(h)は、本発明の第1の実施の形態に係る発光装置における発光部の製造方法を説明するために示す断面図。(e)はLED素子の搭載工程を、(f)及び(g)はLED素子の封止工程を、また(h)は発光部集合体の切断工程をそれぞれ示す。(E)-(h) is sectional drawing shown in order to demonstrate the manufacturing method of the light emission part in the light-emitting device which concerns on the 1st Embodiment of this invention. (E) shows the LED element mounting process, (f) and (g) show the LED element sealing process, and (h) show the light emitting part assembly cutting process. 本発明の第1の実施の形態に係る発光装置における発光部の変形例を示す断面図。Sectional drawing which shows the modification of the light emission part in the light-emitting device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る発光装置における発光部の他の配置例(1)を示す平面図。The top view which shows the other arrangement example (1) of the light emission part in the light-emitting device which concerns on the 1st Embodiment of this invention. (a)〜(c)は、本発明の第1の実施の形態に係る発光装置における発光部の他の配置例(2)を示す平面図とB−B断面図とC−C断面図。(a)は平面図を、(b)はB−B断面図を、また(c)はC−C断面図をそれぞれ示す。(A)-(c) is a top view, BB sectional drawing, and CC sectional drawing which show the other example of arrangement | positioning (2) of the light emission part in the light-emitting device which concerns on the 1st Embodiment of this invention. (A) is a plan view, (b) is a BB cross-sectional view, and (c) is a CC cross-sectional view. (a)及び(b)は、本発明の第1の実施の形態に係る発光装置における発光部の他の配置例(3)を示す平面図とE−E断面図。(a)は平面図を、また(b)はE−E断面図をそれぞれ示す。(A) And (b) is the top view and EE sectional drawing which show the other example of arrangement | positioning (3) of the light emission part in the light-emitting device which concerns on the 1st Embodiment of this invention. (A) shows a plan view, and (b) shows an EE cross-sectional view. 本発明の第1の実施の形態に係る発光装置における発光部の他の配置例(4)を示す平面図。The top view which shows the other example of arrangement | positioning (4) of the light emission part in the light-emitting device which concerns on the 1st Embodiment of this invention. (a)及び(b)は、図11の発光装置における実装基板を示す平面図と断面図。(a)は平面図を、また(b)は断面図をそれぞれ示す。(A) And (b) is the top view and sectional drawing which show the mounting board | substrate in the light-emitting device of FIG. (A) is a plan view, and (b) is a cross-sectional view. 本発明の第1の実施の形態に係る発光装置に放熱機能を備えた場合について説明するために示す断面図。Sectional drawing shown in order to demonstrate the case where the light-emitting device which concerns on the 1st Embodiment of this invention is provided with the thermal radiation function. (a)〜(c)は、図14の放熱パターン層を説明するために示す平面図。(a)及び(b)は放熱パターン層の形状を、また(c)は素子搭載基板をそれぞれ示す。(A)-(c) is a top view shown in order to demonstrate the thermal radiation pattern layer of FIG. (A) And (b) shows the shape of a thermal radiation pattern layer, (c) shows an element mounting substrate, respectively. 本発明の第1の実施の形態に係る発光装置における導光部の変形例を説明するために示す断面図。Sectional drawing shown in order to demonstrate the modification of the light guide part in the light-emitting device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る発光装置を示す断面図。Sectional drawing which shows the light-emitting device which concerns on the 2nd Embodiment of this invention. (a)及び(b)は、本実施例及び他の実施例における図17のF−F断面図。(a)は本実施例を、また(b)は他の実施例をそれぞれ示す。(A) And (b) is FF sectional drawing of FIG. 17 in a present Example and another Example. (A) shows this embodiment, and (b) shows another embodiment. 本発明の第2の実施の形態に係る発光装置の変形例を示す断面図。Sectional drawing which shows the modification of the light-emitting device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る発光装置を示す断面図。Sectional drawing which shows the light-emitting device which concerns on the 3rd Embodiment of this invention.

[第1の実施の形態]
以下、本発明の第1の実施の形態に係る発光装置につき、図面を参照して詳細に説明する。
[First embodiment]
Hereinafter, a light emitting device according to a first embodiment of the present invention will be described in detail with reference to the drawings.

(発光装置の全体構成)
図1は発光装置の全体を示す。図1に示すように、発光装置1は、直線方向に等間隔をもって並列する複数の発光部2と、複数の発光部2の光を所定の方向に導く導光部3と、複数の発光部2を実装する実装部4から大略構成されている。
(Whole structure of light emitting device)
FIG. 1 shows the entire light emitting device. As shown in FIG. 1, a light emitting device 1 includes a plurality of light emitting units 2 arranged in parallel in the linear direction at equal intervals, a light guide unit 3 that guides light from the plurality of light emitting units 2 in a predetermined direction, and a plurality of light emitting units. 2 is roughly constituted by a mounting part 4 for mounting 2.

(発光部2の構成)
図2は発光部の収容状態を示す。図3は発光部の実装状態を示す。図4(a)及び(b)は素子搭載基板の回路パターンを示す。図5は発光素子を示す。図6(a)〜(c)は発光素子からの光の進行パターン例を示す。図2及び図3に示すように、発光部2は、素子搭載基板20と、素子搭載基板20に搭載された発光素子としてのLED素子21と、LED素子21を封止する封止部材22と、LED素子21から発せられる光を受けて励起されることにより波長変換光を発する蛍光体層23とを有し、実装部4の実装面4aに実装されている。
(Configuration of light emitting unit 2)
FIG. 2 shows an accommodation state of the light emitting unit. FIG. 3 shows a mounted state of the light emitting unit. 4A and 4B show circuit patterns of the element mounting substrate. FIG. 5 shows a light emitting element. 6A to 6C show examples of light traveling patterns from the light emitting elements. As shown in FIGS. 2 and 3, the light emitting unit 2 includes an element mounting substrate 20, an LED element 21 as a light emitting element mounted on the element mounting substrate 20, and a sealing member 22 that seals the LED element 21. The phosphor layer 23 emits wavelength-converted light when excited by receiving light emitted from the LED element 21, and is mounted on the mounting surface 4 a of the mounting portion 4.

また、発光部2は、実装部4の実装面4aに対して垂直な光軸をもち、この光軸に対して略30°〜45°傾斜した方向で光強度が最大となる配光特性を有する。そして、発光部2は、電圧の印加によってLED素子21から青色光を発し、一部を蛍光体層23によって波長変換光としての黄色光に変換した後、青色光と黄色光との混合によって得られた白色光を青色光及び黄色光と共に封止部材22の側面22Bから封止部材22外に放射するように構成されている。   The light emitting unit 2 has a light distribution characteristic that has an optical axis perpendicular to the mounting surface 4a of the mounting unit 4 and has a maximum light intensity in a direction inclined approximately 30 ° to 45 ° with respect to the optical axis. Have. And the light emission part 2 emits blue light from the LED element 21 by application of a voltage, and after converting a part into yellow light as wavelength conversion light by the fluorescent substance layer 23, it is obtained by mixing blue light and yellow light. The white light thus emitted is emitted from the side surface 22B of the sealing member 22 to the outside of the sealing member 22 together with blue light and yellow light.

素子搭載基板20は、熱膨張率を例えば7×10−6/℃とする酸化アルミニウム(Al)のセラミックス材料からなる平面略正方形状の板部材によって形成されている。素子搭載基板20の材料としては、Alの他に、シリコン(Si)や窒化アルミニウム(AlN)あるいは白色樹脂が用いられる。素子搭載基板20の厚さは例えば約0.25mmに、また一辺が例えば約0.7mmにそれぞれ設定されている。 The element mounting substrate 20 is formed of a plate member having a substantially square shape made of a ceramic material of aluminum oxide (Al 2 O 3 ) having a thermal expansion coefficient of 7 × 10 −6 / ° C., for example. As a material for the element mounting substrate 20, silicon (Si), aluminum nitride (AlN), or white resin is used in addition to Al 2 O 3 . The thickness of the element mounting substrate 20 is set to about 0.25 mm, for example, and one side is set to about 0.7 mm, for example.

素子搭載基板20の素子搭載面(表面)20aには、図3及び図4に示すように、LED素子21のp側パッド電極210a(後述)に接続する表面パターン200、及びn側電極211(後述)に接続する表面パターン201が設けられている。素子搭載基板20の実装側面(裏面)20bには、LED素子21に対して電源電圧を供給するための裏面パターン202,203が設けられている。   On the element mounting surface (front surface) 20a of the element mounting substrate 20, as shown in FIGS. 3 and 4, a surface pattern 200 connected to a p-side pad electrode 210a (described later) of the LED element 21 and an n-side electrode 211 ( A surface pattern 201 to be connected to a later-described is provided. On the mounting side surface (back surface) 20 b of the element mounting substrate 20, back surface patterns 202 and 203 for supplying a power supply voltage to the LED elements 21 are provided.

表面パターン200と裏面パターン202とは素子搭載基板20を貫通するビアホール204内に充填されたビアパターン205により、また表面パターン201と裏面パターン203とは素子搭載基板20を貫通するビアホール206内に充填されたビアパターン207によりそれぞれ電気的に接続されている。表面パターン200及び裏面パターン202はビアパターン205に、また表面パターン201及び裏面パターン203はビアパターン207にそれぞれ例えばタングステン(W),モリブデン(Mo)等の高融点金属によって一体に形成されている。   The front surface pattern 200 and the back surface pattern 202 are filled in via holes 205 filled in the via holes 204 that penetrate the element mounting substrate 20, and the front surface pattern 201 and the back surface pattern 203 are filled in via holes 206 that penetrate the element mounting substrate 20. The via patterns 207 are electrically connected to each other. The front surface pattern 200 and the back surface pattern 202 are integrally formed on the via pattern 205, and the front surface pattern 201 and the back surface pattern 203 are integrally formed on the via pattern 207 with a high melting point metal such as tungsten (W) or molybdenum (Mo).

なお、表面パターン200,201及び裏面パターン202,203の表面には、ニッケル(Ni),アルミニウム(Al),白金(Pt),チタン(Ti),金(Au),銀(Ag),銅(Cu)などの材料による単数又は複数の金属層あるいは半田材料による金属層が必要に応じて形成される。   In addition, nickel (Ni), aluminum (Al), platinum (Pt), titanium (Ti), gold (Au), silver (Ag), copper (on the surface of the front surface patterns 200 and 201 and the back surface patterns 202 and 203 One or a plurality of metal layers made of a material such as Cu) or a metal layer made of a solder material is formed as necessary.

図4及び図5に示すように、LED素子21は、p側電極210及びn側電極211を有し、p側電極210(p側パッド電極210a)を表面パターン200に、またn側電極211を表面パターン201にそれぞれバンプ212を介してフリップチップ接続することにより素子搭載基板20における素子搭載面20aの略中央部に搭載されている。LED素子21としては、熱膨張率を例えば7×10−6/℃とする平面略正方形状の青色LED素子が用いられる。LED素子21の厚さは例えば約0.1mmに、また一辺は例えば約0.34mmにそれぞれ設定されている。 As shown in FIGS. 4 and 5, the LED element 21 has a p-side electrode 210 and an n-side electrode 211, the p-side electrode 210 (p-side pad electrode 210 a) as the surface pattern 200, and the n-side electrode 211. Are mounted on the surface pattern 201 by flip-chip connection via bumps 212, so that they are mounted at substantially the center of the element mounting surface 20 a of the element mounting substrate 20. As the LED element 21, a blue LED element having a substantially square shape with a thermal expansion coefficient of, for example, 7 × 10 −6 / ° C. is used. The thickness of the LED element 21 is set to about 0.1 mm, for example, and one side is set to about 0.34 mm, for example.

そして、LED素子21は、サファイア(Al)からなる基板213の表面にIII族窒化物系半導体を例えば700℃の温度でエピタキシャル成長させることにより、バッファ層214,n型半導体層215,発光層としてのMQW(Multiple Quantum Well:重量子井戸)層216,及びp型半導体層217が順次形成され、発光面218からピーク発光波長が例えば460nm〜463nmである青色光を発するように構成されている。LED素子21は、その耐熱温度は600℃以上であり、後述する低融点のガラスを用いた素子封止加工における加工温度に対して安定である。 The LED element 21 is formed by epitaxially growing a group III nitride semiconductor on the surface of the substrate 213 made of sapphire (Al 2 O 3 ) at a temperature of, for example, 700 ° C. An MQW (Multiple Quantum Well) layer 216 and a p-type semiconductor layer 217 are sequentially formed as layers, and are configured to emit blue light having a peak emission wavelength of, for example, 460 nm to 463 nm from the light emitting surface 218. Yes. The LED element 21 has a heat resistant temperature of 600 ° C. or higher, and is stable with respect to a processing temperature in an element sealing process using a low-melting glass described later.

p側電極210は、p側パッド電極210aを有し、p型半導体層217の裏面に設けられている。n側電極211は、p型半導体層217からMQW層216及びn型半導体層215にわたってその一部にエッチング処理を施すことにより露出した部位(n型半導体層215)に設けられている。p側電極210の材料としては例えばITO(Indium Tin Oxide)等の酸化物からなる透明導電性材が、またp側パッド電極210a及びn側電極211の材料としては例えばNi/Au,Al等の金属がそれぞれ用いられる。   The p-side electrode 210 has a p-side pad electrode 210 a and is provided on the back surface of the p-type semiconductor layer 217. The n-side electrode 211 is provided in a portion (n-type semiconductor layer 215) exposed by etching a part of the p-type semiconductor layer 217 from the MQW layer 216 and the n-type semiconductor layer 215. The material of the p-side electrode 210 is a transparent conductive material made of an oxide such as ITO (Indium Tin Oxide), and the material of the p-side pad electrode 210a and the n-side electrode 211 is, for example, Ni / Au or Al. Each metal is used.

封止部材22は、平面(端面22A)を略正方形とするとともに、側面を長方形とする直方体状の透明ガラスからなり、各側面22Bが素子搭載基板20の側面と同一面上に配置され、かつ素子搭載基板20の素子搭載面20aに熱融着されている。封止部材22の厚さは例えば0.6mmに、また一辺は0.7mmに設定されている。   The sealing member 22 is formed of a rectangular parallelepiped transparent glass having a substantially square plane (end surface 22A) and a rectangular side surface, and each side surface 22B is disposed on the same plane as the side surface of the element mounting substrate 20; It is heat-sealed to the element mounting surface 20 a of the element mounting substrate 20. The thickness of the sealing member 22 is set to 0.6 mm, for example, and one side is set to 0.7 mm.

封止部材22の材料としては、ゾルゲル反応を利用して形成されたガラスと異なり、例えば屈折率nをn=1.7とするZnO−B−SiO系熱融着ガラスが用いられる。熱融着ガラスとしては例えば屈折率が1.7のZnO−B−SiO−Nb−NaO−LiO系でもよい。熱融着ガラスの組成は、LiOあるいはNaOの成分を含有しない組成でもよく、ZrO,TiOの成分を含有する組成でもよい。 The material of the sealing member 22 is, for example, ZnO—B 2 O 3 —SiO 2 heat-sealed glass having a refractive index n of n = 1.7, unlike glass formed using a sol-gel reaction. It is done. As the heat-sealing glass, for example, a ZnO—B 2 O 3 —SiO 2 —Nb 2 O 5 —Na 2 O—Li 2 O system having a refractive index of 1.7 may be used. The composition of the heat-fusible glass may be a composition that does not contain a Li 2 O or Na 2 O component, or a composition that contains ZrO 2 or TiO 2 components.

また、封止部材22の材料としては、例えば熱膨張率を6×10−6/℃とし、素子搭載基板20及びLED素子21の熱膨張率の2倍よりも小さい熱膨張率をもつ材料であることが望ましい。これは、封止部材22の熱膨張率が素子搭載基板20及びLED素子21の熱膨張率の2倍を超えると、封止部材22の剥離,クラック等が生じ易くなることから、封止部材22の熱膨張率を素子搭載基板20及びLED素子21の熱膨張率の2倍よりも小さくし、封止部材22の剥離,クラック等の発生を抑制するためである。 The material of the sealing member 22 is, for example, a material having a thermal expansion coefficient of 6 × 10 −6 / ° C. and a thermal expansion coefficient smaller than twice the thermal expansion coefficient of the element mounting substrate 20 and the LED element 21. It is desirable to be. This is because if the thermal expansion coefficient of the sealing member 22 exceeds twice the thermal expansion coefficient of the element mounting substrate 20 and the LED element 21, the sealing member 22 is liable to be peeled off, cracked, etc. This is because the thermal expansion coefficient of 22 is made smaller than twice the thermal expansion coefficient of the element mounting substrate 20 and the LED element 21 to suppress the occurrence of peeling, cracking, and the like of the sealing member 22.

上記した封止部材22は、素子搭載基板20と平行な平面を略正方形とする場合について説明したが、LED素子から封止部材界面へ至る光が全反射を生じない屈折率や形状とすることが望ましく、四角形以上の多角形である平面六角形,平面五角形あるいは平面円形とすることが望ましい。これは、図6(a)に示す平面六角形状の封止部材22である場合、及び図6(b)に示す平面五角形状の封止部材22である場合に、図6(c)に示す平面正方形状の封止部材22である場合と比べて封止部材22の内部で反射される光の割合が低くなり、LED素子21の光を封止部材22から効率よく出射させることができるからである。   The above-described sealing member 22 has been described with respect to the case where the plane parallel to the element mounting substrate 20 is substantially square, but the refractive index and shape in which light from the LED element to the sealing member interface does not cause total reflection. It is desirable to use a plane hexagon, a plane pentagon, or a plane circle that is a polygon that is equal to or greater than a quadrangle. This is shown in FIG. 6C in the case of the planar hexagonal sealing member 22 shown in FIG. 6A and in the case of the planar pentagonal sealing member 22 shown in FIG. Since the ratio of the light reflected inside the sealing member 22 is lower than the case of the planar square sealing member 22, the light of the LED element 21 can be efficiently emitted from the sealing member 22. It is.

この場合、図6(a)及び(b)に示すように、封止部材22の端面(熱融着側端面と反対側の端面)22Aが六角形,五角形であると、その頂面付近に進んだ光の入射角α,βの最大値が端面22Aを四角形とする場合と比べて小さくなる。(a)の正六角形では、LED素子から封止部材界面への入射角は30°以内となる。封止部材の屈折率が2.0のときの空気への臨界角が30°であり、封止部材の屈折率が2.0未満であれば素子搭載基板20と平行な面方向では閉込モード光を生じないものとできる。(b)は右半分が正六角形、左半分が正方形の五角形であり、この形状では右半分は(a)と同じで、LED素子から左方向へ反射された光は一部が全反射し、右方向へ外部反射される。これは、特定の方向の導光部の照度を高めた場合や図11のように導光部の端部に発光部を備える場合に適する。これに対して、図6(c)に示すように、封止部材22の端面22Aが正方形であると、屈折率が1.5のとき空気の臨界角が45°となるので、封止部材の屈折率がこれ以上のときには、その頂点に近い方向に進んだ光は側面22Bで内部反射する割合が高く、側面22Bで内部反射した光はさらに別の側面22Bで内部反射し、蛍光体や素子搭載基板20で散乱反射しなければ外部へ放出されない閉込モード光となり、封止部材22の外部に出射するまでに内部で複数回の反射を繰り返すことがある。   In this case, as shown in FIGS. 6A and 6B, if the end surface 22A of the sealing member 22 (the end surface opposite to the end surface on the heat fusion side) is hexagonal or pentagonal, The maximum values of the incident angles α and β of the advanced light are smaller than in the case where the end surface 22A is a square. In the regular hexagon of (a), the incident angle from the LED element to the sealing member interface is within 30 °. If the critical angle to air when the refractive index of the sealing member is 2.0 is 30 ° and the refractive index of the sealing member is less than 2.0, the sealing member is closed in the plane direction parallel to the element mounting substrate 20. Mode light can be generated. (B) is a pentagon in which the right half is a regular hexagon and the left half is a square. In this shape, the right half is the same as (a), and a part of the light reflected from the LED element in the left direction is totally reflected. Reflected externally to the right. This is suitable when the illuminance of the light guide in a specific direction is increased or when a light emitting part is provided at the end of the light guide as shown in FIG. On the other hand, as shown in FIG. 6C, when the end surface 22A of the sealing member 22 is square, the critical angle of air is 45 ° when the refractive index is 1.5. When the refractive index is higher than this, the light traveling in the direction closer to the top has a high ratio of internal reflection at the side surface 22B, and the light internally reflected at the side surface 22B is internally reflected at another side surface 22B. If it does not scatter and reflect on the element mounting substrate 20, it becomes confined mode light that is not emitted to the outside, and may be reflected a plurality of times inside before being emitted to the outside of the sealing member 22.

蛍光体層23は、図3に示すように、外部領域側の蛍光体層230及び素子側の蛍光体層231を有し、LED素子21から発せられる光の波長を変換する蛍光体を含有する。蛍光体としては、例えばYAG(Yttrium Aluminum Garnet)蛍光体,珪酸塩蛍光体,窒化物蛍光体あるいは硫化物蛍光体等を用いることができる。本実施の形態では、LED素子21が青色光を発し、この青色光によって励起された蛍光体層23の蛍光体が黄色光を発し、これら青色光と黄色光との混色によって白色光を得ている。   As shown in FIG. 3, the phosphor layer 23 includes a phosphor layer 230 on the outer region side and a phosphor layer 231 on the element side, and contains a phosphor that converts the wavelength of light emitted from the LED element 21. . As the phosphor, for example, YAG (Yttrium Aluminum Garnet) phosphor, silicate phosphor, nitride phosphor or sulfide phosphor can be used. In the present embodiment, the LED element 21 emits blue light, the phosphor of the phosphor layer 23 excited by the blue light emits yellow light, and white light is obtained by mixing these blue light and yellow light. Yes.

なお、紫外光を発するLED素子と、紫外光によって励起される赤色蛍光体,緑色蛍光体,及び青色蛍光体との組み合わせにより白色光を得るようにしてもよい。   In addition, you may make it obtain white light by the combination of the LED element which emits ultraviolet light, and the red fluorescent substance excited by ultraviolet light, a green fluorescent substance, and a blue fluorescent substance.

外部領域側の蛍光体層230は、封止部材22の外部であって、LED素子21の発光面218(図5に示す)に対向する面内に配置され、かつ封止部材22の端面22Aに例えばSiO系のコーティング材料に分散し、このコーティング材料によってガラスに接着されている。そして、外部領域側の蛍光体層230は、封止部材22の外部領域側でLED素子21の青色光を受けて励起されることにより黄色光を発し、封止部材22内に放射するように構成されている。外部領域側の蛍光体層230において、LED素子21からの光をできるだけ反射するには、その母材として封止部材22の屈折率よりも小さい屈折率をもつ材料であることが望ましい。一方、反射させずにLED素子21の光の蛍光体層230への到達の確率を高めるために、封止部材22の屈折率よりも小さい屈折率のSiO系のコーティング材料に代えて例えば封止部材22と同等の屈折率のAl系,封止部材22よりも大きな屈折率のTiO系のコーティング材料を用いてもよい。 The phosphor layer 230 on the external region side is disposed outside the sealing member 22, in a plane facing the light emitting surface 218 (shown in FIG. 5) of the LED element 21, and the end surface 22 </ b> A of the sealing member 22. For example, it is dispersed in a SiO 2 -based coating material and bonded to the glass by this coating material. Then, the phosphor layer 230 on the outer region side emits yellow light by being excited by receiving the blue light of the LED element 21 on the outer region side of the sealing member 22 so as to be emitted into the sealing member 22. It is configured. In order to reflect light from the LED element 21 as much as possible in the phosphor layer 230 on the outer region side, it is desirable that the base material is a material having a refractive index smaller than the refractive index of the sealing member 22. On the other hand, in order to increase the probability that the light from the LED element 21 reaches the phosphor layer 230 without reflection, for example, instead of the SiO 2 -based coating material having a refractive index smaller than the refractive index of the sealing member 22, sealing is performed. A coating material of Al 2 O 3 system having a refractive index equivalent to that of the stopper member 22 or a TiO 2 system having a refractive index larger than that of the sealing member 22 may be used.

素子側の蛍光体層231は、素子搭載基板20の素子搭載側領域であって、素子搭載部(バンプ212の形成領域)を除く領域を素子搭載基板20の素子搭載面20a上で覆う位置に配置され、かつ素子搭載基板20の素子搭載面20aに例えばスクリーン印刷等によって形成されている。そして、素子側の蛍光体層231は、素子側でLED素子21の青色光を受けて励起されることにより黄色光を発し、封止部材22内に放射するように構成されている。   The element-side phosphor layer 231 is an element mounting side region of the element mounting substrate 20, and is located at a position where the region excluding the element mounting portion (bump 212 formation region) is covered on the element mounting surface 20 a of the element mounting substrate 20. For example, screen printing or the like is formed on the element mounting surface 20a of the element mounting substrate 20. The phosphor layer 231 on the element side is configured to emit yellow light and radiate it into the sealing member 22 when excited by receiving the blue light of the LED element 21 on the element side.

次に、本実施の形態に示す発光部2を製造する方法につき、図7A(a)〜(d)及び図7B(e)〜(h)を用いて説明する。図7A(a)〜(d)及び図7B(e)〜(h)は発光部の製造手順を示す。   Next, a method for manufacturing the light emitting unit 2 described in this embodiment will be described with reference to FIGS. 7A (a) to 7 (d) and FIGS. 7B (e) to (h). 7A (a) to (d) and FIGS. 7B (e) to (h) show the manufacturing procedure of the light emitting section.

本実施の形態に示す発光部2の製造方法は、「封止前ガラスの形成」,「外部領域側の蛍光体層の形成」,「素子搭載基板の形成」,「素子側の蛍光体層の接着」,「LDE素子の搭載」,「LED素子の封止」及び「発光部集合体の切断」の各工程が順次実施されるため、これら各工程を順次説明する。なお、本製造方法は一例であり、各工程の順序についても適宜変更することが可能である。   The manufacturing method of the light emitting section 2 shown in the present embodiment includes “formation of glass before sealing”, “formation of phosphor layer on the outer region side”, “formation of element mounting substrate”, “phosphor layer on the element side” The steps of “adhesion”, “mounting of the LDE element”, “sealing of the LED element”, and “cutting of the light emitting unit assembly” are sequentially performed. In addition, this manufacturing method is an example and it is possible to change suitably also about the order of each process.

「封止前ガラスの形成」
先ず、封止部材22(図3に示す)となるガラスの成分である酸化物粉末を1200℃に加熱して溶融し、この溶融状態で攪拌する。次いで、溶融状態の酸化物粉末を固化する。しかる後、図7A(a)に示すように、封止部材22の厚さに対応する厚さに切断して封止前ガラス220を形成してから、LED素子21(図2に示す)のサイズに対応する空間サイズをもつ凹部220aを封止前ガラス220に形成する。
"Formation of glass before sealing"
First, the oxide powder which is a component of the glass which becomes the sealing member 22 (shown in FIG. 3) is heated to 1200 ° C. to melt and stirred in this molten state. Next, the molten oxide powder is solidified. After that, as shown in FIG. 7A (a), after cutting to a thickness corresponding to the thickness of the sealing member 22 to form the pre-sealing glass 220, the LED element 21 (shown in FIG. 2). A recess 220 a having a space size corresponding to the size is formed in the pre-sealing glass 220.

「外部領域側の蛍光体層の形成」
図7A(b)に示すように、封止前ガラス220の端面220b(凹部220a側の端面と反対側の端面)全体に蛍光体を分散させたSiO系のコーティング材料によって外部領域側の蛍光体層230を形成する。蛍光体層230のコーティング材料としては、SiO系のコーティング材料に代えてセルロース系の材料を用いてもよい。セルロースは高温で分解し消失するため、蛍光体層は母材なしで形成されることとなり、蛍光体粒子の凹凸が露出することになり、蛍光体からの外部反射がされやすくなる。本発明のように導光部の側面入射面への光照射効率が高い方がいい場合は、発光部の側面からの放射が多い、あるいは導光部の側面の入射方向へ光放射されやすいよう、蛍光体粒子はコーティング材料内に埋っている方が望ましい。
`` Formation of phosphor layer on the external region side ''
As shown in FIG. 7A (b), the fluorescence on the outer region side is caused by the SiO 2 -based coating material in which the phosphor is dispersed throughout the end surface 220b of the pre-sealing glass 220 (the end surface opposite to the end surface on the concave portion 220a side). The body layer 230 is formed. As a coating material for the phosphor layer 230, a cellulose-based material may be used instead of the SiO 2 -based coating material. Since cellulose decomposes and disappears at a high temperature, the phosphor layer is formed without a base material, and the irregularities of the phosphor particles are exposed, and external reflection from the phosphor is likely to occur. When the light irradiation efficiency to the side incident surface of the light guide is higher as in the present invention, the radiation from the side of the light emitting unit is large, or the light is likely to be emitted in the incident direction of the side of the light guide. The phosphor particles are preferably embedded in the coating material.

「素子搭載基板の形成」
図7A(c)に示すように、ホール付き基板用素材20Aに回路パターン(表面パターン200・201,裏面パターン202・203及びビアパターン205・207)を形成して素子搭載基板20(図2に示す)となる基板集合体20Bを形成する。回路パターンの形成は、ホール付き基板用素材20Aにペースト状の金属をスクリーン印刷し、これらに所定の温度(例えば1000℃以上)で熱処理することによりペースト状の金属を焼き付けた後、この金属に他の金属によるめっき処理を施すことにより行われる。
"Formation of element mounting substrate"
As shown in FIG. 7A (c), circuit patterns (front surface patterns 200 and 201, back surface patterns 202 and 203, and via patterns 205 and 207) are formed on the substrate material 20A with holes to form the element mounting substrate 20 (see FIG. 2). A substrate assembly 20B to be shown) is formed. The circuit pattern is formed by screen-printing a paste-like metal on the substrate material 20A with holes and baking the paste-like metal at a predetermined temperature (for example, 1000 ° C. or higher). It is performed by performing a plating process with another metal.

「素子側の蛍光体層の形成」
図7A(d)に示すように、LED素子21の素子搭載部を除き、スクリーン印刷等を用いて基板集合体20Bの素子搭載面に素子側の蛍光体層231を形成する。
“Formation of phosphor layer on element side”
As shown in FIG. 7A (d), the element-side phosphor layer 231 is formed on the element mounting surface of the substrate assembly 20B by screen printing or the like except for the element mounting portion of the LED element 21.

「LED素子の搭載」
図7B(e)に示すように、基板集合体20Bの各素子搭載部にLED素子21をバンプ212によって搭載する。この場合、p側パッド電極210aが表面パターン200に、またn側電極211が表面パターン201にそれぞれバンプ212を介してフリップチップ接続される。
"Installation of LED elements"
As shown in FIG. 7B (e), the LED elements 21 are mounted by bumps 212 on each element mounting portion of the substrate assembly 20B. In this case, the p-side pad electrode 210a is flip-chip connected to the surface pattern 200, and the n-side electrode 211 is flip-chip connected to the surface pattern 201 via bumps 212, respectively.

「LED素子の封止」
先ず、図7B(f)に示すように、LED素子21が搭載された基板集合体20Bを下側金型Aに配置する。次いで、図7B(g)に示すように、LED素子21に凹部220aを対向させて封止前ガラス220を上側金型Bと下側金型Aとの間に配置する。しかる後、窒素雰囲気中において所定の温度条件下で型閉めを実行して封止前ガラス220を加圧・加熱する。この場合、例えば加熱温度が600℃に、また加圧力が25kgf/cmにそれぞれ設定される。これにより、LED素子21が封止部材22で封止された発光部集合体(図示せず)が形成される。
"LED element sealing"
First, as shown in FIG. 7B (f), the substrate assembly 20B on which the LED elements 21 are mounted is placed in the lower mold A. Next, as shown in FIG. 7B (g), the pre-sealing glass 220 is disposed between the upper mold B and the lower mold A with the recess 220a facing the LED element 21. Thereafter, the mold is closed under a predetermined temperature condition in a nitrogen atmosphere to pressurize and heat the pre-sealing glass 220. In this case, for example, the heating temperature is set to 600 ° C., and the pressure is set to 25 kgf / cm 2 . Thereby, the light emission part aggregate | assembly (not shown) in which the LED element 21 was sealed with the sealing member 22 is formed.

「発光部集合体の切断」
型開き後にダイシング装置(図示せず)内に発光部集合体を配置してダイシングブレード(図示せず)で切断し、図7B(h)に示すように素子搭載基板20の素子搭載面20a上で封止部材22によってLED素子21が封止された複数の発光部2に分割する。
`` Cut the light emitting assembly ''
After the mold is opened, the light emitting unit assembly is arranged in a dicing apparatus (not shown) and cut by a dicing blade (not shown), and as shown in FIG. 7B (h), on the element mounting surface 20a of the element mounting substrate 20 Thus, the LED element 21 is divided by the sealing member 22 into a plurality of light emitting units 2.

(導光部3の構成)
図2に示すように、導光部3は、複数の収容孔3aを有し、全体が例えばアクリル樹脂等の透明材料からなる矩形板によって形成されている。そして、導光部3は、複数の収容孔3aにおける内面30aから入射した光(青色成分の多い光、黄色成分の多い光及び白色光)を一方側端面3b及び他方側端面3cで反射させ、これら光の混合を促進させるように構成されている。
(Configuration of the light guide 3)
As shown in FIG. 2, the light guide 3 has a plurality of receiving holes 3a, and is entirely formed of a rectangular plate made of a transparent material such as acrylic resin. And the light guide part 3 reflects the light (light with many blue components, light with many yellow components, and white light) which entered from the inner surface 30a in the some accommodation hole 3a in the one side end surface 3b and the other side end surface 3c, It is configured to promote mixing of these lights.

複数の収容孔3aは、直線方向(LED素子21の並列方向)に所定の間隔をもって並列し、導光部3の片側側縁に配置されている。また、複数の収容孔3aは、導光部3の一方側端面3bから他方側端面3cに開口する例えば深さ3mm,内径2mmの円形開口をもつ貫通孔によって形成されている。そして、複数の収容孔3aは、その内面30aが発光部2からの入射光を導光部3の一方側端面3b又は他方側端面3cに接近する方向に導光部3内で屈折させるように構成されている。複数の収容孔3a内には、それぞれ発光部2がその光軸を軸線Lに一致させて収容されている。   The plurality of accommodation holes 3 a are arranged in parallel in the linear direction (parallel direction of the LED elements 21) with a predetermined interval, and are arranged on one side edge of the light guide unit 3. The plurality of receiving holes 3a are formed by through holes having a circular opening having a depth of 3 mm and an inner diameter of 2 mm, for example, which opens from the one end face 3b of the light guide 3 to the other end face 3c. The plurality of accommodation holes 3a have their inner surfaces 30a refract the incident light from the light emitting unit 2 within the light guide unit 3 in a direction approaching the one side end surface 3b or the other side end surface 3c of the light guide unit 3. It is configured. The light emitting units 2 are accommodated in the plurality of accommodating holes 3a with their optical axes aligned with the axis L, respectively.

ここで、導光部3の収容孔3aと発光部2との関係について説明する。発光部2は、前述したように、その光軸を導光部3の厚さ方向に平行な収容孔3aの軸線Lに一致させ、全体(高さ0.85mm,縦横サイズ1.0mm角)が収容孔3a(直径2mm,深さ3mm)内に収容され、かつ実装部4の実装面4a(基板本体40)に実装されている。   Here, the relationship between the accommodation hole 3a of the light guide unit 3 and the light emitting unit 2 will be described. As described above, the light emitting section 2 has its optical axis aligned with the axis L of the accommodation hole 3a parallel to the thickness direction of the light guide section 3, and the whole (height 0.85 mm, vertical and horizontal size 1.0 mm square). Is accommodated in the accommodation hole 3a (diameter 2 mm, depth 3 mm) and mounted on the mounting surface 4a (substrate body 40) of the mounting portion 4.

これにより、発光部2の端面22Aの中心部に対する収容孔3aの内面30aの立体角の割合は、上側半球の2πsteradianに対して90%(5.65steradian)となる。そして、発光部2の側面22Bの中心部に対する収容孔3aの内面30aの立体角の割合(側面22Bの半球の上側のπsteradianが対象)は、発光部2の端面22Aの中心部に対する収容孔3aの内面30aの立体角の割合よりも大きくなるため、発光部2全体としてみれば、立体角の割合は少なくとも90%以上であるといえる。また、発光部2の光強度が最大となる方向は約45°であるが、この方向に収容孔3aの内面30aが存在することとなる。   Thereby, the ratio of the solid angle of the inner surface 30a of the accommodation hole 3a with respect to the center portion of the end surface 22A of the light emitting portion 2 is 90% (5.65 steradian) with respect to 2πsteradian of the upper hemisphere. The ratio of the solid angle of the inner surface 30a of the accommodation hole 3a with respect to the center portion of the side surface 22B of the light emitting section 2 (target πsteradian on the upper side of the hemisphere of the side surface 22B) is the accommodation hole 3a with respect to the center portion of the end face 22A of the light emitting section 2. Therefore, it can be said that the solid angle ratio is at least 90% or more when viewed as the entire light emitting unit 2. In addition, the direction in which the light intensity of the light emitting unit 2 is maximum is about 45 °, and the inner surface 30a of the accommodation hole 3a exists in this direction.

このような関係を導光部3(収容孔3a)と発光部2との間にもつ発光装置1によれば、発光部2から発せられる光の少なくとも90%以上は収容孔3aの内面30aに入射する。この入射時には、入射光が導光部3の一方側端面3b及び他方側端面3cに対して平行に近づく方向へ屈折することから、収容孔3aの内面30aに対する入射光の殆どを導光部3内の伝搬光として利用することができる。導光部3の屈折率は1.41以上であると、臨界角を45°以下にできるので好ましい。すなわち、収容孔3aの軸線Lに略平行(内面30aの法線方向に対して略90°)で入射した光でも屈折し、内面30aの法線方向に対して略45°以内の光となる。そして、導光部3の一方側端面3b及び他方側端面3cは、内面30aに対して90°であるため、内面30aに対する入射光につき一方側端面3b及び他方側端面3cでは全反射の条件が成立することとなり、入射光の全てが導光部3内での伝搬光となる。   According to the light emitting device 1 having such a relationship between the light guide portion 3 (accommodating hole 3a) and the light emitting portion 2, at least 90% or more of the light emitted from the light emitting portion 2 is in the inner surface 30a of the accommodating hole 3a. Incident. At the time of this incident, since the incident light is refracted in a direction approaching parallel to the one end face 3b and the other end face 3c of the light guide section 3, most of the incident light to the inner surface 30a of the accommodation hole 3a is refracted. It can be used as propagating light. The refractive index of the light guide 3 is preferably 1.41 or more because the critical angle can be 45 ° or less. That is, even light that is incident substantially parallel to the axis L of the accommodation hole 3a (approximately 90 ° with respect to the normal direction of the inner surface 30a) is refracted and becomes light within approximately 45 ° with respect to the normal direction of the inner surface 30a. . And since the one side end surface 3b and the other side end surface 3c of the light guide part 3 are 90 degrees with respect to the inner surface 30a, the condition of total reflection is incident on the one side end surface 3b and the other side end surface 3c with respect to the incident light with respect to the inner surface 30a. As a result, all of the incident light becomes propagation light in the light guide 3.

これにより、発光部2の光軸が導光部3の厚さ方向に平行であるにもかかわらず、発光部2の端面22Aから発せられた光を導光部3内に導くための特殊な光学的制御部を発光装置1に備えることなく、導光部3内に光を的確に入射させて導光部3内での伝搬光とすることができるという、いわゆる技術常識に反した作用効果を得ることができる。   Accordingly, a special light for guiding the light emitted from the end face 22A of the light emitting unit 2 into the light guiding unit 3 even though the optical axis of the light emitting unit 2 is parallel to the thickness direction of the light guiding unit 3. Without providing the optical control unit in the light emitting device 1, an effect that is contrary to the so-called technical common sense that light can be accurately incident into the light guide unit 3 to be propagated light in the light guide unit 3. Can be obtained.

従って、本実施の形態においては、上記光学的制御部を省略して部品点数を削減することができるとともに、発光装置1の製造を簡単に行うことができ、コストの低廉化を図ることができる。   Therefore, in the present embodiment, the optical control unit can be omitted to reduce the number of parts, and the light emitting device 1 can be easily manufactured, and the cost can be reduced. .

(実装部4の構成)
図2及び図3に示すように、実装部4は、基板本体40,絶縁層41,回路パターン層42a,42b及び白色レジスト層43を有し、複数の収容孔3aの片側開口部(端面3c側の開口部)を閉塞して発光部2の実装側に配置され、発光部2及び導光部3を実装する実装基板として機能するように構成されている。
(Configuration of mounting unit 4)
As shown in FIGS. 2 and 3, the mounting portion 4 includes a substrate body 40, an insulating layer 41, circuit pattern layers 42a and 42b, and a white resist layer 43, and one-side openings (end surfaces 3c) of the plurality of accommodation holes 3a. And the light emitting unit 2 is disposed on the mounting side and functions as a mounting substrate on which the light emitting unit 2 and the light guide unit 3 are mounted.

基板本体40は、実装部4のベースとして機能し、全体が例えばAl等の金属によって形成されている。これにより、実装部4の剛性が高められる。   The substrate body 40 functions as a base of the mounting unit 4 and is entirely formed of a metal such as Al. Thereby, the rigidity of the mounting part 4 is improved.

絶縁層41は、基板本体40と回路パターン層42a,42bとの間に介在して配置され、全体が例えばポリイミド樹脂,エポキシ樹脂等の絶縁材によって形成されている。   The insulating layer 41 is disposed so as to be interposed between the substrate body 40 and the circuit pattern layers 42a and 42b, and is entirely formed of an insulating material such as polyimide resin or epoxy resin.

回路パターン層42a,42bは、発光部2(素子搭載基板20の裏面パターン202,203)に電気的接続され、かつ絶縁層41上に配置され、例えばAuめっき処理が表面に施された銅等の金属によって形成されている。一方の回路パターン層42aは裏面パターン202に、また他方の回路パターン層42bは裏面パターン203にそれぞれ接続されている。   The circuit pattern layers 42a and 42b are electrically connected to the light emitting section 2 (the back surface patterns 202 and 203 of the element mounting substrate 20) and are disposed on the insulating layer 41, for example, copper having an Au plating process applied to the surface, etc. It is made of metal. One circuit pattern layer 42 a is connected to the back pattern 202, and the other circuit pattern layer 42 b is connected to the back pattern 203.

白色レジスト層43は、回路パターン層42a,42bに配置され、全体が例えば酸化チタンのフィラーを混入してなるエポキシ樹脂によって形成されている。これにより、実装部4の反射率が高められる。   The white resist layer 43 is disposed on the circuit pattern layers 42a and 42b, and is entirely formed of an epoxy resin in which, for example, a titanium oxide filler is mixed. Thereby, the reflectance of the mounting part 4 is increased.

このように構成された発光装置1においては、LED素子21に電圧が印加されると、LED素子21から青色光が発せられる。   In the light emitting device 1 configured as described above, when a voltage is applied to the LED element 21, blue light is emitted from the LED element 21.

そして、LED素子21から発せられた青色光は、一部が外部領域側の蛍光体層230及び素子側の蛍光体層231により黄色光に変換された後、これら青色光,黄色光及びこれら光の混色によって得られた白色光が封止部材22の側面22Bを通じて導光部3の収容孔3a内に放射される。   The blue light emitted from the LED element 21 is partially converted into yellow light by the phosphor layer 230 on the external region side and the phosphor layer 231 on the element side, and then the blue light, yellow light, and these lights are converted into yellow light. The white light obtained by the color mixture is emitted into the accommodation hole 3 a of the light guide 3 through the side surface 22 </ b> B of the sealing member 22.

この場合、収容孔3a内に放射される光には、LED素子21から発せられる光の一部を外部領域側の蛍光体層230で散乱反射した後、封止部材22の側面22Bを通じて端面22Aよりも下方に向かって導光部3の収容孔3a内を進む光aと、LED素子21からの光の一部を外部領域側の蛍光体層230で散乱反射し、さらに素子側の蛍光体層231で散乱反射した後、封止部材22の側面22Bを通じて端面22Aよりも上方に向かって導光部3の収容孔3a内に進む光bと、LED素子21からの光の一部を外部領域側の蛍光体層230及び素子側の蛍光体層231で散乱反射せず、導光部3の収容孔3a内に進む光c等とが含まれる。このため、LED素子21から発せられる多くの光が収容孔3a内に放射される。   In this case, a part of the light emitted from the LED element 21 is scattered and reflected by the phosphor layer 230 on the outer region side, and then the end surface 22A is passed through the side surface 22B of the sealing member 22 to the light emitted into the accommodation hole 3a. The light a traveling in the housing hole 3a of the light guide 3 toward the lower side and part of the light from the LED element 21 are scattered and reflected by the phosphor layer 230 on the external region side, and further the phosphor on the element side After being scattered and reflected by the layer 231, the light b traveling through the side surface 22 </ b> B of the sealing member 22 to the upper side of the end surface 22 </ b> A and into the accommodation hole 3 a of the light guide unit 3 and a part of the light from the LED element 21 are externally transmitted. The light c and the like which are not scattered and reflected by the region-side phosphor layer 230 and the element-side phosphor layer 231 and travel into the accommodation hole 3a of the light guide 3 are included. For this reason, much light emitted from the LED element 21 is radiated | emitted in the accommodation hole 3a.

この後、発光部2(封止部材22)からの放射光が収容孔3aの内面30aに入射すると、この内面30a(収容孔3aの空間と導光部3との界面)で屈折して導光部3の一方側端面3b又は他方側端面3cに接近する方向に導光部3内を進む。この屈折光が導光部3の一方側端面3b及び他方側端面3cで繰り返して反射されながら導光部3内を収容孔3aの径方向に伝搬する。   Thereafter, when radiated light from the light emitting portion 2 (sealing member 22) enters the inner surface 30a of the accommodation hole 3a, the light is refracted and guided by the inner surface 30a (the interface between the space of the accommodation hole 3a and the light guide portion 3). The light guide unit 3 travels in a direction approaching the one end surface 3b or the other end surface 3c of the light unit 3. The refracted light propagates in the light guide 3 in the radial direction of the receiving hole 3a while being repeatedly reflected on the one end face 3b and the other end face 3c of the light guide 3.

この場合、導光部3において、収容孔3aの内面30aに入射した光のうち青色成分の多い光及び黄色成分の多い光が一方側端面3bと他方側端面3cとで繰り返して反射されるため、これら光の混合が促進される。また、屈折光の反射は、導光部3において収容孔3aの近傍から離間する部位のみならず、収容孔3aの近傍の部位でも行われる。このため、導光部3の一方側端面3b及び他方側端面3cにおいては色度及び輝度にむらが生じることはない。   In this case, in the light guide 3, light having a large blue component and light having a large yellow component out of the light incident on the inner surface 30 a of the accommodation hole 3 a is repeatedly reflected by the one side end surface 3 b and the other side end surface 3 c. , Mixing of these light is promoted. In addition, the reflection of the refracted light is performed not only in the portion away from the vicinity of the accommodation hole 3a in the light guide portion 3, but also in the vicinity of the accommodation hole 3a. For this reason, unevenness in chromaticity and luminance does not occur on the one end face 3b and the other end face 3c of the light guide section 3.

従って、本実施の形態においては、発光部2から放射される光が導光部3内を全体にわたって伝搬し、均一な色度及び輝度による面発光が実現される。   Therefore, in the present embodiment, the light emitted from the light emitting unit 2 propagates throughout the light guide unit 3, and surface emission with uniform chromaticity and luminance is realized.

なお、本実施の形態においては、封止部材22内に蛍光体を含有しない発光部2である場合について説明したが、本発明はこれに限定されず、図8(変形例)に示すように封止部材22内に蛍光体23aを分散して含有する発光部2であってもよい。この変形例においては、外部領域側の蛍光体層230及び素子側の蛍光体層231を備えているため、従来の発光装置の蛍光体層における蛍光体の容積濃度に比べて蛍光体23aの容積濃度を低くしても、LED素子21,外部領域側の蛍光体層230及び素子側の蛍光体層231からの光を蛍光体23aで散乱反射して封止部材22外に放射し、全体として光取出効率を高めることができる。また、蛍光体層は外部領域側、素子搭載基板上の素子側に備えるものとして説明したが、素子側の蛍光体層を備えないものとしてもよい。   In the present embodiment, the case where the light emitting part 2 does not contain a phosphor in the sealing member 22 has been described. However, the present invention is not limited to this, as shown in FIG. 8 (modification). The light emitting unit 2 may contain the phosphors 23a dispersed in the sealing member 22. In this modified example, the phosphor layer 230 on the external region side and the phosphor layer 231 on the element side are provided, so that the volume of the phosphor 23a is larger than the volume concentration of the phosphor in the phosphor layer of the conventional light emitting device. Even if the concentration is lowered, the light from the LED element 21, the phosphor layer 230 on the external region side, and the phosphor layer 231 on the element side is scattered and reflected by the phosphor 23a and emitted outside the sealing member 22, as a whole. The light extraction efficiency can be increased. Further, although the phosphor layer is described as being provided on the external region side and the element side on the element mounting substrate, the phosphor layer may not be provided on the element side.

次に、本実施の形態に示す発光装置1における発光部2の配置例(1)〜(4)につき、図9〜図13を用いて説明する。図9は配置例(1)を、図10(a)〜(c)は配置例(2)を、図11(a)及び(b)は配置例(3)を、また図12及び図13(a)及び(b)は配置例(4)をそれぞれ示す。なお、図9〜図13において、図1〜図5と同一又は同等の部材については同一の符号を付す。
(1)図9に示すように、発光装置1は、複数の発光部2が導光部3の両側縁に配置されている。導光部3の両側縁には、直線方向に等間隔をもって並列し、かつ複数の発光部2をそれぞれ収容する複数の収容孔3aが設けられている。
(2)図10(a)〜(c)に示すように、発光装置1は、発光部2,導光部3及び実装部4の他にケース部5を備えている。
Next, arrangement examples (1) to (4) of the light emitting unit 2 in the light emitting device 1 described in this embodiment will be described with reference to FIGS. 9 shows an arrangement example (1), FIGS. 10A to 10C show an arrangement example (2), FIGS. 11A and 11B show an arrangement example (3), and FIGS. (A) And (b) shows arrangement example (4), respectively. 9 to 13, members that are the same as or equivalent to those in FIGS. 1 to 5 are given the same reference numerals.
(1) As shown in FIG. 9, in the light emitting device 1, a plurality of light emitting units 2 are arranged on both side edges of the light guide unit 3. On both side edges of the light guide portion 3, a plurality of accommodation holes 3 a are provided, which are arranged in parallel in the linear direction at equal intervals and accommodate the plurality of light emitting portions 2.
(2) As shown in FIGS. 10A to 10C, the light emitting device 1 includes a case portion 5 in addition to the light emitting portion 2, the light guide portion 3, and the mounting portion 4.

導光部3は、その幅方向中央部に長手方向に沿って並列する複数の収容孔3aを有する単一の導光板からなり、ケース部5内に収容されている。導光部3には、一方側面(実装部4側の面)が実装部4に対向して発光部2からの熱を吸収する熱吸収面30として、また他方側面(実装部4側の面と反対側の面)が収容孔3aの内面30aから入射した熱を放散する熱放散面31としてそれぞれ形成されている。   The light guide part 3 is composed of a single light guide plate having a plurality of accommodation holes 3 a arranged in parallel in the longitudinal direction at the center part in the width direction, and is accommodated in the case part 5. The light guide unit 3 has one side surface (surface on the mounting unit 4 side) facing the mounting unit 4 as a heat absorption surface 30 that absorbs heat from the light emitting unit 2 and the other side surface (surface on the mounting unit 4 side). Are formed as heat dissipating surfaces 31 that dissipate heat incident from the inner surface 30a of the receiving hole 3a.

実装部4は、幅寸法が導光部3の幅寸法よりも小さい寸法に、また長さ寸法が導光部3の長さ寸法に対応する寸法にそれぞれ設定されている。そして、実装部4は、収容孔3aの素子実装側開口部を閉塞してケース部5の凹部5c内に収容されている。   The mounting part 4 is set to have a width dimension smaller than the width dimension of the light guide part 3 and a length dimension corresponding to the length dimension of the light guide part 3. The mounting portion 4 is accommodated in the recess 5 c of the case portion 5 by closing the element mounting side opening of the accommodation hole 3 a.

ケース部5は、底部5a,側壁部5b及び凹部5cを有し、全体が例えばAl等の金属又は合成樹脂によって形成されている。この場合、ケース部5の材料としては、放熱性や軽量性を考慮して例えばAlを用いることが望ましい。   The case part 5 has a bottom part 5a, a side wall part 5b, and a concave part 5c, and is entirely formed of a metal such as Al or a synthetic resin. In this case, it is desirable to use, for example, Al as the material of the case portion 5 in consideration of heat dissipation and light weight.

なお、上記配置例では、導光部3が単一の導光板からなる場合について説明したが、これに限定されず、一対の導光板を互いに突き合わせてなる導光部であってもよい。この場合、導光部における収容孔の形成は、一対の導光板にそれぞれ凹部を設け、これら両凹部を突き合わせて行われる。
(3)図11(a)及び(b)に示すように、発光装置1は、発光部2,導光部3及び実装部4の他にケース部6を備えている。
In addition, although the case where the light guide part 3 consists of a single light guide plate was demonstrated in the said arrangement example, it is not limited to this, The light guide part which abuts a pair of light guide plates mutually may be sufficient. In this case, formation of the accommodation hole in the light guide is performed by providing a recess in each of the pair of light guide plates and abutting both the recesses.
(3) As shown in FIGS. 11A and 11B, the light emitting device 1 includes a case portion 6 in addition to the light emitting portion 2, the light guide portion 3, and the mounting portion 4.

導光部3は、その両側縁に沿って並列する複数の収容孔3aを有する単一の導光板からなり、ケース部6内に収容されている。収容孔3aは、導光部3の側縁を切り欠くことにより、半円と矩形との組み合わせによる開口面をもつ凹部で形成されている。導光部3には、一方側面(実装部4側の面)が実装部4の実装面に対向して発光部2からの熱を吸収する熱吸収面30として、また他方側面(実装部4側の面と反対側の面)が収容孔3aの内面30aから入射した発光部2の熱を外部に放散する熱放散面31としてそれぞれ形成されている。   The light guide portion 3 is formed of a single light guide plate having a plurality of accommodation holes 3 a arranged in parallel along both side edges thereof, and is accommodated in the case portion 6. The accommodation hole 3a is formed as a recess having an opening surface by combining a semicircle and a rectangle by cutting out the side edge of the light guide 3. The light guide unit 3 has one side surface (surface on the mounting unit 4 side) facing the mounting surface of the mounting unit 4 as a heat absorbing surface 30 that absorbs heat from the light emitting unit 2 and the other side surface (mounting unit 4). The surface opposite to the side surface) is formed as a heat dissipating surface 31 that dissipates the heat of the light emitting part 2 incident from the inner surface 30a of the accommodation hole 3a to the outside.

ケース部6は、底部6a及び側壁部6bを有し、全体が例えば100W/m・K以上の熱伝導率をもつAl合金からなる高熱伝導材料によって形成されている。
(4)図12に示すように、発光装置1は、平面縦横方向に等間隔をもって並列する複数の収容孔3aを有する導光部3を備えている。
The case part 6 has a bottom part 6a and a side wall part 6b, and is entirely made of a high thermal conductive material made of an Al alloy having a thermal conductivity of, for example, 100 W / m · K or more.
(4) As shown in FIG. 12, the light emitting device 1 includes a light guide unit 3 having a plurality of receiving holes 3 a arranged in parallel at equal intervals in the plane vertical and horizontal directions.

導光部3は、複数の収容孔3aが略正方形状の開口面をもつ貫通孔によって形成されている。具体的には、複数の収容孔3aは、その角部内面が所定の曲率をもつ曲率面で形成されている。   In the light guide 3, a plurality of receiving holes 3 a are formed by through holes having a substantially square opening surface. Specifically, each of the plurality of receiving holes 3a is formed with a curvature surface having a predetermined curvature at the corner inner surface.

実装部4は、図13(a)及び(b)に示すように、回路パターン層42が熱伝導率100W/(m・k)を超える高熱伝導部材のアルミニウムからできている基板本体40の略全面にわたって形成されている。回路パターン層42の形成は、例えば基板本体40の平面サイズと略同一の平面サイズをもつ銅箔(厚さ70μm)に格子状の抜き部を形成することにより行われる。これにより、発光部2で発せられる熱は、回路パターン層42によって拡散され、絶縁層41を介して基板本体40の略全域に伝達される。このため、絶縁層41の熱抵抗を大幅に低減し、発光部2(図12に示す)の温度上昇を抑制することができる。図12(a)において、発光部2はその搭載位置を斜線Cで示し、また白色レジスト層43の図示を省略する。   As shown in FIGS. 13A and 13B, the mounting portion 4 is an abbreviation of a substrate body 40 made of aluminum, which is a high thermal conductive member whose circuit pattern layer 42 has a thermal conductivity of more than 100 W / (m · k). It is formed over the entire surface. The circuit pattern layer 42 is formed, for example, by forming lattice-shaped punched portions on a copper foil (thickness 70 μm) having a plane size substantially the same as the plane size of the substrate body 40. As a result, the heat generated by the light emitting unit 2 is diffused by the circuit pattern layer 42 and transmitted to substantially the entire area of the substrate body 40 via the insulating layer 41. For this reason, the thermal resistance of the insulating layer 41 can be significantly reduced, and the temperature rise of the light emitting unit 2 (shown in FIG. 12) can be suppressed. In FIG. 12A, the mounting position of the light emitting unit 2 is indicated by oblique lines C, and the white resist layer 43 is not shown.

これによって、図11及び図13において、発光部2が発した熱は基板本体40の全体に拡がり、基板本体40の熱の局在を防いで外部への放熱を促進することができる。この際、導光部3に沿った本体基板40が放熱機能を持ちながら、面状の発光装置1のデザイン性を損なう程度に厚くなるような形状の影響が生じないようにすることができる。また、導光部3の少なくとも一側面部近傍の裏面部に側面部と平行な軸線をもつ円柱状の貫通孔または凹部からなる入射部を複数列設し、これら入射部に発光部2を配置すると、発光部2が局在することとなり、十分な放熱対策を行わない場合に、熱の局在により導光部3が撓むという問題点がある。これに対し、本実施形態の発光装置1では、発光部2が分散配置されていることと、各発光部2の熱を面状の基板本体40に分散して大きな面積から外部放熱が可能となるので、熱による導光部3の撓みを抑制することができる。   Accordingly, in FIG. 11 and FIG. 13, the heat generated by the light emitting unit 2 spreads over the entire substrate body 40, and the heat distribution to the outside can be promoted by preventing the localization of the heat of the substrate body 40. At this time, the main body substrate 40 along the light guide portion 3 can have a heat dissipation function, but can be prevented from being affected by a shape that is thick enough to impair the design of the planar light emitting device 1. In addition, a plurality of rows of incident portions including cylindrical through holes or concave portions having an axis parallel to the side surface portion are provided on the back surface portion of the light guide portion 3 in the vicinity of the side surface portion, and the light emitting portions 2 are arranged in these incident portions. Then, the light emitting unit 2 is localized, and there is a problem that the light guide unit 3 bends due to the localized heat when a sufficient heat dissipation measure is not taken. On the other hand, in the light emitting device 1 according to the present embodiment, the light emitting units 2 are dispersedly arranged, and the heat of each light emitting unit 2 is distributed to the planar substrate body 40 so that external heat radiation is possible from a large area. Therefore, the bending of the light guide 3 due to heat can be suppressed.

次に、本実施の形態に示す発光装置1に放熱機能を備えた他の例につき、図14及び図15(a)〜(c)を用いて説明する。図14は発光装置を、図15(a)〜(c)は放熱パターン層,素子搭載基板をそれぞれ示す。図14及び図15(a)〜(c)において、図1〜図5と同一又は同等の部材については同一の符号を付す。   Next, another example in which the light-emitting device 1 described in this embodiment has a heat dissipation function will be described with reference to FIGS. 14 and 15A to 15C. FIG. 14 shows a light emitting device, and FIGS. 15A to 15C show a heat radiation pattern layer and an element mounting substrate, respectively. 14 and 15A to 15C, the same or equivalent members as those in FIGS. 1 to 5 are denoted by the same reference numerals.

図14に示すように、発光装置1は、等間隔をもって並列する複数(本実施の形態では3個)のLED素子21、及び放熱パターン層208を実装側面20bに形成してなる素子搭載基板20を有する複数の発光部2を備えている。複数の発光部2のうち4個の発光部2が回路パターン層42c(図15(a)に示す)によって直列接続されている。   As shown in FIG. 14, the light emitting device 1 includes an element mounting substrate 20 in which a plurality (three in the present embodiment) of LED elements 21 arranged in parallel at equal intervals and a heat radiation pattern layer 208 are formed on the mounting side surface 20 b. A plurality of light emitting units 2 having Of the plurality of light emitting units 2, four light emitting units 2 are connected in series by a circuit pattern layer 42c (shown in FIG. 15A).

また、発光装置1は、図15(a)〜(c)に示すように、発光部2の放熱パターン層208に対向する放熱パターン層44を有する実装部4(図14に示す)を備えている。   Moreover, the light-emitting device 1 is provided with the mounting part 4 (shown in FIG. 14) which has the thermal radiation pattern layer 44 which opposes the thermal radiation pattern layer 208 of the light emission part 2, as shown to Fig.15 (a)-(c). Yes.

図15(a)に示すように、放熱パターン層44は、その中央部に位置するパターン基部44a、及びパターン基部44aを介して並列する一対のパターン延出部44b,44cを有し、回路パターン層42a〜42cと電気的に絶縁されている。   As shown in FIG. 15A, the heat dissipation pattern layer 44 has a pattern base 44a located at the center thereof and a pair of pattern extending portions 44b and 44c arranged in parallel via the pattern base 44a. It is electrically insulated from the layers 42a to 42c.

図15(b)に示すように、放熱パターン層44の幅は、パターン基部44aが最も小さい寸法に、またパターン延出部44b,44cがパターン基部44aよりも大きい寸法にそれぞれ設定されている。   As shown in FIG. 15 (b), the width of the heat radiation pattern layer 44 is set to the dimension where the pattern base portion 44a is the smallest, and the pattern extending portions 44b and 44c are set to dimensions larger than the pattern base portion 44a.

放熱パターン層44におけるパターン基部44aの長手方向の幅L11は、放熱パターン層208(図15(c)に示す)の長手方向の幅L12に対応する幅である。本実施の形態では、幅L11と幅L12とが同一の寸法に設定されている。 Longitudinal width L 11 of the pattern base 44a in the heat radiation pattern layer 44 is a width corresponding to the longitudinal width L 12 of the heat radiation pattern layer 208 (shown in FIG. 15 (c)). In this embodiment, it is set to the same size as the width L 11 and the width L 12.

放熱パターン層44における露出部の短手方向(長手方向と垂直な方向)の幅L21は、放熱パターン層208における短手方向の幅L22(図15(c)に示す)に対応する幅である。本実施の形態では、幅L21と幅L22とが同一の寸法に設定されている。 The width L 21 of the exposed portion in the heat dissipation pattern layer 44 in the short direction (direction perpendicular to the longitudinal direction) corresponds to the width L 22 in the short direction of the heat dissipation pattern layer 208 (shown in FIG. 15C). It is. In the present embodiment, the width L 21 and the width L 22 are set to the same dimension.

図15(c)に示すように、発光部2の放熱パターン層208は、LED素子21の搭載領域に対応する実装側面(素子非搭載面)20b側の領域を少なくとも一部を含む部位に形成されている。   As shown in FIG. 15 (c), the heat radiation pattern layer 208 of the light emitting unit 2 forms a region on the mounting side surface (device non-mounting surface) 20 b side corresponding to the mounting region of the LED element 21 in a part including at least a part. Has been.

[第1の実施の形態の効果]
以上説明した第1の実施の形態によれば、次に示す効果が得られる。
[Effect of the first embodiment]
According to the first embodiment described above, the following effects can be obtained.

(1)外部領域側の蛍光体層230及び素子側の蛍光体層231によってLED素子21から発せられる多くの光が収容孔3a内に放射され、光取出効率を高めることができる。 (1) A large amount of light emitted from the LED element 21 is radiated into the accommodation hole 3a by the phosphor layer 230 on the external region side and the phosphor layer 231 on the element side, so that the light extraction efficiency can be improved.

(2)封止部材22内に蛍光体を均一分散させない場合には特殊な製造が不要となり、コストの低廉化を図ることができる。 (2) When the phosphor is not uniformly dispersed in the sealing member 22, special manufacturing is not necessary, and the cost can be reduced.

(3)発光装置1から発する光の発光位置やこの位置から離れた位置で色むらがあった場合でも、導光部3内にて光が混合されることにより、色むらを解消することができる。 (3) Even when there is color unevenness at the light emission position of the light emitted from the light emitting device 1 or at a position away from this position, the color unevenness can be eliminated by mixing the light in the light guide unit 3. it can.

(4)常識では、発光部は、光出射エリアを狭くする、導光部への入射角範囲を狭くするための光学系を用いて、導光部との結合を図る。しかし、本実施形態では、発光部2は量産のため、LED素子21がその中心軸に沿った側面に取り囲まれた形状とされ、光出射エリアを狭める光学系を備えていない。なお、反射枠は高反射率部材を選択されるものの完全に光吸収のないものでない限り、光学損出が生じるので、本実施形態の発光部では高効率化、さらに小型化の効果もある。また、本実施形態の発光部2では、LED素子21の中心軸に沿った側面に取り囲まれた形状で、LED素子21から発し、この側面に至った光は、LED素子21の中心軸方向に近づく方向に屈折する。そして、LED素子21から発する光の光量うち、LED素子21の中心軸に対し大きな角度方向へ放射される光量は、この方向の立体角が大きいため、LED素子21の配光特性にもよるが、例えば全光量に対し50%以上の大きな割合がある。すなわち、導光部3への入射角は、むしろ広がる角度となる。しかも、封止部材22の屈折率はLED素子21からの光取出しを促進するため、シリコーン樹脂(屈折率:1.4〜1.5程度)やエポキシ樹脂(1.5〜1.6程度)よりも屈折率の大きい、屈折率1.6以上の部材を選択できる。この際、LED素子21の中心軸方向に近づく方向に屈折する程度は、さらに大きいものとなる。また、LED素子21から発し、蛍光体で励起される光や散乱する光のうち、側面に至る光も同様にLED素子21の中心軸方向に近づく方向に屈折する。にもかかわらず、導光部3の厚さ方向に平行な軸線をもつ収容孔3aを形成した導光部3と本実施の形態の発光部2とを組み合わせ、導光部3への入射面となる収容孔3aでの入射時の屈折と、導光部3の入射面とは直交する面となる導光部3の上下面(一方側端面3b,他方側端面3c)での全反射が生じる屈折率の導光部3により、発光部2と導光部3とを高効率で結合でき、かつ部品点数の削減および簡単な製造が可能となる。 (4) In common sense, the light emitting unit is intended to be coupled to the light guide unit using an optical system for narrowing the light output area and narrowing the incident angle range to the light guide unit. However, in the present embodiment, the light emitting unit 2 is mass-produced, and the LED element 21 is surrounded by the side surface along the central axis thereof, and does not include an optical system that narrows the light emission area. Note that, as long as a high reflectance member is selected for the reflecting frame, optical loss occurs unless the reflecting frame is completely light-absorbing. Therefore, the light emitting unit of the present embodiment has an effect of increasing the efficiency and reducing the size. Moreover, in the light emission part 2 of this embodiment, it is the shape enclosed by the side surface along the center axis | shaft of the LED element 21, and the light emitted from the LED element 21 reached this side surface in the center axis direction of the LED element 21. Refracts in the approaching direction. Of the amount of light emitted from the LED element 21, the amount of light emitted in a large angular direction with respect to the central axis of the LED element 21 has a large solid angle in this direction, and thus depends on the light distribution characteristics of the LED element 21. For example, there is a large ratio of 50% or more with respect to the total light quantity. That is, the incident angle to the light guide unit 3 is rather widened. Moreover, since the refractive index of the sealing member 22 promotes light extraction from the LED element 21, silicone resin (refractive index: about 1.4 to 1.5) or epoxy resin (about 1.5 to 1.6) is used. A member having a refractive index of 1.6 or higher can be selected. At this time, the degree of refraction in the direction approaching the central axis direction of the LED element 21 is further increased. Further, among the light emitted from the LED element 21 and excited to the phosphor or scattered, the light reaching the side surface is similarly refracted in a direction approaching the central axis direction of the LED element 21. Nevertheless, the light guide part 3 in which the receiving hole 3a having an axis parallel to the thickness direction of the light guide part 3 is formed and the light emitting part 2 of the present embodiment are combined, and the incident surface to the light guide part 3 Refraction at the time of incidence in the accommodation hole 3a and total reflection on the upper and lower surfaces (one side end surface 3b, the other side end surface 3c) of the light guide unit 3 that are orthogonal to the incident surface of the light guide unit 3. The light guide part 3 having the refractive index that is generated allows the light emitting part 2 and the light guide part 3 to be coupled with high efficiency, reduces the number of components, and enables simple manufacture.

図2において、導光部3の他方側端面3cに対する収容孔3aの内面30aの角度をαとし、導光部3の屈折率をnとしたとき、
90°−sin−1[{sin(90°−α)}/n]+α≧sin−1(1/n
…(1)
の式を満たすようにすると、導光部3の厚さ方向へ進む光につき、内面30aから導光部3内へ入射した全ての光が導光部3内の伝搬光となる。本実施形態においては、α=90°でありn=1.5であることから、上記式(1)の条件を満たす。
2, the angle of the inner surface 30a of the accommodation hole 3a with respect to the other end surface 3c of the light guide 3 and alpha, when the refractive index of the light guide 3 and n 1,
90 ° −sin −1 [{sin (90 ° −α)} / n 1 ] + α ≧ sin −1 (1 / n 1 )
... (1)
If the above equation is satisfied, for the light traveling in the thickness direction of the light guide 3, all the light that has entered the light guide 3 from the inner surface 30 a becomes propagation light in the light guide 3. In this embodiment, since α = 90 ° and n 1 = 1.5, the condition of the above formula (1) is satisfied.

これに加え、
α≦90°−2×sin−1[sin{(90°−α)/n}]…(2)
の式を満たすようにすると、導光部3の内面30aに沿って進む光につき、内面30aから導光部3内へ入射した全ての光が導光部3内の伝搬光となる。本実施形態においては、α=90°でありn=1.5であることから、上記式(2)の条件を満たす。
In addition to this,
α ≦ 90 ° −2 × sin −1 [sin {(90 ° −α) / n 1 }] (2)
If all of the light traveling along the inner surface 30 a of the light guide unit 3 is incident on the light guide unit 3, all the light incident on the light guide unit 3 from the inner surface 30 a becomes propagation light in the light guide unit 3. In this embodiment, since α 1 = 90 ° and n 1 = 1.5, the condition of the above formula (2) is satisfied.

(5)本実施の形態においては、導光板部3の両面に特に加工を施していないが、必要に応じて任意の加工を施してもよいことは勿論である。例えば、導光部3の少なくとも一方の面に反射加工を施してよい。発光装置1では、他方側端面3cに円形状の複数の反射部を形成し、導光部2内の光が反射部にて反射して一方側端面3bから取り出されるようにする。この場合、各反射部を発光部2と近いほど小さくし遠ざかるほど大きくすると、一方側端面3bから取り出される光の量を発光部2からの距離にかかわらず均一とすることができる。 (5) In the present embodiment, processing is not particularly performed on both surfaces of the light guide plate portion 3, but it is needless to say that arbitrary processing may be performed as necessary. For example, reflection processing may be performed on at least one surface of the light guide 3. In the light emitting device 1, a plurality of circular reflecting portions are formed on the other side end surface 3 c so that the light in the light guide portion 2 is reflected by the reflecting portion and extracted from the one side end surface 3 b. In this case, if each reflecting portion is made smaller as it gets closer to the light emitting portion 2 and made larger as it gets farther away, the amount of light extracted from the one end face 3 b can be made uniform regardless of the distance from the light emitting portion 2.

この場合、反射部は、スクリーン印刷,インクジェット印刷,レーザー加工,金型を利用した熱転写等により形成することができる。特に、インクジェット印刷,レーザー加工等の場合、スクリーン印刷等で用いる版が不要となり、例えば実際に製造された発光装置の発光特性に応じて反射部の加工を行うことができる。さらに、インクジェット印刷の場合、ノズルを導光部3上に全面的に配置することにより、広範囲の加工を同時に行うことができ、作業性に優れるという利点がある。   In this case, the reflection portion can be formed by screen printing, ink jet printing, laser processing, thermal transfer using a mold, or the like. In particular, in the case of inkjet printing, laser processing, etc., a plate used in screen printing or the like is not necessary, and for example, the reflective portion can be processed according to the light emission characteristics of the actually manufactured light emitting device. Furthermore, in the case of inkjet printing, by arranging the nozzles entirely on the light guide unit 3, there is an advantage that a wide range of processing can be performed simultaneously and workability is excellent.

また、本実施の形態においては、導光部3が平板状に形成されたものを示したが、収容孔3aから入射した光を導くものであれば、導光部3の形状を適宜変更してもよいことは勿論である。例えば、図16に示すように、他方側端面3cを発光部3から遠ざかるにつれて一方側端面3bと近接するように湾曲して形成してもよい。この発光装置1によっても、一方側端面3bから取り出される光の均一化を図ることができる。また、発光部2は光学系を備えず小型であるため、多くの発光部2を密に配列して、高輝度の導光部3とすることができる。一方、各発光部3の間隔を比較的広くして配列した場合も、面方向360ーに光が放射されるため、各発光部3の間の輝度の低下を防止できる。さらに、隣接する収容孔3aの間隔が広くなって導光部3の本体部分の領域が大きくなるため、図16で発光部2の光の左側に出射された光を発光部2の右側へ伝えやすくすることができる。   In the present embodiment, the light guide 3 is formed in a flat plate shape. However, the shape of the light guide 3 is appropriately changed as long as it guides the light incident from the accommodation hole 3a. Of course, it may be. For example, as shown in FIG. 16, the other side end surface 3 c may be curved so as to approach the one side end surface 3 b as the distance from the light emitting unit 3 increases. The light emitting device 1 can also make the light extracted from the one end face 3b uniform. In addition, since the light emitting unit 2 does not include an optical system and is small, a large number of light emitting units 2 can be densely arranged to form a high-intensity light guide unit 3. On the other hand, even when the light emitting units 3 are arranged with a relatively large interval, light is emitted in the surface direction 360-, so that a decrease in luminance between the light emitting units 3 can be prevented. Furthermore, since the space | interval of the adjacent accommodation hole 3a becomes wide and the area | region of the main-body part of the light guide part 3 becomes large, the light radiate | emitted on the left side of the light of the light emission part 2 in FIG. It can be made easier.

(6)本実施の形態においては、LED素子21をガラスにより封止した発光部2を示したが、LED素子21が素子搭載基板20に対してフリップチップ接続であり、平面視にて封止部材22の枠部分が存在しない発光装置であれば、封止部材22を変更しても差し支えない。 (6) In the present embodiment, the light emitting unit 2 in which the LED element 21 is sealed with glass is shown. However, the LED element 21 is flip-chip connected to the element mounting substrate 20 and is sealed in a plan view. If the light emitting device does not have the frame portion of the member 22, the sealing member 22 may be changed.

発光部2は、封止部材が熱融着ガラスであるため、柱状形状とし高さ方向の形成が容易である。封止部材22と素子搭載基板20とは熱膨張率が同等であり、かつ接合力が大きいので、これら両部材の接合面積を小さくすることができる。そして、封止部材22は、側面放射面を含む直方体形状としてあるので、側面22Bの合計面積を端面22Aに対して2倍以上、好ましくは4倍以上とすることによって、横方向の配光を広くすることができ導光部への光結合効率を高めることができるので望ましい。なお、例えば、LED素子21をシリコーン樹脂,エポキシ樹脂等の封止部材22で封止してもよい。   Since the light emitting part 2 has a columnar shape because the sealing member is heat-sealed glass, it is easy to form in the height direction. Since the sealing member 22 and the element mounting substrate 20 have the same coefficient of thermal expansion and a large bonding force, the bonding area between these two members can be reduced. And since the sealing member 22 is made into the rectangular parallelepiped shape containing a side surface radiation | emission surface, by making the total area of the side surface 22B 2 times or more with respect to the end surface 22A, Preferably it is 4 times or more, and light distribution of a horizontal direction is carried out. This is desirable because it can be widened and the optical coupling efficiency to the light guide portion can be increased. For example, the LED element 21 may be sealed with a sealing member 22 such as a silicone resin or an epoxy resin.

また、例えばLED素子21を所定厚さの無機ペーストで封止してもよい。無機ペーストとしては、例えばSiO系,Al系,TiO系等の材料を用いることができる。 Further, for example, the LED element 21 may be sealed with an inorganic paste having a predetermined thickness. As the inorganic paste, for example, a material such as SiO 2 , Al 2 O 3 , or TiO 2 can be used.

[第2の実施の形態]
次に、本発明の第2実施の形態に係る発光装置につき、図17及び図18を用いて説明する。図17は発光装置を示す。図18(a)及び(b)は蛍光体層におけるパターン例を示す。図19は変形例を示す。図17〜図19において、図1〜図5と同一又は同等の部材については同一の符号を付し、詳細な説明は省略する。
[Second Embodiment]
Next, a light-emitting device according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 17 shows a light emitting device. 18A and 18B show pattern examples in the phosphor layer. FIG. 19 shows a modification. 17 to 19, members that are the same as or equivalent to those in FIGS.

図17に示すように、本発明の第2の実施の形態に係る発光装置100は、LED素子21と外部領域側の蛍光体層230との間に介在する内部領域側の蛍光体層102を有する発光部101を備えた点に特徴がある。   As shown in FIG. 17, the light emitting device 100 according to the second embodiment of the present invention includes the phosphor layer 102 on the inner region side interposed between the LED element 21 and the phosphor layer 230 on the outer region side. It is characterized in that the light emitting unit 101 is provided.

このため、発光部101は、光軸方向に隣接する第1の封止部材103aと第2の封止部材103bとを一体化してなる封止部材103を有し、封止部材103内に内部領域側の蛍光体層102が配置されている。   Therefore, the light emitting unit 101 has a sealing member 103 formed by integrating the first sealing member 103a and the second sealing member 103b adjacent in the optical axis direction, and the inside of the sealing member 103 The region-side phosphor layer 102 is disposed.

第1の封止部材103aは封止部材103の一方側(LED素子21に近い側)に、また第2の封止部材103bは封止部材103の他方側(LED素子21から遠い側)にそれぞれ配置されている。   The first sealing member 103a is on one side of the sealing member 103 (side closer to the LED element 21), and the second sealing member 103b is on the other side of the sealing member 103 (side far from the LED element 21). Each is arranged.

第1の封止部材103aと第2の封止部材103bとの一体化は、例えばホットプレス加工等を用いて行われる。すなわち、第1の封止前ガラスを素子搭載基板20にホットプレス加工で接合して第1の封止部材103aを形成した後、この第1の封止部材103aに第2の封止前ガラスをホットプレス加工で接合して第2の封止部材103bを形成することにより行われる。この場合、第1の封止前ガラスには例えばスクリーン印刷によって内部領域側の蛍光体層102が、第2の封止前ガラスには外部領域側の蛍光体層230が例えばSiO系の接着剤等によって、また素子搭載基板20には例えばスクリーン印刷等によって素子側の蛍光体層231がそれぞれ予め形成されている。 The integration of the first sealing member 103a and the second sealing member 103b is performed using, for example, hot pressing. That is, the first pre-sealing glass is joined to the element mounting substrate 20 by hot pressing to form the first sealing member 103a, and then the second pre-sealing glass is applied to the first sealing member 103a. Are joined by hot pressing to form the second sealing member 103b. In this case, the phosphor layer 102 on the inner region side is attached to the first pre-sealing glass by, for example, screen printing, and the phosphor layer 230 on the outer region side is, for example, an SiO 2 -based adhesive to the second pre-sealing glass. The phosphor layer 231 on the element side is previously formed on the element mounting substrate 20 by an agent or the like, for example, by screen printing or the like.

内部領域側の蛍光体層102は、LED素子21の発光面218(図5に示す)に対向する面(素子搭載基板20の素子搭載面20a)内に配置されている。例えば、図18(a)に示すように平面六角形状の蛍光体層102が、また図18(b)に示すようにドット状の封止部材(蛍光体のない微小エリア)103がそれぞれ素子搭載基板20(図17に示す)の面内で縦横方向に並列して配置されている。これにより、内部領域側の蛍光体層102には、蛍光体の存在しない領域が形成されるため、封止部材103の形成時に第1の封止前ガラスと第2の封止前ガラスとの接合度を高めることができる。また、LED素子21の光を内部領域側の蛍光体層102が外部領域側の蛍光体層230との間へ至らせ易くする効果もある。なお、内部領域側の蛍光体層102は、素子搭載基板20の素子搭載面20aに対向する面内で全体にわたって形成してもよい。   The phosphor layer 102 on the inner region side is disposed in a surface (the element mounting surface 20a of the element mounting substrate 20) facing the light emitting surface 218 (shown in FIG. 5) of the LED element 21. For example, as shown in FIG. 18A, a flat hexagonal phosphor layer 102 is mounted, and as shown in FIG. 18B, a dot-shaped sealing member (small area without phosphor) 103 is mounted on the element. In the plane of the substrate 20 (shown in FIG. 17), they are arranged in parallel in the vertical and horizontal directions. Thereby, in the phosphor layer 102 on the inner region side, a region where the phosphor does not exist is formed. Therefore, when the sealing member 103 is formed, the first pre-sealing glass and the second pre-sealing glass The degree of joining can be increased. In addition, there is an effect that the light from the LED element 21 can easily reach the phosphor layer 102 on the inner region side to the phosphor layer 230 on the outer region side. Note that the phosphor layer 102 on the inner region side may be formed over the entire surface in the surface facing the element mounting surface 20 a of the element mounting substrate 20.

このように構成された発光装置100においては、LED素子21から発せられる光の一部を内部領域側の蛍光体層102で散乱反射し、封止部材22の側面22Bを通じて内部領域側の蛍光体層102よりも下方に向かって導光部3の収容孔3a内を進む光と、LED素子21からの光の一部を外部領域側の蛍光体層230で散乱反射し、さらに内部領域側の蛍光体層231で散乱反射した後、封止部材22の側面22Bを通じて端面22Aよりも上方に向かって導光部3の収容孔3a内に進む光と、同じくLED素子21からの光の一部を内部領域側の蛍光体層102で散乱反射し、さらに素子側の蛍光体層231で散乱反射した後、封止部材22の側面22Bを通じて内部領域側の蛍光体層102よりも上方に向かって導光部3の収容孔3a内に進む光と、LED素子21からの光の一部を外部領域側の蛍光体層230,素子側の蛍光体層231及び内部領域側の蛍光体層102で散乱反射せず、導光部3の収容孔3a内に進む光等とが含まれる。このため、第1の実施の形態に示す発光装置1と比べてLED素子21から発せられる多くの光が収容孔3a内に放射される。   In the light emitting device 100 configured as described above, a part of the light emitted from the LED element 21 is scattered and reflected by the phosphor layer 102 on the inner region side, and the phosphor on the inner region side through the side surface 22B of the sealing member 22. Light that travels in the receiving hole 3a of the light guide 3 toward the lower side of the layer 102 and part of the light from the LED element 21 are scattered and reflected by the phosphor layer 230 on the outer region side, and further on the inner region side. After being scattered and reflected by the phosphor layer 231, the light traveling through the side surface 22 </ b> B of the sealing member 22 to the upper side of the end surface 22 </ b> A into the accommodation hole 3 a of the light guide unit 3, and part of the light from the LED element 21. Is scattered and reflected by the phosphor layer 102 on the inner region side, and further scattered and reflected by the phosphor layer 231 on the element side, and then upwards from the phosphor layer 102 on the inner region side through the side surface 22B of the sealing member 22. Accommodation of the light guide 3 The light traveling into 3a and part of the light from the LED element 21 are not scattered and reflected by the phosphor layer 230 on the outer region side, the phosphor layer 231 on the element side, and the phosphor layer 102 on the inner region side, and guided. Light traveling into the accommodation hole 3a of the portion 3 is included. For this reason, much light emitted from the LED element 21 is radiated | emitted in the accommodation hole 3a compared with the light-emitting device 1 shown in 1st Embodiment.

[第2の実施の形態の効果]
以上説明した第2の実施の形態によれば、第1の実施の形態の効果と同様の効果が得られる。この場合、外部領域側の蛍光体層230,素子側の蛍光体層231及び内部領域側の蛍光体層102による散乱反射によってLED素子21から発せられる光が収容孔3a内に放射されるため、光取出効率を効果的に高めることができる。特に、内部領域側の蛍光体層231と外部領域側の蛍光体層230との間では、光吸収損失の要因となるLED素子21や素子搭載基板20へ至るその厚さ方向(上下方向)の光は、各蛍光体層で散乱光となり、光の上下方向成分が減じられ、光の横方向成分が増すことになり、このためLED素子21や素子搭載基板20で吸収される光が減じられ、封止部材22の側面22Bからの光の外部への放射が促進される。これにより、光取出効率が高められる。また、蛍光体形成面積が広い場合にも蛍光体形成エリア内で封止部材103aと103bとの接合がなされるので、蛍光体層の浮きが生じることを防ぐことができる。尚、素子側の蛍光体層にも、蛍光体の存在しない領域を形成して、封止部材と素子搭載基板との接合強度を高めてもよい。
[Effect of the second embodiment]
According to the second embodiment described above, the same effect as that of the first embodiment can be obtained. In this case, light emitted from the LED element 21 due to scattering and reflection by the phosphor layer 230 on the outer region side, the phosphor layer 231 on the element side, and the phosphor layer 102 on the inner region side is emitted into the accommodation hole 3a. The light extraction efficiency can be effectively increased. In particular, between the phosphor layer 231 on the inner region side and the phosphor layer 230 on the outer region side, in the thickness direction (vertical direction) leading to the LED element 21 and the element mounting substrate 20 that cause light absorption loss. The light becomes scattered light in each phosphor layer, the vertical component of the light is reduced, and the lateral component of the light is increased. Therefore, the light absorbed by the LED element 21 and the element mounting substrate 20 is reduced. The radiation of light from the side surface 22B of the sealing member 22 to the outside is promoted. Thereby, the light extraction efficiency is increased. Further, even when the phosphor formation area is large, the sealing members 103a and 103b are joined in the phosphor formation area, so that it is possible to prevent the phosphor layer from floating. Note that a region where no phosphor is present may be formed in the phosphor layer on the element side to increase the bonding strength between the sealing member and the element mounting substrate.

なお、本実施の形態においては、第2の封止部材103bに外部領域側の蛍光体層230が形成されている場合について説明したが、本発明これに限定されず、図19に示すように第2の封止部材103bに外部領域側の蛍光体層230のさらに上へ例えばTiO等の微粒子を分散させたSiO系のコーティング材料薄膜層104を形成してもよい。この場合、薄膜層104の母材となるコーティング材料は屈折率が比較的小さいため、全反射を生じさせ易く、また全反射が生ぜずコーティング材料内へ入射した光は屈折率が比較的高いTiOの微粒子による拡散が生じるので、薄膜層104を透過し難く、外部領域側の蛍光体層230を透過した光を散乱させて薄膜層104の側方に放射することができる。つまり、薄膜層は反射層として機能する。そして、導光部への光結合効率を高めることができる。また、内部領域側の蛍光体層は、1層に限らず複数層備えたものでもよい。この際、複数層の蛍光体層は一体になったものでも、各層の間に封止部材があるものでもよい。 In the present embodiment, the case where the phosphor layer 230 on the outer region side is formed on the second sealing member 103b has been described. However, the present invention is not limited to this, as shown in FIG. A SiO 2 -based coating material thin film layer 104 in which fine particles such as TiO 2 are dispersed may be formed on the second sealing member 103b further above the phosphor layer 230 on the outer region side. In this case, since the coating material serving as the base material of the thin film layer 104 has a relatively low refractive index, it is easy to cause total reflection, and light incident on the coating material without causing total reflection is TiO having a relatively high refractive index. since diffusion by 2 fine particles occurs hardly transmitted through the thin film layer 104 can be emitted by scattering the light transmitted through the phosphor layer 230 of the outer region side on the side of the thin film layer 104. That is, the thin film layer functions as a reflective layer. And the optical coupling efficiency to a light guide part can be improved. Further, the phosphor layer on the inner region side is not limited to one layer but may be provided with a plurality of layers. In this case, the plurality of phosphor layers may be integrated or a sealing member may be provided between the layers.

[第3の実施の形態]
次に、本発明の第3実施の形態に係る発光装置につき、図20を用いて説明する。図20は発光装置を示す。図20において、図1〜図5と同一又は同等の部材については同一の符号を付し、詳細な説明は省略する。
[Third embodiment]
Next, a light emitting device according to a third embodiment of the invention will be described with reference to FIG. FIG. 20 shows a light emitting device. 20, members identical or equivalent to those in FIGS. 1 to 5 are given the same reference numerals, and detailed descriptions thereof are omitted.

図20に示すように、本発明の第3の実施の形態に係る発光装置500は、発光部2,導光部3及び実装部4の他にカバー部7を備えている点に特徴がある。   As shown in FIG. 20, the light emitting device 500 according to the third embodiment of the present invention is characterized in that it includes a cover portion 7 in addition to the light emitting portion 2, the light guide portion 3, and the mounting portion 4. .

このため、カバー部7は、発光装置1の表面部を構成する例えばアクリル樹脂等の透明部材からなり、複数の収容孔3aの開口部を閉塞して導光部3の一方側端面3b(収容孔3aの開口側端面)に配置されている。そして、カバー部7は、外部領域側の蛍光体層230の外側層面230aを覆うように構成されている。   For this reason, the cover part 7 consists of transparent members, such as an acrylic resin which comprises the surface part of the light-emitting device 1, for example, obstruct | occludes the opening part of the some accommodation hole 3a, and the one side end surface 3b (accommodation of the light guide part 3). It is arrange | positioned at the opening side end surface of the hole 3a. And the cover part 7 is comprised so that the outer side layer surface 230a of the fluorescent substance layer 230 by the side of an external region may be covered.

カバー部7の裏面には、複数の収容孔3aに対応する位置で発光部2から発せられる光を受けて励起されることにより波長変換光を発するカバー側の蛍光体層70が形成されている。カバー側の蛍光体層70には、その発光色が外部領域側の蛍光体層230の発光色と異なる蛍光体が含有されている。これにより、発光装置500としての演色性を高めることができるとともに、外部領域側の蛍光体層230との間での光の吸収損失を低減することができる。また、LED素子21からの光が発光部2とは異なる部位(カバー側の蛍光体層70)から導光部3内に放射されるため、この光dが他の光a〜c等と導光部3内で混合され、発光装置500における色むらの発生を抑制することができる。   On the back surface of the cover portion 7, a cover-side phosphor layer 70 that emits wavelength-converted light by receiving and exciting light emitted from the light emitting portion 2 at positions corresponding to the plurality of receiving holes 3 a is formed. . The phosphor layer 70 on the cover side contains a phosphor whose emission color is different from that of the phosphor layer 230 on the external region side. As a result, the color rendering properties of the light emitting device 500 can be improved, and the light absorption loss with the phosphor layer 230 on the outer region side can be reduced. Further, since the light from the LED element 21 is radiated into the light guide part 3 from a part (the phosphor layer 70 on the cover side) different from the light emitting part 2, this light d is guided to other lights a to c and the like. It is mixed in the light part 3, and generation | occurrence | production of the color unevenness in the light-emitting device 500 can be suppressed.

このように構成された発光装置500においては、LED素子21から発せられる光の一部を発光部2から放射し、カバー側の蛍光体層70で散乱反射し、カバー側の蛍光体層70よりも下方に向かって導光部3に進む光が多く含まれる。このため、第1の実施の形態に示す発光装置1及び第2の実施の形態に示す発光装置100は、発光部の封止部材に蛍光体が均一分散され、封止部材上面に蛍光体層を有さないものに比べ、下方に向かって導光部3に進む光が多く含まれるが、さらに、第1の実施の形態に示す発光装置1及び第2の実施の形態に示す発光装置100と比べてLED素子21から発せられる多くの光が図20の下方向成分をもって導光部3における収容孔3aの内面30aから入射し、発光装置1近傍の導光部3の底面(実装部4側の面)に放射される。   In the light emitting device 500 configured as described above, a part of the light emitted from the LED element 21 is radiated from the light emitting unit 2 and scattered and reflected by the phosphor layer 70 on the cover side, and from the phosphor layer 70 on the cover side. In addition, a lot of light traveling downward toward the light guide 3 is included. For this reason, in the light emitting device 1 shown in the first embodiment and the light emitting device 100 shown in the second embodiment, the phosphor is uniformly dispersed in the sealing member of the light emitting unit, and the phosphor layer is formed on the upper surface of the sealing member. Compared with a light source that does not have light, more light travels downward toward the light guide unit 3. However, the light emitting device 1 according to the first embodiment and the light emitting device 100 according to the second embodiment are further included. 20, a large amount of light emitted from the LED element 21 is incident from the inner surface 30 a of the accommodation hole 3 a in the light guide unit 3 with a downward component in FIG. 20, and the bottom surface of the light guide unit 3 near the light emitting device 1 (the mounting unit 4). Radiated to the side surface).

[第3の実施の形態の効果]
以上説明した第3の実施の形態によれば、第1の実施の形態の効果と同様の効果が得られる。この場合、外部領域側の蛍光体層230,素子側の蛍光体層231及び内部領域側の蛍光体層102によって、さらにはカバー側の蛍光体層70による散乱反射によってLED素子21から発せられる光が収容孔3a内に放射されるため、光取出効率を一層効果的に高めることができる。また、発光装置1近傍における導光部3の底面への放射光が増すため、照射光が乏しくなる傾向がある。この部位の輝度を高め、導光部3の発光輝度むらが生じることを防ぐことができる。
[Effect of the third embodiment]
According to the third embodiment described above, the same effect as that of the first embodiment can be obtained. In this case, the light emitted from the LED element 21 by the phosphor layer 230 on the outer region side, the phosphor layer 231 on the element side, and the phosphor layer 102 on the inner region side, and further by the scattering reflection by the phosphor layer 70 on the cover side. Is emitted into the accommodation hole 3a, so that the light extraction efficiency can be more effectively increased. Moreover, since the emitted light to the bottom face of the light guide part 3 in the vicinity of the light emitting device 1 is increased, the irradiated light tends to be poor. It is possible to increase the luminance of this portion and prevent the light emission luminance unevenness of the light guide unit 3 from occurring.

なお、本実施の形態では、カバー部7の裏面にカバー側の蛍光体層70が、また封止部材22の外部露出面(端面22A)に外部領域側の蛍光体層230がそれぞれ形成されている場合について説明したが、本発明はこれに限定されず、外部領域側の蛍光体層230及びカバー側の蛍光体層70のうちいずれか一方の蛍光体層が無くても差し支えない。この他、図19に示す発光部2において、カバー側の蛍光体層70に代えて発光部2から発せられる光を反射する白色反射層をカバー部7の裏面に形成してもよい。カバー部を備えたものに限らず、導光部の収納孔を塞ぐサイズの蛍光体シートを収納孔上部に備えるものでもよいし、導光部の収納孔が貫通孔ではなく、開口していないものとし、閉塞部に蛍光体層を形成してもよい。また、導光部の発光部収容孔の実装部側でない側に蛍光体層を設けた第3の実施の形態では、必ずしも、発光部に蛍光体層を有したものでなくてもよく、発光部の封止部材が蛍光体を均一分散したもの、あるいは蛍光体を含まないものであってもかまわない。カバー側の蛍光体層など、導光部の上面の蛍光体層によって、封止部材の蛍光体濃度を減じる、あるいは、蛍光体を含まないものとしても所定の色度とすることができ、光取出効率を向上させることができる。   In the present embodiment, the cover-side phosphor layer 70 is formed on the back surface of the cover portion 7, and the external region-side phosphor layer 230 is formed on the externally exposed surface (end surface 22 </ b> A) of the sealing member 22. However, the present invention is not limited to this, and any one of the phosphor layer 230 on the outer region side and the phosphor layer 70 on the cover side may be omitted. In addition, in the light emitting unit 2 shown in FIG. 19, a white reflective layer that reflects light emitted from the light emitting unit 2 may be formed on the back surface of the cover unit 7 instead of the phosphor layer 70 on the cover side. It is not limited to the one provided with the cover part, and a phosphor sheet of a size that closes the accommodation hole of the light guide part may be provided on the upper part of the accommodation hole, and the accommodation hole of the light guide part is not a through hole and is not opened. A phosphor layer may be formed in the closed portion. Further, in the third embodiment in which the phosphor layer is provided on the side of the light guide portion that is not the mounting portion side of the light emitting portion accommodation hole, the light emitting portion may not necessarily have the phosphor layer. The sealing member of the portion may be one in which the phosphor is uniformly dispersed or one that does not contain the phosphor. The phosphor layer on the upper surface of the light guide unit, such as the phosphor layer on the cover side, can reduce the phosphor concentration of the sealing member, or it can have a predetermined chromaticity even if it does not contain the phosphor. The extraction efficiency can be improved.

以上、本発明の発光装置を上記の実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。   As mentioned above, although the light-emitting device of this invention was demonstrated based on said embodiment, this invention is not limited to said embodiment, It implements in a various aspect in the range which does not deviate from the summary. Is possible.

1…発光装置、2…発光部、20…素子搭載基板、20a…素子搭載面、20b…実装側面、200,201…表面パターン、202,203…裏面パターン、204…ビアホール、205…ビアパターン、206…ビアホール、207…ビアパターン、208…放熱パターン層、20A…ホール付き基板用素材、20B…基板集合体、21…LED素子、210…p側電極、210a…p側パッド電極、211…n側電極、212…バンプ、213…基板、214…バッファ層、215…n型半導体層、216…MQW層、217…p型半導体層、218…発光面、22…封止部材、22A…端面、22B…側面、220…封止前ガラス、220a…凹部、220b…端面、23…蛍光体層、23a…蛍光体、230a…外側層面、230…外部領域側の蛍光体層、231…素子側の蛍光体層、3…導光部、3a…収容孔、30a…内面、3b…一方側端面、3c…他方側端面、30…熱吸収面、31…熱放散面、4…実装部、4a…実装面、40…基板本体、41…絶縁層、42,42a,42b,42c…回路パターン層、43…白色レジスト層、44…放熱パターン層、44a…パターン基部、44b,44c…パターン延出部、5,6…ケース部、5a,6a…底部、5b,6b…側壁部、5c…凹部、7…カバー部、70…カバー側の蛍光体層、100…発光装置、101…発光部、102…蛍光体層、103…封止部材、103a…第1の封止部材、103b…第2の封止部材、104…薄膜層、500…発光装置、A…下側金型、B…上側金型、C…斜線、L…軸線、a,b,c,d…光 DESCRIPTION OF SYMBOLS 1 ... Light-emitting device, 2 ... Light emission part, 20 ... Element mounting substrate, 20a ... Element mounting surface, 20b ... Mounting side surface, 200, 201 ... Front surface pattern, 202, 203 ... Back surface pattern, 204 ... Via hole, 205 ... Via pattern, 206 ... via hole, 207 ... via pattern, 208 ... heat radiation pattern layer, 20A ... substrate material with hole, 20B ... substrate assembly, 21 ... LED element, 210 ... p-side electrode, 210a ... p-side pad electrode, 211 ... n Side electrode, 212 ... Bump, 213 ... Substrate, 214 ... Buffer layer, 215 ... n-type semiconductor layer, 216 ... MQW layer, 217 ... p-type semiconductor layer, 218 ... Light emitting surface, 22 ... Sealing member, 22A ... End surface, 22B ... side surface, 220 ... glass before sealing, 220a ... concave, 220b ... end surface, 23 ... phosphor layer, 23a ... phosphor, 230a ... outer layer surface, 230 Phosphor layer on the outer region side, 231... Phosphor layer on the element side, 3... Light guide part, 3 a... Housing hole, 30 a. 31 ... Heat dissipation surface, 4 ... Mounting portion, 4a ... Mounting surface, 40 ... Board body, 41 ... Insulating layer, 42, 42a, 42b, 42c ... Circuit pattern layer, 43 ... White resist layer, 44 ... Heat dissipation pattern layer, 44a ... pattern base, 44b, 44c ... pattern extension, 5, 6 ... case, 5a, 6a ... bottom, 5b, 6b ... side wall, 5c ... recess, 7 ... cover, 70 ... phosphor on the cover side Layer 100, light emitting device 101, light emitting section 102, phosphor layer 103, sealing member 103a, first sealing member 103b, second sealing member 104, thin film layer, 500 light emission Device, A ... Lower mold, B ... Upper mold, C ... Diagonal line, L ... Shaft , A, b, c, d ... light

Claims (9)

素子搭載基板と、前記素子搭載基板に搭載された発光素子と、前記発光素子を封止する柱形状の封止部材と、前記封止部材の前記発光素子の発光面に対向した面の外部に配置され、前記発光素子から発せられる光を受けて励起されることにより波長変換光を発する外部領域側の蛍光体層と、前記外部領域側の蛍光体層との間で前記封止部材の一部を介して位置し、前記封止部材中に蛍光体が存在しない領域を有するようにして形成され、前記発光素子から発せられる光を受けることにより波長変換光を発する内部領域側の蛍光体層とを有する発光部と、
前記発光部を収容する収容孔を有する導光部と、
前記発光部を実装する実装部とを備え、
前記収容孔は、前記導光板の前記実装部側の端面から他方側の端面に延び、前記導光板の厚さ方向に略平行な内面を有するとともに前記導光板の前記他方側の端面に開口部を有し、
前記発光部は、前記導光部の厚さ方向に平行な光軸を有し、前記収容孔の前記内面側に光を放射し、
前記封止部材は、1.6以上の屈折率を有し、
前記外部領域側の蛍光体層は、前記封止部材の1.6以上の屈折率より小さい屈折率の母材中に前記波長変換光を発する蛍光体を分散させた構成を有する発光装置。
An element mounting substrate; a light emitting element mounted on the element mounting substrate; a columnar sealing member that seals the light emitting element; and an exterior of a surface of the sealing member that faces the light emitting surface of the light emitting element. One of the sealing members is disposed between an external region-side phosphor layer that emits wavelength-converted light by being disposed and excited by receiving light emitted from the light-emitting element, and the external region-side phosphor layer. A phosphor layer on the inner region side that is located through a portion and is formed so as to have a region in which no phosphor is present in the sealing member and emits wavelength-converted light by receiving light emitted from the light-emitting element A light emitting part having
A light guide portion having a receiving hole for receiving the light emitting portion;
A mounting part for mounting the light emitting part,
The accommodation hole extends from an end surface on the mounting portion side of the light guide plate to an end surface on the other side, has an inner surface substantially parallel to the thickness direction of the light guide plate, and has an opening on the other end surface of the light guide plate. Have
The light emitting unit has an optical axis parallel to the thickness direction of the light guide unit, and emits light to the inner surface side of the accommodation hole,
The sealing member has a refractive index of 1.6 or more;
The phosphor layer on the outer region side is a light emitting device having a configuration in which a phosphor emitting the wavelength-converted light is dispersed in a base material having a refractive index smaller than 1.6 or more of the sealing member.
前記導光部は、前記実装部側の端面に対する前記収容孔の前記内面の角度をαとし、屈折率をnとしたとき、
90°−sin−1[{sin(90°−α)}/n]+α≧sin−1(1/n
の式を満たす請求項1に記載の発光装置。
When the angle of the inner surface of the accommodation hole with respect to the end surface on the mounting portion side is α and the refractive index is n 1 ,
90 ° −sin −1 [{sin (90 ° −α)} / n 1 ] + α ≧ sin −1 (1 / n 1 )
The light emitting device according to claim 1, satisfying the formula:
前記発光部は、前記外部領域側の蛍光体層の外側に光反射層が配置されている請求項1又は2に記載の発光装置。   The light-emitting device according to claim 1, wherein the light-emitting unit includes a light reflection layer disposed outside the phosphor layer on the external region side. 前記発光部は、前記封止部材が光拡散性を有しない透明材料によって形成されている請求項1乃至3のいずれか1項に記載の発光装置。   The light emitting device according to any one of claims 1 to 3, wherein the light emitting section is formed of a transparent material in which the sealing member does not have light diffusibility. 前記発光部は、前記封止部材の側面の発光面積が前記封止部材の前記他方側の端面の面積2倍以上である請求項1に記載の発光装置。 2. The light emitting device according to claim 1, wherein the light emitting section has a light emitting area on a side surface of the sealing member that is twice or more an area of an end surface on the other side of the sealing member. 前記発光部は、前記素子搭載基板に形成された素子側の蛍光体層が含まれている請求項に記載の発光装置。 The light emitting unit, the light emitting device according to claim 1, phosphor layers are formed before Symbol element mounting substrate element side are included. 前記導光部は、前記収容孔の前記開口部が透明部材からなるカバー部によって閉塞された構成を有する請求項1記載の発光装置。   The light-emitting device according to claim 1, wherein the light guide portion has a configuration in which the opening of the accommodation hole is closed by a cover portion made of a transparent member. 前記導光部は、前記収容孔の前記開口部が透明部材からなるカバー部によって閉塞され、前記透明部材の前記収容孔の対応する位置の前記発光部側に、前記外部領域側の蛍光体層の発光色と異なる、カバー側の蛍光体層が形成された構成を有する請求項1記載の発光装置。   In the light guide portion, the opening portion of the accommodation hole is closed by a cover portion made of a transparent member, and the phosphor layer on the outer region side is located on the light emitting portion side at a position corresponding to the accommodation hole of the transparent member. The light-emitting device according to claim 1, wherein the light-emitting device has a configuration in which a phosphor layer on the cover side that is different from the emission color of the cover is formed. 前記導光部は、前記実装部側に光反射部が配置されている請求項1,7又は8に記載の発光装置。   The light-emitting device according to claim 1, wherein the light guide unit includes a light reflection unit disposed on the mounting unit side.
JP2011144760A 2011-06-29 2011-06-29 Light emitting device Active JP5703997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011144760A JP5703997B2 (en) 2011-06-29 2011-06-29 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011144760A JP5703997B2 (en) 2011-06-29 2011-06-29 Light emitting device

Publications (2)

Publication Number Publication Date
JP2013012607A JP2013012607A (en) 2013-01-17
JP5703997B2 true JP5703997B2 (en) 2015-04-22

Family

ID=47686247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144760A Active JP5703997B2 (en) 2011-06-29 2011-06-29 Light emitting device

Country Status (1)

Country Link
JP (1) JP5703997B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015106641A (en) 2013-11-29 2015-06-08 日亜化学工業株式会社 Light emitting device
JP2015207754A (en) * 2013-12-13 2015-11-19 日亜化学工業株式会社 light-emitting device
JP6888650B2 (en) * 2013-12-13 2021-06-16 日亜化学工業株式会社 Light emitting device
CN113228314A (en) * 2018-12-27 2021-08-06 电化株式会社 Phosphor substrate, light-emitting substrate, and lighting device
US12068438B2 (en) 2018-12-27 2024-08-20 Denka Company Limited Phosphor substrate, light emitting substrate, and lighting device
EP3905345B1 (en) 2018-12-27 2024-01-24 Denka Company Limited Light-emitting substrate, and lighting device
CN113272976B (en) 2018-12-27 2024-11-08 电化株式会社 Phosphor substrate, light-emitting substrate, and lighting device
US12100788B2 (en) 2018-12-27 2024-09-24 Denka Company Limited Phosphor substrate, light emitting substrate, and lighting device
WO2020158603A1 (en) * 2019-01-31 2020-08-06 日本精機株式会社 Head-up display
JP6852822B2 (en) * 2019-05-30 2021-03-31 日亜化学工業株式会社 Light emitting module and its manufacturing method
US11681090B2 (en) 2019-05-30 2023-06-20 Nichia Corporation Light emitting module and method of manufacturing same
KR20220119119A (en) * 2019-12-25 2022-08-26 덴카 주식회사 lamp
JP7193740B2 (en) * 2020-04-17 2022-12-21 日亜化学工業株式会社 Method for manufacturing light-emitting device and method for manufacturing light-emitting module
CN115394214B (en) * 2022-09-21 2024-03-15 上海天马微电子有限公司 Luminous panel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191420A (en) * 2003-12-26 2005-07-14 Stanley Electric Co Ltd Semiconductor light emitting device having wavelength converting layer and its manufacturing method
JP5219331B2 (en) * 2005-09-13 2013-06-26 株式会社住田光学ガラス Method for manufacturing solid element device
JPWO2008105527A1 (en) * 2007-03-01 2010-06-03 Necライティング株式会社 LED device and lighting device
JP4869275B2 (en) * 2007-03-26 2012-02-08 三菱電機株式会社 Light source module and light emitting device
JP5407116B2 (en) * 2007-06-22 2014-02-05 豊田合成株式会社 Light emitting device
JP2009244405A (en) * 2008-03-28 2009-10-22 Toppan Printing Co Ltd Light diffusion unit, backlight unit, and display
JP5109770B2 (en) * 2008-04-03 2012-12-26 豊田合成株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP5383101B2 (en) * 2008-06-23 2014-01-08 三菱電機株式会社 Planar light source device and display device
JP5334123B2 (en) * 2009-11-27 2013-11-06 シャープ株式会社 Semiconductor light emitting device, semiconductor light emitting device assembly, and method of manufacturing semiconductor light emitting device

Also Published As

Publication number Publication date
JP2013012607A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5703997B2 (en) Light emitting device
JP5799988B2 (en) Light emitting device
JP5689225B2 (en) Light emitting device
JP5515992B2 (en) Light emitting device
JP2009252898A (en) Light source device
JP6020657B2 (en) Light emitting device
JP2010219324A (en) Light-emitting device
JP2012212733A (en) Light-emitting apparatus
JP2014207349A (en) Light-emitting device and manufacturing method thereof
JP2009252899A (en) Light-emitting device and method for manufacturing light-emitting device
JP2013033890A (en) Light emitting device
JP5684486B2 (en) Light emitting device
JP2011096740A (en) Light-emitting device
JP2023120234A (en) Light-emitting device and LED package
JP2015099940A (en) Light-emitting device
US8366307B2 (en) Semiconductor light emitting device
JP2011171504A (en) Light-emitting device
JP5595962B2 (en) Light emitting device
JP6665143B2 (en) Light emitting device manufacturing method
JP6222325B2 (en) Light emitting device
JP2018190771A (en) Light-emitting device and method for manufacturing the same
JP5931006B2 (en) Light emitting device
JP4846505B2 (en) Light emitting device and manufacturing method thereof
JP2010087051A (en) Light-emitting device
JP6825636B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5703997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150