JP5701500B2 - Transparent glass ceramic with low density - Google Patents
Transparent glass ceramic with low density Download PDFInfo
- Publication number
- JP5701500B2 JP5701500B2 JP2009278536A JP2009278536A JP5701500B2 JP 5701500 B2 JP5701500 B2 JP 5701500B2 JP 2009278536 A JP2009278536 A JP 2009278536A JP 2009278536 A JP2009278536 A JP 2009278536A JP 5701500 B2 JP5701500 B2 JP 5701500B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- glass ceramic
- weight
- sio
- zro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002241 glass-ceramic Substances 0.000 title claims description 31
- 239000011521 glass Substances 0.000 claims description 22
- 239000013078 crystal Substances 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 239000010453 quartz Substances 0.000 claims description 11
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 9
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 7
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 7
- 239000006025 fining agent Substances 0.000 claims description 6
- 229910008556 Li2O—Al2O3—SiO2 Inorganic materials 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 description 7
- 238000002468 ceramisation Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000004031 devitrification Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000002667 nucleating agent Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 238000005352 clarification Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910000500 β-quartz Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 229910021495 keatite Inorganic materials 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000006094 Zerodur Substances 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229910052611 pyroxene Inorganic materials 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0036—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0054—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Description
本発明は、低い密度を有する透明なガラスセラミックに関する。 The present invention relates to a transparent glass ceramic having a low density.
主結晶相として高温石英混晶(β−石英固溶体)を有するLi2O−Al2O3−SiO2系のガラスセラミックの密度が、同一の組成および同一の結晶相割合の場合でも、僅かな範囲で変化される理由は、セラミック化の最中に出発ガラスが晒される収縮がセラミック化プログラムによって僅かな程度影響を受けるからであることが知られている。しかしながら、主結晶相として高温石英混晶を有しかつLi2O−Al2O3−SiO2系からなる従来のガラスセラミックの密度は、あらゆる処置にもかかわらず、常に2.5g・cm-3を上回っている。例えば、ショット社によって特に光学用途のためのゼロデュア(登録商標)の名前で販売されているガラスセラミックは、2.53g・cm-3の密度を有する。 Even when the density of the Li 2 O—Al 2 O 3 —SiO 2 -based glass ceramic having a high-temperature quartz mixed crystal (β-quartz solid solution) as the main crystal phase is the same composition and the same crystal phase ratio, it is slight. It is known that the range varies because the shrinkage to which the starting glass is exposed during ceramization is affected to some extent by the ceramization program. However, the density of a conventional glass ceramic having a high-temperature quartz mixed crystal as a main crystal phase and made of the Li 2 O—Al 2 O 3 —SiO 2 system is always 2.5 g · cm − regardless of any treatment. Exceeds 3 . For example, a glass ceramic sold by Schott under the name Zerodur® for optical applications in particular has a density of 2.53 g · cm −3 .
主結晶相として高温石英混晶を有し、2.5g・cm-3より低い密度を有するLi2O−Al2O3−SiO2系のガラスセラミックを製造しようとする場合、このガラスセラミックのために、新たな組成を見出さねばならない。EP1840093A1から、β−リチア輝石の主結晶相を有するガラスセラミックが既知であるが、これでは、2.5g・cm-3より低い密度を達成することができない。 When an Li 2 O—Al 2 O 3 —SiO 2 -based glass ceramic having a high-temperature quartz mixed crystal as a main crystal phase and a density lower than 2.5 g · cm −3 is to be produced, Therefore, a new composition must be found. From EP1840093A1, glass ceramics having a main crystal phase of β-lithia pyroxene are known, but this cannot achieve a density lower than 2.5 g · cm −3 .
本発明の課題は、主結晶相として高温石英混晶(β−石英固溶体)を有し、2.5g・cm-3より低い密度を有するLi2O−Al2O3−SiO2系のガラスセラミックを見出すことである。更に、ガラスセラミックが、高い透過率および少ない固有着色(Eigenfaerbung)を有することが意図される。 An object of the present invention is to provide a Li 2 O—Al 2 O 3 —SiO 2 glass having a high-temperature quartz mixed crystal (β-quartz solid solution) as a main crystal phase and a density lower than 2.5 g · cm −3. It is to find a ceramic. Furthermore, it is intended that the glass ceramic has a high transmittance and a low Eigenfaerbung.
