[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5794890B2 - Materials for spark plug electrodes - Google Patents

Materials for spark plug electrodes Download PDF

Info

Publication number
JP5794890B2
JP5794890B2 JP2011235564A JP2011235564A JP5794890B2 JP 5794890 B2 JP5794890 B2 JP 5794890B2 JP 2011235564 A JP2011235564 A JP 2011235564A JP 2011235564 A JP2011235564 A JP 2011235564A JP 5794890 B2 JP5794890 B2 JP 5794890B2
Authority
JP
Japan
Prior art keywords
alloy
mass
temperature oxidation
workability
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011235564A
Other languages
Japanese (ja)
Other versions
JP2013091834A (en
Inventor
弘一 坂入
弘一 坂入
邦弘 田中
邦弘 田中
宗樹 中村
宗樹 中村
石田 清仁
清仁 石田
大森 俊洋
俊洋 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2011235564A priority Critical patent/JP5794890B2/en
Publication of JP2013091834A publication Critical patent/JP2013091834A/en
Application granted granted Critical
Publication of JP5794890B2 publication Critical patent/JP5794890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Spark Plugs (AREA)

Description

本発明は、点火プラグの中心電極と接地電極を構成する材料に関し、耐久性、特に、高温酸化特性及び耐火花消耗性に優れ、加工性も良好なイリジウム合金に関する。   The present invention relates to a material constituting a center electrode and a ground electrode of a spark plug, and more particularly, to an iridium alloy having excellent durability, particularly high-temperature oxidation characteristics and spark wear resistance, and good workability.

内燃機関用の点火プラグは、燃焼室内の過酷環境においても長期間使用できるよう、耐消耗性に優れることが求められる。かかる要求特性を満たすべく、その主要部材である中心電極及び接地電極の構成材料として、Ir、Pt、Ni、これらの合金からなる材料が用いられている(特許文献1)。これらの材料は、融点が高く、高温・高酸化雰囲気の燃焼室内でも酸化消耗し難い優れたプラグ電極用の材料として知られている。   An ignition plug for an internal combustion engine is required to have excellent wear resistance so that it can be used for a long time even in a harsh environment in a combustion chamber. In order to satisfy such required characteristics, materials made of Ir, Pt, Ni, and alloys thereof are used as constituent materials of the central electrode and the ground electrode, which are the main members (Patent Document 1). These materials are known as excellent plug electrode materials that have a high melting point and are not easily oxidized and consumed even in a combustion chamber in a high-temperature and high-oxidation atmosphere.

プラグ電極用材料の耐久性に関する検討は、より詳細には高温酸化特性と耐火花消耗性が重視される。即ち、高酸化雰囲気下でも酸化による消耗が少ない材料や、プラグ使用中に絶えず生じる火花による火花消耗の少ない材料の開発が重視されていた。   In the examination on the durability of the plug electrode material, more particularly, high temperature oxidation characteristics and spark wear resistance are emphasized. That is, the development of a material that is less consumed by oxidation even under a highly oxidized atmosphere and a material that is less consumed by sparks caused by sparks constantly generated during plug use has been emphasized.

特開2009−295427号公報JP 2009-295427 A

ところで、近年の自動車用エンジンには燃費向上を狙ったものが多く開発されており、燃焼効率を高めるための圧縮比の向上や精密な電子制御化が進行しており、その内部環境は従来のエンジンよりも過酷なものとなっている。そのため、プラグ電極用材料に対してもこれまで以上の高温酸化特性及び耐火花消耗性の改善が期待されている。   By the way, in recent years, many automobile engines aimed at improving fuel efficiency have been developed, and the compression ratio and precise electronic control for improving the combustion efficiency are in progress. It is more severe than the engine. Therefore, improvement of high-temperature oxidation characteristics and spark wear resistance more than ever is expected for plug electrode materials.

そこで本発明は、上記のような過酷な環境下であっても、優れた高温酸化特性及び耐火花消耗性を有するプラグ電極用の材料を提供することを目的とする。   Accordingly, an object of the present invention is to provide a material for a plug electrode having excellent high-temperature oxidation characteristics and spark wear resistance even under such a severe environment.

上記課題を解決する本願発明は、Irに必須の添加元素であるCo及びWを添加したIr合金からなるプラグ電極用材料であって、前記Ir合金は、Coを10質量%〜30質量%、Wを5質量%〜10質量%、残部Irからなるプラグ電極用材料である。   The present invention for solving the above-mentioned problems is a material for a plug electrode made of an Ir alloy to which Co and W, which are essential additive elements for Ir, are added, and the Ir alloy contains 10% by mass to 30% by mass of Co, It is a plug electrode material consisting of 5 mass% to 10 mass% W and the balance Ir.

本発明に係るプラグ電極用材料は、Ir(イリジウム)を基本とした合金であり、これに必須の添加元素として、Co(コバルト)及びW(タングステン)を所定濃度添加した合金である。Ir基合金を適用するのは、Irは基本的に耐火花消耗性に優れることを考慮したものである。一方、Irは高温酸化特性がやや劣る面があり、従来のIr合金からなるプラグ材料は、今後の要求に十分応えられないといえる。本願発明は、高温酸化特性を補完すると共に、耐火花消耗性を更に改善する添加元素として、CoとWを同時に添加するものである。   The plug electrode material according to the present invention is an alloy based on Ir (iridium), and is an alloy in which Co (cobalt) and W (tungsten) are added at predetermined concentrations as essential additive elements. The Ir-based alloy is applied because Ir is basically excellent in spark wear resistance. On the other hand, Ir has a somewhat inferior high-temperature oxidation characteristic, and it can be said that conventional plug materials made of an Ir alloy cannot sufficiently meet future demands. In the present invention, Co and W are simultaneously added as additive elements that complement the high-temperature oxidation characteristics and further improve the spark wear resistance.

以下、本発明に係るIr合金の構成についてより詳細に説明する。上記の通り、CoとWを必須の添加元素とする。Coは、合金の高温酸化特性を改善する目的で添加する。このCo添加量は、10〜30質量%とする。10質量%未満では高温酸化特性の改善効果が見られず、Ir本来の高温酸化消耗が生じる傾向がある。また、30質量%を超えると火花消耗が増加傾向となる。一方、Wは、合金の耐火花消耗性を向上させる作用を有する。W添加量は、5〜10質量%とする。5質量%未満では耐火花消耗性の改善効果が見られず、逆に10質量%を超えると高温酸化による消耗が生じる傾向がある。本発明では、CoとWの各添加元素の添加量の範囲に上記のような制限がある。本発明によれば、各金属の添加量を適正範囲外とすると、高温酸化特性や火花消耗性が却って悪化する。即ち、各特性のバランスを最適なものとするためには、各合金金属の添加量を上記のように制限することが必要である。   Hereinafter, the structure of the Ir alloy according to the present invention will be described in more detail. As described above, Co and W are essential additive elements. Co is added for the purpose of improving the high temperature oxidation characteristics of the alloy. The amount of Co added is 10 to 30% by mass. If it is less than 10% by mass, the effect of improving the high-temperature oxidation characteristics is not observed, and Ir inherent high-temperature oxidation consumption tends to occur. On the other hand, if it exceeds 30% by mass, the consumption of sparks tends to increase. On the other hand, W has an effect of improving the spark resistance of the alloy. W addition amount shall be 5-10 mass%. If the amount is less than 5% by mass, the effect of improving the wear resistance of the sparks is not observed. In the present invention, there is the above limitation in the range of the addition amount of each additive element of Co and W. According to the present invention, if the addition amount of each metal is outside the proper range, the high temperature oxidation characteristics and the spark consumption are deteriorated. That is, in order to optimize the balance of the characteristics, it is necessary to limit the amount of each alloy metal added as described above.

また、本発明に係るIr合金からなるプラグ電極用材料は適宜、添加元素を追加することで、高温酸化特性や耐火花消耗性をより改善させ、更に、他の特性の改善を図ることができる。この補完的な他の特性としては加工性改善が挙げられるが、これはプラグ電極用材料のような微細加工が必要となる材料にとって重要である。   In addition, the plug electrode material made of an Ir alloy according to the present invention can further improve the high-temperature oxidation characteristics and the spark wear resistance, and further improve other characteristics by appropriately adding additional elements. . Another complementary property is improved workability, which is important for materials that require microfabrication, such as plug electrode materials.

加工性改善のための添加元素は、B(ホウ素)又はC(炭素)のいずれかが適用される。これらは、少なくともいずれかを0.005〜0.1質量%添加するのが好ましい。0.005質量%未満では、効果がなく、また、0.1質量%を超えるとホウ化物、炭化物を形成し、加工性を悪化させることとなる。   As an additive element for improving workability, either B (boron) or C (carbon) is applied. It is preferable to add at least one of these in an amount of 0.005 to 0.1% by mass. If it is less than 0.005% by mass, there is no effect, and if it exceeds 0.1% by mass, borides and carbides are formed, and workability is deteriorated.

また、加工性改善のための添加元素としては、Re(レニウム)又はRh(ロジウム)を添加しても良い。Re又はRhについては、これらの少なくともいずれを0.02〜0.1質量%添加するのが好ましい。0.02質量%未満では加工性改善効果が見られない。また、Re又はRhについては、添加すればする程加工性が良好となるが、0.1質量%の添加でプラグ電極用材料に必要な加工性が確保でき、これを超えた添加は材料コストを押し上げることとなる。   Further, as an additive element for improving workability, Re (rhenium) or Rh (rhodium) may be added. About Re or Rh, it is preferable to add at least 0.02 to 0.1% by mass of any of these. If it is less than 0.02% by mass, the effect of improving workability is not observed. As for Re or Rh, the workability becomes better as it is added. However, the workability required for the plug electrode material can be secured by addition of 0.1% by mass. Will be pushed up.

本発明に係るIr合金は、IrへのCo及びWの所定量合金化により、高い高温酸化特性を発揮するが、更に微量の添加元素により高温酸化特性を改善することができる。高温酸化特性の更なる向上のための添加元素としては、Si(ケイ素)又はGe(ゲルマニウム)が挙げられ、これらの少なくともいずれかを0.003〜0.02質量%添加するのが好ましい。0.003質量%未満では効果がなく、また、0.02質量%を超える添加量は高温酸化特性を大幅に向上させることなく加工性を悪化させることとなる。   The Ir alloy according to the present invention exhibits high high temperature oxidation characteristics by alloying a predetermined amount of Co and W into Ir, but the high temperature oxidation characteristics can be further improved by a small amount of additive elements. Examples of the additive element for further improving the high-temperature oxidation characteristics include Si (silicon) or Ge (germanium), and it is preferable to add at least one of these in an amount of 0.003 to 0.02 mass%. If it is less than 0.003 mass%, there is no effect, and if it exceeds 0.02 mass%, the workability is deteriorated without significantly improving the high-temperature oxidation characteristics.

また、添加元素として、材料表面に酸化皮膜を形成させ高温酸化特性を向上させるものがある。具体的には、Al(アルミニウム)、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)、Hf(ハフニウム)、Zr(ジルコニウム)、Ti(チタン)、La(ランタン)、Ce(セリウム)、Y(イットリウム)が挙げられる。   In addition, as an additive element, there is an element that forms an oxide film on the surface of a material to improve high-temperature oxidation characteristics. Specifically, Al (aluminum), V (vanadium), Nb (niobium), Ta (tantalum), Hf (hafnium), Zr (zirconium), Ti (titanium), La (lanthanum), Ce (cerium), Y (yttrium) is mentioned.

これらのうち、Al、V、Nb、Ta、Hf、Zr、Tiの各元素は、少なくともいずれかを0.005〜1.0質量%添加するのが好ましい。0.005質量%未満では効果がなく、また、1.0質量%を超えると酸化皮膜が剥離し易くなり、材料消耗が進行する傾向がある、また、Alの場合には添加しすぎると材料中に金属間化合物(γ’相)が出現し、加工性が悪化するからである。   Of these, it is preferable to add at least one of Al, V, Nb, Ta, Hf, Zr, and Ti in an amount of 0.005 to 1.0 mass%. If it is less than 0.005% by mass, there is no effect, and if it exceeds 1.0% by mass, the oxide film tends to be peeled off, and material consumption tends to progress. This is because intermetallic compounds (γ ′ phase) appear therein, and the workability deteriorates.

また、La、Ce、Yも合金表面に酸化被膜を形成させ、高温酸化特性を改善するが、少なくともいずれかを0.003〜0.2質量%微量添加するのが好ましい。0.003質量%未満では効果がない一方、多量添加すると加工性悪化に繋がるからである。   La, Ce, and Y also form an oxide film on the alloy surface to improve high-temperature oxidation characteristics, but it is preferable to add a trace amount of at least one of 0.003 to 0.2 mass%. This is because if the amount is less than 0.003% by mass, there is no effect, but if a large amount is added, the workability deteriorates.

以上説明した本発明に係るIr合金は、構成金属を混合し、溶解・鋳造を行うことで製造することができ、得られたIr合金を板材や線材とした後、所望の長さに切断する方法等によって貴金属チップに加工して、スパークプラグとして使用可能となる。尚、本発明に係るIr−Co−W合金は、添加元素(特にAl)によっては、高温で長時間加熱すると金属間化合物(γ’相)が析出することがある。この金属間化合物は加工性を悪化させるため、本発明に係る合金はγ’相の生成を回避する。そのため、上記の製造工程及び加工工程では、熱間加工における短時間の高温加熱は許容されるが、γ’相が生成しないよう長時間加熱は回避する。   The Ir alloy according to the present invention described above can be manufactured by mixing constituent metals, melting and casting, and using the obtained Ir alloy as a plate or wire, then cutting it to a desired length. It can be processed into a noble metal tip by a method or the like and used as a spark plug. In the Ir—Co—W alloy according to the present invention, depending on the additive element (particularly Al), an intermetallic compound (γ ′ phase) may precipitate when heated at a high temperature for a long time. Since this intermetallic compound deteriorates workability, the alloy according to the present invention avoids the formation of a γ 'phase. Therefore, in the above manufacturing process and processing process, high-temperature heating for a short time in hot processing is allowed, but long-time heating is avoided so that a γ 'phase is not generated.

本発明のIr−Co−W合金は、耐高温酸化性と耐火花消耗性を兼ね備えたプラグ材料である。また、この合金は、適宜の添加元素を添加することで、加工性改善、高温酸化特性の更なる改善等を図ることができる。   The Ir—Co—W alloy of the present invention is a plug material having both high-temperature oxidation resistance and spark consumption resistance. Moreover, this alloy can improve workability, further improve high-temperature oxidation characteristics, and the like by adding an appropriate additive element.

実施例1と比較例8の高温酸化試験後の材料断面の写真。The photograph of the material cross section after the high-temperature oxidation test of Example 1 and Comparative Example 8.

以下、本発明の好適な実施例を説明する。本実施形態では、Ir−Co−W合金を基本とした各種組成のIr合金を製造し、その特性評価をした。Ir合金の製造は、アーク溶解炉により所定の合金組成となるよう調整し合金インゴット(50〜150g)を製造した。そして、このインゴットについての加工試験を行った。この加工試験は、上記溶解インゴットを融点直下の温度まで加熱しながら鍛造加工を実施し、そのインゴットの外観及び断面のクラックの発生状況で加工性を評価した。   Hereinafter, preferred embodiments of the present invention will be described. In this embodiment, Ir alloys having various compositions based on an Ir—Co—W alloy were manufactured and their characteristics were evaluated. The production of the Ir alloy was adjusted to have a predetermined alloy composition by an arc melting furnace to produce an alloy ingot (50 to 150 g). And the processing test about this ingot was performed. In this processing test, forging was performed while heating the melting ingot to a temperature just below the melting point, and the workability was evaluated based on the appearance of the ingot and the occurrence of cracks in the cross section.

次に、各インゴットについて、ワイヤー(直径1mm)に加工した。ワイヤーへの加工は、上記、加工試験に用いたインゴットから1.0mmφ×20mmLの棒を切り出して、更に、これをφ1.0×5mmLに切断した試料に対し高温酸化特性と火花消耗性を評価した。   Next, each ingot was processed into a wire (diameter 1 mm). For wire processing, a 1.0 mmφ × 20 mmL rod was cut out from the ingot used in the above processing test, and the sample was cut into φ1.0 × 5 mmL to evaluate high-temperature oxidation characteristics and spark consumption. did.

[高温酸化特性の評価]
製造した合金線の耐高温酸化消耗性を評価した。評価方法は、大気中1200℃で50時間加熱し、試験前後の重量測定により、残存率を算出した。
[Evaluation of high temperature oxidation characteristics]
The manufactured alloy wire was evaluated for high temperature oxidation wear resistance. In the evaluation method, heating was performed at 1200 ° C. in the atmosphere for 50 hours, and the residual ratio was calculated by measuring the weight before and after the test.

[耐火花消耗性の評価]
合金線を中心極および接地極としたプラグを製造し(電極間のギャップ:1.0mm)、エア加圧(6気圧)で140時間放電し、放電後の消耗長さ(ΔL)を測定して評価した。以上の評価試験の結果を表1、2に示す。
[Evaluation of spark wear resistance]
A plug having an alloy wire as a center electrode and a ground electrode is manufactured (gap between electrodes: 1.0 mm), discharged for 140 hours with air pressurization (6 atm), and the consumption length (ΔL) after discharge is measured. And evaluated. The results of the above evaluation tests are shown in Tables 1 and 2.

表1より、本発明の基本組成となるIr−Co−W合金(実施例1〜5)は、高温酸化特性及び火花消耗性共に優れた特性を持つことが分かる。この点、Ir−Co2元合金(比較例1)は、主には耐火花消耗に欠け、Ir−W2元合金(比較例2)は、耐高温酸化特性が劣る。これに対し、Co、Wを同時に最適添加量入れたIr合金(実施例1〜5)は、双方の特性も十分満足させることができる。また、Co、W両元素の添加量が好適範囲外となる場合(比較例3〜7)、高温酸化特性、火花消耗性の少なくともいずれかがが劣ることとなる。   From Table 1, it can be seen that the Ir—Co—W alloys (Examples 1 to 5) which are the basic composition of the present invention have excellent high-temperature oxidation characteristics and spark consumption characteristics. In this regard, the Ir—Co binary alloy (Comparative Example 1) mainly lacks spark consumption, and the Ir—W binary alloy (Comparative Example 2) has poor high-temperature oxidation resistance. On the other hand, the Ir alloys (Examples 1 to 5) into which Co and W are added at the same optimum amounts can satisfy both characteristics sufficiently. Moreover, when the addition amount of both Co and W elements is outside the preferred range (Comparative Examples 3 to 7), at least one of the high-temperature oxidation characteristics and the spark consumption is inferior.

また、表2から添加元素の効果をみると、B又はCは、0.005質量%以上の添加で加工性改善の効果が見られる(実施例1、6〜10)。また、Re、Rhも加工性改善効果を有する(実施例1、11〜14)。   Moreover, when the effect of an additive element is seen from Table 2, the effect of workability improvement is seen by addition of 0.005 mass% or more for B or C (Examples 1 and 6 to 10). Re and Rh also have a workability improving effect (Examples 1, 11 to 14).

更に、プラグ材料の高温酸化特性改善を有する添加元素として、Si又はGeは、適当な量を添加することで、高温酸化特性の改善効果が見られる(実施例1、15〜20)。また、Alも高温酸化特性の改善効果を有するが(実施例1、21〜22)、1%を超える添加は、火花消耗が増加する傾向にあり加工性もやや劣る(実施例23)。更に、V、Nb、Ta、Hf、Zr、Ti、La、Ce、Yの各添加元素も高温酸化特性の改善効果を発揮する(実施例1、24〜35)。   Furthermore, as an additive element having an improvement in the high-temperature oxidation characteristics of the plug material, the effect of improving the high-temperature oxidation characteristics can be seen by adding an appropriate amount of Si or Ge (Examples 1, 15 to 20). Al also has an effect of improving the high-temperature oxidation characteristics (Examples 21 to 22), but addition over 1% tends to increase spark consumption and is slightly inferior in workability (Example 23). Furthermore, each additive element of V, Nb, Ta, Hf, Zr, Ti, La, Ce, and Y also exhibits an effect of improving high-temperature oxidation characteristics (Examples 1, 24 to 35).

図1は、実施例1(Ir−11質量%Co−9質量%W)と比較例8(Ir−10質量%Rh)の高温酸化試験後の材料断面の写真を示すものである。図1から、比較例8の従来のプラグ電極材料は、酸化進行による部位(写真上の黒色部)が多く存在するのに対して、実施例2のIr−Co−W合金は、内部への酸化進行も無く、酸化減耗率は少ないものと考えられる。   FIG. 1 shows a photograph of a cross-section of the material of Example 1 (Ir-11 mass% Co-9 mass% W) and Comparative Example 8 (Ir-10 mass% Rh) after a high temperature oxidation test. From FIG. 1, the conventional plug electrode material of Comparative Example 8 has many sites (black portions on the photograph) due to the progress of oxidation, whereas the Ir—Co—W alloy of Example 2 There is no progress of oxidation, and the oxidation depletion rate is considered to be small.

本発明は、高温酸化及び火花消耗による耐消耗性が高く、長期間使用可能なプラグ電極用材料である。本発明は、燃費向上等を図ってより過酷な環境となる自動車用エンジンに適用されるプラグへの適用が可能である。   The present invention is a plug electrode material that has high wear resistance due to high-temperature oxidation and spark consumption and can be used for a long period of time. The present invention can be applied to a plug that is applied to an automobile engine that is in a harsher environment with the aim of improving fuel consumption.

Claims (6)

Irに必須の添加元素であるCo及びWを添加したIr合金からなるプラグ電極用材料であって、
前記Ir合金は、Coを10質量%〜30質量%、Wを5質量%〜10質量%、残部Irからなるプラグ電極用材料。
A plug electrode material made of an Ir alloy to which Co and W, which are essential additive elements for Ir, are added,
The Ir alloy is a plug electrode material composed of 10 mass% to 30 mass% of Co, 5 mass% to 10 mass% of W, and the balance Ir.
Ir合金は、B及びCの少なくともいずれかを合計で0.005〜0.1質量%含むIr合金である請求項1記載のプラグ電極用材料。 The plug electrode material according to claim 1, wherein the Ir alloy is an Ir alloy containing 0.005 to 0.1 mass% in total of at least one of B and C. Ir合金は、Re及びRhの少なくともいずれかを合計で0.02〜0.1質量%含むIr合金である請求項1又は請求項2記載のプラグ電極用材料。 The plug electrode material according to claim 1 or 2, wherein the Ir alloy is an Ir alloy containing 0.02 to 0.1 mass% in total of at least one of Re and Rh. Ir合金は、Si及びGeの少なくともいずれかを合計で0.003〜0.02質量%含むIr合金である請求項1〜請求項3のいずれかに記載のプラグ電極用材料。 The plug electrode material according to any one of claims 1 to 3, wherein the Ir alloy is an Ir alloy containing 0.003 to 0.02 mass% in total of at least one of Si and Ge. Ir合金は、Al、V、Nb、Ta、Hf、Zr及びTiの少なくともいずれかを合計で0.005〜1.0質量%含むIr合金である請求項1〜請求項4のいずれかに記載のプラグ電極用材料。 The Ir alloy is an Ir alloy containing 0.005 to 1.0 mass% in total of at least one of Al, V, Nb, Ta, Hf, Zr, and Ti. Plug electrode material. Ir合金は、La、Ce及びYの少なくともいずれかを合計で0.003〜0.2質量%含むIr合金である請求項1〜請求項のいずれかに記載のプラグ電極用材料。 The plug electrode material according to any one of claims 1 to 5 , wherein the Ir alloy is an Ir alloy containing 0.003 to 0.2 mass% in total of at least one of La, Ce, and Y.
JP2011235564A 2011-10-27 2011-10-27 Materials for spark plug electrodes Expired - Fee Related JP5794890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011235564A JP5794890B2 (en) 2011-10-27 2011-10-27 Materials for spark plug electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011235564A JP5794890B2 (en) 2011-10-27 2011-10-27 Materials for spark plug electrodes

Publications (2)

Publication Number Publication Date
JP2013091834A JP2013091834A (en) 2013-05-16
JP5794890B2 true JP5794890B2 (en) 2015-10-14

Family

ID=48615192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011235564A Expired - Fee Related JP5794890B2 (en) 2011-10-27 2011-10-27 Materials for spark plug electrodes

Country Status (1)

Country Link
JP (1) JP5794890B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230052A (en) * 2000-02-10 2001-08-24 Tanaka Kikinzoku Kogyo Kk Manufacturing method of electrode part of ignition plug and center electrode of ignition plug using same
GB0216323D0 (en) * 2002-07-13 2002-08-21 Johnson Matthey Plc Alloy
WO2008017069A2 (en) * 2006-08-03 2008-02-07 Federal-Mogul Corporation One piece shell high thread spark plug
JP2008248322A (en) * 2007-03-30 2008-10-16 Ishifuku Metal Ind Co Ltd HEAT RESISTANT Ir BASE ALLOY
CN102206769A (en) * 2011-04-11 2011-10-05 昆明富尔诺林科技发展有限公司 Iridium alloy material and application thereof

Also Published As

Publication number Publication date
JP2013091834A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
US8766519B2 (en) Electrode material for a spark plug
JP5680192B2 (en) Nickel base alloy
JP5619843B2 (en) Spark plug
JP5697484B2 (en) Spark plug electrode material
JP4753432B2 (en) Spark plug for internal combustion engine
EP2826877A2 (en) Hot-forgeable Nickel-based superalloy excellent in high temperature strength
JP5273620B2 (en) Nickel base alloy
JP5650969B2 (en) Electrode material, spark plug electrode, and spark plug
JP4699867B2 (en) Spark plug electrode material
WO2018021028A1 (en) Spark plug electrode material
WO2018117135A1 (en) Heat-resistant ir alloy
JP4991433B2 (en) Spark plug for internal combustion engine
JP5794890B2 (en) Materials for spark plug electrodes
JP5172425B2 (en) Spark plug
JP2017531091A (en) Rhodium alloy
JP5521490B2 (en) Spark plug electrode material
JP5590979B2 (en) Spark plug electrode material with excellent spark wear resistance
JP4735963B2 (en) Spark plug electrode material
WO2018104705A1 (en) Rhodium alloys
JP6484160B2 (en) Electrode material, spark plug electrode, and spark plug
JP2019218572A (en) HEAT-RESISTANT Ir ALLOY
WO2011102355A1 (en) Spark plug electrode material having excellent spark consumption resistance and excellent discharge characteristics
JP4164534B2 (en) Spark plug
JP2020084328A (en) High strength Ir alloy
JP2023028771A (en) iridium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150811

R150 Certificate of patent or registration of utility model

Ref document number: 5794890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees