JP5700743B2 - A pair of non-pitch involute tooth profile gears that increase the root width and reduce the relative curvature of the tooth profile at the meshing point. - Google Patents
A pair of non-pitch involute tooth profile gears that increase the root width and reduce the relative curvature of the tooth profile at the meshing point. Download PDFInfo
- Publication number
- JP5700743B2 JP5700743B2 JP2010293867A JP2010293867A JP5700743B2 JP 5700743 B2 JP5700743 B2 JP 5700743B2 JP 2010293867 A JP2010293867 A JP 2010293867A JP 2010293867 A JP2010293867 A JP 2010293867A JP 5700743 B2 JP5700743 B2 JP 5700743B2
- Authority
- JP
- Japan
- Prior art keywords
- tooth
- tooth profile
- gear
- involute
- pinion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Gears, Cams (AREA)
- Gear Transmission (AREA)
Description
本発明は,インボリュート歯形とサイクロイド歯形を融合させることにより、歯数及
びモジュールが確定した平行軸インボリュート内歯車対において,低基準圧力角インボ
リュート歯形曲線の基準円より外側の部分を歯形とすることにより,下記の特長を与え
て,強度を向上させ,摩擦損失を低減する.
1) すべり率の正負符号が変わらない.
2) 歯元円を基準円以上の大きな半径として、歯元幅を大きくする.
3) かみあい点での歯形の相対曲率半径を大きくする.
この明細書では,歯数及びモジュールが確定した平行軸インボリュート内歯車対を対
象としている.
なお,頂隙及び背隙については従来と同様である.そこで、頂隙については図示する
にとどめ、背隙については歯の配置の際に触れる.
In the present invention, by combining the involute tooth profile and the cycloid tooth profile, the portion outside the reference circle of the low reference pressure angle involute tooth profile curve is used as the tooth profile in the parallel shaft involute internal gear pair in which the number of teeth and the module are determined. The following features are given to improve strength and reduce friction loss.
1) The sign of the slip rate does not change.
2) Increase the root width by making the root circle larger than the reference circle.
3) Increase the relative radius of curvature of the tooth profile at the meshing point.
In this specification, the parallel-shaft involute internal gear pair whose number of teeth and modules are determined is targeted.
The top and back gaps are the same as before. Therefore, only the top gap is shown in the figure, and the back gap is touched when placing the teeth.
本発明は、実用されている代表的な平歯車の歯形であるインボリュートとサイクロイドの融合により,インボリュート歯形の性能を高めたものである。そこで、まず,それらの歯形の概要を述べる。 The present invention improves the performance of an involute tooth profile by fusing involute and cycloid, which are typical spur gear tooth profiles in practical use. First, an outline of these tooth profiles will be described.
図1はサイクロイド歯形歯車の歯形を示している。図示のように、サイクロイド歯形曲線は、半径rOの基準円の内と外をそれぞれころがる円RH及びREの上の点が基準円上に描く内及び外サイクロイド曲線HC及びECの一部をピッチ円上でつなげたもので,その一部を歯形として用いる。
サイクロイド歯形歯車の長所は次のように整理される。
1)歯面のすべり率が一定のため、歯面摩耗を均一化できる。
2)切り下げがなく、ピニオンの最小歯数を小さくでき、また、歯元を厚くできるため、強度や剛性を高くできる。
サイクロイド歯形歯車の短所は次のように整理される。
1)中心距離の誤差は歯のかみあいを損ない、伝動性能を低下させる。
2)歯面のすべり率はピッチ点でステップ状に正負を変えるため、ピッチング損傷や大きな摩擦損失を生じやすい。
3)規格化や高精度な歯形製作が難しい。
4)ころがり円とピッチが同じことが、歯車互換性の必要条件である。
(非特許文献1〜3参照)FIG. 1 shows a tooth profile of a cycloid tooth profile gear. As shown in the figure, the cycloid tooth profile curve is a portion of the inside and outside cycloid curves HC and EC drawn on the reference circle by points on the circles RH and RE rolling inside and outside the reference circle of radius rO. Connected above, part of it is used as a tooth profile.
The advantages of the cycloid gear are summarized as follows.
1) Since the slip ratio of the tooth surface is constant, tooth surface wear can be made uniform.
2) There is no lowering, the minimum number of teeth of the pinion can be reduced, and the tooth base can be thickened, so that the strength and rigidity can be increased.
The shortcomings of cycloid tooth profile gears are summarized as follows.
1) An error in the center distance impairs tooth meshing and reduces transmission performance.
2) Since the slip ratio of the tooth surface changes in a positive or negative manner at the pitch point, pitching damage and large friction loss are likely to occur.
3) Standardization and high-precision tooth profile production are difficult.
4) The same pitch as the rolling circle is a necessary condition for gear compatibility.
(See Non-Patent Documents 1 to 3)
図2はインボリュート歯形歯車の歯形を示している。ここでは,図示のように、インボリュート歯形曲線は、半径rGの基礎円の上をころがる直線GL上の点が基礎円上に描くインボリュート曲線で、太線で示すように半径rOの基準円の内外でその一部を歯形として用いる。
インボリュート歯形歯車の長所は次のように整理される。
1)中心距離の誤差によって歯のかみあいは損なわれない。
2)直線切刃で歯面を製作できるため、高精度な歯形を製作できる。
3)基準ラックを用いて、実用性の高い規格化と設計自由度を高める転位歯車設計ができる。
4)モジュールmと基準圧力角αOの同じ歯車は、互換性をもつ。
そして、インボリュート歯形歯車の短所は次のように整理される。
1)歯面のすべり率は歯先と歯元で大きく、この間、連続的に変化し、ピッチ点で正負を変えるため、不均一な歯面摩耗、大きな摩擦損失及びピッチング損傷を生じやすい。
2)切り下げにより、ピニオンの最小歯数が制約され、また、歯数の少ない歯車では歯の強度や剛性が低下する。
(非特許文献1〜3参照)FIG. 2 shows the tooth profile of the involute tooth gear. Here, as shown in the figure, the involute tooth profile curve is an involute curve drawn on the basic circle by a point on the straight line GL rolling on the basic circle having the radius rG, and inside and outside the reference circle having the radius rO as indicated by a bold line. Part of it is used as a tooth profile.
The advantages of involute tooth gears are summarized as follows.
1) The tooth engagement is not impaired by the error of the center distance.
2) Since the tooth surface can be manufactured with a straight cutting edge, a highly accurate tooth profile can be manufactured.
3) Using the reference rack, it is possible to design a shift gear with high practical standardization and design flexibility.
4) The same gear with the module m and the reference pressure angle αO is interchangeable.
The disadvantages of the involute tooth gear are summarized as follows.
1) The slip ratio of the tooth surface is large between the tooth tip and the tooth root, and changes continuously during this time, and changes between positive and negative at the pitch point. Therefore, uneven tooth surface wear, large friction loss and pitching damage are likely to occur.
2) The minimum number of teeth of the pinion is constrained by the lowering, and the strength and rigidity of the teeth decrease with a gear having a small number of teeth.
(See Non-Patent Documents 1 to 3)
インボリュート及びサイクロイド歯形を組み合わせたものとして、インボリュート・サイクロイド合成歯形外平歯車対が提案されている。(非特許文献4〜7参照)これは、サイクロイドではかみ合わせが凹凸面であるため接触応力を低く抑えられること、切り下げがなく歯元を厚くできるため高強度・高剛性で伝達トルクを大きくできること、歯面のすべりが小さいため伝達効率を高いこと、すべり率が一定で歯形が維持される特長があるが、ピッチ点で高応力が発生する欠点がある。そこで、ピッチ点近傍をインボリュート曲線でつないでこの欠点を回避して、高性能な歯車を得る提案である。
このように、両歯形を合成して高性能な歯形を得る試みだが、インボリュートの特長が十分活かされておらず,すべり率がピッチ点で正負符号を替える短所も残されている.As a combination of an involute and a cycloid tooth profile, an involute / cycloid synthetic tooth profile spur gear pair has been proposed. (Refer to Non-Patent Documents 4 to 7) This is because the contact stress is low in the cycloid, so that the contact stress can be kept low, the tooth root can be thickened without being cut down, and the transmission torque can be increased with high strength and high rigidity. Since the slip of the tooth surface is small, the transmission efficiency is high, and the tooth profile is maintained with a constant slip rate. However, there are drawbacks in that high stress is generated at the pitch point. Therefore, it is a proposal to obtain a high-performance gear by avoiding this defect by connecting the vicinity of the pitch point with an involute curve.