上記課題は、酸化物ベースの重量%で、
Li2O 3〜4.5
Al2O3 18〜24
SiO2 55〜70
TiO2 0.1〜<2.3
ZrO2 <1.8
ΣTiO2+ZrO2 0.2〜4
BaO 0〜1.5
ΣMgO+ZnO >1〜6
B2O3 >5〜10
ΣNa2O+K2O 0〜<1
通常の清澄剤(SnO2、As2O3、Sb2O3、CeO2) 0〜1.5
を含むガラスセラミックによって解決される。
The problem is weight percent oxide based,
Li 2 O 3-4.5
Al 2 O 3 18-24
SiO 2 55~70
TiO 2 0.1 <2.3
ZrO 2 <1.8
ΣTiO 2 + ZrO 2 0.2-4
BaO 0-1.5
ΣMgO + ZnO> 1-6
B 2 O 3 > 5-10
ΣNa 2 O + K 2 O 0 <1
Conventional fining agents (SnO 2, As 2 O 3 , Sb 2 O 3, CeO 2) 0~1.5
Solved by a glass-ceramic containing.
酸化物Li2O、Al2O3およびSiO2は、高温石英混晶(β−石英固溶体)および/またはキータイト混晶(キータイト固溶体)を有するガラスセラミックの必要な成分である。Li2Oの含量が3重量%未満である場合、結晶相割合が、意図された使用にとって余りにも低い(高温石英混晶の所望の割合は、<60体積%である)。4.5重量%を超えるLi2Oの含量は、結晶成長速度を高め、失透安定性を危うくする。Li2Oの含量は、3〜4重量%であることが好ましい。何故ならば、この範囲では、達成可能な結晶相含量と、十分な失透安定性との間の特に好都合な妥協があるからである。Al2O3の含量は18〜24重量%である。この範囲では、溶融物は、良好な加工性を保証すべく十分に低い粘性を有する。Al2O3の含量が18重量%未満である場合、達成可能なセラミック化速度が下がり、透明度は余りに低いであろう。 The oxides Li 2 O, Al 2 O 3 and SiO 2 are necessary components of a glass ceramic having a high-temperature quartz mixed crystal (β-quartz solid solution) and / or a keatite mixed crystal (keatite solid solution). When the content of Li 2 O is less than 3% by weight, the crystal phase proportion is too low for the intended use (the desired proportion of high temperature quartz mixed crystals is <60% by volume). A Li 2 O content exceeding 4.5% by weight increases the crystal growth rate and jeopardizes devitrification stability. The content of Li 2 O is preferably 3 to 4% by weight. This is because in this range there is a particularly favorable compromise between the achievable crystalline phase content and sufficient devitrification stability. The content of Al 2 O 3 is 18 to 24% by weight. In this range, the melt has a sufficiently low viscosity to ensure good processability. If the Al 2 O 3 content is less than 18% by weight, the achievable ceramization rate will be reduced and the transparency will be too low.
Al2O3の含量は19.5〜21.5重量%の範囲にあることが好ましい。 The content of Al 2 O 3 is preferably in the range of 19.5 to 21.5% by weight.
SiO2の含量は55〜70重量%である。SiO2の含量が高ければ、密度は一層低くなる。しかしながら、SiO2の含量が、70重量%の、好ましくは66重量%の上限を上回らないほうがよい。何故ならば、上回れば、未処理ガラス(Gruenglas)を処理するための温度範囲が、>1550℃の値を有し、このような温度では、ガラスを処理するためには技術的に一層難しくなるからである。 The content of SiO 2 is 55 to 70% by weight. The higher the SiO 2 content, the lower the density. However, the SiO 2 content should not exceed the upper limit of 70% by weight, preferably 66% by weight. This is because, above that, the temperature range for processing untreated glass (Gruenglas) has a value of> 1550 ° C., and at such temperatures it becomes technically more difficult to process the glass. Because.
SiO2の含量が55重量%の下限を下回ると、セラミック化速度が下がる。SiO2の含有量は、少なくとも56重量%であることが好ましい。 When the SiO 2 content is below the lower limit of 55% by weight, the ceramization rate decreases. The content of SiO 2 is preferably at least 56% by weight.
アルカリ酸化物Na2OおよびK2Oの存在によって、ガラスの溶融性および失透挙動が、製造の際に、改善されることが知られている。しかしながら、Na2OおよびK2Oの含量が合計で1重量%より低いことが意図される。何故ならば、これらの酸化物の1重量%より高い割合が、ガラスセラミックの熱膨張係数を高めるからである。Na2OおよびK2Oの含量は、合計で、0〜0.9重量%、特に0.3〜0.5重量%であることが好ましい。 It is known that the presence of the alkali oxides Na 2 O and K 2 O improves the meltability and devitrification behavior of the glass during production. However, it is contemplated that the Na 2 O and K 2 O content is less than 1% by weight in total. This is because a proportion higher than 1% by weight of these oxides increases the thermal expansion coefficient of the glass ceramic. The total content of Na 2 O and K 2 O is preferably 0 to 0.9% by weight, particularly 0.3 to 0.5% by weight.
アルカリ土類酸化物CaOおよびBaOも、一般的に、溶融挙動への同様に好ましい効果を示す。しかしながら、本発明の組成物では、CaOはないほうが好ましいが、最大限0.5重量%が許容され得る。本発明の組成物では、CaOはセラミック化の最中に異物相の形成をもたらすので、回避されることが意図される。BaOも、溶融挙動への類似の効果を示す。しかしながら、BaOの高い割合は、密度の増大をもたらす。それ故に、BaOの割合は、最大1.5重量%である。溶融性および透明性を改善するためには、BaOを0.1〜0.8重量%の量で添加することが好ましい。本発明の組成物はBaOを全く含まないことが特に好ましい。しかしながら、このことは、溶融性(Einschmeltzbarkeit)の理由から、必ずしも実現されるわけではない。 Alkaline earth oxides CaO and BaO also generally have a similarly favorable effect on the melting behavior. However, in the compositions of the present invention, it is preferred not to have CaO, but a maximum of 0.5% by weight can be tolerated. In the compositions of the present invention, CaO is intended to be avoided as it results in the formation of a foreign phase during ceramization. BaO also shows a similar effect on the melting behavior. However, a high proportion of BaO results in an increase in density. Therefore, the proportion of BaO is a maximum of 1.5% by weight. In order to improve the meltability and transparency, BaO is preferably added in an amount of 0.1 to 0.8% by weight. It is particularly preferred that the composition according to the invention does not contain any BaO. However, this is not always realized for reasons of meltability (Einschmeltzbarkeit).
TiO2およびZrO2は、知られるように、成核剤として作用する。この場合、TiO2の含量は2.3重量%未満であり、ZrO2の含量は1.8重量%未満であり、TiO2+ZrO2の合計は、0.2〜4重量%である。TiO2およびZrO2が、これらの限界を上回りおよび下回るとき、成核剤の析出速度と、結果として生じる高温石英混晶の含量と、透明性とは、不満足なほどに低い。TiO2およびZrO2の好ましい最低限量は、それぞれ、1重量%のTiO2および1重量%のZrO2である。TiO2およびZrO2の合計は2〜4重量%であることが好ましい。 TiO 2 and ZrO 2 act as nucleating agents, as is known. In this case, the content of TiO 2 is less than 2.3% by weight, the content of ZrO 2 is less than 1.8% by weight, and the total of TiO 2 + ZrO 2 is 0.2-4% by weight. When TiO 2 and ZrO 2 are above and below these limits, the nucleating agent precipitation rate, the resulting high-temperature quartz mixed crystal content, and transparency are unsatisfactoryly low. Preferred minimum amounts of TiO 2 and ZrO 2 are each 1 wt% of TiO 2 and 1% by weight of ZrO 2. The total of TiO 2 and ZrO 2 is preferably 2 to 4% by weight.
Fe2O3の微量濃度に関連したガラスセラミックの増大する着色の故に、MgOおよびZnOの割合は、合計1ないし6重量%に限定されねばならない。この合計内では、MgOの量は0.5重量%を、ZnOの量は2.5重量%を上回らないことが好ましい。MgOおよびZnOの含量は、合計で、1重量%ないし2.5重量%であることが特に好ましい。 Due to the increased coloration of the glass ceramic associated with the trace concentration of Fe 2 O 3 , the proportion of MgO and ZnO must be limited to a total of 1 to 6% by weight. Within this total, the MgO amount is preferably 0.5% by weight and the ZnO amount preferably does not exceed 2.5% by weight. The total content of MgO and ZnO is particularly preferably 1% to 2.5% by weight.
低い密度を得るために重要な成分は、B2O3である。何故ならば、この成分は、微細構造を緩ませ、セラミック化の最中にガラスセラミックの圧縮を減じるからである。B2O3は、5重量%を超え、10重量%までの量で、存在する。しかしながら、B2O3がより高い場合には、ガラスセラミックの透過率が低下し、あるいは、失透傾向が、成形(成形温度(Va))の際に、増大するという危険性が存する。B2O3の含量は5重量%を超え、9重量%までであることが好ましい。 An important component for obtaining low density is B 2 O 3 . This is because this component relaxes the microstructure and reduces the compression of the glass ceramic during ceramization. B 2 O 3 is present in an amount greater than 5% by weight and up to 10% by weight. However, when B 2 O 3 is higher, there is a risk that the transmittance of the glass ceramic decreases or the tendency of devitrification increases during molding (molding temperature (Va)). The content of B 2 O 3 is preferably more than 5% by weight and up to 9% by weight.
SnO2は、ガラス系の中で、0〜1重量%の量で存在し得る。SnO2が、清澄剤および成核剤として作用することが可能である。しかしながら、SnO2が存在しないことが好ましい。 SnO 2 can be present in the glass system in an amount of 0 to 1% by weight. SnO 2 can act as a fining and nucleating agent. However, it is preferred that SnO 2 is not present.
成分ZnOおよびMgOにおいて記述した色の問題の故に、Fe2O3の含量は200重量ppm未満、好ましくは130重量ppm未満であるべきである。対応して、鉄の含有量の少ない原料が用いられることに注意しなければならない。更に、ガラスは、CaO、F、Pb酸化物および着色性酸化物を有しないことが好ましい。 Because of the color problems described in the components ZnO and MgO, the content of Fe 2 O 3 should be less than 200 ppm by weight, preferably less than 130 ppm by weight. Correspondingly, it should be noted that raw materials with a low iron content are used. Furthermore, it is preferable that glass does not have CaO, F, Pb oxide, and a coloring oxide.
ガラスセラミックの製造は、原料のそれ自体知られた溶融、続いてのガラスの清澄および成形によってなされる。清澄は、化学的または物理的方法によってなされ得る。As2O3、Sb2O3、CeO2、SnO2、硫酸塩化合物または塩化物化合物のようなそれ自体既知の清澄剤が用いられる場合、これらの清澄剤は、0.1ないし1.5重量%の通常の量で用いられる。物理的方法は、例えば、減圧清澄または高温清澄である。 The production of glass-ceramics takes place by known melting of the raw materials, followed by glass refining and shaping. Clarification can be done by chemical or physical methods. When fining agents known per se, such as As 2 O 3 , Sb 2 O 3 , CeO 2 , SnO 2 , sulfate compounds or chloride compounds are used, these fining agents are 0.1 to 1.5 Used in the usual amount of wt%. The physical method is, for example, vacuum clarification or high temperature clarification.
ガラスを成形して、例えば板ガラスに形成した後に、ガラスのそれ自体知られたセラミック化がなされて、ガラスセラミックが形成される。そのためには、ガラスセラミックは、好ましい成核剤相TiZrO4の高い核密度を析出させるために、それ自体既知の手法で、例えば、630℃〜770℃の温度で、15分を超える時間処理され、続いて、高温石英混晶ガラスセラミックを形成するための結晶化が、700℃〜950℃の温度範囲で、少なくとも5分の滞留時間で実行される。かくして、ガラスセラミックにおける高温石英混晶の微結晶(Kristallit)の大きさは、100nm未満、特に、80nm未満である。このことは、優れた透明性をもたらす。20℃〜300℃の範囲でのガラスセラミックの熱膨張係数は、+0.3〜0.6・10-6K-1未満、好ましくは0.5・10-6K-1未満である。 After the glass has been formed and formed into, for example, a sheet glass, the glass is known to be ceramized to form a glass ceramic. For this purpose, the glass ceramic is treated in a manner known per se, for example at a temperature of 630 ° C. to 770 ° C., for more than 15 minutes, in order to precipitate the high nucleating density of the preferred nucleating agent phase TiZrO 4. Subsequently, crystallization to form a high temperature quartz mixed crystal glass ceramic is carried out in the temperature range of 700 ° C. to 950 ° C. with a residence time of at least 5 minutes. Thus, the size of the high-temperature quartz mixed crystal Kristallit in the glass ceramic is less than 100 nm, in particular less than 80 nm. This provides excellent transparency. The thermal expansion coefficient of the glass ceramic in the range of 20 ° C. to 300 ° C. is +0.3 to less than 0.6 · 10 −6 K −1 , preferably less than 0.5 · 10 −6 K −1 .
DIN5031に従って測定されたガラスセラミックの輝度値Y(A/2°)は、4mmの厚さの板ガラスについて、80を超え、好ましくは87を超える。CIE−xyY表色系の輝度値Yは、常に、2°の視角での透過標準光Aについて特定され、個々の波長において分解された透過スペクトルから、CIEで定められた視覚感度曲線(三刺激曲線)によって、算出される。輝度値は、しばしば、分光透過率とも呼ばれる。未処理ガラスからガラスセラミックを製造するための1つの好ましいセラミック化方法は、未処理ガラスを、10〜15K・min-1の加熱速度で、650±10℃の温度に加熱し、続いて、1〜5K・min-1の加熱速度で、710±50℃の温度に更に加熱し、核を形成すべく、この温度で60±30分放置し、続いて、0.5〜5K・min-1の加熱速度で、850±50℃の結晶化温度に加熱し、未処理ガラスを、この温度に20±15分保って、結晶化することである。この後、任意の冷却速度で、しかし、一般的には、1〜20K・min-1の冷却速度で冷却を行なう。 The luminance value Y (A / 2 °) of the glass ceramic measured according to DIN 5031 is greater than 80, preferably greater than 87, for a sheet glass with a thickness of 4 mm. The luminance value Y of the CIE-xyY color system is always specified for the transmission standard light A at a viewing angle of 2 °, and the visual sensitivity curve (tristimulus) defined by the CIE is determined from the transmission spectrum resolved at each wavelength. Curve). The luminance value is often referred to as spectral transmittance. One preferred method of ceramizing to produce glass ceramic from untreated glass is to heat the untreated glass at a heating rate of 10-15 K · min −1 to a temperature of 650 ± 10 ° C., followed by 1 Further heating to a temperature of 710 ± 50 ° C. at a heating rate of ˜5 K · min −1 , leaving at this temperature for 60 ± 30 minutes to form nuclei, followed by 0.5 to 5 K · min −1 Is heated to a crystallization temperature of 850 ± 50 ° C. at a heating rate of 5 ° C., and the untreated glass is kept at this temperature for 20 ± 15 minutes for crystallization. Thereafter, cooling is performed at an arbitrary cooling rate, but generally at a cooling rate of 1 to 20 K · min −1 .
本発明を、実施例を参照してさらに詳述する。 The invention is further described in detail with reference to examples.
出発ガラスを、ガラス産業で通常の原料を用いて、1620℃の温度で溶融しかつ清澄した。焼結されたシリカガラス(クォーザル(登録商標)、ショット社)で作られた坩堝において溶融した後に、溶融物を、白金坩堝に移し変え、1600℃の温度で、30分間、撹拌によって均質化した。1640℃で2時間の放置後に、140×100×30mmの寸法の鋳込み成形品を鋳込み成形し、熱応力を緩和するために、冷却炉で、650℃から始めて室温まで冷却した。これらの鋳込み成形品から、試験サンプル、例えば、熱膨張係数を測定するための棒、透過率を測定するための小板を作製した。ついで、ガラスセラミックの検査のために必要な大きさのガラス状のサンプルを、以下に挙げる核形成条件および結晶化条件を用いて、ガラスセラミックに変換した。この目的のために、サンプルを、10K・min-1の加熱速度で、650℃の温度に加熱し、この温度に達した後に、約5K・min-1の加熱速度でTg+20Kの温度に加熱し、核形成のために、この温度で30分放置した。続いて、サンプルを、10K・min-1の加熱速度で、高温石英混晶に関する示差熱分析器(DTA)によって測定された生成の最大速度(Ausscheidungsmaximum)の範囲における温度に加熱し、この温度で10分間放置し、続いて、5K・min-1の平均冷却速度で、室温まで冷却した(空気中で)。 The starting glass was melted and clarified at a temperature of 1620 ° C. using raw materials common in the glass industry. After melting in a crucible made of sintered silica glass (Quazar®, Schott), the melt was transferred to a platinum crucible and homogenized by stirring at a temperature of 1600 ° C. for 30 minutes. . After standing at 1640 ° C. for 2 hours, a cast molded product having a size of 140 × 100 × 30 mm was cast and then cooled to room temperature in a cooling furnace starting from 650 ° C. From these cast products, test samples, for example, rods for measuring the thermal expansion coefficient and platelets for measuring the transmittance were prepared. Subsequently, a glassy sample having a size required for the inspection of the glass ceramic was converted into the glass ceramic by using the nucleation conditions and the crystallization conditions described below. For this purpose, the sample is heated to a temperature of 650 ° C. at a heating rate of 10 K · min −1 and, after reaching this temperature, to a temperature of T g +20 K at a heating rate of about 5 K · min −1. Heated and left at this temperature for 30 minutes for nucleation. Subsequently, the sample is heated at a heating rate of 10 K · min −1 to a temperature in the range of the maximum rate of production (Ausscheidungsmaximum) measured by a differential thermal analyzer (DTA) for high temperature quartz mixed crystals, at this temperature. It was allowed to stand for 10 minutes, and then cooled to room temperature (in air) at an average cooling rate of 5 K · min −1 .
出発ガラスおよび製造されたガラスセラミックについて、密度ρ[g・cm-3]と、結晶相割合KPhAと、輝度値Y(A/2°)とを測定した。 The density ρ [g · cm −3 ], the crystal phase ratio KPhA, and the luminance value Y (A / 2 °) were measured for the starting glass and the produced glass ceramic.
例が、表1に纏められている。
僅かな固有色および高い輝度値(高いスペクトル光透過率)Y(A/2°)の故に、ガラスセラミックは、多様なシステム、例えば、レンジ上面、煙突用視界窓、半導体基板、またはガラスコンポーネント、例えば耐火性ガラス、高温用途のための視界窓等に使用するために、特によく適している。特に、ガラスセラミックは、破壊、銃撃作用または圧力波作用に対して保護するための耐衝撃性の硬いガラス系におけるコンポーネントとして適している。当然ながら、ガラスセラミックまたは未処理ガラスは、必要な場合には、特に美的な効果を上げるために、通常の着色酸化物によって着色することもできる。 Because of the slight intrinsic color and high brightness value (high spectral light transmission) Y (A / 2 °), glass ceramics can be used in a variety of systems such as range tops, chimney viewing windows, semiconductor substrates, or glass components, For example, it is particularly well suited for use in fire resistant glass, viewing windows for high temperature applications, and the like. In particular, glass ceramics are suitable as components in impact-resistant hard glass systems to protect against destruction, shooting action or pressure wave action. Of course, the glass ceramic or untreated glass can also be colored with conventional colored oxides, if necessary, in order to increase the aesthetic effect in particular.
Claims (6)
3〜4.5 Li2O
18〜24 Al2O3
55〜70 SiO2
0.1〜2.3未満 TiO2
1.8未満 ZrO2
0.2〜4 ΣTiO2+ZrO2
0〜1.5 BaO
0〜0.5 CaO
1〜6 ΣMgO+ZnO
>5〜10 B2O3
0〜<1 ΣNa2O+K2O
0〜1.5 通常の清澄剤(SnO2、As2O3、Sb2O3、CeO2)
を含む、Li2O-Al2O3-SiO2系のガラスセラミック。 It has a high-temperature quartz mixed crystal as the main crystal phase, has a density ρ of less than 2.5 g · cm −3 ,
3 to 4.5 Li 2 O
18-24 Al 2 O 3
55-70 SiO 2
0.1 to less than 2.3 TiO 2
Less than 1.8 ZrO 2
0.2-4 ΣTiO 2 + ZrO 2
0 to 1.5 BaO
0-0.5 CaO
1-6 ΣMgO + ZnO
> 5-10 B 2 O 3
0 to <1 ΣNa 2 O + K 2 O
0-1.5 conventional fining agents (SnO 2, As 2 O 3 , Sb 2 O 3, CeO 2)
Li 2 O—Al 2 O 3 —SiO 2 -based glass ceramic containing
3〜4 Li2O
19.5〜21.5 Al2O3
56〜66 SiO2
2〜4 ΣTiO2+ZrO2
0.1〜0.8 BaO
0〜2.5 ZnO
0〜0.5 MgO
1〜2.5 ΣZnO+MgO
>5〜9 B2O3
0〜0.9 ΣNa2O+K2O
0〜1.5 通常の清澄剤(SnO2、As2O3、Sb2O3、CeO2)
を含む請求項1に記載のガラスセラミック。 % By weight based on oxide,
3-4 Li 2 O
19.5 to 21.5 Al 2 O 3
56-66 SiO 2
2-4 ΣTiO 2 + ZrO 2
0.1-0.8 BaO
0 to 2.5 ZnO
0-0.5 MgO
1 to 2.5 ΣZnO + MgO
> 5-9 B 2 O 3
0-0.9 ΣNa 2 O + K 2 O
0-1.5 conventional fining agents (SnO 2, As 2 O 3 , Sb 2 O 3, CeO 2)
The glass ceramic according to claim 1, comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008054386.1 | 2008-12-08 | ||
DE200810054386 DE102008054386B3 (en) | 2008-12-08 | 2008-12-08 | Transparent low-density glass-ceramic and its use |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010132546A JP2010132546A (en) | 2010-06-17 |
JP5701500B2 true JP5701500B2 (en) | 2015-04-15 |
Family
ID=42168996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009278536A Active JP5701500B2 (en) | 2008-12-08 | 2009-12-08 | Transparent glass ceramic with low density |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5701500B2 (en) |
DE (1) | DE102008054386B3 (en) |
FR (1) | FR2939427B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010032112A1 (en) * | 2010-07-23 | 2012-01-26 | Schott Ag | Glass ceramic as cooking surface for induction heating with improved color display capability and heat shielding, method for making such a cooking surface and their use |
FR2990690B1 (en) * | 2012-05-15 | 2016-01-01 | Eurokera | QUARTZ-BETA VITROCERAMICS, TRANSPARENT, ESSENTIALLY COLORLESS AND NON-DIFFUSING; ARTICLES THEREOF VITROCERAMIC; PRECURSOR GLASSES |
US11111173B2 (en) | 2016-11-07 | 2021-09-07 | Corning Incorporated | Lithium containing glasses |
CN110167895B (en) | 2016-11-07 | 2022-07-15 | 康宁股份有限公司 | Low viscosity glass and method and system for making |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0997445B1 (en) * | 1998-10-27 | 2004-03-10 | Corning Incorporated | Low expansion glass-ceramics |
JP2004075441A (en) * | 2002-08-14 | 2004-03-11 | Huzhou Daikyo Hari Seihin Yugenkoshi | Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass |
CN1784363A (en) * | 2003-04-01 | 2006-06-07 | 康宁股份有限公司 | Lamp reflector substrate,glass,glass-ceramic materials and process for making the same |
JP2005343702A (en) * | 2004-05-31 | 2005-12-15 | National Institute Of Advanced Industrial & Technology | Optical material, optical device, and etalon |
EP1840093B1 (en) * | 2006-03-31 | 2017-06-07 | Eurokera | Beta-spodumene glass-ceramic materials and process for making the same |
-
2008
- 2008-12-08 DE DE200810054386 patent/DE102008054386B3/en active Active
-
2009
- 2009-12-03 FR FR0958629A patent/FR2939427B1/en active Active
- 2009-12-08 JP JP2009278536A patent/JP5701500B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
FR2939427A1 (en) | 2010-06-11 |
JP2010132546A (en) | 2010-06-17 |
DE102008054386B3 (en) | 2010-06-17 |
FR2939427B1 (en) | 2011-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7458388B2 (en) | Transparent β-quartz glass ceramic with low lithium content | |
JP6735704B2 (en) | Transparent, colorless, low titania beta/quartz/glass/ceramic materials | |
EP0437228B2 (en) | Thermally crystallizable glass, glass-ceramic made therefrom, and method of making same | |
JP5367952B2 (en) | Lithium aluminosilicate glass with short glazing | |
CN110423009B (en) | Transparent, substantially colorless and non-diffusing beta-quartz glass-ceramics; an article in the glass-ceramic; precursor glass | |
JP5253409B2 (en) | Transparent, colorless, titania-free, beta, quartz, glass and ceramic materials | |
JP5848258B2 (en) | Beta quartz glass ceramic and related precursor glass | |
US9458053B2 (en) | Li2O-Al2O3-SiO2 based crystallized glass and production method for the same | |
JP6463757B2 (en) | Glass and glass ceramic | |
JP6230775B2 (en) | Method for tempering ceramics of float crystallized glass | |
KR20010070010A (en) | Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS AND CRYSTALLIZABLE GLASS THEREFOR | |
JP2006199538A (en) | Li2O-Al2O3-SiO2 CRYSTALLINE GLASS AND CRYSTALLIZED GLASS AND MANUFACTURING METHOD OF Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS | |
JP2010510952A5 (en) | ||
JPH11100230A (en) | Infrared ray transmitting glass ceramics | |
JPH11100229A (en) | Infrared ray transmitting glass ceramics | |
KR20150027063A (en) | Li₂O-Al₂O₃-SiO₂-BASED CRYSTALLIZED GLASS AND METHOD FOR PRODUCING SAME | |
JP2018523624A (en) | Transparent, essentially colorless, tin clarified LAS glass ceramic with improved microstructure and thermal expansion | |
WO2012066948A1 (en) | Li2o-al2o3-sio2 crystalline glass and li2o-al2o3-sio2 crystallized glass obtained by crystallizing same | |
JPH11100231A (en) | Infrared transmissive glass ceramics | |
JP2004099436A (en) | Mineral glass capable of being formed into ceramic, preparation of glass ceramic product and product of the same | |
JP5701500B2 (en) | Transparent glass ceramic with low density | |
JP6331322B2 (en) | Li2O-Al2O3-SiO2 based crystallized glass | |
JP2013087022A (en) | Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS | |
JP4287119B2 (en) | Glass ceramic and method for producing the same | |
JPH09188538A (en) | Crystallized glass of lithium oxide-aluminum oxide-silicon oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120829 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130903 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20131203 |
|
A072 | Dismissal of procedure [no reply to invitation to correct request for examination] |
Free format text: JAPANESE INTERMEDIATE CODE: A072 Effective date: 20140318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150218 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5701500 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |