[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5700358B2 - Air electrode material and solid oxide fuel cell - Google Patents

Air electrode material and solid oxide fuel cell Download PDF

Info

Publication number
JP5700358B2
JP5700358B2 JP2011044118A JP2011044118A JP5700358B2 JP 5700358 B2 JP5700358 B2 JP 5700358B2 JP 2011044118 A JP2011044118 A JP 2011044118A JP 2011044118 A JP2011044118 A JP 2011044118A JP 5700358 B2 JP5700358 B2 JP 5700358B2
Authority
JP
Japan
Prior art keywords
air electrode
fuel cell
electrode material
oxide
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011044118A
Other languages
Japanese (ja)
Other versions
JP2011228270A (en
Inventor
安藤 茂
茂 安藤
雅文 礒貝
雅文 礒貝
新美 泰之
泰之 新美
大 籾山
大 籾山
悠也 高橋
悠也 高橋
明 石黒
明 石黒
青島 利裕
利裕 青島
正義 讓原
正義 讓原
川上 晃
晃 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2011044118A priority Critical patent/JP5700358B2/en
Publication of JP2011228270A publication Critical patent/JP2011228270A/en
Application granted granted Critical
Publication of JP5700358B2 publication Critical patent/JP5700358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体酸化物形燃料電池に用いられるペロブスカイト型酸化物系の空気極材料
に関する。
The present invention relates to a perovskite oxide-based air electrode material used in a solid oxide fuel cell.

近年、固体酸化物形燃料電池の作動温度を600〜800℃の温度域まで低温化させる
ことを目的とした、低温作動型の固体酸化物形燃料電池の研究が精力的に行われている。
この低温作動型の固体酸化物形燃料電池に用いる空気極としては、600〜800℃の温
度域で酸素と電子から酸化物イオンを生成させるための触媒性能を有することが求められ
る。
従来、600〜800℃の温度域で酸化ガスとの十分な反応性を有する空気極材料とし
てランタン(La)を含むペロブスカイト型酸化物、例えば、Laとストロンチウム(S
r)とコバルト(Co)と鉄(Fe)とを含むペロブスカイト型酸化物(以下、LSCF
)が知られている(例えば、特許文献1参照。)。
In recent years, vigorous research has been conducted on a low-temperature operation type solid oxide fuel cell for the purpose of lowering the operation temperature of the solid oxide fuel cell to a temperature range of 600 to 800 ° C.
The air electrode used in the low-temperature operation type solid oxide fuel cell is required to have catalytic performance for generating oxide ions from oxygen and electrons in a temperature range of 600 to 800 ° C.
Conventionally, a perovskite oxide containing lanthanum (La) as an air electrode material having sufficient reactivity with an oxidizing gas in a temperature range of 600 to 800 ° C., for example, La and strontium (S
r) perovskite oxide (hereinafter referred to as LSCF) containing cobalt (Co) and iron (Fe)
) Is known (see, for example, Patent Document 1).

特開2001−196083号公報JP 2001-196083 A

しかしながら、上記従来の空気極材料においては、600〜800℃の温度域で十分な
触媒性能は得られるものの、長時間に渡って燃料電池の運転を続けることにより空気極の
状態が変化し、これが燃料電池の出力性能を経時的に低下させる原因となっている。本発
明は、従来の空気極材料を比較して、燃料電池の出力性能を長時間に渡って安定して維持
することが可能な空気極材料を提供しようとするものである。
However, in the above conventional air electrode material, although sufficient catalyst performance is obtained in the temperature range of 600 to 800 ° C., the state of the air electrode changes by continuing the operation of the fuel cell for a long time. This is the cause of the deterioration of the output performance of the fuel cell over time. An object of the present invention is to provide an air electrode material capable of stably maintaining the output performance of a fuel cell over a long period of time as compared with conventional air electrode materials.

本発明者らは、今般、Laを含むペロブスカイト型酸化物を主成分とし、酸化コバルト
(CoO)を含む空気極材料が、600〜800℃の温度域で十分な触媒性能を有し、さ
らに、600〜800℃の温度域に長時間曝されても安定して存在し、よって、固体酸化
物形燃料電池の空気極として用いたときに、固体酸化物形燃料電池において十分な初期性
能と、長時間に渡って出力性能を安定して維持できる耐久性能とを実現できる空気極材料
であることを見出した。
本発明はこれらの知見に基づくものである。
The present inventors now have an air electrode material containing a perovskite oxide containing La as a main component and containing cobalt oxide (CoO) having a sufficient catalytic performance in a temperature range of 600 to 800 ° C., Even when exposed to a temperature range of 600 to 800 ° C. for a long time, it exists stably, and therefore, when used as an air electrode of a solid oxide fuel cell, sufficient initial performance in the solid oxide fuel cell, It has been found that this is an air electrode material that can realize durability performance that can stably maintain output performance for a long time.
The present invention is based on these findings.

すなわち、本発明の一つの態様によれば、空気極材料が提供され、その空気極材料は、固体酸化物形燃料電池に用いる空気極材料であって、ランタンおよびストロンチウムおよびコバルトおよび鉄を含むペロブスカイト型酸化物の粒子を主成分とするものであり、さらに酸化コバルトの粒子を含んでなることを特徴とするものである。 That is, according to one aspect of the present invention, an air electrode material is provided, and the air electrode material is an air electrode material used for a solid oxide fuel cell, and includes a perovskite containing lanthanum, strontium, cobalt, and iron. It is characterized by comprising type oxide particles as a main component, and further comprising cobalt oxide particles .

本発明による空気極材料は、600〜800℃の温度域に長時間曝されても安定して存
在することから、固体酸化物形燃料電池の運転環境においても長時間に渡って安定である
。したがって、耐久性能の高い固体酸化物形燃料電池への適用が可能となる。
Since the air electrode material according to the present invention is stably present even when exposed to a temperature range of 600 to 800 ° C. for a long time, it is stable for a long time even in the operating environment of the solid oxide fuel cell. Therefore, application to a solid oxide fuel cell with high durability performance is possible.

本発明にかかる固体酸化物形燃料電池を示す断面図である。1 is a cross-sectional view showing a solid oxide fuel cell according to the present invention.

本発明の空気極材料は、固体酸化物形燃料電池に用いる空気極材料であって、ランタン
を少なくとも含むペロブスカイト型酸化物を主成分とするものであり、さらに酸化コバル
トを含んでなるものである。
The air electrode material of the present invention is an air electrode material used for a solid oxide fuel cell, which is mainly composed of a perovskite oxide containing at least lanthanum, and further contains cobalt oxide. .

本発明による空気極材料は、600〜800℃の温度域に長時間曝されても安定して存
在することから、固体酸化物形燃料電池の運転環境においても長時間に渡って安定であり
、高い耐久性能を有する高性能な空気極材料となる。
The air electrode material according to the present invention stably exists even when exposed to a temperature range of 600 to 800 ° C. for a long time. Therefore, the air electrode material is stable for a long time even in the operating environment of the solid oxide fuel cell. It becomes a high-performance cathode material with high durability performance.

本発明による空気極材料がこのような高い耐久性能を有する理由は定かではないが、次
のように予想される。ただし、以下の理論はあくまで予想であって、本発明はこの理論に
限定されるものではない。
The reason why the air electrode material according to the present invention has such a high durability performance is not clear, but is expected as follows. However, the following theory is only an expectation, and the present invention is not limited to this theory.

本発明による空気極材料は、Laを含むペロブスカイト型酸化物を主成分とし、酸化コ
バルト(CoO)を含んでいる。ランタン系ペロブスカイト型酸化物は酸素ガス分圧が低
い環境に置かれると、燃料電池の運転温度程度の温度下においてはペロブスカイト型酸化
物の分解が進行して、ペロブスカイト型酸化物とは異なるLaを含む酸化物(例えば、L
a2O3等)が生成し、これが空気極としての性能を低下させる原因となっていた。具体
的には、例えば、Laを含むペロブスカイト型酸化物がLaCoO3の場合であれば、一
部がLa2CoO4とCoOに分解し、さらにはLa2O3とCoに分解してしまう可能
性がある。予め空気極材料中に酸化コバルト粒子を含ませておくことで、Laを含むペロ
ブスカイト型酸化物の結晶安定性が維持できない程度に酸素ガス分圧が低下した場合にお
いて、酸化コバルトに含まれる酸素原子がLaを含むペロブスカイト型酸化物の結晶安定
性を維持するように作用し、Laを含むペロブスカイト型酸化物の分解を効果的に抑制し
ていると考えられる。
The air electrode material according to the present invention is mainly composed of a perovskite oxide containing La and contains cobalt oxide (CoO). When the lanthanum perovskite oxide is placed in an environment where the oxygen gas partial pressure is low, decomposition of the perovskite oxide proceeds at a temperature of about the operating temperature of the fuel cell, and La different from that of the perovskite oxide. Containing oxides (eg, L
a2O3, etc.) was generated, and this was a cause of lowering the performance as the air electrode. Specifically, for example, if the perovskite oxide containing La is LaCoO 3, there is a possibility that a part thereof decomposes into La 2 CoO 4 and CoO, and further decomposes into La 2 O 3 and Co. By including cobalt oxide particles in the air electrode material in advance, when the oxygen gas partial pressure is lowered to such an extent that the crystal stability of the perovskite oxide containing La cannot be maintained, oxygen atoms contained in cobalt oxide Is considered to act to maintain the crystal stability of the perovskite oxide containing La and effectively suppress the decomposition of the perovskite oxide containing La.

固体酸化物形燃料電池においては、高い電流密度になると空気極近傍で酸素不足を生じ
易くなるが、本発明の空気極材料を用いることで、高い電流密度で運転した場合であって
も高い耐久性能を実現することができる。
In a solid oxide fuel cell, oxygen deficiency is likely to occur near the air electrode at a high current density. However, by using the air electrode material of the present invention, high durability even when operated at a high current density. Performance can be realized.

本発明の好ましい態様によれば、ランタンを少なくとも含むペロブスカイト型酸化物と酸
化コバルトとの体積比が99.9:0.1〜97:3の範囲である。
According to a preferred embodiment of the present invention, the volume ratio of the perovskite oxide containing at least lanthanum to cobalt oxide is in the range of 99.9: 0.1 to 97: 3.

ここで、ランタンを少なくとも含むペロブスカイト型酸化物に対して酸化コバルトの体積
比率が小さすぎると、実質的にペロブスカイト型酸化物を安定化させる機能が弱くなり、
耐久性能の向上が実質的にみられない可能性があり、一方で体積比率が大きすぎると酸化
コバルト自体が抵抗となって空気極の導電率を低下させるので、燃料電池としての初期性
能が出なくなる可能性がある。
Here, if the volume ratio of cobalt oxide is too small with respect to the perovskite oxide containing at least lanthanum, the function of stabilizing the perovskite oxide is substantially weakened.
There is a possibility that the durability performance is not substantially improved. On the other hand, if the volume ratio is too large, the cobalt oxide itself becomes a resistance and decreases the electrical conductivity of the air electrode. There is a possibility of disappearing.

本発明の好ましい態様によれば、ランタンを少なくとも含むペロブスカイト型酸化物は、
さらにストロンチウムおよびコバルトおよび鉄を含むペロブスカイト型酸化物である。
According to a preferred embodiment of the present invention, the perovskite oxide containing at least lanthanum is
Further, it is a perovskite oxide containing strontium, cobalt and iron.

ランタンおよびストロンチウムおよびコバルトおよび鉄を含むペロブスカイト型酸化物(
以下、LSCF)を主成分として含有することで、酸化コバルトを添加したことによるL
SCFの熱分解の抑制の効果がより高く得られるものである。
Perovskite oxides containing lanthanum and strontium and cobalt and iron (
Hereinafter, L by adding cobalt oxide by containing LSCF) as a main component.
The effect of suppressing the thermal decomposition of SCF can be obtained more highly.

以下に、本発明における固体酸化物形燃料電池の一実施形態について説明する。図1は
本発明の固体酸化物形燃料電池における単電池の断面の一態様であり、燃料極側を支持体
とした円筒タイプの単電池である。
単電池は、図1に示すように燃料極支持体1と燃料極反応触媒層4と燃料極側反応防止
層5と固体電解質層2と空気極3とが順に積層された構造である。
Hereinafter, an embodiment of a solid oxide fuel cell according to the present invention will be described. FIG. 1 shows one embodiment of a cross section of a unit cell in a solid oxide fuel cell of the present invention, which is a cylindrical unit cell having a fuel electrode side as a support.
The unit cell has a structure in which a fuel electrode support 1, a fuel electrode reaction catalyst layer 4, a fuel electrode side reaction prevention layer 5, a solid electrolyte layer 2, and an air electrode 3 are laminated in order as shown in FIG.

空気極3は、ランタンが少なくとも含まれたペロブスカイト型酸化物に、さらに酸化コ
バルトが含まれたものである。
ランタンが少なくとも含まれたペロブスカイト酸化物としては、ランタンコバルト系ペ
ロブスカイト酸化物(例えば、LaCoO3)、ランタンフェライト系ペロブスカイト酸
化物(例えば、LaFeO3)、あるいはLSCF((La,Sr)(Co,Fe)O3
)のような複合ペロブスカイト型酸化物など、固体酸化物形燃料電池の空気極として機能
する種々のペロブスカイト型酸化物を用いることができる。
The air electrode 3 is a perovskite oxide containing at least lanthanum and further containing cobalt oxide.
Perovskite oxides containing at least lanthanum include lanthanum cobalt-based perovskite oxides (for example, LaCoO3), lanthanum ferrite-based perovskite oxides (for example, LaFeO3), or LSCF ((La, Sr) (Co, Fe) O3).
Various perovskite oxides that function as the air electrode of a solid oxide fuel cell, such as composite perovskite oxides such as

空気極3の原料となる空気極材料の作製方法は特に限定されるものではないが、例えば、ペロブスカイト型酸化物の粉末と酸化コバルトの粉末との機械的な混合により作製する方法が挙げられる。また、酸化コバルトの粉末を混合させる方法に替えて、焼成過程の反応により、空気極材料中に酸化コバルトを生成させる方法も挙げられる。即ち、ペロブスカイト型酸化物の原料となる金属酸化物の粉末を混合・焼成して作製する方法(固相法)において混合条件や焼成条件を最適化することで作製することもできる。
ペロブスカイト型酸化物の作製方法としてはペロブスカイト型酸化物の原料となる金属酸化物の粉末を混合・焼成して作製する方法(固相法)、クエン酸法や共沈法で得られた化合物を焼成して作製する方法(湿式法)などが挙げられる。

The method for producing the air electrode material that is the raw material of the air electrode 3 is not particularly limited, and examples thereof include a method of producing it by mechanical mixing of a perovskite oxide powder and a cobalt oxide powder. Moreover, it replaces with the method of mixing the powder of cobalt oxide, and the method of producing | generating cobalt oxide in an air electrode material by reaction of a baking process is also mentioned. That is, it can also be produced by optimizing the mixing conditions and firing conditions in a method (solid phase method) in which metal oxide powder as a raw material for the perovskite oxide is mixed and fired.
Perovskite-type oxides can be prepared by mixing and firing metal oxide powders that are raw materials for perovskite-type oxides (solid-phase method), compounds obtained by the citric acid method or coprecipitation method. Examples thereof include a method for producing by baking (wet method).

燃料極支持体1および燃料極反応触媒層4として用いる材料には、燃料極としての特性
を有するものであれば特に制限はなく、NiOおよび/またはNiとDopedジルコニ
アとの混合物、NiOおよび/またはNiとDopedセリアとの混合物、あるいは、N
iOおよび/またはNiとランタンガレート酸化物との混合物等を用いることができる。
The material used as the fuel electrode support 1 and the fuel electrode reaction catalyst layer 4 is not particularly limited as long as it has characteristics as a fuel electrode. NiO and / or a mixture of Ni and Doped zirconia, NiO and / or Mixture of Ni and Doped ceria, or N
A mixture of iO and / or Ni and lanthanum gallate oxide or the like can be used.

固体電解質2として用いる材料としては固体酸化物形燃料電池の運転温度で導電性を有
するものであれば特に制限はなく、DopedジルコニアやDopedセリア、あるいは
、ランタンガレート酸化物等を用いることができる。
中でも、ランタンガレート酸化物からなる固体電解質は低温でも高い導電率を有するも
のであることから、固体酸化物形燃料電池の低温作動において有利な材料である。
The material used as the solid electrolyte 2 is not particularly limited as long as it has conductivity at the operating temperature of the solid oxide fuel cell, and Doped zirconia, Doped ceria, lanthanum gallate oxide, or the like can be used.
Among them, a solid electrolyte made of lanthanum gallate oxide has a high conductivity even at a low temperature, and is therefore an advantageous material for low-temperature operation of a solid oxide fuel cell.

燃料極側反応防止層5は燃料極と固体電解質との反応を防止するための層であり、反応
防止の機能を有する種々の材料を用いることができる。例えば、Dopedセリアを好適
に用いることができる。
The fuel electrode side reaction preventing layer 5 is a layer for preventing the reaction between the fuel electrode and the solid electrolyte, and various materials having a reaction preventing function can be used. For example, Doped ceria can be preferably used.

次に、図1に示す固体酸化物形燃料電池を例として作動原理を以下に示す。空気極側に
空気を流し、燃料極側に燃料を流すと空気中の酸素が、空気極と固体電解質層との界面近
傍で酸素イオンに変わり、この酸素イオンが固体電解質層を通って燃料極に達する。そし
て燃料ガスと酸素イオンが反応して水および二酸化炭素になる。これらの反応は(1)、
(2)および(3)式で表される。空気極と燃料極を外部回路で接続することによって外
部に電気を取り出すことが出来る。
H2+O2−→H2O+2e− (1)
CO+O2−→CO2+2e− (2)
1/2O2+2e−→O2− (3)
Next, the operation principle will be described below using the solid oxide fuel cell shown in FIG. 1 as an example. When air is flowed to the air electrode side and fuel is flowed to the fuel electrode side, oxygen in the air changes to oxygen ions in the vicinity of the interface between the air electrode and the solid electrolyte layer, and these oxygen ions pass through the solid electrolyte layer to the fuel electrode. To reach. The fuel gas and oxygen ions react to form water and carbon dioxide. These reactions are (1),
It is represented by formulas (2) and (3). Electricity can be taken out by connecting the air electrode and the fuel electrode with an external circuit.
H2 + O2- → H2O + 2e- (1)
CO + O2- → CO2 + 2e- (2)
1 / 2O2 + 2e- → O2- (3)

なお燃料ガスに含まれるCH4等も(1)式、(2)式と類似した電子を生成する反応が
あるとの報告もあるが固体酸化物形燃料電池の発電における反応のほとんどが(1)、(
2)式で説明できるので、ここでは(1)、(2)式で説明することとした。
It has been reported that CH4 contained in the fuel gas has a reaction that generates electrons similar to the equations (1) and (2), but most of the reactions in the power generation of the solid oxide fuel cell are (1). , (
Since it can be explained by the equation (2), it will be explained here by the equations (1) and (2).

空気極材料の作製
空気極材料の作製は、固相法により行った。
La0.6Sr0.4Co0.2Fe0.83の組成比となるように、原料となる
金属酸化物の粉末を秤量し、溶液中で混合した後に溶媒を除去して得られた粉末を、1200℃で焼成し、粉砕することにより、空気極材料を作製した。得られた空気極材料に、酸化コバルトの粉末を表に示す体積比となるように加え、ジルコニアボールを使って溶液中で混合した後に、溶媒を除去して、所望の空気極材料を得た。
Production of the air electrode material The air electrode material was produced by a solid phase method.
The powder of the metal oxide used as a raw material was weighed so as to have a composition ratio of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 , mixed in the solution, and then the solvent was removed. An air electrode material was produced by firing and pulverization. Cobalt oxide powder was added to the obtained air electrode material so as to have the volume ratio shown in the table, and after mixing in the solution using zirconia balls, the solvent was removed to obtain the desired air electrode material. .

固体酸化物形燃料電池の作製
上記のようにして得られた空気極材料を用いて、以下の方法で固体酸化物形燃料電池を
作製した。
NiOと10YSZ(10mol%Y2O3−90mol%ZrO2)とを重量比65
:35で混合して円筒状に成形し900℃で仮焼した燃焼極支持体を作製した。この燃料
極支持体上に、NiOとGDC10(10mol%Gd2O3−90mol%CeO2)
とを重量比50:50で混合したものをスラリーコート法により製膜し、燃料極反応触媒
層を形成した。さらに、燃料極反応触媒層上にLDC40(40mol%La2O3−6
0mol%CeO2)、La0.8Sr0.2Ga0.8Mg0.2O3の組成のLSG
Mをスラリーコート法により順次積層し、電解質層を形成した。得られた成形体を130
0℃にて焼成した後に、上記の作製方法にて得られた空気極材料をスラリーコート法にて
製膜し、1050℃で焼成することで固体酸化物形燃料電池を作製した。
作製した固体酸化物形燃料電池は、燃料極支持体が外径10mm、肉厚1mmであり、
燃料極反応触媒層の厚さが20μmであり、LDC層の厚みが10μmであり、LSGM
層の厚みが30μmであり、空気極の厚みが20μmであり、かつ、空気極の面積が35
cm2である。
Production of Solid Oxide Fuel Cell A solid oxide fuel cell was produced by the following method using the air electrode material obtained as described above.
NiO and 10YSZ (10 mol% Y2O3-90 mol% ZrO2) in a weight ratio of 65
: The combustion electrode support body which mixed by 35, shape | molded in the cylindrical shape, and calcined at 900 degreeC was produced. On this fuel electrode support, NiO and GDC10 (10 mol% Gd2O3-90 mol% CeO2)
Was mixed by a slurry coating method to form a fuel electrode reaction catalyst layer. Further, LDC40 (40 mol% La2O3-6) was formed on the anode reaction catalyst layer.
0 mol% CeO2), LSG having a composition of La0.8Sr0.2Ga0.8Mg0.2O3
M was sequentially laminated by a slurry coating method to form an electrolyte layer. The obtained molded body was 130.
After firing at 0 ° C., the air electrode material obtained by the above production method was formed into a film by a slurry coating method and fired at 1050 ° C. to produce a solid oxide fuel cell.
The produced solid oxide fuel cell has a fuel electrode support with an outer diameter of 10 mm and a wall thickness of 1 mm.
The thickness of the anode reaction catalyst layer is 20 μm, the thickness of the LDC layer is 10 μm, and LSGM
The thickness of the layer is 30 μm, the thickness of the air electrode is 20 μm, and the area of the air electrode is 35
cm2.

評価1:発電試験
得られた固体酸化物形燃料電池を用いて、発電試験を行った。
燃料極側の集電は、燃料極支持体の内側全面に銀ペーストを塗布した後、銀メッシュを
焼付けて行った。空気極側の集電は、銀ペーストを塗布した後、銀メッシュを短冊状に切
断し、螺旋状に巻きつけた後、焼付けて行った。
発電条件は以下である。
燃料ガス :(H2+3%H2O)とN2の混合ガス
燃料利用率:60%
酸化ガス :空気
運転温度 :700℃
電流密度 :0.2A/cm2
この条件で発電試験を行い、運転0時間後の初期電位(V0)と連続運転5000時間
後の電位(V5000)とを測定した。耐久性能は、初期電位から5000時間連続運転
後の電位を差し引いた値を初期電位で割り100を乗じた値((V0−V5000)*1
00/V0)とした。
Evaluation 1: Power Generation Test A power generation test was performed using the obtained solid oxide fuel cell.
The current collection on the fuel electrode side was performed by applying a silver paste to the entire inner surface of the fuel electrode support and then baking the silver mesh. Current collection on the air electrode side was performed by applying a silver paste, cutting the silver mesh into strips, winding them in a spiral, and then baking them.
The power generation conditions are as follows.
Fuel gas: (H2 + 3% H2O) and N2 mixed gas Fuel utilization: 60%
Oxidizing gas: Air Operating temperature: 700 ° C
Current density: 0.2 A / cm 2
A power generation test was performed under these conditions, and an initial potential (V0) after 0 hours of operation and a potential (V5000) after 5000 hours of continuous operation were measured. The durability performance is a value obtained by subtracting the potential after 5000 hours of continuous operation from the initial potential and dividing by the initial potential and multiplying by 100 ((V0−V5000) * 1.
00 / V0).

評価2:テープ剥離試験
固体電解質層と空気極との密着性を評価するために、テープ剥離試験を行った。5000時間連続運転したセルの銀メッシュを取り外し、粘着テープをセル表面に密着させた後、剥離した。銀メッシュを取り外す際、または粘着テープを剥離する際に、空気極が剥がれた場合、「剥離あり」として表1に記載した。
Evaluation 2: Tape peeling test A tape peeling test was conducted to evaluate the adhesion between the solid electrolyte layer and the air electrode. The silver mesh of the cell which was continuously operated for 5000 hours was removed, and the adhesive tape was adhered to the cell surface, and then peeled off. When the air electrode was peeled off when the silver mesh was removed or the adhesive tape was peeled off, it was listed in Table 1 as “with peeling”.

(比較例)
空気極材料に対し酸化コバルトの粉末を加えない以外は、上記実施例と同様の方法により空気極材料を用いて、固体酸化物形燃料電池の作製、および評価を行った。
(Comparative example)
A solid oxide fuel cell was produced and evaluated using the air electrode material by the same method as in the above example except that cobalt oxide powder was not added to the air electrode material.

Figure 0005700358
Figure 0005700358

サンプルNo.1〜No.4の空気極材料を用いて固体酸化物形燃料電池を作製して発電を行った結果、いずれも高い耐久性を示した。また、耐久試験後に行ったテープ剥離試験でも剥離は見られず、電解質層と空気極との高い密着性を確認することが出来た。一方、比較例であるサンプルNo.5の空気極材料を用いた場合、No.1〜No.4と比較して耐久性が悪かった。また、テープ剥離試験にて空気極の剥がれが確認され、密着性が長期に渡って安定的に確保できないことが分かった。以上の結果より、ランタンを少なくとも含むペロブスカイト型酸化物を主成分とし、酸化コバルトを含んでなる空気極を用いることで、電位の低下が少なくなる上に物理的な強度も向上し、これらが総合的に寄与して耐久性能の高い固体酸化物形燃料電池を実現することが確認できた。   Sample No. 1-No. As a result of producing a solid oxide fuel cell using the air electrode material No. 4 and generating electric power, all showed high durability. Moreover, peeling was not seen in the tape peeling test performed after the durability test, and high adhesion between the electrolyte layer and the air electrode could be confirmed. On the other hand, sample No. When the air electrode material of No. 5 is used, 1-No. Compared to 4, the durability was poor. Moreover, peeling of the air electrode was confirmed in the tape peeling test, and it was found that the adhesion could not be secured stably over a long period of time. From the above results, the use of an air electrode comprising a perovskite oxide containing at least lanthanum as a main component and cobalt oxide reduces the potential drop and improves the physical strength. It was confirmed that a solid oxide fuel cell with high durability performance was realized.

以上の実施例では、空気極材料に酸化コバルトの粉末を混入させることにより空気極を作成する例を説明したが、本発明はこれに限るものではない。酸化コバルトの粉末を混合させる方法に替えて、焼成過程の反応により、空気極中に酸化コバルトを生成させる方法を、以下説明する。 In the above embodiment, the example in which the air electrode is created by mixing cobalt oxide powder into the air electrode material has been described, but the present invention is not limited to this. A method of generating cobalt oxide in the air electrode by a reaction in the firing process instead of the method of mixing cobalt oxide powder will be described below.

空気極材料の作製−2
本実施例においても、空気極材料の作製は固相法により行った。
La0.6Sr0.4Co0.2Fe0.83の組成比となるように、原料となる金属酸化物の粉末を秤量し、これらを溶液中で混合した後に溶媒を除去して得られた粉末を、1200℃で焼成し、粉砕することにより空気極材料を作製した。なお、このときに1200℃で焼成した後に酸化コバルトを含有するように、溶液中での混合条件の調整を実施した。例えば、溶液中で混合時の平均分散粒子径を10μmに調整することで酸化コバルトの生成が促進される。なお平均分散粒子径は、金属酸化物粉末が分散した混合溶液をレーザー回折式粒度分布計にて測定した。
Production of air electrode material-2
Also in this example, the air electrode material was produced by a solid phase method.
The powder obtained by weighing the metal oxide powders as raw materials so that the composition ratio of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 is obtained, mixing these in solution, and removing the solvent is 1200 An air electrode material was produced by firing at 0 ° C. and pulverization. At this time, the mixing conditions in the solution were adjusted so as to contain cobalt oxide after firing at 1200 ° C. For example, the production of cobalt oxide is promoted by adjusting the average dispersed particle size during mixing in the solution to 10 μm. The average dispersed particle size was measured with a laser diffraction particle size distribution meter for the mixed solution in which the metal oxide powder was dispersed.

得られた空気極材料の分析を、SEM−EDXを用いて行った。 空気極材料における粒子の分布状態を走査電子顕微鏡(SEM)で4000倍に拡大し
て観察した。また、エネルギー分散型X線分光器(EDX)により、含まれる各種元素の
マッピング分析を行い、酸化コバルトの粒子の有無を確認した。またペロブスカイト型酸
化物と酸化コバルトの粒子との体積比は、SEM画像とEDXでのマッピング分析の結果
とからペロブスカイト型酸化物の粒子と酸化コバルトの粒子との分布を画像解析し、気孔
を除いた固体面積に占める面積割合から求めた。同じく、SEM画像とEDXでのマッピ
ング分析の結果とから、酸化コバルトの粒子の粒子径を測定した。なお、酸化コバルトの
平均粒子径は、異なる100個の酸化コバルトの粒子の粒子径を測定したものの平均値で
算出している。
The obtained air electrode material was analyzed using SEM-EDX. The distribution state of the particles in the air electrode material was observed with a scanning electron microscope (SEM) at a magnification of 4000 times. Further, mapping analysis of various elements contained was performed by an energy dispersive X-ray spectrometer (EDX), and the presence or absence of cobalt oxide particles was confirmed. The volume ratio between the perovskite oxide and cobalt oxide particles was determined by image analysis of the distribution of the perovskite oxide particles and cobalt oxide particles based on the SEM image and the results of mapping analysis using EDX. It was determined from the area ratio of the solid area. Similarly, the particle diameter of the cobalt oxide particles was measured from the SEM image and the result of the mapping analysis by EDX. In addition, the average particle diameter of cobalt oxide is calculated by an average value obtained by measuring the particle diameters of 100 different cobalt oxide particles.

分析の結果、0.1vol%の酸化コバルトが含有されていることが確認された。このときの酸化コバルトの平均粒子径は0.1μmであった。   As a result of analysis, it was confirmed that 0.1 vol% cobalt oxide was contained. The average particle diameter of the cobalt oxide at this time was 0.1 μm.

本実施例の空気極材料を用いて固体酸化物形燃料電池を作製し、発電試験を行った。作成の方法や各層の厚さ、発電試験の方法は、サンプル1と同様のものとした。
発電試験の結果、初期の電位が0.843V、5000時間経過後の電位が0.842Vとなり、5000時間での電位低下率(耐久性能)が0.12%であった。
A solid oxide fuel cell was fabricated using the air electrode material of this example, and a power generation test was performed. The preparation method, the thickness of each layer, and the power generation test method were the same as those of Sample 1.
As a result of the power generation test, the initial potential was 0.843 V, the potential after 5000 hours passed was 0.842 V, and the potential decrease rate (endurance performance) at 5000 hours was 0.12%.

1 燃料極支持体
2 固体電解質層
3 空気極層
4 燃料極反応触媒層
5 燃料極側反応防止層
10 固体酸化物形燃料電池
DESCRIPTION OF SYMBOLS 1 Fuel electrode support body 2 Solid electrolyte layer 3 Air electrode layer 4 Fuel electrode reaction catalyst layer 5 Fuel electrode side reaction prevention layer 10 Solid oxide fuel cell

Claims (3)

固体酸化物形燃料電池に用いる空気極材料であって、
ランタンおよびストロンチウムおよびコバルトおよび鉄を含むペロブスカイト型酸化物の粒子を主成分とし、
酸化コバルトの粒子をさらに含んでなることを特徴とする、空気極材料。
An air electrode material used for a solid oxide fuel cell,
Mainly composed of particles of perovskite oxide containing lanthanum and strontium and cobalt and iron,
An air electrode material, further comprising particles of cobalt oxide.
前記ペロブスカイト型酸化物の粒子と前記酸化コバルトの粒子との体積比が99.9:0.1〜97:3の範囲にあることを特徴とする請求項1に記載の空気極材料。 The air electrode material according to claim 1, wherein the volume ratio of the perovskite oxide particles to the cobalt oxide particles is in the range of 99.9: 0.1 to 97: 3. 空気極と燃料極との間に金属酸化物からなる固体電解質層を備えた固体酸化物形燃料電池であって、
前記空気極が、請求項1に記載の空気極材料で形成されていることを特徴とする固体酸化物形燃料電池。
A solid oxide fuel cell comprising a solid electrolyte layer made of a metal oxide between an air electrode and a fuel electrode,
A solid oxide fuel cell, wherein the air electrode is formed of the air electrode material according to claim 1.
JP2011044118A 2010-03-31 2011-03-01 Air electrode material and solid oxide fuel cell Active JP5700358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011044118A JP5700358B2 (en) 2010-03-31 2011-03-01 Air electrode material and solid oxide fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010083119 2010-03-31
JP2010083119 2010-03-31
JP2011044118A JP5700358B2 (en) 2010-03-31 2011-03-01 Air electrode material and solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2011228270A JP2011228270A (en) 2011-11-10
JP5700358B2 true JP5700358B2 (en) 2015-04-15

Family

ID=45043363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011044118A Active JP5700358B2 (en) 2010-03-31 2011-03-01 Air electrode material and solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5700358B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191429B2 (en) * 2012-12-10 2017-09-06 Toto株式会社 Solid oxide fuel cell
JP6808010B2 (en) * 2019-01-30 2021-01-06 日本碍子株式会社 Electrochemical cell
JP2021197332A (en) * 2020-06-18 2021-12-27 株式会社デンソー Electrochemical cell
KR102347681B1 (en) * 2020-07-30 2022-01-06 울산과학기술원 Dry reforming catalyst formed by perovskite structure having exsoluted transition metal, method of manufacturing the same, dry reforming catalyst system having the same, and solid oxide fuel cell having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496749B2 (en) * 2003-09-30 2010-07-07 Toto株式会社 Solid oxide fuel cell
JP4720238B2 (en) * 2004-12-09 2011-07-13 日産自動車株式会社 Air electrode for solid oxide fuel cell and method for producing the same
JP4953152B2 (en) * 2005-04-21 2012-06-13 Toto株式会社 Solid oxide fuel cell
JP5273584B2 (en) * 2008-07-03 2013-08-28 Toto株式会社 Solid oxide fuel cell, solid oxide fuel cell unit, and fuel cell module including the same

Also Published As

Publication number Publication date
JP2011228270A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
Tian et al. Enhanced performance of symmetrical solid oxide fuel cells using a doped ceria buffer layer
JP6783042B2 (en) Manufacturing method of cell structure
Yang et al. A highly active and durable electrode with in situ exsolved Co nanoparticles for solid oxide electrolysis cells
KR20170132140A (en) Proton conductor, solid electrolyte layer for fuel cell, cell structure, and fuel cell including the same
Ding et al. High-performing and stable electricity generation by ceramic fuel cells operating in dry methane over 1000 hours
Lillmaa et al. Electrochemical characteristics and gas composition generated by La0. 8Sr0. 2Cr0. 5Mn0. 5O3–δ cathode at electrolysis and co-electrolysis modes
Yu et al. Performance optimization of SrFe0. 95Ti0. 05O3− δ cathode for intermediate temperature SOFC
JP2010282772A (en) Electrode material for solid oxide fuel cell, and electrode for solid oxide fuel cell
Fan et al. Improved performance and stability of Ag-infiltrated nanocomposite La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ-(Y2O3) 0.08 (ZrO2) 0.92 oxygen electrode for H2O/CO2 co-electrolysis
JP5700358B2 (en) Air electrode material and solid oxide fuel cell
Yoo et al. A Facile Combustion Synthesis Route for Performance Enhancement of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ (LSCF6428) as a Robust Cathode Material for IT-SOFC
CN109923715B (en) Composite particle powder, electrode material for solid oxide battery, and electrode for solid oxide battery using same
JP6362007B2 (en) Electrochemical cell and method for producing the same
JP7231431B2 (en) electrochemical cell
JP5470559B2 (en) Solid oxide fuel cell and method for producing the same
JP6805054B2 (en) Steam electrolysis cell
JP6625855B2 (en) Cell for steam electrolysis and method for producing the same
JP5633430B2 (en) Air electrode material and solid oxide fuel cell
JP7139273B2 (en) Anodes for solid oxide fuel cells
JPWO2009063598A1 (en) ELECTRODE MATERIAL FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR FUEL CELL CONTAINING THE FUEL CELL ELECTRODE MATERIAL, AND FUEL CELL
WO2020004333A1 (en) Electrode for solid oxide cells, and solid oxide cell using same
Hui et al. Ba1− xPrxCo1− yFeyO3− δ as cathode materials for low temperature solid oxide fuel cells
JP2006278090A (en) Fuel battery cell and fuel battery
JP5506053B2 (en) Solid oxide fuel cell and method for producing the same
JP6625856B2 (en) Steam electrolysis cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150126

R150 Certificate of patent or registration of utility model

Ref document number: 5700358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150208

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250