In this way, it is an attempt to obtain a high-performance tooth profile by synthesizing both tooth forms, but the features of the involute are not fully utilized, and there remains a disadvantage that the slip rate changes the sign at the pitch point.
インボリュート内歯車対において、基準ラックを用いた設計製作を除きインボリュートの長所を損なわずに短所を除去し,さらに、歯数及びモジュールが同じインボリュート歯車より強度を高める新しいインボリュート歯形を提案する。これらの課題はつぎのように整理される.
1)中心距離の誤差によって歯のかみあいは損なわれない。
2)直線切刃で歯面を製作できるため、高精度な歯形を製作できる。
3)歯面のすべり率は正負符号を変えず、潤滑状態を良くしてピッチングや摩擦損失を低減する。
4)かみあい中,歯面のすべり率を小さくし、歯面摩耗を均一化する。
5)切り下げを防ぎ、ピニオンの最小歯数を小さくする。
6)ピニオン歯元幅を大きくし,曲げ強度を高める.
7)かみあい点における歯形の相対曲率を小さくし,面圧強度を高める.We propose a new involute tooth profile that eliminates the disadvantages of the involute internal gear pair without detracting from the advantages of the involute, except for the design and manufacture using the reference rack, and further increases the strength of the number of teeth and modules compared to the same involute gear. These issues are organized as follows.
1) The tooth engagement is not impaired by the error of the center distance.
2) Since the tooth surface can be manufactured with a straight cutting edge, a highly accurate tooth profile can be manufactured.
3) The slip rate of the tooth surface does not change the sign, and the lubrication state is improved to reduce pitching and friction loss.
4) During the meshing, the sliding rate of the tooth surface is reduced and the tooth surface wear is made uniform.
5) Preventing the lowering and reducing the minimum number of teeth of the pinion.
6) Increase the pinion root width and increase the bending strength.
7) Reduce the relative curvature of the tooth profile at the meshing point and increase the surface pressure strength.
0003及び0004項で明らかなように,基準円の周上をころがる直線上の点が基
準円上に描くインボリュート曲線である基準圧力角零のインボリュート歯形曲線は,こ
の基準円の周上をころがるころがり円の半径を無限大としたエピサイクロイド歯形曲
線と見なすことができる.
そこで,低基準圧力角インボリュート歯形曲線の基準円より外の部分を歯形曲線(以
後,基準円外インボリュート歯形曲線という)とし,この歯形曲線をエピサイクロイド
歯形曲線と同様な特長をもつ基準圧力角零のインボリュート歯形曲線に近似し,この歯
形曲線の一部分を歯形(以後,基準円外インボリュート歯形という)とすることにより,
歯のかみあい始めから終わりまで,すべり率の正負が変わらず,同一の歯数及びモジュ
ールの従来のインボリュート歯車に比し,ピニオンの歯元幅を大きく,さらに,かみあ
い点における歯形の相対曲率を小さくして,課題に応える.
なお、これは歯の片側の歯形であるが、従来の歯車の場合と同様に,歯の両側の歯形
は、歯のピッチ,歯先の幅及び歯元隙間幅を考慮し,歯中央の半径線に関して対称に配
置する。そして,この歯形の配置において,背隙を与える.
As is clear from the paragraphs 0003 and 0004, the point on the straight line rolling around the reference circle is the basis.
The involute tooth profile curve with zero reference pressure angle, which is the involute curve drawn on the quasi-circle, is
Epicycloidal tooth profile with an infinite radius of rolling circle around the reference circle
It can be regarded as a line.
Therefore, the portion outside the reference circle of the low reference pressure angle involute tooth profile curve is the tooth profile curve ( hereinafter referred to as the tooth profile curve ).
After, the standard of the circle outside the involute tooth profile), approximates the tooth profile involute tooth profile curve of the reference pressure angle zero having the same features and epicycloid tooth profile, tooth
By making a part of the shape curve into a tooth profile (hereinafter referred to as a non-standard circle involute tooth profile )
From the beginning to the end of the tooth engagement, the sign of the slip rate does not change and the number of teeth and
Compared to conventional involute gears, the pinion has a larger tooth root width,
Respond to the problem by reducing the relative curvature of the tooth profile at the point .
Note that this is the tooth profile on one side of the tooth, but as with conventional gears, the tooth profile on both sides of the tooth takes into account the tooth pitch, tip width and root gap width, and the center radius of the tooth. Place symmetrically with respect to the line. And in this tooth profile arrangement, a back space is given.
前項に記載した手段を用いて、請求項1記載の内歯車対を具現する方法を述べる。
図3は,基準円外インボリュート内歯車対のかみあいを示している.
図4に基準円外インボリュート歯形内歯車対のピニオンの歯の基本的な諸量を示している。歯形の範囲は半径rT2の歯先円と半径rF2の歯元円の間である.なお,ギヤの歯の基本的な諸量は,図4において,図中記号のTとFを入れ替え,2を1に替えればこの図で説明されるので,提示を割愛する.
図3及び4を用いて、ピニオンとギヤにおける諸量の関係式,ピニオンとギヤの諸量の間の関係式,歯の成立要件,かみあいにおける歯の幾何学的特性をつぎに示す。A method for realizing the internal gear pair according to claim 1 using the means described in the preceding paragraph will be described.
Fig. 3 shows the meshing of the non-reference circle involute internal gear pair.
FIG. 4 shows the basic quantities of the pinion teeth of the noncircular reference involute tooth profile internal gear pair. The range of the tooth profile is between the tip circle with radius rT2 and the root circle with radius rF2. The basic quantities of gear teeth can be explained in Fig. 4 by replacing the symbols T and F in the figure and changing 2 to 1, so the presentation is omitted.
3 and 4, the relational expression of the quantities in the pinion and the gear, the relational expression between the quantities of the pinion and the gear, the requirements for the formation of the teeth, and the geometric characteristics of the teeth in the meshing are shown below.
ピニオン諸量の関係式は式(1)で与えられる.
ギヤ諸量の関係式は式(2)で与えられる.
ギヤとピニオンの諸量間の関係式は、背隙cを含め,式(3)で与えられる。
実用にあたっての必要条件であるトロコイド干渉を生じないための条件式は,式(4)で与えられる.ピニオン歯先円とギヤ歯先円の交点Bにピニオン歯先がきたときの01−xy座標系におけるピニオン及びギヤ歯先の角位置ηT2B及びηT1Bの間の関係である.
ピニオンの歯先尖りを生じないための条件は,式(5)で与えられる.
かみあい率εと歯車成立の条件は式(6)で与えられる.
ピニオンの歯元幅wF2と任意のかみあい点Uにおける相対曲率(1/ρ),すべり速度vU及びすべり率σは,それぞれ式(7),(8),(9)及び(10)で与えられる。
式(1)から(6)を用いて、基準円外インボリュート歯形内歯車対を設計するため
の基準をつぎに述べる。まず、ISOで定められた歯の大きさの単位であるモジュール
mを用いる。そして、実用されているインボリュート歯車に倣って、歯形の基準値を式
(11)で与え、これを新歯形歯車の設計基準としている。
(数11)c=0.2,d>0.2, e>0.4δ2, g = 0.125, j= 2, r01= rT1, r02= rF2(11)
なお、これらの基準値は用途などに応じて、適宜、変更できる。
A reference for designing a reference non-circular involute internal gear pair will be described below using equations (1) to (6). First, a module m which is a unit of tooth size defined by ISO is used. Then, following the practically used involute gear, the tooth profile reference value is given by equation (11), which is used as the design standard for the new tooth gear.
(Equation 11) c = 0.2, d> 0.2, e> 0.4δ2, g = 0.125, j = 2, r01 = rT1, r02 = rF2 (11)
These reference values can be changed as appropriate according to the application.
式(11)で与えられる基準値のとき、歯先、歯元及び歯底円の半径は次式となる。
式(11)で与えた基準値は、トロコイド干渉、トリミング干渉及び隅肉干渉の回避やかみあい率の選定などに向けて、従来のインボリュート歯車の場合と同様に、適宜、修整して使用する。この解析及び修整方法については従来のインボリュート歯車で周知なので説明を省略する。また、歯車対や個々の歯車の強度を考慮して、式(1)のk値も修整できる。 The reference value given by the equation (11) is appropriately modified and used for avoiding trochoidal interference, trimming interference and fillet interference and selecting the engagement rate as in the case of the conventional involute gear. Since this analysis and modification method is well-known in conventional involute gears, a description thereof will be omitted. Further, the k value of the equation (1) can be modified in consideration of the strength of the gear pair and individual gears.
請求項1に記載した内歯車対は、基準円外の低基準圧力角インボリュート曲線の一部
を歯形として、基準圧力角零のインボリュート歯形を近似することにより課題に応えた
基準円外インボリュート内歯車対である。
An internal gear pair according to claim 1 is a non-standard-circular involute internal gear that meets a problem by approximating an involute tooth profile with a zero reference pressure angle, with a portion of a low standard pressure-angle involute curve outside the standard circle as a tooth profile. It is a pair.
請求項1記載の発明に拠れば,[0007]項で示した課題に応える,新しいインボリュート歯形の内歯車対が得られる。 According to the first aspect of the present invention, a new involute tooth profile internal gear pair that meets the problem described in [0007] is obtained.
本発明は、下記の実施例により開示されている。なお、実施にあたっては、まず、歯
車対のそれぞれの歯数及びモジュールを定め、基準圧力角を変数として、式(11)の
もとで構成した歯が、式(1)から式(6)に示す歯車歯の要件が満たされるか否かを
検討し、ついで、要件が満たされる基準圧力角の歯の中から、歯車の使用条件に応じて、
選択する。なお、0017項で述べた事項を基本として新歯形曲線の歯形としての使用
範囲を、用途に応じて、適宜、修整して使用できる。これらは本発明の本質ではなく従
来のインボリュート歯車で周知の設計作業なので説明を割愛する。
ここでは、上記の要件が満たされる基準圧力角の歯の中から、かみあい率1.5程度
の設計例を示す。
The invention is disclosed by the following examples. In the implementation, first, the number of teeth and the module of each gear pair are determined, and the reference pressure angle is a variable, and the equation (11)
Whether the originally constructed teeth satisfy the gear tooth requirements shown in equations (1) to (6).
Studied, then out of the teeth of the reference pressure angle requirements are met, in accordance with the use conditions of the gear,
select. In addition, the usage range as the tooth profile of the new tooth profile curve can be appropriately modified and used according to the application based on the matters described in the paragraph 0017. Since these are not the essence of the present invention but are well-known design operations for conventional involute gears, their description is omitted.
Here, a design example with a meshing rate of about 1.5 is shown from the teeth of the reference pressure angle satisfying the above requirements .
下記の歯数、モジュール及び中心距離をもつ内歯車対を設計している。なお、ギヤと
ピニオンの角速度は、ω1=104.72 rad/s、ω2=209.44 rad/s とする。
Z1 = 40, Z2 = 20, m = 3, a = 60 mm
発明の妥当性を具体例で検証するため、基準円外インボリュート内歯車対の設計結果
を実用されている基準圧力角20 deg のインボリュート内歯車対の設計結果と比較する。
なお、後者は、トロコイド干渉を避けた、転位係数0.5の転位歯車である。
ここでは、発明の妥当性の検証のため、両者のかみあい率ε、ピニオンの歯元円弧幅
wF2 mm、かみあい点における歯面の相対曲率半径ρ mm、すべり率σ及びすべり速度v
m/sを、つぎに示す。
1) 基準円外インボリュート内歯車対の設計結果
α0=12, ε=1.586, -0.54≦σ1<0, 0<σ2≦0.35,
12.48≦ρ≦90.58, 0<v≦1.53
2) 基準圧力角20 deg,転位係数0.5のインボリュート転位内歯車対の設計結果
α0=20, ε=1.643, -0.32≦σ1≦0.32, -0.46≦σ2≦0.24,
8.12≦ρ≦58.43, -0.5≦v≦1.01
この実施例のように、前者は後者と比べて、かみあい率は少し下がり、すべり速度の
大きさが少し大きくなるが、すべり率の正負は反転せず、かみあい点の相対曲率半径、
歯元幅が大きくなっており、本発明の妥当性が検証されている。
An internal gear pair with the following number of teeth, module and center distance is designed. The angular velocities of the gear and pinion are ω1 = 104.72 rad / s and ω2 = 209.44 rad / s.
Z1 = 40, Z2 = 20, m = 3, a = 60 mm
In order to verify the validity of the present invention with a specific example, the design result of the involute internal gear pair outside the reference circle is compared with the design result of the involute internal gear pair having a reference pressure angle of 20 deg.
The latter is a shift gear having a shift coefficient of 0.5 that avoids trochoidal interference.
Here, in order to verify the validity of the invention, the engagement ratio ε of both and the pinion root arc width
wF2 mm, relative radius of curvature of tooth surface at meshing point ρ mm, slip rate σ and slip velocity v
m / s is shown below.
1) Design result of standard out-of-reference involute internal gear pair α0 = 12, ε = 1.586, -0.54 ≦ σ1 <0 , 0 <σ2 ≦ 0.35,
12.48 ≦ ρ ≦ 90.58, 0 <v ≦ 1.53
2) Design result of involute dislocation internal gear pair with reference pressure angle 20 deg and dislocation coefficient 0.5 α0 = 20, ε = 1.643, -0.32 ≦ σ1 ≦ 0.32, -0.46 ≦ σ2 ≦ 0.24,
8.12 ≦ ρ ≦ 58.43, -0.5 ≦ v ≦ 1.01
As in this example, the former has a slightly lower meshing rate and a larger sliding speed than the latter, but the positive or negative slip rate is not reversed, the relative curvature radius of the meshing point,
The root width is large, and the validity of the present invention is verified.
B :歯車対の歯先円の交点
BJ:ピニオン歯先が点Bのときの歯車Jの歯先
E :かみあい終わり
FJ:歯車Jの歯形歯元
OJ:歯車Jの中心
OJ−xJyJ:歯車Jの基準座標系
P :ピッチ点
QJ:歯車Jのインボリュート歯形起点
S :かみあい始め
TJ:歯車Jの歯形歯先
U :任意のかみあい点(U=E,U=P,U=Sを含む)
ZJ:歯車Jの歯数
a :中心距離
c :歯元円上の円弧背隙
d :ピニオン歯先が点Bのときのギヤ歯先円上の歯車対の円弧隙間 mm
e :ピニオンの歯元隙間及び歯先幅のなす中心角の和 deg
g :頂隙係数
h :歯丈 mm
he(=jm):有効歯丈 mm
i :ギヤとピニオンの歯数比
j :歯丈係数
k :ピニオンの歯先円と歯元円の半径比
m :モジュール
rOJ:歯車Jの基準円半径 mm
rFJ:歯車Jの歯元円半径 mm
rGJ:歯車Jの基礎円半径 mm
rRJ:歯車Jの歯底円半径 mm
rTJ:歯車Jの歯先円半径 mm
vU :点Uにおけるすべり速度 m/s
wF2:ピニオン歯元の円弧幅 mm
αO :歯車の基準圧力角 deg
αFJ:歯車Jの歯元圧力角 deg
αTJ:歯車Jの歯先圧力角 deg
ε :歯車対のかみあい率
δJ :歯車Jの円ピッチのなす中心角 deg
δFJ:歯車Jの歯元隙間幅がなす中心角 deg
δTJ:歯車Jの歯先幅がなす中心角 deg
θB :点Bの02−x2y2座標系における角位置 deg
θJB:歯先が点Bのときの歯車Jの回転角 deg
θJ :歯車Jの回転角を示す変数 deg
ρU :点Uにおける歯形の相対曲率半径 mm
σU :点Uにおけるすべり率
ηTJB:ピニオン歯先が点Bのときの01−x1y1座標系での歯車Jの歯先の角位置 deg
ωJ :歯車Jの角速度 rad/s
歯車J:J=1はギヤ、J=2はピニオンを示すB: intersection point of tooth tip circle of gear pair BJ: tooth tip E of gear J when pinion tooth tip is point B: meshing end FJ: tooth profile root of gear J OJ: center of gear J OJ-xJyJ: gear J Reference coordinate system P: pitch point QJ: involute tooth profile starting point S of gear J: start of meshing TJ: tooth profile tooth tip U of gear J: arbitrary meshing point (including U = E, U = P, U = S)
ZJ: Number of teeth of gear J a: Center distance c: Arc back gap on tooth root circle d: Arc gap of gear pair on gear tip circle when pinion tooth tip is point B mm
e: Sum of center angles formed by pinion tooth gap and tooth tip width deg
g: Apex coefficient h: Tooth length mm
he (= jm): Effective tooth height mm
i: Gear-to-pinion tooth ratio j: Tooth length coefficient k: Pinion tooth tip circle to root circle radius ratio m: Module rOJ: Reference circle radius of gear J mm
rFJ: radius of tooth root of gear J mm
rGJ: Basic circle radius of gear J mm
rRJ: radius of tooth root circle of gear J mm
rTJ: radius of tooth tip circle of gear J mm
vU: Slip velocity at point U m / s
wF2: Pinion tooth arc width mm
αO: Gear reference pressure angle deg
αFJ: Root pressure angle of gear J deg
αTJ: tooth tip pressure angle of gear J deg
ε: Gear pair engagement ratio δJ: Center angle formed by the circular pitch of gear J deg
δFJ: Center angle formed by the tooth gap width of gear J deg
δTJ: Center angle formed by the tooth tip width of gear J deg
θB: angular position of point B in the 02-x2y2 coordinate system deg
θJB: rotation angle of gear J when the tooth tip is point B deg
θJ: A variable indicating the rotation angle of the gear J deg
ρU: relative radius of curvature of tooth profile at point U mm
σU: slip ratio at point U ηTJ B : angular position of tooth tip of gear J in 01-x1y1 coordinate system when pinion tooth tip is point B deg
ωJ: angular velocity of gear J rad / s
Gear J: J = 1 indicates a gear, J = 2 indicates a pinion
Claims (1)
正負が変わらず、かつ、同一歯数及びモジュールの従来のインボリュート歯車に比し、Compared with the conventional involute gear with the same number of teeth and the same module, the sign does not change,
ピニオンの歯元幅を大きくし、さらに、かみあい点における歯形の相対曲率を小さくすIncrease the root width of the pinion and reduce the relative curvature of the tooth profile at the meshing point.
るための、トロコイド干渉及びピニオンの歯先尖りを生じないという条件を充足する、For satisfying the condition of not causing trochoidal interference and pinion tooth tips,
低基準圧力角インボリュート歯形曲線の基準円外の一部を歯形とする基準円外インボLow standard pressure angle involute out of reference circle involuted tooth profile
リュート内歯車対。Lute internal gear pair.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010293867A JP5700743B2 (en) | 2010-12-09 | 2010-12-09 | A pair of non-pitch involute tooth profile gears that increase the root width and reduce the relative curvature of the tooth profile at the meshing point. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010293867A JP5700743B2 (en) | 2010-12-09 | 2010-12-09 | A pair of non-pitch involute tooth profile gears that increase the root width and reduce the relative curvature of the tooth profile at the meshing point. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012122602A JP2012122602A (en) | 2012-06-28 |
JP5700743B2 true JP5700743B2 (en) | 2015-04-15 |
Family
ID=46504238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010293867A Expired - Fee Related JP5700743B2 (en) | 2010-12-09 | 2010-12-09 | A pair of non-pitch involute tooth profile gears that increase the root width and reduce the relative curvature of the tooth profile at the meshing point. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5700743B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107654610A (en) * | 2017-09-29 | 2018-02-02 | 洛阳华冠齿轮股份有限公司 | A kind of non-involute flank of tooth, few tooth high-strength direct bevel gear and its processing method |
CN107939681B (en) * | 2018-01-05 | 2023-07-25 | 中国石油大学(华东) | Full-meshing variable-wall-thickness vortex vacuum pump |
CN112377594B (en) * | 2020-11-10 | 2024-05-10 | 重庆交通大学 | Sectional type dotted line meshing gear pair |
CN113062961B (en) * | 2021-03-19 | 2022-07-26 | 南京航空航天大学 | Low-slip-rate gear and design method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61244966A (en) * | 1985-04-24 | 1986-10-31 | Shigeyoshi Osada | Gear having relative curvature at contact point |
JPS6397732A (en) * | 1986-10-14 | 1988-04-28 | Komatsu Ltd | Inner gear pair for slewing wheel bearing |
JP2575435B2 (en) * | 1988-01-06 | 1997-01-22 | 株式会社東芝 | Differential planetary gear set |
JP3127757B2 (en) * | 1995-02-14 | 2001-01-29 | 三菱自動車工業株式会社 | Gears and gear cutting tools |
JP2001271889A (en) * | 2000-03-28 | 2001-10-05 | Juken Kogyo:Kk | Structure of a pair of involute gears |
-
2010
- 2010-12-09 JP JP2010293867A patent/JP5700743B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012122602A (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101109436B (en) | Speed increasing or speed reducing gear pair adapted for power transmission | |
JP4376938B2 (en) | Cornu helical gear | |
JP5700743B2 (en) | A pair of non-pitch involute tooth profile gears that increase the root width and reduce the relative curvature of the tooth profile at the meshing point. | |
CN101960265B (en) | Volumetric flowmeter and helical gear | |
CN101251181B (en) | Helical teeth elliptic gear as well as method for three-dimensional model-building accurately and entity shaping | |
JP5857822B2 (en) | Gear mechanism and manufacturing method thereof | |
CN103615501B (en) | A kind of small harmonic reducer and Optimization Design thereof | |
US10118693B2 (en) | Gearwheel set, in particular for a gyroplane | |
WO2016197905A1 (en) | Gear-cutting hob and designing method therefor, and non-fully-symmetric involute gear and machining method therefor | |
US9512898B2 (en) | Worm gear mechanism | |
CN110081148B (en) | Convex-convex contact contra-structural gear based on conjugate curve | |
EP3306132B1 (en) | Strain wave gearing device with compound meshing that involves congruity of tooth surfaces | |
JP7106250B2 (en) | Gears for watch movements | |
CN103438180B (en) | A kind of correction method of stable drive ratio point cantact spiral bevel gear | |
CN104455211A (en) | Design method of high-order modified Fourier non-circular gear pair | |
CN105370844A (en) | Straight bevel gear with spherical involute configuration | |
CN109145526B (en) | Method for calculating meshing efficiency of straight gear pair | |
CN100522438C (en) | Method for shaping gear shaver | |
CN113722843B (en) | Method for calculating residual height of tooth surface of flexible gear hobbing processing of harmonic reducer | |
CN102211234A (en) | Method for hobbing disc cylindrical gear type spiral involute gear | |
JP6205600B2 (en) | Involute spur gear with a curved tooth profile | |
CN111005865B (en) | Method for accurately measuring trapped oil area of external-meshing straight gear pump | |
JP5308422B2 (en) | Involute gear pair | |
CN201137669Y (en) | Straight-line-circular arc tooth outline inner gearing pair | |
CN106112379A (en) | The variable element of a kind of hindley worm pair is combined correction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140815 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5700743 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |