[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5794609B2 - Cellulose biomass processing method - Google Patents

Cellulose biomass processing method Download PDF

Info

Publication number
JP5794609B2
JP5794609B2 JP2011001483A JP2011001483A JP5794609B2 JP 5794609 B2 JP5794609 B2 JP 5794609B2 JP 2011001483 A JP2011001483 A JP 2011001483A JP 2011001483 A JP2011001483 A JP 2011001483A JP 5794609 B2 JP5794609 B2 JP 5794609B2
Authority
JP
Japan
Prior art keywords
ionic liquid
cellulose
cellulosic biomass
biomass
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011001483A
Other languages
Japanese (ja)
Other versions
JP2012144441A (en
Inventor
鈴木 和彦
和彦 鈴木
伊藤 敏幸
敏幸 伊藤
天野 良彦
良彦 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Tottori University
Original Assignee
Shinshu University NUC
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Tottori University filed Critical Shinshu University NUC
Priority to JP2011001483A priority Critical patent/JP5794609B2/en
Publication of JP2012144441A publication Critical patent/JP2012144441A/en
Application granted granted Critical
Publication of JP5794609B2 publication Critical patent/JP5794609B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、イオン液体、イオン液体の精製方法、およびイオン液体を用いたセルロース系バイオマスの処理方法に関する。   The present invention relates to an ionic liquid, a method for purifying the ionic liquid, and a method for treating cellulosic biomass using the ionic liquid.

近年、環境保護の観点から再生可能エネルギーであるバイオマスの活用が注目され、特に、セルロース系バイオマスからエタノールを製造する方法の開発が進められている。エタノールは、セルロース系バイオマスを糖化してグルコースやキシロース等の単糖を生成し、この単糖に発酵酵素を作用させることにより生成される。セルロース系バイオマスから単糖を高収率で得るには糖化処理を行う際の前処理(セルロースの溶解等)により、セルロース系バイオマスを糖化しやすい状態に変化させることが重要である。
セルロースを容易に溶解させる溶媒として、最近ではイオン液体を用いる技術が提案されている(例えば、特許文献1、特許文献2、および特許文献3参照)。
In recent years, the use of biomass, which is renewable energy, has attracted attention from the viewpoint of environmental protection, and in particular, the development of a method for producing ethanol from cellulosic biomass has been promoted. Ethanol is produced by saccharifying cellulosic biomass to produce monosaccharides such as glucose and xylose, and allowing a fermentation enzyme to act on these monosaccharides. In order to obtain monosaccharides from cellulosic biomass in a high yield, it is important to change the cellulosic biomass to a state that facilitates saccharification by pretreatment (such as dissolution of cellulose) during saccharification treatment.
Recently, a technique using an ionic liquid has been proposed as a solvent for easily dissolving cellulose (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).

特許文献1には、イミダゾリウム系イオン液体でセルロースを溶解し、このセルロース含有イオン液体を水と混合させることで、セルロースを再生する技術が記載されている。また、溶解したセルロースを析出させる貧溶媒として、水、アルコール、ケトンを用いており、析出したセルロースとイオン液体を分離するのに、ダイ(金型)を使用している。特許文献2では、アルコキシアルキル基を有する4級アンモニウムカチオンと、ハロゲン化物、総炭素数1〜3のカルボン酸、過塩素酸または擬ハロゲン化物のアニオンとからなるイオン液体を用いてセルロースを溶解している。特許文献3では、アルコキシアルキル基を有する4級アンモニウムカチオンと、燐酸系アニオン((CH3O)(R)PO2 -)からなるイオン液体を用いてセルロースを溶解している。 Patent Document 1 describes a technique for regenerating cellulose by dissolving cellulose with an imidazolium-based ionic liquid and mixing the cellulose-containing ionic liquid with water. Further, water, alcohol, and ketone are used as poor solvents for precipitating dissolved cellulose, and a die (die) is used to separate the precipitated cellulose and ionic liquid. In Patent Document 2, cellulose is dissolved using an ionic liquid composed of a quaternary ammonium cation having an alkoxyalkyl group and a halide, a carboxylic acid having 1 to 3 carbon atoms, a perchloric acid or a pseudohalide anion. ing. In Patent Document 3, cellulose is dissolved using an ionic liquid composed of a quaternary ammonium cation having an alkoxyalkyl group and a phosphate anion ((CH 3 O) (R) PO 2 ).

特表2005−506401号公報JP 2005-506401 A WO2007/049485号公報WO2007 / 049485 WO2008/133269号公報WO2008 / 133269

特許文献1で使用されるイミダゾリウム系イオン液体は、一般に高粘度であり、被処理物との接触およびその後の被処理物内部への浸透に時間がかかり、セルロースを十分な濃度で溶解することが困難である。特許文献2、3についてもセルロースの溶解度を十分に上げることは困難である。さらに、ハロゲンを含んだイオン液体は、装置の腐食や環境負荷の問題がある。また、イオン液体自体の精製方法についても満足できる方法は開示されていない。   The imidazolium-based ionic liquid used in Patent Document 1 generally has a high viscosity, takes time for contact with the object to be processed and subsequent penetration into the object to be processed, and dissolves cellulose in a sufficient concentration. Is difficult. In Patent Documents 2 and 3, it is difficult to sufficiently increase the solubility of cellulose. Furthermore, halogen-containing ionic liquids have problems such as device corrosion and environmental load. Further, no satisfactory method is disclosed for the purification method of the ionic liquid itself.

本発明の目的は、装置の腐食や環境負荷の問題が少なく、セルロース系バイオマスを高濃度で溶解できるイオン液体、イオン液体の精製方法、およびセルロース系バイオマスの処理方法、およびイオン液体を用いたセルロース系バイオマスの処理方法を提供することにある。   An object of the present invention is to provide an ionic liquid capable of dissolving a cellulosic biomass at a high concentration, a method for purifying the ionic liquid, a method for treating the cellulosic biomass, and a cellulose using the ionic liquid, with less problems of device corrosion and environmental load It is in providing the processing method of biomass.

本発明者らは、前記課題を解決すべく鋭意検討し、セルロースに対して触媒機能を発揮する酵素タンパクに着目した。セルラーゼなどの酵素がセルロースを加水分解するには、まずセルロースと酵素タンパクの特定部位が接触しなくてはならない。従って、セルラーゼタンパクが有するアミノ基やカルボキシル基などの官能基と同じ部分構造を有するイオン液体であればセルロースの溶解度が大きくなると予想した。本発明は、このような知見に基づいて完成されたものである。   The present inventors diligently studied to solve the above-mentioned problems, and focused attention on enzyme proteins that exert a catalytic function on cellulose. In order for an enzyme such as cellulase to hydrolyze cellulose, the cellulose and a specific site of the enzyme protein must first come into contact. Therefore, it was expected that the solubility of cellulose would be increased if an ionic liquid having the same partial structure as the functional group such as amino group and carboxyl group of cellulase protein. The present invention has been completed based on such findings.

本発明のイオン液体は、一般式Z(Zはカチオンを意味し、Aはアニオンを意味する。)で示される化合物からなるイオン液体であって、前記Zがアルコキシアルキル基を有する4級アンモニウム骨格またはアルコキシアルキル基を有する含窒素複素五員環骨格を有し、前記Aがアミノ基を有することを特徴とする。
上述の含窒素複素五員環骨格としては、特にイミダゾリウム骨格が好ましい。
本発明によれば、イオン液体を構成する化合物が、所定の4級アンモニウム骨格または所定の含窒素複素五員環骨格を有するカチオンと、アミノ基を有するアニオンとから構成されるので、セルロース系バイオマスを高濃度で溶解することができる。また、この化合物は、ハロゲンを含まず、装置の腐食や環境負荷の問題も少ない。
The ionic liquid of the present invention is an ionic liquid composed of a compound represented by the general formula Z + A (Z + means a cation and A means an anion), and the Z + is an alkoxyalkyl group. has a nitrogen-containing heterocyclic five-membered ring skeleton having a quaternary ammonium skeleton or an alkoxyalkyl group having the a - is characterized by having an amino group.
As the nitrogen-containing hetero five-membered ring skeleton, an imidazolium skeleton is particularly preferable.
According to the present invention, the compound constituting the ionic liquid is composed of a cation having a predetermined quaternary ammonium skeleton or a predetermined nitrogen-containing hetero five-membered ring skeleton and an anion having an amino group. Can be dissolved at a high concentration. Moreover, this compound does not contain a halogen, and there are few problems of corrosion of the apparatus and environmental load.

本発明では、前記Aがアミノ基とカルボキシル基を有する骨格、またはアミノ基とスルホニル基を有する骨格を有することが好ましい。
がアミノ基だけでなくさらにカルボキシル基またはスルホニル基を有するとセルロース系バイオマスをより高濃度で溶解することができる。
In the present invention, the A - preferably has a skeleton having a skeleton having an amino group and a carboxyl group or an amino group and a sulfonyl group.
When A has not only an amino group but also a carboxyl group or a sulfonyl group, cellulosic biomass can be dissolved at a higher concentration.

本発明のイオン液体の精製方法は、該イオン液体を、非プロトン性極性溶媒とプロトン性極性溶媒との混合溶媒を使用して精製することを特徴とする。
この発明によれば、イオン液体を非プロトン性極性溶媒とプロトン性極性溶媒との混合溶媒を使用して精製するので、非常に純度の高いイオン液体を得ることができる。
このような非プロトン性極性溶媒としては、アセトニトリルが好ましく、プロトン性極性溶媒としてはメタノールが好ましい。
The ionic liquid purification method of the present invention is characterized in that the ionic liquid is purified using a mixed solvent of an aprotic polar solvent and a protic polar solvent.
According to this invention, since the ionic liquid is purified using a mixed solvent of an aprotic polar solvent and a protic polar solvent, an ionic liquid having a very high purity can be obtained.
As such an aprotic polar solvent, acetonitrile is preferable, and as the protic polar solvent, methanol is preferable.

本発明のセルロース系バイオマスの処理方法は、上述したいずれかのイオン液体を用いたセルロース系バイオマスの処理方法であって、前記セルロース系バイオマスを溶解し、さらに貧溶媒を混合してバイオマスを析出させる溶解析出工程と、前記イオン液体および前記貧溶媒の混合溶液から前記イオン液体を回収するイオン液体回収工程と、前記溶解析出工程で析出させた析出バイオマスを糖化する糖化処理工程とを備えることを特徴とする。   The cellulosic biomass processing method of the present invention is a cellulosic biomass processing method using any of the ionic liquids described above, wherein the cellulosic biomass is dissolved and further mixed with a poor solvent to precipitate the biomass. A dissolution precipitation step, an ionic liquid recovery step of recovering the ionic liquid from the mixed solution of the ionic liquid and the poor solvent, and a saccharification treatment step of saccharifying the precipitated biomass precipitated in the dissolution precipitation step. And

この発明によれば、セルロース系バイオマスを糖化する糖化処理工程の前処理として溶解析出工程を実施し、溶解析出工程で使用するイオン液体を回収して再利用するものである。溶解析出工程により得られた析出バイオマスは、処理前のセルロース系バイオマスとは結晶状態が変化しており、糖化処理工程で糖化されやすい原料となっている。
イオン液体回収工程は、溶解析出工程で使用されたイオン液体と貧溶媒との混合溶液から、イオン液体を回収する工程である。回収されたイオン液体は、溶解析出工程で再利用されるので、少ない資源で処理を実施することができ、環境面および経済性に優れている。
According to this invention, the dissolution and precipitation step is performed as a pretreatment of the saccharification treatment step for saccharifying cellulosic biomass, and the ionic liquid used in the dissolution and precipitation step is recovered and reused. The precipitated biomass obtained by the dissolution and precipitation process has a crystal state that is different from that of the cellulose-based biomass before the process, and is a raw material that is easily saccharified in the saccharification process.
The ionic liquid recovery step is a step of recovering the ionic liquid from the mixed solution of the ionic liquid and the poor solvent used in the dissolution precipitation step. Since the recovered ionic liquid is reused in the dissolution and precipitation step, it can be processed with a small amount of resources, and is excellent in terms of environment and economy.

本発明では、前記セルロース系バイオマスを溶解する際に、イオン液体との共溶媒を添加することが好ましい。
この発明によれば、前記セルロース系バイオマスを溶解する際に、イオン液体との共溶媒を添加するので、セルロース系バイオマス溶解液の粘度を制御することが容易となる。このような共溶媒としては、特に孤立電子対を持つ化合物が好ましい。例えば、ジメチルスルフォキシドや1,3−ジメチル−2−イミダゾリジノンなどが挙げられる。
In this invention, when dissolving the said cellulose biomass, it is preferable to add a cosolvent with an ionic liquid.
According to this invention, since the co-solvent with an ionic liquid is added when the said cellulose biomass is melt | dissolved, it becomes easy to control the viscosity of a cellulose biomass solution. As such a co-solvent, a compound having a lone electron pair is particularly preferable. Examples thereof include dimethyl sulfoxide and 1,3-dimethyl-2-imidazolidinone.

本発明の一実施形態にかかるバイオマスの前処理方法を示すフロー図。The flowchart which shows the pre-processing method of the biomass concerning one Embodiment of this invention. 実施例1におけるイオン液体([N221ME][Ala])のH-NMRスペクトル。 1 H-NMR spectrum of the ionic liquid ([N 221ME ] [Ala]) in Example 1. 実施例1におけるイオン液体([N221ME][Ala])の13C-NMRスペクトル。 13 C-NMR spectrum of the ionic liquid ([N 221ME ] [Ala]) in Example 1. FIG. 実施例1における処理セルロースと未処理セルロースのXRD測定結果を示す図。The figure which shows the XRD measurement result of the process cellulose in Example 1, and an unprocessed cellulose. 実施例12における処理セルロースと未処理セルロースのXRD測定結果を示す図。The figure which shows the XRD measurement result of the process cellulose in Example 12, and an unprocessed cellulose. 実施例15において、イオン液体([N221ME][Ala])処理セルロースの分解率の経時変化を示す図。In Example 15, the figure which shows the time-dependent change of the decomposition rate of an ionic liquid ([ N221ME ] [Ala]) processing cellulose.

以下、本発明の一実施形態を説明する。
[イオン液体]
本発明のイオン液体は、一般式Z(Zはカチオンを意味し、Aはアニオンを意味する。)で示される化合物からなり、前記Zがアルコキシアルキル基を有する4級アンモニウム骨格またはアルコキシアルキル基を有する含窒素複素五員環骨格を有し、前記Aがアミノ基を有する。
このように、カチオン部とアニオン部が所定の組み合わせである化合物からなる本発明のイオン液体は、セルロース系バイオマスを高濃度で溶解することができる。
Hereinafter, an embodiment of the present invention will be described.
[Ionic liquid]
The ionic liquid of the present invention comprises a compound represented by the general formula Z + A (where Z + means a cation and A means an anion), and the Z + is a quaternary ammonium having an alkoxyalkyl group. It has a nitrogen-containing heterocyclic five-membered ring skeleton having a skeleton or an alkoxyalkyl group, wherein a - has an amino group.
Thus, the ionic liquid of this invention which consists of a compound whose cation part and anion part are a predetermined combination can melt | dissolve cellulosic biomass in high concentration.

アルコキシアルキル基を有する4級アンモニウム骨格としては、下記構造式で示されるものが好適である。   As the quaternary ammonium skeleton having an alkoxyalkyl group, those represented by the following structural formula are suitable.


上記構造式中、RからRまでは、各々独立して水素、炭素数1から6までのアルキル基、または炭素数1から6までのアルコキシアルキル基である。ただし、RからRまでのうち、少なくとも一つはアルコキシアルキル基である。

In the above structural formula, R 1 to R 4 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkoxyalkyl group having 1 to 6 carbon atoms. However, at least one of R 1 to R 4 is an alkoxyalkyl group.

また、上記した構造の4級アンモニウム骨格に限られず、下記のような環状構造を有する4級アンモニウム骨格でもよい。

上記構造式中、RおよびRは、各々独立して炭素数1から6までのアルキル基、あるいは炭素数1から6までのアルコキシル基である。また、RからRまでは、各々独立して、水素、炭素数1から6までのアルキル基、炭素数1から6までのアルコキシアルキル基、あるいは炭素数1から6までのアルコキシ基である。ただし、上述の構造式にはアルコキシアルキル基が少なくとも一つ含まれる。
Further, the quaternary ammonium skeleton having the above-described structure is not limited to the quaternary ammonium skeleton having the following cyclic structure.

In the above structural formula, R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms or an alkoxyl group having 1 to 6 carbon atoms. R 3 to R 7 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms. . However, the above structural formula includes at least one alkoxyalkyl group.

含窒素複素五員環骨格としては、イミダゾリウム骨格、ピラゾリウム骨格、オキサゾリウム骨格、1,2,3−トリアゾリウム骨格、1,2,4−トリアゾリウム骨格、チアゾリウム骨格、およびピロリジニウム骨格などが挙げられる。
このような含窒素複素五員環骨格として、具体的には以下のような構造式で示されるものが好ましい。
Examples of the nitrogen-containing five-membered ring skeleton include an imidazolium skeleton, a pyrazolium skeleton, an oxazolium skeleton, a 1,2,3-triazolium skeleton, a 1,2,4-triazolium skeleton, a thiazolium skeleton, and a pyrrolidinium skeleton.
As such a nitrogen-containing hetero five-membered ring skeleton, specifically, those represented by the following structural formula are preferable.


上記した各構造式中、RおよびRは、各々独立して炭素数1から6までのアルキル基、あるいは炭素数1から6までのアルコキシル基である。また、RからRまでは、各々独立して、水素、炭素数1から6までのアルキル基、炭素数1から6までのアルコキシアルキル基、あるいは炭素数1から6までのアルコキシ基である。ただし、上述の各構造式にはアルコキシアルキル基が少なくとも一つ含まれる。
これらの含窒素複素五員環骨格の中では、セルロース系バイオマスの溶解性の観点より、特にイミダゾリウム骨格が好ましい。なお、上述のピロリジニウム骨格は、4級アンモニウム骨格でもある。
In each structural formula described above, R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms or an alkoxyl group having 1 to 6 carbon atoms. R 3 to R 6 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms. . However, each structural formula described above includes at least one alkoxyalkyl group.
Among these nitrogen-containing hetero five-membered ring skeletons, an imidazolium skeleton is particularly preferable from the viewpoint of the solubility of cellulosic biomass. Note that the pyrrolidinium skeleton described above is also a quaternary ammonium skeleton.

このようなZとしては、例えば、N,N-ジエチル-N-(2-メトキシエチル)-N-メチルアンモニウムイオン(以下、[N221ME]と略記する。)や、3-(2-メトキシエチル)-1-メチルイミダゾリウムイオン(以下、[MEmim]と略記する。)が特に好ましく挙げられる。 Examples of such Z + include N, N-diethyl-N- (2-methoxyethyl) -N-methylammonium ion (hereinafter abbreviated as [N 221ME ]), and 3- (2-methoxy Particularly preferred is ethyl) -1-methylimidazolium ion (hereinafter abbreviated as [MEmim]).

また、上述のAとしては、セルロース系バイオマスの溶解性の観点より、Aがアミノ基とカルボキシル基、またはアミノ基とスルホニル基を有することが好ましい。更に好ましくは、Aがアミノ酸骨格を有することが望ましい。例えば、以下のような各種アミノ酸アニオンが挙げられる。 Further, the above A - The, from the viewpoint of solubility of the cellulosic biomass, A - is preferably has an amino group and a carboxyl group or an amino group and a sulfonyl group. More preferably, A - it is desirable to have an amino acid backbone. For example, the following various amino acid anions can be mentioned.

また、Aとしては、複数のアミノ酸がペプチド結合したオリゴペプチドアニオンでも良い。アミノ酸中のアミノ基の不斉中心の立体構造は問わない。すなわち、R体、S体、あるいはその1:1混合物であるラセミ体であってもよく、いずれかの比率が多いものであってもよい。また、α-アミノ酸、β-アミノ酸の種類を問わず、同一分子内にアミノ基とカルボキシル基もしくはスルホン酸基があればよい。 Further, A may be an oligopeptide anion in which a plurality of amino acids are peptide-bonded. The three-dimensional structure of the asymmetric center of the amino group in the amino acid does not matter. That is, it may be a racemate that is an R-form, an S-form, or a 1: 1 mixture thereof, or may have any ratio. In addition, regardless of the type of α-amino acid or β-amino acid, an amino group and a carboxyl group or a sulfonic acid group may be present in the same molecule.

上述した本発明のイオン液体(一般式Zで示される化合物)を製造する方法の詳細は、後段の実施例で説明する。
また、製造されたイオン液体は、不純物を含むことが多いが、粗イオン液体は、非プロトン性極性溶媒とプロトン性極性溶媒との混合溶媒を使用して精製することができる。非プロトン性極性溶媒としては、アセトニトリル、テトラヒドロフラン(THF)、ジメチルスルフォキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)およびアセトンなどが挙げられ、プロトン性極性溶媒としては、メタノール、エタノールおよびプロパノールなどが挙げられる。このような非プロトン性極性溶媒としてはアセトニトリルが好ましく、プロトン性極性溶媒としてはメタノールが好ましい。精製方法の詳細は、後段の実施例で説明する。
Details of the method for producing the above-described ionic liquid of the present invention (compound represented by the general formula Z + A ) will be described in Examples later.
The produced ionic liquid often contains impurities, but the crude ionic liquid can be purified using a mixed solvent of an aprotic polar solvent and a protic polar solvent. Examples of the aprotic polar solvent include acetonitrile, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF) and acetone. Examples of the protic polar solvent include methanol, ethanol and Examples include propanol. As such an aprotic polar solvent, acetonitrile is preferable, and as the protic polar solvent, methanol is preferable. Details of the purification method will be described in the Examples below.

また、本発明のイオン液体を用いてセルロース系バイオマスを溶解する際は共溶媒を添加することが好ましい。共溶媒としては、孤立電子対を持つ化合物が好ましい。例えば、ジメチルスルフォキシドや1,3−ジメチル−2−イミダゾリジノンなどが挙げられる。
このような共溶媒を用いることにより、セルロース系バイオマス溶解液の粘度を制御することができ、後述するセルロース系バイオマスの溶解工程における攪拌動力を低減することが可能となる。
Moreover, when dissolving cellulosic biomass using the ionic liquid of the present invention, it is preferable to add a co-solvent. As the cosolvent, a compound having a lone electron pair is preferable. Examples thereof include dimethyl sulfoxide and 1,3-dimethyl-2-imidazolidinone.
By using such a co-solvent, the viscosity of the cellulosic biomass solution can be controlled, and the stirring power in the cellulosic biomass dissolving step described later can be reduced.

[セルロース系バイオマスからのエタノールの製造]
上述した本発明のイオン液体を用いて、セルロース系バイオマスの処理(前処理)を行い、さらにエタノールを製造する方法を説明する。基本的に、特願2010−124646号明細書に記載された方法が適用できる。
(1.原料)
エタノールの原料として用いられるバイオマスは、ヘミセルロースとセルロースを含むセルロース系バイオマスであり、具体的には、紙資源や木質系および草本系バイオマス等である。これらの中でも草本系バイオマス(ソフトバイオマス)が好ましく、例えば、稲、麦などの藁類、籾殻、バガス(サトウキビの搾りかす)、おからなどの食料廃棄物、雑草類、エリアンサス等のエネルギー作物を例示できる。
[Production of ethanol from cellulosic biomass]
A method for treating cellulosic biomass (pretreatment) using the above-described ionic liquid of the present invention and further producing ethanol will be described. Basically, the method described in Japanese Patent Application No. 2010-124646 can be applied.
(1. Raw material)
Biomass used as a raw material for ethanol is cellulosic biomass containing hemicellulose and cellulose, specifically, paper resources, woody and herbaceous biomass, and the like. Among these, herbaceous biomass (soft biomass) is preferable. For example, rice, wheat and other strawberries, rice husks, bagasse (sugar cane squeezed), food waste such as okara, energy crops such as weeds and Eliansus Can be illustrated.

(2.前処理工程)
前処理工程では、後の糖化処理工程でセルロース系バイオマスを糖化しやすい結晶状態に変化させる。
前処理工程は、図1に示すように、溶解析出工程S1と、第1の分離工程S2と、粉砕工程S3と、向流接触式溶出工程S4と、第2の分離工程S5と、蒸留工程S6と、を備えている。
(2. Pretreatment process)
In the pretreatment step, the cellulosic biomass is changed to a crystalline state that is easily saccharified in the subsequent saccharification treatment step.
As shown in FIG. 1, the pretreatment process includes a dissolution and precipitation process S1, a first separation process S2, a pulverization process S3, a counter-current contact elution process S4, a second separation process S5, and a distillation process. S6.

(3.糖化処理工程)
第2の分離工程S5により得られた析出バイオマスA3に対して、酵素を用いた酵素糖化処理を実施して単糖に変換する。
この後、得られた単糖を微生物を用いて発酵させることによってエタノールを生産する。
(3. Saccharification process)
The precipitated biomass A3 obtained in the second separation step S5 is subjected to enzyme saccharification using an enzyme to convert it into a monosaccharide.
Thereafter, ethanol is produced by fermenting the obtained monosaccharide using a microorganism.

上述した実施形態は、セルロース系バイオマスを糖化する糖化処理工程の前処理として溶解析出工程を実施し、溶解析出工程で使用するイオン液体を回収して再利用するものである。溶解析出工程により得られた析出バイオマスは、上述した所定のイオン液体によりいったん溶解処理されているので、処理前のセルロース系バイオマスとは結晶状態が変化している。それ故、糖化処理工程で糖化されやすい原料となっている。
そして、イオン液体回収工程では、溶解析出工程で使用されたイオン液体と貧溶媒との混合溶液から、イオン液体を回収する。回収されたイオン液体は、溶解析出工程で再利用されるので、少ない資源で処理を実施することができ、経済性に優れている。また、このイオン液体はハロゲンを含まないので環境面でも優れている。
In the embodiment described above, the dissolution and precipitation step is performed as a pretreatment of the saccharification treatment step for saccharifying cellulosic biomass, and the ionic liquid used in the dissolution and precipitation step is recovered and reused. Since the precipitated biomass obtained by the dissolution precipitation process is once dissolved by the above-mentioned predetermined ionic liquid, the crystalline state is changed from that of the cellulose-based biomass before the treatment. Therefore, it is a raw material that is easily saccharified in the saccharification treatment step.
In the ionic liquid recovery step, the ionic liquid is recovered from the mixed solution of the ionic liquid and the poor solvent used in the dissolution and precipitation step. Since the recovered ionic liquid is reused in the dissolution and precipitation step, it can be processed with a small amount of resources, and is excellent in economic efficiency. Moreover, since this ionic liquid does not contain halogen, it is excellent in terms of environment.

次に、実施例および参考例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例の記載内容に何ら制限されるものではない。
以下の実施例および比較例では、下記の物質を用いた。
セルロース:市販の微結晶セルロース(Merck社製 Avicel)
イオン液体:各実施例・比較例に製造法を記載
EXAMPLES Next, although an Example and a reference example are given and this invention is demonstrated in more detail, this invention is not restrict | limited to the description content of these Examples at all.
In the following examples and comparative examples, the following substances were used.
Cellulose: Commercially available microcrystalline cellulose (Avicel manufactured by Merck)
Ionic liquid: Production method is described in each example and comparative example

また、後述する方法で得られたイオン液体の構造は、核磁気共鳴スペクトル(日本電子(株)製JNM-500にて測定、500MHz:H-NMR、125MHz:13C-NMR)で決定した。測定は重クロロホルム(CDCl)、重メタノール(CDOD)または重水(DO)を用いて行い、テトラメチルシラン(TMS)を内部標準にした時のδ値(ppm)で示した。カップリングパターンはsinglet(s)、doublet(d)、triplet(t)、quartet(q)、multiplet(m)、broad(br)と略記した。 The structure of the ionic liquid obtained by the method described later was determined by nuclear magnetic resonance spectrum (measured with JNM-500 manufactured by JEOL Ltd., 500 MHz: 1 H-NMR, 125 MHz: 13 C-NMR). . The measurement was performed using deuterated chloroform (CDCl 3 ), deuterated methanol (CD 3 OD), or deuterated water (D 2 O), and indicated by a δ value (ppm) when tetramethylsilane (TMS) was used as an internal standard. Coupling patterns were abbreviated as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad (br).

[実施例1]
(イオン液体の製造)
(1)N,N-ジエチル-N-(2-メトキシエチル)-N-メチルアンモニウムブロミド(以下、[N221ME][Br]と略記する。)の合成
[Example 1]
(Manufacture of ionic liquid)
(1) Synthesis of N, N-diethyl-N- (2-methoxyethyl) -N-methylammonium bromide (hereinafter abbreviated as [N 221ME ] [Br])

Ar置換した100mLの二口ナスフラスコにN,N−ジメチル−N−メチルアミン(ALDRICH製)(7.4g、85mmol)と2−ブロモメチルエーテル(東京化成製)(11.8g、85mmol)加え、60℃で24時間撹拌した。放冷後、ヘキサン(関東化学製)(20mL)で5回洗浄し、真空ポンプ(日立製SVR16F)を用いて減圧下60℃で3時間乾燥し、[N221ME][Br](15.6g、69mmol)を収率81モル%で得た。NMRによる分析結果は、以下の通りである。
H-NMR(500MHz、DO、ppm)
d=1.18(6H,t,J=6.8Hz),2.89(3H,s),3.26-3.30(7H,m),3.37-3.39(2H,m),3.74(2H,m)
13C-NMR(125MHz、CDOD、ppm)
d=8.34,48.63,58.61,59.27,61.29,66.94
N, N-dimethyl-N-methylamine (made by ALDRICH) (7.4 g, 85 mmol) and 2-bromomethyl ether (made by Tokyo Chemical Industry) (11.8 g, 85 mmol) were added to an Ar-substituted 100 mL two-necked eggplant flask. , And stirred at 60 ° C. for 24 hours. After standing to cool, it was washed 5 times with hexane (Kanto Chemical) (20 mL) and dried under reduced pressure at 60 ° C. for 3 hours using a vacuum pump (Hitachi SVR16F), and [N 221ME ] [Br] (15.6 g 69 mmol) with a yield of 81 mol%. The analysis results by NMR are as follows.
1 H-NMR (500 MHz, D 2 O, ppm)
d = 1.18 (6H, t, J = 6.8Hz), 2.89 (3H, s), 3.26-3.30 (7H, m), 3.37-3.39 (2H, m), 3.74 (2H, m)
13 C-NMR (125 MHz, CD 3 OD, ppm)
d = 8.34,48.63,58.61,59.27,61.29,66.94

(2)アラニン=N,N-ジエチル-N-(2-メトキシエチル)-N-メチルアンモニウム(以下、[N221ME][Ala]と略記する。)の合成 (2) Synthesis of alanine = N, N-diethyl-N- (2-methoxyethyl) -N-methylammonium (hereinafter abbreviated as [N 221ME ] [Ala])

アンバーライトIRA400CL(オルガノ株式会社製)(50mL)を200mLカラムに充填し、1M水酸化ナトリウム(和光純薬製)水溶液(170mL)で活性化したのち脱イオン水で洗浄し、これに、前記(1)で合成した[N221ME][Br](2.26g、10mmol)の脱イオン水(15ml)溶液を通して[N221ME][OH]に変換した。200mLナスフラスコにアラニン(ALDRICHI製)(0.89g、10mmol)の脱イオン水(60mL)溶液を調製し、この水溶液に[N221ME][OH]を0℃で滴下し、0℃で19時間撹拌したのち減圧濃縮を行い、セライト濾過を行い、アセトニトリル(和光純薬製):メタノール(和光純薬製)(9:1)混合液で洗浄した。濾液を凍結乾燥機(LABCONCO製 Freezone1(7740020))で凍結乾燥したのち、真空ポンプ(日立製SVR16F)を用いて減圧下50℃で5時間乾燥し、[N221ME][Ala](2.24g、9.6mmol)を収率96モル%で得た。生成した[N221ME][Ala]の構造確認をNMRで行った。その結果を図2、図3に示す。各ピークは以下の値である。
H-NMR(500MHz、DO、ppm)
d=1.09(3H,d,J=7.5Hz),1.17(6H,t,J=7.4Hz),2.93(2H,brs),3.18(1H,q,J=6.9Hz),3.25(6H,s),3.27(4H,q,J=7.5Hz),3.37(2H,t,J=5.1Hz),3.72-3.73(2H,m)
13C-NMR(125MHz、CDOD、ppm)
d=8.28,22.04,53.02,58.52,59.26,61.22,66.94,183.23
なお、アラニンには不斉中心が存在する。L-体の合成方法を記載したが、D-体でもラセミ体でも合成方法は同じである。
(3)[N221ME][Ala]の精製
上述したように、[N221ME][OH]にアラニンを作用させて対アニオンをアラニンに交換したのち、減圧濃縮し、析出物をセライト濾過して除き、セライト層をアセトニトリル(和光純薬製):メタノール(和光純薬製)(9:1)混合液で洗浄することで[N221ME][Ala]を得ることができる。この時、アセトニトリル:メタノール(9:1)混合液で洗浄することが重要である。通常のイオン液体はエーテルやヘキサン、あるいは酢酸エチルで洗浄をおこなうが、[N221ME][Ala]はこれらの非水有機溶媒洗浄では純度を上げることができなかった。そこで、洗浄用の混合溶媒を探索したところアセトニトリルとメタノールの混合溶媒がよい結果を与えた。アセトニトリルのみでは、[N221ME][Ala]が溶解しにくいため収率が減少し、メタノール比が高くなると対アニオンであるアラニンが外れ、特にメタノールのみで洗浄するとアラニンがメタノール溶液中に沈殿した。そこで、アセトニトリルとメタノールの混合比を(10:0から0:10)まで変化させたところ、[N221ME][Ala]を洗浄するための混合溶媒の最適混合比はアセトニトリル:メタノール(9:1)であることがわかった。アミノ酸を対アニオンに持つ4級アンモニウム塩イオン液体について、殆どの場合、この混合溶媒が良い結果を与えたが、対アニオン、対カチオンの種類によって適時、アセトニトリルとメタノールの最適比率を選ぶ必要がある。
Amberlite IRA400CL (manufactured by Organo Corporation) (50 mL) is packed into a 200 mL column, activated with 1M sodium hydroxide (manufactured by Wako Pure Chemical Industries) aqueous solution (170 mL), washed with deionized water, It was converted to [N 221ME ] [OH] through a solution of [N 221ME ] [Br] (2.26 g, 10 mmol) synthesized in 1) in deionized water (15 ml). A solution of alanine (ALDRICHI) (0.89 g, 10 mmol) in deionized water (60 mL) was prepared in a 200 mL eggplant flask, and [N 221ME ] [OH] was added dropwise at 0 ° C. to this aqueous solution, and at 19 ° C. for 19 hours. After stirring, the solution was concentrated under reduced pressure, filtered through Celite, and washed with a mixed solution of acetonitrile (manufactured by Wako Pure Chemical Industries): methanol (manufactured by Wako Pure Chemical Industries, Ltd.) (9: 1). The filtrate was freeze-dried with a freeze dryer (freezone 1 (7740020) manufactured by LABCONCO), and then dried at 50 ° C. under reduced pressure for 5 hours using a vacuum pump (SVR16F manufactured by Hitachi), and [N 221ME ] [Ala] (2.24 g 9.6 mmol) was obtained with a yield of 96 mol%. The structure of the produced [N 221ME ] [Ala] was confirmed by NMR. The results are shown in FIGS. Each peak has the following values.
1 H-NMR (500 MHz, D 2 O, ppm)
d = 1.09 (3H, d, J = 7.5Hz), 1.17 (6H, t, J = 7.4Hz), 2.93 (2H, brs), 3.18 (1H, q, J = 6.9Hz), 3.25 (6H, s ), 3.27 (4H, q, J = 7.5Hz), 3.37 (2H, t, J = 5.1Hz), 3.72-3.73 (2H, m)
13 C-NMR (125 MHz, CD 3 OD, ppm)
d = 8.28,22.04,53.02,58.52,59.26,61.22,66.94,183.23
Alanine has an asymmetric center. Although the synthesis method of L-form was described, the synthesis method is the same for D-form and racemate.
(3) Purification of [N 221ME ] [Ala] As described above, alanine was allowed to act on [N 221ME ] [OH] to exchange the counter anion with alanine, followed by concentration under reduced pressure, and the precipitate was filtered through Celite. Except for this, [N 221ME ] [Ala] can be obtained by washing the celite layer with a mixed solution of acetonitrile (manufactured by Wako Pure Chemical Industries ): methanol (manufactured by Wako Pure Chemical Industries ) (9: 1). At this time, it is important to wash with a mixture of acetonitrile: methanol (9: 1). Ordinary ionic liquids are washed with ether, hexane, or ethyl acetate. However, the purity of [N 221ME ] [Ala] cannot be increased by these non-aqueous organic solvent washings. Therefore, when searching for a mixed solvent for washing, a mixed solvent of acetonitrile and methanol gave a good result. With acetonitrile alone, [N 221ME ] [Ala] is difficult to dissolve, resulting in a decrease in yield. When the methanol ratio is increased, alanine as a counter anion is removed, and when washed with methanol alone, alanine precipitates in the methanol solution. Therefore, when the mixing ratio of acetonitrile and methanol was changed from (10: 0 to 0:10), the optimum mixing ratio of the mixed solvent for washing [N 221ME ] [Ala] was acetonitrile: methanol (9: 1 ) For quaternary ammonium salt ionic liquids with amino acids as counter anions, this mixed solvent gave good results in most cases, but it is necessary to select the optimal ratio of acetonitrile and methanol at the right time depending on the type of counter anion and counter cation. .

(セルロースの溶解試験)
イオン液体([N221ME][Ala])1gをサンプル管瓶にとり、撹拌子を入れ、高トルク低速撹拌機(アズワン社製 DC-300RM)で室温(25℃)にて撹拌した。この液体に微結晶性セルロース(Merck社製 Avicel)30mg(3質量%)を加え、目視で溶解を確認したところ、不溶であった。そこで、60℃に加熱して、溶解を確認し、更にAvicelを溶解できなくなるまで加え(合計60mg)た。次に100℃に昇温し、さらに溶解しなくなるまでAvicelを追加した(60mg)(合計120mg)。
各温度におけるセルロースの溶解度(質量%)を表1に示す。なお、溶解度は、イオン液体100gに対して溶解したセルロースのg数を%で表したものである。
(Cellulose dissolution test)
1 g of ionic liquid ([N 221ME ] [Ala]) was placed in a sample tube bottle, a stirrer was placed, and the mixture was stirred at room temperature (25 ° C.) with a high torque low speed stirrer (DC-300RM manufactured by ASONE). When 30 mg (3 mass%) of microcrystalline cellulose (Avicel manufactured by Merck) was added to this liquid and dissolution was confirmed by visual observation, it was insoluble. Therefore, the solution was heated to 60 ° C., dissolution was confirmed, and Avicel was further added until it could not be dissolved (60 mg in total). Next, the temperature was raised to 100 ° C., and Avicel was added (60 mg) (120 mg in total) until it was not dissolved.
Table 1 shows the solubility (mass%) of cellulose at each temperature. The solubility is the number of g of cellulose dissolved in 100 g of ionic liquid expressed in%.

(再生したセルロースの構造解析)
前記で得られたセルロース溶液を冷却後、水で希釈してセルロースを沈殿させた。沈殿したセルロースを濾取し、水で洗浄後、真空ポンプ(日立製SVR16F)を用いて減圧乾燥をおこない、XRD測定((株)リガク製 Ultima IV)により結晶構造の変化を調べた。
図4に、上記溶解・沈殿処理後のセルロースと未処理のセルロースについて、XRD測定の結果を比較して示す。
なお、イオン液体の水溶液はエバポレータで減圧濃縮後、アセトン溶液として活性炭処理した後、真空ポンプ(日立製 SVR16F)を用いて水分を除去した後、再度、セルロース処理に利用した。5回以上、再現性良くセルロース溶解に使用できた。
(Structural analysis of regenerated cellulose)
After cooling the cellulose solution obtained above, it was diluted with water to precipitate cellulose. The precipitated cellulose was collected by filtration, washed with water, dried under reduced pressure using a vacuum pump (Hitachi SVR16F), and the change in crystal structure was examined by XRD measurement (Ultima IV, manufactured by Rigaku Corporation).
In FIG. 4, the result of the XRD measurement is compared and shown for the cellulose after the dissolution / precipitation treatment and the untreated cellulose.
The aqueous solution of the ionic liquid was concentrated under reduced pressure with an evaporator, treated with activated carbon as an acetone solution, removed water using a vacuum pump (Hitachi SVR16F), and then used again for cellulose treatment. It was able to be used for dissolving cellulose with good reproducibility over 5 times.

[実施例2から11まで]
実施例1と同様の方法で、アニオンまたはカチオンを変更した各種イオン液体を製造し、各温度におけるセルロースの溶解度を測定した。結果を表1に示す。なお、実施例11のイオン液体は、カチオンがアルコキシアルキル基を含むイミダゾリウムイオン([MEmim])である。
[Examples 2 to 11]
Various ionic liquids with different anions or cations were produced in the same manner as in Example 1, and the solubility of cellulose at each temperature was measured. The results are shown in Table 1. In addition, the ionic liquid of Example 11 is an imidazolium ion ([MEmim]) whose cation contains an alkoxyalkyl group.

[実施例12]
イオン液体([N221ME][Ala])1.0gと微結晶性セルロース(Avicel)0.17gをサンプル管瓶にとり、120℃のオイルバスにいれて、目視で溶解を確認しながら適時攪拌して溶解させた。イオン液体に対するセルロース溶解度は17質量%であり、高濃度で溶解することを確認した。
冷却後、水を加えて析出したセルロースを105℃で乾燥した。乾燥したセルロースについて実施例1と同様にしてXRD測定((株)リガク製 Ultima IV)により結晶構造の変化を調べた。
図5に、上記溶解・沈殿処理後のセルロースと未処理のセルロースについて、XRD測定の結果を比較して示す。
[Example 12]
Take 1.0 g of ionic liquid ([N 221ME ] [Ala]) and 0.17 g of microcrystalline cellulose (Avicel) in a sample tube bottle, place in an oil bath at 120 ° C., and stir timely while confirming dissolution visually. And dissolved. The cellulose solubility in the ionic liquid was 17% by mass, and it was confirmed that the cellulose was dissolved at a high concentration.
After cooling, water was added and the precipitated cellulose was dried at 105 ° C. Changes in crystal structure of the dried cellulose were examined in the same manner as in Example 1 by XRD measurement (Ultima IV, manufactured by Rigaku Corporation).
FIG. 5 shows a comparison of XRD measurement results for the cellulose after the dissolution / precipitation treatment and the untreated cellulose.

[実施例13]
イオン液体([N221ME][Ala])1.0gとジメチルスルフォキシド(ALDRICH製)1.0gに微結晶性セルロース(Avicel)0.17gをサンプル管瓶にとり、110℃のオイルバスにいれて、1時間半適時攪拌しながら溶解させた。セルロースの溶解は目視で確認した。イオン液体に対するセルロースの溶解度は17質量%であった。なお、共溶媒として、ジメチルスルフォキシドを加えたので溶解液の低粘度化が図れた。
[Example 13]
Take 1.0 g of ionic liquid ([N 221ME ] [Ala]), 1.0 g of dimethyl sulfoxide (made by ALDRICH) and 0.17 g of microcrystalline cellulose (Avicel) in a sample tube bottle, and place in an oil bath at 110 ° C. Then, the mixture was dissolved with stirring for an hour and a half. The dissolution of cellulose was confirmed visually. The solubility of cellulose in the ionic liquid was 17% by mass. Since dimethyl sulfoxide was added as a co-solvent, the viscosity of the solution could be reduced.

[実施例14]
イオン液体([N221ME][Ala])1.0gと1,3−ジメチル−2−イミダゾリジノン(ALDRICH製)1.1gに微結晶性セルロース(Avicel)0.17gをサンプル管にとり、110℃のオイルバスにいれて、1時間半適時攪拌しながら溶解させた。セルロースの溶解は目視で確認した。イオン液体に対するセルロースの溶解度は17質量%であった。なお、共溶媒として、1,3−ジメチル−2−イミダゾリジノンを加えたので溶解液の低粘度化が図れた。
[Example 14]
110 g of ionic liquid ([N 221ME ] [Ala]), 1.1 g of 1,3-dimethyl-2-imidazolidinone (manufactured by ALDRICH) and 0.17 g of microcrystalline cellulose (Avicel) are placed in a sample tube. The mixture was placed in an oil bath at 0 ° C. and dissolved while stirring for an hour and a half. The dissolution of cellulose was confirmed visually. The solubility of cellulose in the ionic liquid was 17% by mass. Since 1,3-dimethyl-2-imidazolidinone was added as a cosolvent, the viscosity of the solution could be reduced.

[実施例15]
([N221ME][Ala]処理セルロースの酵素糖化)
イオン液体([N221ME][Ala])5.0g、微結晶性セルロース(Avicel)0.9gを50ccナスフラスコに入れて、攪拌しながら120℃、2時間で溶解させた。その後、水を5g加えて析出させたセルロースを粉砕後、90℃の温水で洗浄した。洗浄後の析出セルロースをろ過し、一部を酵素糖化用の試料とした。
イオン液体([N221ME][Ala])によって溶解後、再析出させた再析物348mgをバイアル瓶(内径2.5cm、高さ4.5cm、ガラス製)に入れ、更に3330μLの50mM酢酸ナトリウム緩衝液(pH5.0)および3.76mg/mLのAccellerase Duet(Genencor製)を322μL添加し密閉した。このバイアル瓶を50℃の恒温槽 NTT−2200(EYELA製)に浮かせ、酵素反応を行った。なお、再析物中に含まれるセルロース含量は17.24質量%であるので、セルロースとしての仕込み濃度は1.5質量%である。
分解率の経時変化を測定するために、各反応時間後、バイアル瓶をよく攪拌し、溶液を均一にした後、250μLを1.5mLマイクロチューブにはかり取った。これを30分間煮沸し、酵素反応を停止させた。遠心分離後、その上清を適宜希釈し、その溶液50μLを96ウェルマイクロプレートに添加し、更にグルコースCIIテストワコー(Wako製)の添付試薬200μLを添加した。室温にて30分放置後、マイクロプレートリーダー SUNRISE Rainbow Thermo(Wako製)を用いて505nmの吸光度を測定した。なお、0g/mLから375g/mLまでの範囲で調製したグルコース溶液から標準曲線を算出した。分解率は、反応前に含まれるセルロース量から換算されるグルコース量を100質量%とし、算出した。結果を図6に示す。
[Example 15]
(Enzymatic saccharification of [N 221ME ] [Ala] -treated cellulose)
An ionic liquid ([N 221ME ] [Ala]) (5.0 g) and microcrystalline cellulose (Avicel) (0.9 g) were placed in a 50 cc eggplant flask and dissolved at 120 ° C. for 2 hours with stirring. Thereafter, 5 g of water was added and the precipitated cellulose was pulverized and washed with warm water at 90 ° C. The precipitated cellulose after washing was filtered, and a part was used as a sample for enzymatic saccharification.
After dissolution by ionic liquid ([N 221ME ] [Ala]), 348 mg of the re-deposited product was placed in a vial (inner diameter 2.5 cm, height 4.5 cm, made of glass), and further 3330 μL of 50 mM sodium acetate A buffer (pH 5.0) and 3.76 mg / mL Accelerase Duet (manufactured by Genencor) were added and sealed. This vial was floated in a 50 ° C. constant temperature bath NTT-2200 (manufactured by EYELA), and an enzyme reaction was performed. In addition, since the cellulose content contained in a recrystallized substance is 17.24 mass%, the preparation density | concentration as a cellulose is 1.5 mass%.
In order to measure the change over time in the decomposition rate, after each reaction time, the vial was thoroughly stirred to make the solution uniform, and 250 μL was weighed into a 1.5 mL microtube. This was boiled for 30 minutes to stop the enzyme reaction. After centrifugation, the supernatant was appropriately diluted, 50 μL of the solution was added to a 96-well microplate, and 200 μL of an attached reagent of Glucose CII Test Wako (manufactured by Wako) was further added. After standing at room temperature for 30 minutes, absorbance at 505 nm was measured using a microplate reader SUNRISE Rainbow Thermo (manufactured by Wako). In addition, the standard curve was computed from the glucose solution prepared in the range from 0 g / mL to 375 g / mL. The decomposition rate was calculated with the amount of glucose converted from the amount of cellulose contained before the reaction as 100% by mass. The results are shown in FIG.

[比較例1]
イオン液体用化合物として、N,N-ジエチル-N-(2-メトキシエチル)-N-メチルアンモニウムクロリド([N221ME][Cl]と略記する。)を合成した。具体的には、以下の通りである。
[Comparative Example 1]
N, N-diethyl-N- (2-methoxyethyl) -N-methylammonium chloride (abbreviated as [N 221ME ] [Cl]) was synthesized as a compound for ionic liquid. Specifically, it is as follows.

Ar置換した100mlの二口ナスフラスコにN,N-ジメチル-N-メチルアミン(8.8g、100mmol)と2-クロロエチルメチルエーテル(東京化成製)(9.5g、100mmol)を加え、60℃で撹拌し、37時間後にN,N-ジメチル-N-メチルアミン(4.4g、50mmol)を加え、さらに109時間後にN,N-ジメチル-N-メチルアミン(4.4g、50mmol)を加え、合計161時間60℃で撹拌した。放冷後、ヘキサン(20ml)で5回洗浄し、真空ポンプ(日立製 SVR16F)を用いて減圧下60℃で3時間乾燥し、[N221ME][Cl](1.6g、8.9mmol)を収率9モル%で得た。NMRによる分析結果は、以下の通りである。
H NMR(500MHz、DO、ppm)
d=1.17(6H,t,J=7.5Hz),2.88(3H,s),3.25-3.29(7H,m),3.35-3.37(2H,m),3.24(2H,m)
13C NMR(125MHz、CDOD、ppm)
d=8.27,49.17,58.53,59.24,61.21,66.92
上述の方法で得られたイオン液体([N221ME][Cl])について、実施例1と同様に各温度におけるセルロースの溶解度(質量%)を測定した。結果を表1に示す。
N, N-dimethyl-N-methylamine (8.8 g, 100 mmol) and 2-chloroethyl methyl ether (manufactured by Tokyo Kasei) (9.5 g, 100 mmol) were added to an Ar-substituted 100 ml two-necked eggplant flask. After 37 hours, N, N-dimethyl-N-methylamine (4.4 g, 50 mmol) was added, and after 109 hours, N, N-dimethyl-N-methylamine (4.4 g, 50 mmol) was added. In addition, the mixture was stirred at 60 ° C. for a total of 161 hours. After standing to cool, it was washed 5 times with hexane (20 ml), dried under reduced pressure at 60 ° C. for 3 hours using a vacuum pump (Hitachi SVR16F), and [N 221ME ] [Cl] (1.6 g, 8.9 mmol). Was obtained in a yield of 9 mol%. The analysis results by NMR are as follows.
1 H NMR (500 MHz, D 2 O, ppm)
d = 1.17 (6H, t, J = 7.5Hz), 2.88 (3H, s), 3.25-3.29 (7H, m), 3.35-3.37 (2H, m), 3.24 (2H, m)
13 C NMR (125 MHz, CD 3 OD, ppm)
d = 8.27,49.17,58.53,59.24,61.21,66.92
For the ionic liquid ([N 221ME ] [Cl]) obtained by the above method, the solubility (mass%) of cellulose at each temperature was measured in the same manner as in Example 1. The results are shown in Table 1.

[比較例2]
実施例1で合成したN,N-ジエチル-N-(2-メトキシエチル)-N-メチルアンモニウムブロミド([N221ME][Br])からなるイオン液体を用いて、実施例1と同様に各温度におけるセルロースの溶解度(質量%)を測定した。結果を表1に示す。
[Comparative Example 2]
In the same manner as in Example 1, each ionic liquid composed of N, N-diethyl-N- (2-methoxyethyl) -N-methylammonium bromide ([N 221ME ] [Br]) synthesized in Example 1 was used. The solubility (mass%) of cellulose at temperature was measured. The results are shown in Table 1.

[比較例3]
イオン液体用化合物として、N,N-ジエチル-N-(2-メトキシエチル)-N-メチルアンモニウムプロピオネート([N221ME][OPr]と略記する。)を合成した。具体的には、以下の通りである。
[Comparative Example 3]
N, N-diethyl-N- (2-methoxyethyl) -N-methylammonium propionate (abbreviated as [N 221ME ] [OPr]) was synthesized as an ionic liquid compound. Specifically, it is as follows.

アンバーライトIRA400CL(オルガノ株式会社製)(35mL)を100mLカラムに充填し、1M水酸化ナトリウム(和光純薬製)水溶液(120mL)で活性化したのち脱イオン水で洗浄し、これに[N221ME][Br](1.5g、6.63mmol)の脱イオン水(10mL)溶液を通して[N221ME][OH]に変換した。空気雰囲気下、100mLの二口ナスフラスコにプロピオン酸(0.639g、8.62mmol)、脱塩水(3mL)を加え、室温で19時間撹拌した。減圧濃縮後、セライト濾過を行い、酢酸エチル(5mL×5回)、エーテル(5mL×5回)で洗浄した。減圧下60℃で3時間乾燥し、淡黄色固体として[N221ME][OPr](1.21g、5.5mmol)を収率82モル%で得た。
上述の方法で得られたイオン液体([N221ME][[OPr])について、実施例1と同様に各温度におけるセルロースの溶解度(質量%)を測定した。結果を表1に示す。
Amberlite IRA400CL (manufactured by Organo Corp.) (35 mL) is packed in a 100 mL column, activated with 1 M sodium hydroxide (manufactured by Wako Pure Chemical Industries ) aqueous solution (120 mL), washed with deionized water, and [N 221ME ] [Br] (1.5 g, 6.63 mmol) was converted to [N 221ME ] [OH] through a solution of deionized water (10 mL). Under an air atmosphere, propionic acid (0.639 g, 8.62 mmol) and demineralized water (3 mL) were added to a 100 mL two-necked eggplant flask, and the mixture was stirred at room temperature for 19 hours. After concentration under reduced pressure, the mixture was filtered through Celite and washed with ethyl acetate (5 mL × 5 times) and ether (5 mL × 5 times). It was dried at 60 ° C. under reduced pressure for 3 hours to obtain [N 221ME ] [OPr] (1.21 g, 5.5 mmol) as a pale yellow solid in a yield of 82 mol%.
For the ionic liquid ([N 221ME ] [[OPr]) obtained by the above method, the solubility (mass%) of cellulose at each temperature was measured in the same manner as in Example 1. The results are shown in Table 1.

[比較例4]
イオン液体用化合物として、カチオン部を、(2-メトキシエチル)トリブチルホスホニウム([P444ME]と略記する。)とし、アニオン部をアラニンとした化合物を合成した。具体的には、以下の通りである。
[Comparative Example 4]
As the ionic liquid compound, a compound was synthesized in which the cation portion was (2-methoxyethyl) tributylphosphonium (abbreviated as [P 444ME ]) and the anion portion was alanine. Specifically, it is as follows.

アンバーライトIRA400CL(オルガノ株式会社製)(25mL)を100mLカラムに充填し、1M水酸化ナトリウム(和光純薬製)水溶液(100mL)で活性化したのち脱イオン水で洗浄し、これに[P444ME][Br](1.02g、3.0mmol)の脱イオン水(10mL)溶液を通して[P444ME][OH]に変換した。空気雰囲気下、100mLの二口ナスフラスコにアラニン(0.347g、3.90mmol)、脱塩水(3ml)を加え、室温で19時間撹拌した。減圧濃縮後、セライト濾過を行い、アセトニトリル−メタノール(9:1)混合液10mLを加えてセライト濾過した。減圧下60℃で3時間乾燥し、淡黄色油状物として[P444ME][Ala](1.996g、2.84mmol)を収率95モル%で得た。
[P444ME][Ala]について、実施例1と同様に各温度におけるセルロースの溶解度(質量%)を測定した。結果を表1に示す。
Amberlite IRA400CL (manufactured by Organo Co., Ltd.) (25 mL) is packed in a 100 mL column, activated with 1M sodium hydroxide (manufactured by Wako Pure Chemical Industries ) aqueous solution (100 mL), washed with deionized water, and [P 444ME ] [Br] (1.02 g, 3.0 mmol) was converted to [ P444ME ] [OH] through a solution of deionized water (10 mL). In an air atmosphere, alanine (0.347 g, 3.90 mmol) and demineralized water (3 ml) were added to a 100 mL two-necked eggplant flask and stirred at room temperature for 19 hours. After concentration under reduced pressure, celite filtration was performed, and 10 mL of acetonitrile-methanol (9: 1) mixture was added, followed by celite filtration. It was dried at 60 ° C. under reduced pressure for 3 hours to obtain [P 444ME ] [Ala] (1.996 g, 2.84 mmol) as a pale yellow oil in a yield of 95 mol%.
About [ P444ME ] [Ala], the solubility (mass%) of cellulose at each temperature was measured in the same manner as in Example 1. The results are shown in Table 1.

[比較例5]
イオン液体用化合物として、カチオン部を、N-(2-メトキシエチル)ピリジニウム)([PyME]と略記する。)とし、アニオン部をアラニンとした化合物を合成した。具体的には、以下の通りである。
[Comparative Example 5]
As a compound for an ionic liquid, a compound having a cation moiety of N- (2-methoxyethyl) pyridinium) (abbreviated as [P yME ]) and an anion moiety of alanine was synthesized. Specifically, it is as follows.

アンバーライトIRA400CL(オルガノ株式会社製)(25mL)を100mLカラムに充填し、1M水酸化ナトリウム(和光純薬製)水溶液(100mL)で活性化したのち脱イオン水で洗浄し、これに[PyME][Br](0.654g、3.0mmol)の脱イオン水(10mL)溶液を通して[P444ME][OH]に変換した。空気雰囲気下、100mLの二口ナスフラスコにアラニン(0.437g、3.90mmol)、脱塩水(3ml)を加え、室温で19時間撹拌した。減圧濃縮後、セライト濾過を行い、アセトニトリル−メタノール(9:1)混合液10mLを加えてセライト濾過した。減圧下60℃で3時間乾燥し、黒色油状物として[PyME][Ala](0.629g、2.78mmol)を収率93モル%で得た。
[PyME][Ala]について、実施例1と同様に各温度におけるセルロースの溶解度(質量%)を測定した。結果を表1に示す。
Amberlite IRA400CL (manufactured by Organo Corporation) (25 mL) is packed in a 100 mL column, activated with 1M aqueous sodium hydroxide (manufactured by Wako Pure Chemical Industries ) aqueous solution (100 mL), washed with deionized water, and [P yME ] [Br444] (0.654 g, 3.0 mmol) was converted to [ P444ME ] [OH] through a solution of deionized water (10 mL). In an air atmosphere, alanine (0.437 g, 3.90 mmol) and demineralized water (3 ml) were added to a 100 mL two-necked eggplant flask and stirred at room temperature for 19 hours. After concentration under reduced pressure, celite filtration was performed, and 10 mL of acetonitrile-methanol (9: 1) mixed solution was added, followed by celite filtration. The resultant was dried at 60 ° C. under reduced pressure for 3 hours to obtain [P yME ] [Ala] (0.629 g, 2.78 mmol) as a black oil in a yield of 93 mol%.
For [P yME ] [Ala], the solubility (mass%) of cellulose at each temperature was measured in the same manner as in Example 1. The results are shown in Table 1.

[評価結果]
各実施例とも、所定のカチオンと所定のアニオンとからなるイオン液体を用いているため、セルロースの溶解度が高い。また、ハロゲンを含んでおらず装置の腐食や環境負荷の問題も少ない。それ故、本発明のイオン液体を用いると、セルロース系バイオマスの前処理用として好適であることが理解できる。
一方、比較例1ではイオン液体の構造にハロゲンを含むため、装置の腐食や環境負荷が問題となる。また、比較例2から5までのイオン液体はいずれもセルロースの溶解度が低く、セルロース系バイオマスの前処理が困難である。
[Evaluation results]
In each of the examples, since an ionic liquid composed of a predetermined cation and a predetermined anion is used, the solubility of cellulose is high. Moreover, it does not contain halogen, and there are few problems of corrosion and environmental load of the device. Therefore, it can be understood that the use of the ionic liquid of the present invention is suitable for pretreatment of cellulosic biomass.
On the other hand, in Comparative Example 1, since the structure of the ionic liquid contains halogen, corrosion of the apparatus and environmental load become problems. Moreover, all of the ionic liquids of Comparative Examples 2 to 5 have low cellulose solubility, and it is difficult to pretreat cellulosic biomass.

本発明は、セルロース系バイオマスを原料とした燃料、化学品等の製造に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for the production of fuels, chemicals and the like using cellulosic biomass as a raw material.

S1…溶解析出工程
S2…第1の分離工程
S3…粉砕工程
S4…向流接触式溶出工程
S5…第2の分離工程
S6…蒸留工程
A1…セルロース系バイオマス
A2…析出バイオマス
A3…析出バイオマス
B1…イオン液体
B2…再生イオン液体
C1…第1の貧溶媒
C2…再生貧溶媒
D1…第2の貧溶媒
D2…イオン液体含有貧溶媒
S1 ... Dissolution Precipitation Step S2 ... First Separation Step S3 ... Grinding Step S4 ... Countercurrent Contact Type Elution Step S5 ... Second Separation Step S6 ... Distillation Step A1 ... Cellulosic Biomass A2 ... Precipitated Biomass A3 ... Precipitated Biomass B1 ... Ionic liquid B2 ... Regenerated ionic liquid C1 ... First poor solvent C2 ... Regenerated poor solvent D1 ... Second poor solvent D2 ... Ionic liquid-containing poor solvent

Claims (3)

一般式Z (Z はカチオンを意味し、A はアニオンを意味する)で示される化合物からなるイオン液体であって、前記Z がアルコキシアルキル基とアルキル基とを有する4級アンモニウムカチオンであり、前記A がα−アミノ酸アニオン(側鎖がアルキル、アミノアルキル、ヒドロキシアルキル、アミノカルボニルアルキル、フェニルアルキル、ヒドロキシフェニルアルキル、およびアルキルチオアルキルから選択される)であるイオン液体を用いたセルロース系バイオマスの処理方法であって、
前記セルロース系バイオマスを溶解し、さらに貧溶媒を混合してバイオマスを析出させる溶解析出工程と、
前記イオン液体および前記貧溶媒の混合溶液から前記イオン液体を回収するイオン液体回収工程と、
前記溶解析出工程で析出させた析出バイオマスを糖化する糖化処理工程とを備える
こと特徴とするセルロース系バイオマスの処理方法。
An ionic liquid comprising a compound represented by the general formula Z + A (Z + means a cation and A means an anion), wherein the Z + has an alkoxyalkyl group and an alkyl group. Use of an ionic liquid which is an ammonium cation and wherein A is an α-amino acid anion (the side chain is selected from alkyl, aminoalkyl, hydroxyalkyl, aminocarbonylalkyl, phenylalkyl, hydroxyphenylalkyl, and alkylthioalkyl) A method for treating cellulosic biomass,
A dissolution precipitation step of dissolving the cellulosic biomass and further mixing a poor solvent to precipitate the biomass;
An ionic liquid recovery step of recovering the ionic liquid from a mixed solution of the ionic liquid and the poor solvent;
And a saccharification treatment step of saccharifying the deposited biomass deposited in the dissolution precipitation step.
請求項に記載のセルロース系バイオマスの処理方法であって、
前記セルロース系バイオマスを溶解する際に、イオン液体との共溶媒を添加する
ことを特徴とするセルロース系バイオマスの処理方法。
It is a processing method of the cellulosic biomass according to claim 1 ,
A method for treating cellulosic biomass, comprising adding a co-solvent with an ionic liquid when dissolving the cellulosic biomass.
請求項に記載のセルロース系バイオマスの処理方法であって、
前記共溶媒は孤立電子対を有する化合物を含んでなる
ことを特徴とするセルロース系バイオマスの処理方法。
It is a processing method of the cellulosic biomass according to claim 2 ,
The method for treating cellulosic biomass, wherein the co-solvent comprises a compound having a lone pair of electrons.
JP2011001483A 2011-01-06 2011-01-06 Cellulose biomass processing method Expired - Fee Related JP5794609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011001483A JP5794609B2 (en) 2011-01-06 2011-01-06 Cellulose biomass processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011001483A JP5794609B2 (en) 2011-01-06 2011-01-06 Cellulose biomass processing method

Publications (2)

Publication Number Publication Date
JP2012144441A JP2012144441A (en) 2012-08-02
JP5794609B2 true JP5794609B2 (en) 2015-10-14

Family

ID=46788410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011001483A Expired - Fee Related JP5794609B2 (en) 2011-01-06 2011-01-06 Cellulose biomass processing method

Country Status (1)

Country Link
JP (1) JP5794609B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108559B2 (en) * 2012-06-26 2017-04-05 国立大学法人鳥取大学 Method for producing lignin from biomass using lignin-soluble ionic liquid, and method for producing lignin, hemicellulose, and cellulose
DE102013009138A1 (en) * 2013-05-31 2014-12-04 Rainer Pommersheim Process and technical process for the recovery of raw materials from paper-containing waste using ionic liquids
JP6906140B2 (en) * 2016-10-18 2021-07-21 パナソニックIpマネジメント株式会社 Ionic liquids and methods of using them to dissolve cellulose
JP7012212B2 (en) * 2017-01-30 2022-02-14 パナソニックIpマネジメント株式会社 Ionic liquid composition and methods for dissolving cellulose using it
JP2018162447A (en) * 2017-03-27 2018-10-18 パナソニックIpマネジメント株式会社 Ionic liquid and method for dissolving cellulose using the same
CN110947733B (en) * 2019-12-04 2021-02-19 陈华俊 Synthetic leather rectification residue recovery process
CN112811993B (en) * 2020-12-29 2023-08-25 安徽省福泰精细化工有限责任公司 Methylal purification method
JP7001861B1 (en) 2021-03-31 2022-01-20 第一工業製薬株式会社 Fluorine-based ionic liquid and its manufacturing method
CN114200037B (en) * 2021-11-11 2024-04-05 山东中科恒联生物基材料有限公司 Method for detecting purity of ionic liquid in preparation of regenerated cellulose material
WO2023175788A1 (en) 2022-03-16 2023-09-21 国立大学法人金沢大学 Method for recovering ionic liquid
WO2023175787A1 (en) 2022-03-16 2023-09-21 国立大学法人金沢大学 Method for recovering ionic liquid
WO2023189817A1 (en) * 2022-03-31 2023-10-05 広栄化学株式会社 Onium salt, onium salt composition, liquid composition containing onium salt and polysaccharide and production method thereof, and method for recovering polysaccharide

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824599B2 (en) * 2001-10-03 2004-11-30 The University Of Alabama Dissolution and processing of cellulose using ionic liquids
JP4261223B2 (en) * 2003-03-07 2009-04-30 弘幸 大野 Organic ionic liquids containing amino acids as constituent ions
WO2007049485A1 (en) * 2005-10-25 2007-05-03 Nisshinbo Industries, Inc. Process for producing cellulose solution, cellulose solution, and process for producing regenerated cellulose
CN104232704A (en) * 2007-03-14 2014-12-24 托莱多大学 Biomass pretreatment
JP5339452B2 (en) * 2007-04-24 2013-11-13 国立大学法人東京農工大学 Ionic liquid and polymer treatment agent comprising this ionic liquid
US8591757B2 (en) * 2007-09-03 2013-11-26 Kaneka Corporation Electrolyte composition and ionic liquid
JP2009203454A (en) * 2008-01-31 2009-09-10 Toyota Central R&D Labs Inc Method of producing cellulose decomposition product utilizing ionic liquid
WO2010017563A1 (en) * 2008-08-08 2010-02-11 University Of Toledo Polymeric ionic liquids, methods of making and methods of use thereof
CN101486661A (en) * 2009-02-27 2009-07-22 南京大学 Method for preparing tetraalkyl quaternary ammonium type amino acid ion liquid
JP5378841B2 (en) * 2009-03-18 2013-12-25 一般財団法人石油エネルギー技術センター Carbon dioxide gas separation membrane
JP5623711B2 (en) * 2009-06-12 2014-11-12 Jx日鉱日石エネルギー株式会社 Method for producing halogen-free ionic liquid containing amino acid as constituent ion

Also Published As

Publication number Publication date
JP2012144441A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5794609B2 (en) Cellulose biomass processing method
CN101386597B (en) Alkyl imidazoles perrhenate ion liquid and preparation method thereof
CN101589153A (en) Method for producing glucose by enzymatic hydrolysis of cellulose that can be pretreated with an ionic liquid containing a polyatomic anion
WO2012040003A2 (en) Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle
CN100528839C (en) Ionic liquid of alkyl guanidine salt and its preparation process
JP2017536100A (en) Improved saccharification and fermentation of lignocellulose using a surfactant
CN104058935B (en) A kind of preparation method of (S)-1-(the chloro-3-fluorophenyl of 2,6-bis-) ethanol
Negi et al. Ionic liquid pretreatment
CN103288685B (en) Preparation method of 3-guanidino propanoic acid
US20140352688A1 (en) Process for pretreatment of lignocellulosic biomass with a hydrated inorganic salt comprising a preliminary acid hydrolysis stage
JP6280046B2 (en) Onium salt, liquid composition containing onium salt and cellulose, and cellulose recovery method
WO2016202252A1 (en) Method for synthesizing d-para-hydroxyphenylglycine methyl ester
CN104480159B (en) A kind of method of the enzymatic clarification starch octenyl succinate anhydride in ionic liquid
EP1832593A1 (en) Direct process for the production of sterile Cefepime dihydrochloride monohydrate
CN102010345B (en) Method for preparing D-phenylalanine through dynamic kinetic resolution
CN109678853A (en) A kind of preparation process of Dasatinib
CN107459447A (en) A kind of processing method of sodium gluconate waste liquor
CN104356043A (en) Method for preparing 5-(2-fluorophenyl)-1H-pyrryl-3-formaldehyde
CN109280015A (en) A kind of synthesis of D-VB5 sodium and chiral separation method
CN102628075B (en) Method for producing chiral amino acid by penicillin acylase resolution and product thereof
CN112745254A (en) Preparation method and application of 4-hydroxy-2-oxo-1-pyrrolidine acetic acid
CN104262224A (en) Preparation method and industrialized production method of pyrrolidinium with tetrafluoroborate anions
CN112574007B (en) Novel cyclohexylimine ionic liquid and method for catalyzing synthesis of butyl citrate and bisphenol F
CN110128412A (en) The preparation method of dextrorotation Iprazole sylvite mother liquor, dextrorotation Iprazole and preparation method thereof
CN103910695B (en) A kind of synthetic method of Febuxostat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150806

R150 Certificate of patent or registration of utility model

Ref document number: 5794609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees