[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5780408B2 - Soft magnetic resin composition and electromagnetic wave absorber - Google Patents

Soft magnetic resin composition and electromagnetic wave absorber Download PDF

Info

Publication number
JP5780408B2
JP5780408B2 JP2010161075A JP2010161075A JP5780408B2 JP 5780408 B2 JP5780408 B2 JP 5780408B2 JP 2010161075 A JP2010161075 A JP 2010161075A JP 2010161075 A JP2010161075 A JP 2010161075A JP 5780408 B2 JP5780408 B2 JP 5780408B2
Authority
JP
Japan
Prior art keywords
soft magnetic
powder
magnetic metal
metal flat
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010161075A
Other languages
Japanese (ja)
Other versions
JP2012009797A (en
Inventor
宏 安井
宏 安井
赤松 哲也
哲也 赤松
直也 行吉
直也 行吉
愛子 日田
愛子 日田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATE Co Ltd
Original Assignee
MATE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATE Co Ltd filed Critical MATE Co Ltd
Priority to JP2010161075A priority Critical patent/JP5780408B2/en
Publication of JP2012009797A publication Critical patent/JP2012009797A/en
Application granted granted Critical
Publication of JP5780408B2 publication Critical patent/JP5780408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、1GHz以上の高周波数帯域で電磁波吸収周波数を任意に調整でき、かつ薄肉で、優れた電磁波吸収性能を得ることができる軟磁性樹脂組成物および電磁波吸収体に関するものである。The present invention relates to a soft magnetic resin composition and an electromagnetic wave absorber capable of arbitrarily adjusting an electromagnetic wave absorption frequency in a high frequency band of 1 GHz or more and having a thin wall and excellent electromagnetic wave absorption performance.

従来から電子機器の誤作動や通信障害を防ぐ方法として、軟磁性金属粉やスピネル型フェライト粉等の軟磁性粉を樹脂に混ぜたタイル状、シート状のものや塗料の使用が知られており、電波障害対策、レーダー偽像防止、その他電磁波の不要輻射防止用などに広く普及している。Conventionally, as a method to prevent malfunctions and communication failures of electronic devices, it is known to use tiles, sheets, and paints that are mixed with soft magnetic powder such as soft magnetic metal powder and spinel ferrite powder. Widely used for countermeasures against radio interference, prevention of radar false images, and other unwanted radiation of electromagnetic waves.

近年、情報通信の高速化と大容量化に伴い、パソコン、携帯電話などの電子機器や無線LAN、Bluetooth、DSRCなどの情報通信ではGHz帯域の周波数使用が拡大している。この場合、従来から用いられてきた軟磁性金属やスピネル型フェライトでは効果的な電磁波吸収が困難な場合が生じており、GHz帯域の電磁波に対して有効な材料の開発が望まれている。In recent years, with the increase in speed and capacity of information communication, use of frequencies in the GHz band is expanding in electronic devices such as personal computers and mobile phones, and information communication such as wireless LAN, Bluetooth, and DSRC. In this case, there are cases where it is difficult to effectively absorb electromagnetic waves with soft magnetic metals and spinel ferrites that have been used conventionally, and development of materials effective for electromagnetic waves in the GHz band is desired.

磁性体を用いた電波吸収体による電磁波吸収は、複素透磁率の虚数部であるμ”による磁気損失が利用されている。このため電磁波吸収性能を高めるためには、材料のμ”を高める必要がある。電子機器は小型化、薄型化しており、これらに用いるためには電波吸収体の厚みを薄くする必要がある。しかし電波吸収体の厚みと性能は比例関係にあるため、電波吸収体の性能を維持するためにはμ”の一層の向上が必要である。また、通信用電波や電子機器から発生する電磁波の周波数は多岐に渡っており、電波吸収効果の広帯域化や任意に周波数特性を調整可能な電波吸収体の開発が望まれている。Electromagnetic wave absorption by magnetic wave absorbers using magnetic material uses the magnetic loss due to μ ”, which is the imaginary part of complex permeability. Therefore, in order to improve electromagnetic wave absorption performance, it is necessary to increase μ” of the material. There is. Electronic devices are becoming smaller and thinner, and in order to use them, it is necessary to reduce the thickness of the radio wave absorber. However, since the thickness and performance of the wave absorber are in a proportional relationship, it is necessary to further improve μ ”in order to maintain the performance of the wave absorber. There are a wide variety of frequencies, and it is desired to develop a radio wave absorber capable of widening the radio wave absorption effect and arbitrarily adjusting the frequency characteristics.

GHz以上の高周波数帯域において優れた電波吸収性能を発揮するものとして、六方晶フェライトが有望視されている。その1つとしてY型六方晶フェライトがある。しかし、Y型六方晶フェライト単体では複素透磁率の虚数部μ”を向上させることには限界があり、より薄厚で不要電磁波を吸収するためには更なる特性向上が望まれる。Hexagonal ferrite is promising as a material that exhibits excellent radio wave absorption performance in a high frequency band of GHz or higher. One of them is Y-type hexagonal ferrite. However, the Y-type hexagonal ferrite alone has a limit in improving the imaginary part μ ″ of the complex permeability, and further improvement in characteristics is desired in order to absorb unnecessary electromagnetic waves with a thinner thickness.

特開2006−332693号公報JP 2006-332693 A

上述した特許文献1に開示されているように、異なる大きさの磁気異方性を有する少なくとも2種の軟磁性金属扁平粉末を混合させることで、磁気共鳴を少なくとも2つ有する複合磁性体を得ることができるが、軟磁性金属扁平粉末同士ではたかだか2GHz付近までの周波数にしか対応できず、広帯域化も十分ではない。またカルボニル鉄粉を用いると6GHz付近まで対応できるが、1mm厚で−10dB以下となり、吸収性能が低い。また、広帯域化もできない。更に化学的安定性や、重量が重くなる問題もある。As disclosed in Patent Document 1 described above, a composite magnetic body having at least two magnetic resonances is obtained by mixing at least two types of soft magnetic metal flat powders having different magnetic anisotropies. However, soft magnetic metal flat powders can only handle frequencies up to about 2 GHz, and the bandwidth is not sufficient. Moreover, when carbonyl iron powder is used, it can respond | correspond to about 6 GHz, However, It becomes -10 dB or less by 1 mm thickness, and absorption performance is low. In addition, the bandwidth cannot be increased. In addition, there are problems with chemical stability and weight.

本発明は、上記の課題を解決するためになされたものであって、GHz以上の高周波数帯域で電磁波吸収周波数を任意に調整でき、広帯域かつ薄肉で、優れた電磁波吸収性能を得ることができる軟磁性樹脂組成物及び該材料を用いた電磁波吸収体を提供しようというものである。The present invention has been made to solve the above-described problems, and can arbitrarily adjust an electromagnetic wave absorption frequency in a high frequency band of GHz or higher, and can obtain an excellent electromagnetic wave absorption performance with a wide band and a thin wall. It is intended to provide a soft magnetic resin composition and an electromagnetic wave absorber using the material.

本発明は、上述した従来の軟磁性樹脂組成物及び該材料を用いた電磁波吸収体が有する課題を解決することにある。An object of the present invention is to solve the problems of the above-described conventional soft magnetic resin composition and an electromagnetic wave absorber using the material.

本発明は、上述した目的を達成するために、第1には、軟磁性金属扁平粉末とY型六方晶フェライト粉末と高分子樹脂から成る軟磁性樹脂組成物で、軟磁性金属扁平粉末/Y型六方晶フェライト粉末の体積比が0.2〜5.0であることを特徴とする軟磁性樹脂組成物を形成したものである。  In order to achieve the above-mentioned object, the present invention provides a soft magnetic resin composition comprising a soft magnetic metal flat powder, a Y-type hexagonal ferrite powder, and a polymer resin. A soft magnetic resin composition having a volume ratio of type hexagonal ferrite powder of 0.2 to 5.0 is formed.

第2には、軟磁性金属扁平粉末としてFe−Al−Si系、Fe−Si−Cr系、Fe−Si系、Fe−Cr系、Fe−Ni系、Feナノ結晶系、Fe系アモルファスの群より選ばれる、かさ密度/真密度の比が0.02〜0.14の軟磁性金属扁平粉末を少なくとも1種類以上用いることを特徴とする請求項1記載の軟磁性樹脂組成物を形成したものである。Secondly, Fe-Al-Si-based, Fe-Si-Cr-based, Fe-Si-based, Fe-Cr-based, Fe-Ni-based, Fe nanocrystal-based, Fe-based amorphous group as soft magnetic metal flat powder. The soft magnetic resin composition according to claim 1, wherein at least one soft magnetic metal flat powder having a bulk density / true density ratio of 0.02 to 0.14 is used. It is.

第3には、BaFe1222の組成で表されるY型フェライト粉末において、Mの部分にZn、Ni、Co、Mg、Mn、Fe、Cu、Be、Ca、Sr、Raの群より選ばれる少なくとも1種類以上の2価の金属元素を用いることを特徴とする請求項1および2記載の軟磁性樹脂組成物を形成したものである。Third, in the Y-type ferrite powder represented by the composition Ba 2 M 2 Fe 12 O 22 , Zn, Ni, Co, Mg, Mn, Fe, Cu, Be, Ca, Sr, Ra are contained in the M portion. 3. The soft magnetic resin composition according to claim 1, wherein at least one kind of divalent metal element selected from the group is used.

第4には、軟磁性樹脂組成物を電波吸収体としたものである。Fourth, a soft magnetic resin composition is used as a radio wave absorber.

本発明は、Y型六方晶フェライト粉末と軟磁性金属扁平粉末を混合し、樹脂に混ぜることで、GHz以上の高周波数帯域で電磁波吸収周波数を任意に調整でき、広帯域かつ薄肉で、優れた電磁波吸収性能を得ることができる軟磁性樹脂組成物及び該材料を用いた電磁波吸収体を提供しようというものである。In the present invention, a Y-type hexagonal ferrite powder and a soft magnetic metal flat powder are mixed and mixed with a resin, so that the electromagnetic wave absorption frequency can be arbitrarily adjusted in a high frequency band of GHz or higher, and has a wide band and a thin wall. It is intended to provide a soft magnetic resin composition capable of obtaining absorption performance and an electromagnetic wave absorber using the material.

Fe−Si−Cr系金属扁平粉末とZn系Y型フェライト粉末を用い、それぞれ単独で使用した場合と1/1で混合した場合の1mm厚みでの反射減衰量の値を示した図である。It is the figure which showed the value of the return loss in thickness of 1 mm when using Fe-Si-Cr type metal flat powder and Zn type Y-type ferrite powder, respectively, when mixing independently and mixing by 1/1. Fe−Si−Cr系金属扁平粉末とZn系Y型フェライト粉末を用い、それぞれ単独で使用した場合と1/1で混合した場合の整合厚みでの反射減衰量の値を示した図である。It is the figure which showed the value of the return loss in the matching thickness at the time of using the Fe-Si-Cr type metal flat powder and Zn type Y-type ferrite powder, respectively when it mixes independently and is mixed by 1/1.

以下、本発明について具体的な最良の形態について説明する。  Hereinafter, specific best modes of the present invention will be described.

本発明で使用する軟磁性金属扁平粉末は、ガスアトマイズ法で作製された平均粒径20〜30μmの合金粉末を用い、アトライターで所定のかさ密度/真密度になるように炭化水素系有機溶媒中で扁平状に加工した。次いでこの扁平粉末を所定温度で歪み取り処理を行い、軟磁性金属扁平粉末を得た。  The soft magnetic metal flat powder used in the present invention is an alloy powder having an average particle diameter of 20 to 30 μm produced by a gas atomizing method, and is in a hydrocarbon organic solvent so as to obtain a predetermined bulk density / true density with an attritor. And processed into a flat shape. Next, the flat powder was subjected to strain removal treatment at a predetermined temperature to obtain a soft magnetic metal flat powder.

本発明で使用するY型六方晶フェライト粉末は、BaFe1222の組成であり、Y型六方晶フェライトを形成するのであれば、この組成から多少ずれてもよい。Y型六方晶フェライトはX線回折ピークで結晶構造を知ることができる。また、Mの部分にはZn、Ni、Co、Mg、Mn、Fe、Cu、Be、Ca、Sr、Raの群から選ばれる2価金属を少なくとも1種類以上使用する。The Y-type hexagonal ferrite powder used in the present invention has a composition of Ba 2 M 2 Fe 12 O 22 and may slightly deviate from this composition as long as the Y-type hexagonal ferrite is formed. The crystal structure of the Y-type hexagonal ferrite can be known from the X-ray diffraction peak. Further, at least one divalent metal selected from the group consisting of Zn, Ni, Co, Mg, Mn, Fe, Cu, Be, Ca, Sr, and Ra is used for the M portion.

Y型六方晶フェライト粉末は、従来の一般的なフェライトの製造法に準じて製造することができる。即ち、Ba、M、Feが所定の割合で含まれるように金属酸化物や金属塩(例えば炭酸塩)などを配合し、混合、造粒したのち、これを焼成することにより固溶系Y型六方晶フェライトを合成することができる。焼成温度は概ね1100〜1300℃、焼成雰囲気は大気、焼成時間は1〜4時間程度とすればよい。またその原料に、フラックスとして金属塩化物を使用してもよい。  The Y-type hexagonal ferrite powder can be produced according to a conventional general method for producing ferrite. That is, a metal oxide or metal salt (for example, carbonate) is mixed so that Ba, M, and Fe are contained in a predetermined ratio, mixed, granulated, and then fired to form a solid solution Y-type hexagon. Crystalline ferrite can be synthesized. The firing temperature is about 1100 to 1300 ° C., the firing atmosphere is air, and the firing time is about 1 to 4 hours. Moreover, you may use a metal chloride as the flux for the raw material.

焼成後にはボールミル、振動ミル、ピンミルなどを用いて解砕を行うことにより、Y型六方晶フェライト粉末を得る。平均粒径D50が6μmを越えると凝集粒子が残存するために、3μm程度であることが好ましい。  After firing, Y-type hexagonal ferrite powder is obtained by crushing using a ball mill, vibration mill, pin mill or the like. When the average particle diameter D50 exceeds 6 μm, aggregated particles remain, and therefore it is preferably about 3 μm.

軟磁性金属扁平粉末とY型六方晶フェライト粉末の混合比は、軟磁性金属扁平粉末/Y型六方晶フェライト粉末の体積比で0.2〜5.0が望ましい。0.2未満の場合は、Y型六方晶フェライト粉末を単独使用した時と周波数は概ね一緒で、吸収性能も同等になる。また、軟磁性金属扁平粉末/Y型六方晶フェライト粉末の体積比が5.0を超える場合は、軟磁性金属扁平粉末を単独使用したときの周波数と吸収性能がほぼ同じになる。  The mixing ratio of the soft magnetic metal flat powder and the Y-type hexagonal ferrite powder is preferably 0.2 to 5.0 in terms of the volume ratio of the soft magnetic metal flat powder / Y-type hexagonal ferrite powder. When the ratio is less than 0.2, the frequency is almost the same as when the Y-type hexagonal ferrite powder is used alone, and the absorption performance is equivalent. Further, when the volume ratio of the soft magnetic metal flat powder / Y-type hexagonal ferrite powder exceeds 5.0, the frequency and the absorption performance when the soft magnetic metal flat powder is used alone are substantially the same.

軟磁性金属扁平粉末としてはFe−Al−Si系、Fe−Si−Cr系、Fe−Si系、Fe−Cr系、Fe−Ni系、Feナノ結晶系、Feアモルファス系が好適であり、この中から選ばれる少なくとも1種類以上の軟磁性金属扁平粉末を用いる。扁平化度の指標であるかさ密度/真密度は0.02〜0.14であることが好ましい。0.02より小さくなると比表面積が増大し、樹脂との混合が困難となり、生産性が著しく低下する。また、扁平加工が過度に進むために歪み取り処理で加工歪みの除去が困難であり、微粉末も多く発生するために、磁気特性が低下する。一方、0.14を越えると扁平化が不十分なために反磁界係数が大きく、表皮効果の影響もあり磁気特性が低下する。  As the soft magnetic metal flat powder, Fe-Al-Si, Fe-Si-Cr, Fe-Si, Fe-Cr, Fe-Ni, Fe nanocrystal, and Fe amorphous are preferable. At least one kind of soft magnetic metal flat powder selected from among them is used. The bulk density / true density, which is an index of flatness, is preferably 0.02 to 0.14. When it is less than 0.02, the specific surface area increases, mixing with the resin becomes difficult, and the productivity is significantly reduced. Further, since the flattening process proceeds excessively, it is difficult to remove the processing distortion by the distortion removing process, and a lot of fine powder is generated, so that the magnetic characteristics are deteriorated. On the other hand, if it exceeds 0.14, since the flattening is insufficient, the demagnetizing factor is large, and the magnetic characteristics are deteriorated due to the skin effect.

Y型六方晶フェライト粉末と軟磁性金属扁平粉末の混合粉末(以下、軟磁性混合粉末と記載)を高分子樹脂と混合する場合、前記軟磁性混合粉末の含有量が10体積%以上であることが好ましい。10体積%未満の場合は、磁気特性が低下して電波吸収性能が劣ることになる。成形方法としては、射出成形、押出成形、熱プレス成形、プレス成形、カレンダーロール成形、コーティング、スプレーコーティングなど特に限定するものではない。  When a mixed powder of Y-type hexagonal ferrite powder and soft magnetic metal flat powder (hereinafter referred to as soft magnetic mixed powder) is mixed with a polymer resin, the content of the soft magnetic mixed powder is 10% by volume or more. Is preferred. If it is less than 10% by volume, the magnetic properties are lowered and the radio wave absorption performance is inferior. The molding method is not particularly limited, such as injection molding, extrusion molding, hot press molding, press molding, calendar roll molding, coating, spray coating and the like.

高分子樹脂としては、ポリアミド、ポリエステル、ポリカーボネート、ポリエーテルサルフォン、ポリフェニレンサルファイド、ウレタン、エチレンエチルアクリレート等の熱可塑性樹脂を使用できる。また塩素化ポリエチレン、SBS、SEBS等の熱可塑性エラストマーやネオプレン系、クロロプレン系ゴム等の合成ゴムや天然ゴムを使用することができる。更に、熱硬化性樹脂としては、エポキシ樹脂、アクリル系樹脂、尿素系樹脂等を使用することができるが、これらに限定するものではない。また本発明の目的を損なわない範囲で、必要に応じて、カップリング剤、分散剤、防錆剤等による各種表面処理や酸化防止剤、熱安定化剤、顔料、非磁性充填剤、可塑剤、補強剤、熱伝導性充填剤、粘着剤等の各種添加剤を、1種又は2種以上添加することができる。カップリング剤については他成分との混和性を改良するためにシランカップリング剤、チタネートカップリング剤、ジルコアルミネートカップリング剤、アルミニウムカップリング剤等で表面処理し用いても良い。  As the polymer resin, thermoplastic resins such as polyamide, polyester, polycarbonate, polyether sulfone, polyphenylene sulfide, urethane, and ethylene ethyl acrylate can be used. Further, thermoplastic elastomers such as chlorinated polyethylene, SBS, and SEBS, synthetic rubbers such as neoprene-based and chloroprene-based rubbers, and natural rubbers can be used. Furthermore, as the thermosetting resin, an epoxy resin, an acrylic resin, a urea resin, or the like can be used, but is not limited thereto. In addition, various surface treatments with a coupling agent, a dispersing agent, a rust preventive agent, an antioxidant, a heat stabilizer, a pigment, a nonmagnetic filler, a plasticizer, as long as the object of the present invention is not impaired. Various additives such as a reinforcing agent, a heat conductive filler, and an adhesive can be added alone or in combination. The coupling agent may be surface-treated with a silane coupling agent, titanate coupling agent, zircoaluminate coupling agent, aluminum coupling agent or the like in order to improve miscibility with other components.

本発明の軟磁性粉末と高分子樹脂とからなる軟磁性樹脂組成物の製造方法については、特に限定されるものではなく、公知の種々の方法で行うことができる。例えば、万能ミキサーで原料を分散させた後に、単軸或いは2軸の押し出し混練機で溶融混練する方法や加圧ニーダーを用いて混練しても良い。  The method for producing a soft magnetic resin composition comprising the soft magnetic powder and the polymer resin of the present invention is not particularly limited, and can be performed by various known methods. For example, after the raw materials are dispersed with a universal mixer, they may be kneaded using a single kneading or biaxial extrusion kneading method or a pressure kneader.

実施例1〜3、及び比較例1、2で使用した軟磁性金属扁平粉末は、ガスアトマイズ法で製造した平均粒径30μmのFe−Si−Cr合金(Si=9wt%、Cr=1.5wt%)を粉末を用い、アトライターで所定のかさ密度/真密度になるように扁平化処理を行って得た。かさ密度の測定はJISZ2504に基づいて実施した。また真密度は株式会社島津製作所製のAccuPyc1330を用いて測定を行った。  The soft magnetic metal flat powder used in Examples 1 to 3 and Comparative Examples 1 and 2 was an Fe—Si—Cr alloy (Si = 9 wt%, Cr = 1.5 wt%) produced by a gas atomization method and having an average particle size of 30 μm. ) Was obtained by performing a flattening treatment using an attritor so as to obtain a predetermined bulk density / true density. The bulk density was measured based on JISZ2504. The true density was measured using AccuPyc1330 manufactured by Shimadzu Corporation.

実施例1〜3、及び比較例3、4で使用したY型六方晶フェライト粉末は、BaZnFe1222の組成になるように原料を混合し、1200℃で4時間焼成してY型六方晶フェライト焼結体を生成した。このY型六方晶フェライト焼結体を、ボールミルを用いて解砕して平均粒径D50が3μmのY型六方晶フェライト粉末を得た。The Y-type hexagonal ferrite powder used in Examples 1 to 3 and Comparative Examples 3 and 4 were mixed with raw materials so as to have a composition of Ba 2 Zn 2 Fe 12 O 22 , and fired at 1200 ° C. for 4 hours. A Y-type hexagonal ferrite sintered body was produced. This Y-type hexagonal ferrite sintered body was pulverized using a ball mill to obtain a Y-type hexagonal ferrite powder having an average particle diameter D50 of 3 μm.

実施例1は、軟磁性金属扁平粉末/Y型六方晶フェライト粉末の体積比が5.0となるように混合し、軟磁性混合粉末を得た。この軟磁性混合粉末と、塩素化ポリエチレン樹脂を1:1(質量%)で混合、混練し、圧延ロールにより厚さ1mmに圧延後、140℃で熱プレスを行い、シートを形成した。得られたシートについて、外径7mm、内径3mm、厚み1mmの形状に打ち抜き、これを、ネットワークアナライザー(Anritsu製37225B)を用いて、S11、S21のSパラメータを反射法で、500MHz〜10GHzの範囲で測定し、複素透磁率と複素誘電率を算出した。反射減衰量は、Sパラメータから算出した複素透磁率、複素誘電率の値を基にシミュレーションを行った結果である。反射減衰量はマイナスに大きい程、電波吸収性能が高いことを示す。シートが1mm厚のときに、反射減衰量が−10dB以上の周波数幅と反射減衰量のピーク値が表1に示されている。  Example 1 was mixed so that the volume ratio of soft magnetic metal flat powder / Y-type hexagonal ferrite powder was 5.0 to obtain a soft magnetic mixed powder. This soft magnetic mixed powder and chlorinated polyethylene resin were mixed and kneaded at 1: 1 (mass%), rolled to a thickness of 1 mm with a rolling roll, and then hot-pressed at 140 ° C. to form a sheet. The obtained sheet is punched into a shape having an outer diameter of 7 mm, an inner diameter of 3 mm, and a thickness of 1 mm. The complex permeability and complex permittivity were calculated. The return loss is the result of simulation based on the values of the complex permeability and complex permittivity calculated from the S parameter. The larger the return loss, the higher the radio wave absorption performance. When the sheet is 1 mm thick, the frequency width of the return loss of -10 dB or more and the peak value of the return loss are shown in Table 1.

実施例2は軟磁性金属扁平粉末/Y型六方晶フェライト粉末の体積比が1.0となるように混合したこと以外は、実施例1と同様にシートを形成した。評価方法も実施例1と同様で、その結果が表1に示されている。  In Example 2, a sheet was formed in the same manner as in Example 1, except that the volume ratio of the soft magnetic metal flat powder / Y-type hexagonal ferrite powder was 1.0. The evaluation method is the same as in Example 1, and the results are shown in Table 1.

実施例3は軟磁性金属扁平粉末/Y型六方晶フェライト粉末の体積比が0.2となるように混合したこと以外は、実施例1と同様にシートを形成した。評価方法も実施例1と同様で、その結果が表1に示されている。  In Example 3, a sheet was formed in the same manner as in Example 1 except that the volume ratio of the soft magnetic metal flat powder / Y-type hexagonal ferrite powder was 0.2. The evaluation method is the same as in Example 1, and the results are shown in Table 1.

比較例1は軟磁性金属扁平粉末のみを使用したこと以外は、実施例1と同様にシートを形成した。評価方法も実施例1と同様で、その結果が表1に示されている。  In Comparative Example 1, a sheet was formed in the same manner as in Example 1 except that only the soft magnetic metal flat powder was used. The evaluation method is the same as in Example 1, and the results are shown in Table 1.

比較例2は軟磁性金属扁平粉末/Y型六方晶フェライト粉末の体積比が6.0となるように混合したこと以外は、実施例1と同様にシートを形成した。評価方法も実施例1と同様で、その結果が表1に示されている。  In Comparative Example 2, a sheet was formed in the same manner as in Example 1 except that the volume ratio of the soft magnetic metal flat powder / Y-type hexagonal ferrite powder was 6.0. The evaluation method is the same as in Example 1, and the results are shown in Table 1.

比較例3は軟磁性金属扁平粉末/Y型六方晶フェライト粉末の体積比が0.1となるように混合したこと以外は、実施例1と同様にシートを形成した。評価方法も実施例1と同様で、その結果が表1に示されている。  In Comparative Example 3, a sheet was formed in the same manner as in Example 1 except that the volume ratio of the soft magnetic metal flat powder / Y-type hexagonal ferrite powder was 0.1. The evaluation method is the same as in Example 1, and the results are shown in Table 1.

比較例4はY型六方晶フェライト粉末のみを使用したこと以外は、実施例1と同様にシートを形成した。評価方法も実施例1と同様で、その結果が表1に示されている。  In Comparative Example 4, a sheet was formed in the same manner as in Example 1 except that only Y-type hexagonal ferrite powder was used. The evaluation method is the same as in Example 1, and the results are shown in Table 1.

表1より、実施例は比較例よりも−10dB以上の反射減衰量を維持する周波数範囲が広く、軟磁性金属扁平粉末のみを用いた比較例1と同等の反射減衰量を示している。  From Table 1, the example has a wider frequency range for maintaining the return loss of −10 dB or more than the comparative example, and shows the return loss equivalent to the comparative example 1 using only the soft magnetic metal flat powder.

Figure 0005780408
Figure 0005780408

実施例2と比較例1、4の1mm厚のときの反射減衰量の周波数特性が、図1に示されている。軟磁性金属扁平粉末とY型フェライト粉末を混合して使用すると、反射減衰量が−10dB以上の周波数領域が広くなることが判る。  FIG. 1 shows the frequency characteristics of the return loss when Example 2 and Comparative Examples 1 and 4 are 1 mm thick. It can be seen that when the soft magnetic metal flat powder and the Y-type ferrite powder are mixed and used, the frequency region where the return loss is −10 dB or more is widened.

実施例1〜3と比較例1,4の整合厚のときの反射減衰量の周波数特性が図2に示されている。軟磁性金属扁平粉末とY型六方晶フェライト粉末を混合使用すると、周波数の調整ができることが判る。  FIG. 2 shows the frequency characteristics of the return loss when the matching thicknesses of Examples 1 to 3 and Comparative Examples 1 and 4 are used. It can be seen that the frequency can be adjusted by using a mixture of soft magnetic metal flat powder and Y-type hexagonal ferrite powder.

軟磁性金属扁平粉末として、Fe−Al−Si系、Fe−Si−Cr系、Fe−Si系、Fe−Cr系、Fe−Ni系、Feナノ結晶系、Fe系アモルファスの群より選ばれる、かさ密度/真密度の比が0.02〜0.14の軟磁性金属扁平粉末を用いることで、成型性、電波吸収性能の優れた材料として使用できる。  The soft magnetic metal flat powder is selected from the group of Fe-Al-Si, Fe-Si-Cr, Fe-Si, Fe-Cr, Fe-Ni, Fe nanocrystal, and Fe amorphous. By using a soft magnetic metal flat powder having a bulk density / true density ratio of 0.02 to 0.14, it can be used as a material excellent in moldability and radio wave absorption performance.

実施例4、5、及び比較例5,6で使用した軟磁性金属扁平粉末は、実施例1と同様の方法で扁平化し、かさ密度/真密度が所定の比率になるように、扁平化時間を変更して軟磁性金属扁平粉末を得た。  The soft magnetic metal flat powder used in Examples 4 and 5 and Comparative Examples 5 and 6 was flattened in the same manner as in Example 1, and the flattening time was adjusted so that the bulk density / true density would be a predetermined ratio. To obtain a soft magnetic metal flat powder.

実施例4、5、及び比較例5,6で使用したY型六方晶フェライトは、実施例1と同様の方法でY型六方晶フェライト粉末を得た。  The Y-type hexagonal ferrite used in Examples 4 and 5 and Comparative Examples 5 and 6 obtained Y-type hexagonal ferrite powder in the same manner as in Example 1.

実施例4は、かさ密度/真密度が0.02の軟磁性金属扁平粉末を使用したこと以外は、実施例2と同様にシートを形成した。評価方法は、実施例1と同様で、その結果が表2に示されている。  In Example 4, a sheet was formed in the same manner as in Example 2 except that a soft magnetic metal flat powder having a bulk density / true density of 0.02 was used. The evaluation method is the same as in Example 1, and the results are shown in Table 2.

実施例5は、かさ密度/真密度が0.10の軟磁性金属扁平粉末を使用したこと以外は、実施例2と同様にシートを形成した。評価方法は、実施例1と同様で、その結果が表2に示されている。  In Example 5, a sheet was formed in the same manner as in Example 2 except that a soft magnetic metal flat powder having a bulk density / true density of 0.10 was used. The evaluation method is the same as in Example 1, and the results are shown in Table 2.

比較例5は、かさ密度/真密度が0.01の軟磁性金属扁平粉末を使用したこと以外は、実施例2と同様にシートを形成したが、成型不可能であったため、成型不可能であったことが、表2に示されている。  In Comparative Example 5, a sheet was formed in the same manner as in Example 2 except that a soft magnetic metal flat powder having a bulk density / true density of 0.01 was used. This is shown in Table 2.

比較例6は、かさ密度/真密度が0.15の軟磁性金属扁平粉末を使用したこと以外は、実施例2と同様にシートを形成した。評価方法は、実施例1と同様で、その結果が表2に示されている。  In Comparative Example 6, a sheet was formed in the same manner as in Example 2 except that a soft magnetic metal flat powder having a bulk density / true density of 0.15 was used. The evaluation method is the same as in Example 1, and the results are shown in Table 2.

表2より、比較例と実施例を比較すると、実施例は成型性に優れ、反射減衰量が−10dB以上になっていることが判る。  From Table 2, comparing the comparative example and the example, it can be seen that the example is excellent in moldability and the return loss is -10 dB or more.

Figure 0005780408
Figure 0005780408

産業上の利用の可能性Industrial applicability

本発明は、電磁波等のノイズ対策機器、電波障害対策製品などに利用できるものである。The present invention can be used for noise countermeasure devices such as electromagnetic waves, products for countermeasures against radio wave interference, and the like.

Claims (3)

軟磁性金属扁平粉末とY型六方晶フェライト粉末を高分子樹脂から成る軟磁性樹脂組成物であって該軟磁性金属扁平粉末がFe−Al−Si系、Fe−Si−Cr系、Fe−Si系、Fe−Cr系、Fe−Ni系、Feナノ結晶系、Fe系アモルファスの群より選ばれた1種類または2種類以上の混合物であって該軟磁性金属扁平粉末のかさ密度/真密度の比が0.02〜0.10であって、軟磁性金属扁平粉末/Y型六方晶フェライト粉末の体積比が1.0〜5.0であることを特徴とした軟磁性樹脂組成物The flat soft magnetic metal powder and the Y-type hexagonal ferrite powders A soft resin composition comprising a polymer resin, soft magnetic metal flat powder is Fe-Al-Si-based, Fe-Si-Cr system, Fe- One type or a mixture of two or more types selected from the group of Si-based, Fe-Cr-based, Fe-Ni-based, Fe nanocrystalline, and Fe-based amorphous, wherein the bulk density / true of the soft magnetic metal flat powder A soft magnetic resin composition having a density ratio of 0.02 to 0.10 and a soft magnetic metal flat powder / Y-type hexagonal ferrite powder volume ratio of 1.0 to 5.0 . BaBa 2 M 2 FeFe 1212 O 2222 の組成で表されるY型六方晶フェライト粉末において、Mの部分にZn、Ni、Co、Mg、Mn、Fe、Cu、Be、Sr、Raの群より選ばれる少なくとも1種類以上の2価の金属元素を用いることを特徴とする請求項1記載の軟磁性樹脂組成物。In the Y-type hexagonal ferrite powder represented by the composition: at least one or more divalent selected from the group of Zn, Ni, Co, Mg, Mn, Fe, Cu, Be, Sr, Ra in the M part The soft magnetic resin composition according to claim 1, wherein a metal element is used. 請求項1または請求項2記載の軟磁性樹脂組成物を用いることを特徴とする電磁波吸収体。An electromagnetic wave absorber comprising the soft magnetic resin composition according to claim 1.
JP2010161075A 2010-06-28 2010-06-28 Soft magnetic resin composition and electromagnetic wave absorber Active JP5780408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010161075A JP5780408B2 (en) 2010-06-28 2010-06-28 Soft magnetic resin composition and electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010161075A JP5780408B2 (en) 2010-06-28 2010-06-28 Soft magnetic resin composition and electromagnetic wave absorber

Publications (2)

Publication Number Publication Date
JP2012009797A JP2012009797A (en) 2012-01-12
JP5780408B2 true JP5780408B2 (en) 2015-09-16

Family

ID=45539973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010161075A Active JP5780408B2 (en) 2010-06-28 2010-06-28 Soft magnetic resin composition and electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP5780408B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140067660A (en) * 2012-11-27 2014-06-05 삼성전기주식회사 Magnetic sheet of contactless power transmission device
KR101740749B1 (en) * 2012-12-21 2017-05-26 삼성전기주식회사 Magnetic composite sheet and Electromagnetic induction module
JP2014192327A (en) * 2013-03-27 2014-10-06 Riken Corp Radio wave absorbing sheet for neighborhood field and method of manufacturing the same
JP5822146B2 (en) * 2013-03-29 2015-11-24 パウダーテック株式会社 Composite magnetic powder for noise suppression
CN104392819B (en) * 2014-05-20 2017-03-29 深圳顺络电子股份有限公司 A kind of compound soft magnetic material and preparation method thereof
CN104409189B (en) * 2014-05-20 2017-08-25 深圳顺络电子股份有限公司 Compound soft magnetic material and preparation method thereof
JP6519315B2 (en) * 2015-05-22 2019-05-29 Tdk株式会社 Composite magnetic body and high frequency magnetic component using the same
CN105177396A (en) * 2015-09-01 2015-12-23 深圳顺络电子股份有限公司 Iron alloy composite and preparation method thereof
JP6735209B2 (en) 2016-10-27 2020-08-05 山陽特殊製鋼株式会社 Flat powder and magnetic sheet used at high frequency
JP6815214B2 (en) 2017-02-03 2021-01-20 山陽特殊製鋼株式会社 Flat powder used at high frequency and magnetic sheet containing it
CN107598160B (en) * 2017-09-05 2020-01-14 山东非金属材料研究所 Iron-silicon-aluminum/ferrite composite wave absorbing agent and preparation method thereof
CN113812221B (en) 2019-05-14 2024-07-05 富士胶片株式会社 Radio wave absorber
WO2020230708A1 (en) 2019-05-14 2020-11-19 富士フイルム株式会社 Radio wave absorber
JP7473555B2 (en) * 2019-08-09 2024-04-23 富士フイルム株式会社 Radio wave absorbing composition and radio wave absorber
KR102634577B1 (en) 2019-08-09 2024-02-07 후지필름 가부시키가이샤 Radio wave absorbing compositions and radio wave absorbers
JP2021141144A (en) * 2020-03-03 2021-09-16 パナソニックIpマネジメント株式会社 Magnetic resin composition and molded product
KR102495696B1 (en) * 2020-11-26 2023-02-06 한국교통대학교산학협력단 Electromagnetic wave shielding sheet and electronic device comprising the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607357B2 (en) * 1996-05-31 1997-05-07 富士写真フイルム株式会社 Magnetic recording medium and method of manufacturing the same
JP2003105403A (en) * 2001-09-28 2003-04-09 Daido Steel Co Ltd Soft magnetic flat-shaped powder
JP2003209010A (en) * 2001-11-07 2003-07-25 Mate Co Ltd Soft magnetic resin composition, its manufacturing method and molded body
JP3944741B2 (en) * 2003-06-27 2007-07-18 信越化学工業株式会社 Electromagnetic wave absorbing heat conductive silicone composition and molded article thereof
KR101210772B1 (en) * 2004-12-17 2012-12-10 히타치 긴조쿠 가부시키가이샤 Hexagonal ferrite, and antenna and communication equipment using the same
JP2007208121A (en) * 2006-02-03 2007-08-16 Bridgestone Corp Rubber composite for radio wave absorber, its blending method and manufacturing method, and radio wave absorption sheet
JP5360947B2 (en) * 2006-12-12 2013-12-04 旭化成イーマテリアルズ株式会社 Resin composition
JP5329921B2 (en) * 2008-11-07 2013-10-30 旭化成イーマテリアルズ株式会社 Polymer composition and noise suppression sheet containing the polymer composition

Also Published As

Publication number Publication date
JP2012009797A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5780408B2 (en) Soft magnetic resin composition and electromagnetic wave absorber
US9338932B2 (en) Magnetoplumbite-type hexagonal ferrite
US9468134B2 (en) Soft magnetic powder, method of manufacturing the same, noise suppression sheet using the same, and method of manufacturing the same
CN104078183B (en) Near field electric wave absorbent sheet and manufacture method thereof
TWI664648B (en) Soft magnetic flat powder and manufacturing method thereof
JP6738160B2 (en) Soft magnetic flat powder and method for producing the same
JP5161813B2 (en) Mixed ferrite powder, method for producing the same, and radio wave absorber
CN110235212B (en) Magnetic flat powder and magnetic sheet containing the same
JP2007281074A (en) Noise suppression sheet
JP2010260766A (en) Magnetoplumbite-type hexagonal ferrite and radiowave absorber using the same
JP2014204051A (en) Soft magnetic flat-particle powder, and magnetic sheet arranged by use thereof
KR102393236B1 (en) soft magnetic flat powder
JP2003332113A (en) Flat soft magnetic powder and composite magnetic sheet using the same
JP5391414B2 (en) Magnetic powder for electromagnetic wave absorber
JP5282318B2 (en) Solid solution Y-type hexagonal ferrite material, molded body using the material, electromagnetic wave absorber, and antenna
JP4639384B2 (en) Method for producing magnetic powder for radio wave absorber and radio wave absorber
KR20190012846A (en) high-permeability magnetic sheet and manufacturing method thereof
JP2005116819A (en) Flame-retardant compound magnetic sheet
JP7565611B2 (en) Soft magnetic metal flaky powder, resin composite sheet using same, and resin composite composition
JP2006278433A (en) Compound electromagnetic noise suppression sheet
JP2015030630A (en) Z-type hexagonal ferrite
TW202337835A (en) Electromagnetic wave absorption ferrite particle powder, manufacturing method of the same, and resin composition using the same
JP6718144B2 (en) Hexagonal ferrite sintered body and high-frequency magnetic component using the same
JP2002305395A (en) Electromagnetic wave absorption sheet containing surface-treated soft magnetic powder, and its manufacturing method
JP4709994B2 (en) Radio wave absorber using Li-Zn ferrite powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150701

R150 Certificate of patent or registration of utility model

Ref document number: 5780408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250