[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5778949B2 - Hydrogen methane fermentation equipment - Google Patents

Hydrogen methane fermentation equipment Download PDF

Info

Publication number
JP5778949B2
JP5778949B2 JP2011048263A JP2011048263A JP5778949B2 JP 5778949 B2 JP5778949 B2 JP 5778949B2 JP 2011048263 A JP2011048263 A JP 2011048263A JP 2011048263 A JP2011048263 A JP 2011048263A JP 5778949 B2 JP5778949 B2 JP 5778949B2
Authority
JP
Japan
Prior art keywords
fermentation
fermenter
hydrogen
biogas
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011048263A
Other languages
Japanese (ja)
Other versions
JP2012183481A (en
Inventor
孝志 河野
孝志 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2011048263A priority Critical patent/JP5778949B2/en
Publication of JP2012183481A publication Critical patent/JP2012183481A/en
Application granted granted Critical
Publication of JP5778949B2 publication Critical patent/JP5778949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、水素メタン発酵装置および水素メタン発酵方法に関する。   The present invention relates to a hydrogen methane fermentation apparatus and a hydrogen methane fermentation method.

生ごみ、家畜糞尿、下水汚泥、食品廃棄物などのバイオマスを嫌気発酵すれば、最終的にはメタンと二酸化炭素とを主成分とする可燃性のバイオガスが発生する。バイオガスの利用は、環境汚染の防止とエネルギーの再生産という観点から注目されている。   If biomass such as food waste, livestock manure, sewage sludge, and food waste is subjected to anaerobic fermentation, a combustible biogas mainly composed of methane and carbon dioxide is finally generated. The use of biogas is attracting attention from the viewpoint of preventing environmental pollution and regenerating energy.

バイオマスの嫌気発酵は加水分解、水素発酵、次いでメタン発酵と段階的に進む。水素発酵およびメタン発酵ともに、最適温度は35℃付近または55℃付近にあるが、水素発酵とメタン発酵とでは他の最適条件が異なる。例えば、水素発酵の最適pHは4.5〜6.5と低いのに対して、メタン発酵の最適pHは6.5〜8.5と高い。これは、水素発酵およびメタン発酵に係わる微生物群が異なるからである。また、水素発酵の最適滞留時間(HRT)は約2日までと短いのに対して、メタン発酵の最適HRTは10〜30日と長い。このため、嫌気発酵を単槽で行う単相発酵よりも、水素発酵とメタン発酵とを別々に2つの槽で行う二相発酵において、水素発酵およびメタン発酵のそれぞれの発酵条件を制御する方が発酵効率がよい。   Anaerobic fermentation of biomass proceeds in stages with hydrolysis, hydrogen fermentation, and then methane fermentation. For both hydrogen fermentation and methane fermentation, the optimum temperature is around 35 ° C. or around 55 ° C., but other optimum conditions differ between hydrogen fermentation and methane fermentation. For example, the optimum pH for hydrogen fermentation is as low as 4.5 to 6.5, whereas the optimum pH for methane fermentation is as high as 6.5 to 8.5. This is because the microorganism groups involved in hydrogen fermentation and methane fermentation are different. The optimum residence time (HRT) for hydrogen fermentation is as short as about 2 days, whereas the optimum HRT for methane fermentation is as long as 10 to 30 days. For this reason, it is better to control each fermentation condition of hydrogen fermentation and methane fermentation in two-phase fermentation in which hydrogen fermentation and methane fermentation are separately performed in two tanks than in single-phase fermentation in which anaerobic fermentation is performed in a single tank. Fermentation efficiency is good.

しかし、2つの槽を用いる二相発酵は、単槽を用いる単相発酵よりも、1つ余分に発酵槽を必要とするため余分なスペースを必要とし、さらに発酵槽に付随する機器、計器、配管なども増えるため設備上のコストが上昇する。   However, the two-phase fermentation using two tanks requires one extra fermenter than the single-phase fermentation using a single tank, and therefore requires extra space. Since the number of pipes increases, the cost on equipment increases.

特許文献1〜3には、単槽の単相発酵装置が記載され、特許文献4には、2槽の二相発酵装置が記載されている。いずれも槽内の発酵液を均一にするための攪拌手段を有する。攪拌方法としては、回転翼による機械式攪拌(特許文献1および2)、ポンプによる循環攪拌(特許文献3)、ブロワによるガス攪拌がある。単相発酵装置は、二相発酵装置よりも、発酵効率が悪くHRTが長くなるため、単位発酵液あたりの攪拌動力が大きく、発酵のコストが上昇するという問題もある。   Patent Documents 1 to 3 describe a single tank single-phase fermentation apparatus, and Patent Document 4 describes a two tank two-phase fermentation apparatus. All have stirring means for making the fermentation liquid in the tank uniform. As a stirring method, there are mechanical stirring using a rotary blade (Patent Documents 1 and 2), circulating stirring using a pump (Patent Document 3), and gas stirring using a blower. The single-phase fermentation apparatus has a problem that the fermentation efficiency is worse and the HRT is longer than the two-phase fermentation apparatus, so that the stirring power per unit fermentation liquid is large and the fermentation cost increases.

ところで、非特許文献1および特許文献5〜8には、水素発酵において、発酵液中の水素分圧を下げることにより、水素発酵の効率が上昇し、水素ガスの回収率が上昇することが記載されている。しかし、これらの方法はいずれも減圧装置、曝気装置、水素ガス分離装置など、水素分圧を下げるための装置を必要とする。   Incidentally, Non-Patent Document 1 and Patent Documents 5 to 8 describe that in hydrogen fermentation, the efficiency of hydrogen fermentation increases and the recovery rate of hydrogen gas increases by lowering the hydrogen partial pressure in the fermentation broth. Has been. However, all of these methods require a device for reducing the hydrogen partial pressure, such as a decompression device, an aeration device, and a hydrogen gas separation device.

特開2002−219485号公報JP 2002-219485 A 特開2006−305491号公報JP 2006-305491 A 特開2007−111633号公報JP 2007-111633 A 特開2007−289946号公報JP 2007-289946 A 特開平07−031484号公報JP 07-031484 A 特開2005−125149号公報JP 2005-125149 A 特開2003−135088号公報JP 2003-135088 A 特開2003−251312号公報JP 2003-251312 A

河野ら、「用水と排水」、株式会社産業用水調査会、2005年、第47巻、第9号、pp. 777-783Kono et al., “Water and Wastewater”, Industrial Water Research Committee, 2005, Vol. 47, No. 9, pp. 777-783

本発明は、水素発酵とメタン発酵とを効率よく行うための装置および方法を提供することを目的とする。   An object of this invention is to provide the apparatus and method for performing hydrogen fermentation and methane fermentation efficiently.

本発明は、水素発酵とメタン発酵とを連動して行うための水素メタン発酵装置を提供し、該装置は、単槽の発酵槽、該発酵槽と連結し該発酵槽内にバイオマスを供給するためのバイオマス供給手段、該発酵槽と連結し該発酵槽内で発生するバイオガスを該発酵槽外に回収するためのバイオガス回収手段、および該発酵槽と連結し該発酵槽内で発生する発酵残渣を該発酵槽外に回収するための発酵残渣回収手段を備え、該発酵槽は、該発酵槽内を上部と下部とに隔離する多孔隔壁、該上部および該下部の内部をそれぞれ攪拌するための攪拌手段、および該上部内の発酵液を該下部内に移送するための移送手段を備える。   The present invention provides a hydrogen methane fermentation apparatus for performing hydrogen fermentation and methane fermentation in conjunction with each other, and the apparatus is connected to a single tank fermenter and the fermenter to supply biomass into the fermenter. Biomass supply means for connecting to the fermenter, biogas recovery means for recovering the biogas generated in the fermentor outside the fermenter, and generating in the fermenter connected to the fermenter Fermentation residue collecting means for collecting the fermentation residue outside the fermenter is provided, and the fermenter is a porous partition that separates the inside of the fermenter into an upper part and a lower part, and the inside of the upper part and the lower part is stirred. And a transfer means for transferring the fermentation broth in the upper part into the lower part.

1つの実施態様では、上記発酵槽は円筒の形状であり、該円筒の高さと直径との比は2:1〜4:1である。   In one embodiment, the fermenter is in the shape of a cylinder and the ratio of the cylinder height to diameter is 2: 1 to 4: 1.

1つの実施態様では、上記円筒の高さは、8〜12mである。   In one embodiment, the cylinder has a height of 8-12 m.

1つの実施態様では、上記発酵槽の下端面と上端面との距離と、上記発酵槽の下端面と上記隔壁との距離との比は、10:7〜10:8である。   In one embodiment, the ratio of the distance between the lower end surface and the upper end surface of the fermenter and the distance between the lower end surface of the fermenter and the partition wall is 10: 7 to 10: 8.

1つの実施態様では、上記隔壁の孔の内径は、50〜100mmである。   In one embodiment, the internal diameter of the hole of the said partition is 50-100 mm.

1つの実施態様では、上記攪拌手段は、回転翼、ブロワおよびポンプからなる群より選択される。   In one embodiment, the stirring means is selected from the group consisting of a rotor blade, a blower and a pump.

本発明はまた、水素発酵とメタン発酵とを連動して行うための方法を提供し、該方法は、上記装置内にバイオマスを連続的または間欠的に供給し、該装置内で水素発酵とメタン発酵とを連続的に行い、そして該装置内からバイオガスおよび発酵残渣を連続的または間欠的に回収する工程を含む、方法。   The present invention also provides a method for performing hydrogen fermentation and methane fermentation in conjunction with each other, wherein the method continuously or intermittently supplies biomass into the apparatus, and hydrogen fermentation and methane are produced in the apparatus. A method comprising continuously performing fermentation, and continuously or intermittently collecting biogas and fermentation residue from within the apparatus.

1つの実施態様では、上記工程で回収したバイオガスを上記発酵槽内にブロワすることにより前記発酵槽内を攪拌する。   In one embodiment, the inside of the said fermenter is stirred by blowing the biogas collect | recovered at the said process in the said fermenter.

1つの実施態様では、上記工程で回収したバイオガスから水素ガスを分離して残ったガスを上記発酵槽内にブロワすることにより前記発酵槽内を攪拌する。   In one embodiment, the fermenter is stirred by blowing the gas remaining after separating the hydrogen gas from the biogas recovered in the above step into the fermenter.

本発明によれば、水素発酵とメタン発酵とを効率よく行うための装置および方法を提供することができる。本発明の装置は、単槽の発酵槽を備えるため、製造コストを抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the apparatus and method for performing hydrogen fermentation and methane fermentation efficiently can be provided. Since the apparatus of the present invention includes a single fermenter, the production cost can be reduced.

本発明の水素メタン発酵装置の一実施態様を示す模式図である。It is a schematic diagram which shows one embodiment of the hydrogen methane fermentation apparatus of this invention. 本発明の水素メタン発酵装置の一実施態様を示す模式図である。It is a schematic diagram which shows one embodiment of the hydrogen methane fermentation apparatus of this invention. 本発明の水素メタン発酵装置の一実施態様を示す模式図である。It is a schematic diagram which shows one embodiment of the hydrogen methane fermentation apparatus of this invention. 本発明の水素メタン発酵装置の一実施態様を示す模式図である。It is a schematic diagram which shows one embodiment of the hydrogen methane fermentation apparatus of this invention.

本明細書で、バイオマスとは、生物由来の有機資源をいう。バイオマスとしては、例えば、有機性廃棄物、資源作物あるいはその廃棄物が挙げられる。有機性廃棄物としては、例えば、生ごみ、糞尿、下水汚泥、食品加工残渣、食品工業・製紙工業・畜産業などにおける有機性廃水が挙げられるが、有機物を含む廃棄物である限り、特に限定されない。資源作物としては、例えば、とうもろこし、さとうきび、これらの処理工程で発生する廃棄物が挙げられる。バイオマスとしては、バイオマス中に含まれるプラスチック、ガラスなどの発酵に寄与しない異物を除去したものでも構わない。   In this specification, biomass refers to organic resources derived from living organisms. Examples of biomass include organic wastes, resource crops, or wastes thereof. Examples of organic waste include organic wastewater in food waste, manure, sewage sludge, food processing residue, food industry, paper industry, livestock industry, etc. Not. Examples of resource crops include corn, sugar cane, and waste generated in these treatment steps. As biomass, what removed the foreign material which does not contribute to fermentation, such as plastic and glass contained in biomass, may be used.

本明細書で、バイオガスとは、バイオマスの発酵(嫌気発酵)により発生するガスをいう。バイオガスの成分としては、例えば、水素ガス、メタンガス、二酸化炭素ガスが挙げられる。   In the present specification, the biogas refers to a gas generated by fermentation (anaerobic fermentation) of biomass. Examples of biogas components include hydrogen gas, methane gas, and carbon dioxide gas.

本明細書で、水素発酵とメタン発酵とを連動して行うとは、通常水素発酵とメタン発酵とを別々に行うが、両者間で一定の物質移動がある条件下で発酵を行うことをいう。したがって、水素発酵とメタン発酵とを段階的に行うことでも、水素発酵とメタン発酵とを完全混合槽内で均一条件下で行うことでもない。   In this specification, performing hydrogen fermentation and methane fermentation in conjunction with each other usually means performing hydrogen fermentation and methane fermentation separately, but performing fermentation under conditions where there is a certain mass transfer between them. . Therefore, neither hydrogen fermentation nor methane fermentation is performed in stages, nor is hydrogen fermentation and methane fermentation performed under uniform conditions in a complete mixing tank.

本発明の水素メタン発酵装置および水素メタン発酵方法について、図面を参照しながら説明する。   The hydrogen methane fermentation apparatus and the hydrogen methane fermentation method of the present invention will be described with reference to the drawings.

(水素メタン発酵装置)
図1は、本発明の水素メタン発酵装置の一実施態様を示す模式図である。図1に示す装置は、単槽の発酵槽1、該発酵槽1と連結し該発酵槽1内にバイオマス71を供給するためのバイオマス供給手段2、該発酵槽1と連結し該発酵槽1内で発生するバイオガス72を該発酵槽1外に回収するためのバイオガス回収手段3、および該発酵槽1と連結し該発酵槽1内で発生する発酵残渣73を該発酵槽1外に回収するための発酵残渣回収手段4を備え、該発酵槽1は、該発酵槽1内を上部11と下部12とに隔離する多孔隔壁13、該上部11および該下部12の内部をそれぞれ攪拌するための攪拌手段14、および該上部11内の発酵液を該下部12内に移送するための移送手段15を備える。
(Hydrogen methane fermentation equipment)
FIG. 1 is a schematic view showing an embodiment of the hydrogen methane fermentation apparatus of the present invention. The apparatus shown in FIG. 1 is connected with the fermenter 1 of a single tank, the biomass supply means 2 for connecting with the fermenter 1 and supplying the biomass 71 in the fermenter 1, the fermenter 1 The biogas recovery means 3 for recovering the biogas 72 generated inside the fermenter 1 and the fermentation residue 73 connected to the fermenter 1 and generated inside the fermenter 1 are out of the fermenter 1. Fermentation residue collecting means 4 for collecting is provided, and the fermenter 1 stirs the interior of the porous partition wall 13 separating the fermenter 1 into an upper part 11 and a lower part 12, and the upper part 11 and the lower part 12, respectively. And a transfer means 15 for transferring the fermentation liquor in the upper part 11 into the lower part 12.

図1に示す装置における物質の移動は、次の通りである。バイオマスは、バイオマス供給手段2によって発酵槽1内に供給される。発酵槽1内では、バイオマスを基質として、発酵槽内の微生物により、上部11において主として水素発酵が行われ、下部12において主としてメタン発酵が行われる。上部11内の発酵液の一部は、移送手段15によって下部12内に移送される。これにより、発酵槽1内には発酵液の上昇流が生じる。多孔隔壁13は、多孔を有するため、上昇流を遮断しない。水素発酵では水素ガスと二酸化炭素ガスとが発生し、メタン発酵ではメタンガスと二酸化炭素ガスとが発生する。上部11内には、上方に発酵液が存在しないガス相がある。上部11内で発生した水素ガスおよび二酸化炭素からなる混合ガスは、上部11内の上方にあるガス相を経てバイオガス回収手段3によって発酵槽1外に回収される。下部12内で発生したメタンガスおよび二酸化炭素ガスからなる混合ガスは、発酵液の上昇流とともに多孔隔壁13の孔を通過して発酵槽1内を上昇し、その後上部11内の上方にあるガス相を経てバイオガス回収手段3によって発酵槽1外に回収される。下部12内で発生した混合ガスが上部11内を上昇する際に、発酵液が曝気されて発酵液中の水素分圧が低下し、水素発酵の発酵効率が上昇する。発酵残渣は、発酵残渣回収手段4によって発酵槽1外に回収される。   The movement of the substance in the apparatus shown in FIG. 1 is as follows. Biomass is supplied into the fermenter 1 by the biomass supply means 2. In the fermenter 1, hydrogen fermentation is mainly performed in the upper part 11 and methane fermentation is mainly performed in the lower part 12 by the microorganisms in the fermenter using biomass as a substrate. A part of the fermentation broth in the upper part 11 is transferred into the lower part 12 by the transfer means 15. Thereby, the upward flow of a fermentation liquid arises in the fermenter 1. FIG. Since the porous partition wall 13 is porous, it does not block the upward flow. In hydrogen fermentation, hydrogen gas and carbon dioxide gas are generated, and in methane fermentation, methane gas and carbon dioxide gas are generated. In the upper part 11, there is a gas phase in which no fermentation liquid exists. A mixed gas composed of hydrogen gas and carbon dioxide generated in the upper part 11 is recovered outside the fermenter 1 by the biogas recovery means 3 through a gas phase located in the upper part of the upper part 11. A mixed gas composed of methane gas and carbon dioxide gas generated in the lower part 12 passes through the pores of the porous partition wall 13 along with the rising flow of the fermentation broth and rises in the fermenter 1, and then the gas phase above the upper part 11. After that, the biogas recovery means 3 recovers the fermenter 1 outside. When the mixed gas generated in the lower part 12 rises in the upper part 11, the fermentation liquid is aerated, the hydrogen partial pressure in the fermentation liquid is lowered, and the fermentation efficiency of hydrogen fermentation is increased. The fermentation residue is recovered outside the fermenter 1 by the fermentation residue recovery means 4.

発酵槽1の形状は、特に限定されないが、好ましくは円筒の形状である。より好ましくは縦長の形状であり、さらに好ましくは円筒の高さと直径との比は2:1〜4:1である。このような形状にすることにより、発酵槽1内の上下方向の物質移動が制限され、上下方向の濃度分布が生じ、上部11における水素発酵と下部12におけるメタン発酵とが同時並行に行われる。   The shape of the fermenter 1 is not particularly limited, but is preferably a cylindrical shape. More preferably, it is a vertically long shape, and more preferably the ratio of the height and diameter of the cylinder is 2: 1 to 4: 1. By adopting such a shape, the mass transfer in the vertical direction in the fermenter 1 is restricted, a vertical concentration distribution is generated, and hydrogen fermentation in the upper part 11 and methane fermentation in the lower part 12 are performed in parallel.

発酵槽1の大きさは特に限定されないが、円筒の形状の場合、直径は最大で3.6m、円筒の高さは、好ましくは8〜12mである。このような大きさにすることにより、発酵槽1を寝かせてトラックの荷台に載せることができる。   Although the magnitude | size of the fermenter 1 is not specifically limited, In the case of a cylinder shape, a diameter is 3.6 m at the maximum, and the height of a cylinder becomes like this. Preferably it is 8-12 m. By setting it as such a magnitude | size, the fermenter 1 can be laid down and it can mount on the loading platform of a truck.

多孔隔壁13は、上部11と下部12との間の物質移動を遮断しないが制限する役割を果たす。多孔隔壁13の位置は、特に限定されないが、好ましくは発酵槽1の下端面と上端面との距離と、発酵槽1の下端面と多孔隔壁13との距離との比は、10:7〜10:8である。これは、水素発酵のHRTが約2日、メタン発酵のHRTが10〜20日であるためである。   The porous partition wall 13 serves to limit, but does not block, the mass transfer between the upper part 11 and the lower part 12. The position of the porous partition wall 13 is not particularly limited, but preferably the ratio of the distance between the lower end surface and the upper end surface of the fermenter 1 and the distance between the lower end surface of the fermenter 1 and the porous partition wall 13 is 10: 7 to 10: 8. This is because the HRT for hydrogen fermentation is about 2 days and the HRT for methane fermentation is 10 to 20 days.

多孔隔壁13の孔の内径は、特に限定されないが、好ましくは50〜100mmである。このような内径にすることにより、上部11と下部12との間の物質移動が制限されるが、発酵液の上昇流は遮断されない。また、バイオマス中の固形物が多孔隔壁13の孔に引っかかることなく、下部12内に移動することができる。   Although the internal diameter of the hole of the porous partition wall 13 is not specifically limited, Preferably it is 50-100 mm. By setting it as such an internal diameter, the mass transfer between the upper part 11 and the lower part 12 is restrict | limited, but the upward flow of a fermentation liquid is not interrupted | blocked. Further, the solid matter in the biomass can move into the lower portion 12 without being caught in the holes of the porous partition wall 13.

攪拌手段は特に限定されない。攪拌手段としては、例えば、回転翼、ポンプ、ブロワが挙げられる。回転翼は機械式攪拌に用いられ、ブロワはガス攪拌に用いられ、ポンプは循環攪拌に用いられる。   The stirring means is not particularly limited. As a stirring means, a rotary blade, a pump, and a blower are mentioned, for example. The rotary blade is used for mechanical stirring, the blower is used for gas stirring, and the pump is used for circulating stirring.

図1に示す攪拌手段は回転翼14である。回転翼の形状および大きさは、特に限定されない。回転翼14の発酵槽1における取り付け位置は、特に限定されない。図1は、回転翼14の軸が発酵槽1の円筒形状の中心に位置するように取り付けられた実施態様を示す。図4は、下部12における攪拌手段として、回転翼14の軸が発酵槽1の円筒形状の側面に取り付けられた実施態様を示す。   The stirring means shown in FIG. The shape and size of the rotor blade are not particularly limited. The attachment position in the fermenter 1 of the rotary blade 14 is not specifically limited. FIG. 1 shows an embodiment in which the axis of the rotary blade 14 is mounted so as to be located at the center of the cylindrical shape of the fermenter 1. FIG. 4 shows an embodiment in which the shaft of the rotary blade 14 is attached to the cylindrical side surface of the fermenter 1 as a stirring means in the lower part 12.

図2および3に示す上部11における攪拌手段はブロワ16である。ブロワ16は、上部11内の上方にあるガス相からバイオガスを吸入し、上部11内の発酵液中に吐出する。バイオガスの吐出により、発酵液が曝気される。図3は、ブロワ16の配管の途中に水素ガス分離膜17を設けた実施態様を示す。水素ガス分離膜17によりバイオガスから水素ガス74を分離して残ったガスを上部11内の発酵液中に吐出することにより、発酵液が曝気されて発酵液中の水素分圧が低下し、水素発酵の発酵効率が上昇する。   The stirring means in the upper part 11 shown in FIGS. The blower 16 sucks biogas from the gas phase above the upper portion 11 and discharges it into the fermentation broth in the upper portion 11. The fermentation liquor is aerated by discharging the biogas. FIG. 3 shows an embodiment in which a hydrogen gas separation membrane 17 is provided in the middle of the piping of the blower 16. By discharging the hydrogen gas 74 separated from the biogas by the hydrogen gas separation membrane 17 into the fermentation broth in the upper portion 11, the fermentation broth is aerated and the hydrogen partial pressure in the fermentation broth is reduced. Fermentation efficiency of hydrogen fermentation increases.

移送手段15としては、上部11内の発酵液を下部12内に移送することができる限り、特に限定されない。好ましくはポンプを用いる。移送手段15の発酵槽1における取り付け位置は、上部11内の発酵液を下部12内に移送することができる限り、特に限定されない。好ましくは、発酵槽1内の培養液の流れに影響を及ぼさないように、発酵槽1外に取り付ける。上部11における取り付け位置は、好ましくは多孔隔壁13の上側近傍である。下部12における取り付け位置は、好ましくは発酵槽1の下端面の上側近傍である。   The transfer means 15 is not particularly limited as long as the fermentation broth in the upper part 11 can be transferred into the lower part 12. Preferably a pump is used. The attachment position in the fermenter 1 of the transfer means 15 is not specifically limited as long as the fermentation liquid in the upper part 11 can be transferred into the lower part 12. Preferably, it attaches outside the fermenter 1 so that the flow of the culture solution in the fermenter 1 is not affected. The attachment position in the upper part 11 is preferably in the vicinity of the upper side of the porous partition wall 13. The attachment position in the lower part 12 is preferably near the upper side of the lower end surface of the fermenter 1.

バイオマス供給手段2としては、バイオマスを発酵槽1内に供給することができる限り、特に限定されない。バイオマス供給手段2の発酵槽1における取り付け位置は、発酵槽1の上部11である限り、特に限定されない。   The biomass supply means 2 is not particularly limited as long as biomass can be supplied into the fermenter 1. The attachment position in the fermenter 1 of the biomass supply means 2 is not specifically limited as long as it is the upper part 11 of the fermenter 1.

バイオガス回収手段3としては、発酵槽1内の発酵により発生するバイオガスを発酵槽1外に回収することができる限り、特に限定されない。バイオガス回収手段3の発酵槽1における取り付け位置は、特に限定されないが、発酵槽1の上部11内の上方のガス相からバイオガスを回収できる位置に取り付ける。   The biogas recovery means 3 is not particularly limited as long as biogas generated by fermentation in the fermenter 1 can be recovered outside the fermenter 1. Although the attachment position in the fermenter 1 of the biogas collection | recovery means 3 is not specifically limited, It attaches to the position which can collect | recover biogas from the upper gas phase in the upper part 11 of the fermenter 1. FIG.

発酵残渣回収手段4としては、発酵槽1内の発酵により発生する発酵残渣を発酵槽1外に回収することができる限り、特に限定されない。発酵残渣回収手段4の発酵槽1における取り付け位置は、多孔隔壁13の下方である限り、特に限定されない。   The fermentation residue collection means 4 is not particularly limited as long as the fermentation residue generated by fermentation in the fermentation tank 1 can be collected outside the fermentation tank 1. The attachment position of the fermentation residue collection means 4 in the fermentation tank 1 is not particularly limited as long as it is below the porous partition wall 13.

(水素メタン発酵方法)
本発明の方法は、上記装置内にバイオマスを連続的または間欠的に供給し、該装置内で水素発酵とメタン発酵とを連続的に行い、そして該装置内からバイオガスおよび発酵残渣を連続的または間欠的に回収する工程を含む。
(Hydrogen methane fermentation method)
In the method of the present invention, biomass is continuously or intermittently supplied into the apparatus, hydrogen fermentation and methane fermentation are continuously performed in the apparatus, and biogas and fermentation residue are continuously supplied from the apparatus. Or the process of collect | recovering intermittently is included.

(バイオマスの供給)
バイオマスを適度な含水率(〜90%)に調整し、温度調整する。温度調整は、中温域(30〜40℃)または高温域(50〜60℃)のいずれかにすることが好ましいが、いずれにしても構わない。このように調整したバイオマスを、バイオマス供給手段2によって発酵槽1の上部11内に連続的または間欠的に供給する。供給速度は、特に限定されない。間欠的に供給する場合、数時間毎に供給と供給停止をくり返す。
(Biomass supply)
The biomass is adjusted to an appropriate water content (˜90%) and the temperature is adjusted. The temperature adjustment is preferably in either the intermediate temperature range (30 to 40 ° C.) or the high temperature range (50 to 60 ° C.), but may be any. The biomass thus adjusted is continuously or intermittently supplied into the upper portion 11 of the fermenter 1 by the biomass supply means 2. The supply speed is not particularly limited. When supplying intermittently, supply and supply stop are repeated every few hours.

(水素発酵)
水素発酵は、主として発酵槽1の上部11内で行われる。
(Hydrogen fermentation)
Hydrogen fermentation is mainly performed in the upper part 11 of the fermenter 1.

発酵槽1の上部11内では、バイオマス中に含まれる炭水化物、タンパク質、脂質を基質として、微生物による加水分解および水素発酵が行われる。主として炭水化物を基質とする水素発酵により水素ガスおよび二酸化炭素ガスが発生する。   In the upper part 11 of the fermenter 1, hydrolysis and hydrogen fermentation by microorganisms are performed using carbohydrates, proteins, and lipids contained in the biomass as substrates. Hydrogen gas and carbon dioxide gas are generated mainly by hydrogen fermentation using carbohydrate as a substrate.

水素発酵に用いられる微生物としては、嫌気性非光合成微生物群あるいは純粋菌が挙げられる。水素生成能を有する微生物群または純粋菌である限り、特に限定されない。好ましくは水素生成能を有する微生物群であり、例えば、生ごみや下水汚泥のメタン発酵後の汚泥中に存在する微生物群、あるいはその培養物である。   Microorganisms used for hydrogen fermentation include anaerobic non-photosynthetic microorganisms or pure bacteria. It is not particularly limited as long as it is a microbial group having a hydrogen generating ability or a pure bacterium. Preferably, it is a group of microorganisms having hydrogen generation ability, for example, a group of microorganisms present in sludge after methane fermentation of garbage or sewage sludge, or a culture thereof.

水素発酵は、一般的に30〜60℃、好ましくは35℃付近または55℃付近で行われる。水素発酵は、一般的にpH4.5〜6.5、好ましくはpH5〜6で行われる。バイオマス供給手段2により発酵槽1の上部11内に供給されるバイオマスはpH4.5以下であるが、pHが高い下部12内の発酵液が上昇流により上部11内に移動し、上部11内の発酵液と混合するため、上部11内の発酵液のpHは、水素発酵に適したpH5〜6に維持される。必要に応じてpH調整剤の添加によってpH調整を行ってもよい。   Hydrogen fermentation is generally performed at 30 to 60 ° C, preferably around 35 ° C or around 55 ° C. Hydrogen fermentation is generally carried out at pH 4.5 to 6.5, preferably at pH 5 to 6. The biomass supplied into the upper part 11 of the fermenter 1 by the biomass supply means 2 has a pH of 4.5 or less, but the fermentation liquid in the lower part 12 having a high pH moves into the upper part 11 by the upward flow, In order to mix with a fermentation broth, the pH of the fermentation broth in the upper part 11 is maintained at pH 5-6 suitable for hydrogen fermentation. You may adjust pH by adding a pH adjuster as needed.

発酵槽1の上部11内では、攪拌手段により発酵液を適度に攪拌する。上部11内の攪拌の主目的は、発酵基質表面に発生するスカムの除去であり、発酵液の均一化は付随的なものである。図1に示すように、発酵液の流れ62は多孔隔壁13の表面で放射状に広がり、壁面にあたると壁面を伝う上昇流となる。しかし、上昇流は壁面の摩擦のため徐々に減衰し、中心部に向かう流れと合流し、中心部で下降流に変化する。   In the upper part 11 of the fermenter 1, the fermented liquid is appropriately stirred by a stirring means. The main purpose of stirring in the upper part 11 is to remove scum generated on the surface of the fermentation substrate, and the homogenization of the fermentation broth is incidental. As shown in FIG. 1, the fermentation liquid flow 62 spreads radially on the surface of the porous partition wall 13, and when it hits the wall surface, it becomes an upward flow that propagates through the wall surface. However, the upward flow gradually attenuates due to the friction of the wall surface, merges with the flow toward the center, and changes to the downward flow at the center.

上部11と下部12との間の物質移動は多孔隔壁13により制限されているが、上部11内の発酵液が多孔隔壁13の孔を通過して下部12内にあまり進入しない程度に攪拌する。攪拌手段としては、例えば、回転翼、ポンプ、ブロワが挙げられる。図1に示す攪拌手段は回転翼14である。図2および3に示す上部11における攪拌手段はブロワ16である。攪拌は、間欠的に行ってもよい。   Although the mass transfer between the upper part 11 and the lower part 12 is restricted by the porous partition wall 13, stirring is performed to such an extent that the fermentation liquid in the upper part 11 does not enter the lower part 12 through the holes of the porous partition wall 13. As a stirring means, a rotary blade, a pump, and a blower are mentioned, for example. The stirring means shown in FIG. The stirring means in the upper part 11 shown in FIGS. Stirring may be performed intermittently.

図3に示すように、ブロワ16の配管の途中に水素ガス分離膜17を設け、水素ガス分離膜17によりバイオガスから水素ガスを分離して残ったガスを上部11内の発酵液中に吐出することにより、発酵液が曝気されて発酵液中の水素分圧が低下し、水素発酵の発酵効率が上昇する。   As shown in FIG. 3, a hydrogen gas separation membrane 17 is provided in the middle of the piping of the blower 16, and the hydrogen gas is separated from the biogas by the hydrogen gas separation membrane 17 and the remaining gas is discharged into the fermentation broth in the upper portion 11. By doing so, the fermentation broth is aerated, the hydrogen partial pressure in the fermentation broth is reduced, and the fermentation efficiency of hydrogen fermentation is increased.

緩やかに攪拌することで、発酵槽1の上部11内の上下方向に物質の緩やかな濃度分布ができる。上部11内では、物質の濃度が低く、微生物濃度も低くなるが、水素発酵を行う微生物は増殖速度が速いため、微生物濃度が水素発酵の律速条件になることはない。   By gently stirring, a gentle concentration distribution of the substance in the vertical direction in the upper part 11 of the fermenter 1 can be made. In the upper part 11, the substance concentration is low and the microorganism concentration is also low. However, since the microorganisms that perform hydrogen fermentation have a high growth rate, the microorganism concentration does not become a rate-determining condition for hydrogen fermentation.

次に、水素発酵の発酵残渣を上部11内の発酵液の一部として移送手段15によって下部12内に移送する。移送速度は、特に限定されない。間欠的に移送する場合、数時間ごとに移送と移送停止をくり返す。   Next, the fermentation residue of hydrogen fermentation is transferred into the lower part 12 by the transfer means 15 as a part of the fermentation liquid in the upper part 11. The transfer speed is not particularly limited. When transferring intermittently, repeat transfer and transfer stop every few hours.

上部11内の発酵液の移送により、下部12内の発酵液が上部11内に押出され、上昇流が発生し、発酵槽1内で発酵液が適度に循環する。下部12内の発酵液は上部11内に移動し、上部11内の発酵液と混合する。下部12内の発酵液はpHが高いため、上部11内の発酵液のpHは、水素発酵に適したpH5〜6に維持される。また、下部12内の発酵液は下部12内で行われるメタン発酵でバイオガスが発生し、それが多孔隔壁13を通過して上昇流となるため、上部11内の発酵液の水素分圧が低下し、水素発酵の発酵効率が上昇する。   By the transfer of the fermentation broth in the upper portion 11, the fermentation broth in the lower portion 12 is extruded into the upper portion 11, an upward flow is generated, and the fermentation broth is circulated appropriately in the fermenter 1. The fermentation broth in the lower part 12 moves into the upper part 11 and mixes with the fermentation liquid in the upper part 11. Since the fermentation broth in the lower part 12 has a high pH, the pH of the fermentation broth in the upper part 11 is maintained at pH 5-6 suitable for hydrogen fermentation. Moreover, since the biogas is generated in the fermentation liquid in the lower part 12 by methane fermentation performed in the lower part 12 and passes through the porous partition wall 13 and becomes an upward flow, the hydrogen partial pressure of the fermentation liquid in the upper part 11 is increased. The fermentation efficiency of hydrogen fermentation increases.

(メタン発酵)
メタン発酵は、主として発酵槽1の下部12内で行われる。
(Methane fermentation)
Methane fermentation is mainly performed in the lower part 12 of the fermenter 1.

移送手段15によって下部12内に移送された上部11の発酵液中に含まれる水素発酵の副生物の有機酸(酢酸、ギ酸、乳酸、酪酸、プロピオン酸など)、あるいは水素発酵に利用されなかった炭水化物、タンパク質、脂質などを基質として、微生物によるメタン発酵が行われる。メタン発酵によりメタンガスおよび二酸化炭素ガスが発生する。   By-product organic acid (acetic acid, formic acid, lactic acid, butyric acid, propionic acid, etc.) contained in the fermentation liquid of the upper part 11 transferred into the lower part 12 by the transfer means 15 or not used for hydrogen fermentation Methane fermentation by microorganisms is performed using carbohydrates, proteins, lipids, etc. as substrates. Methane gas and carbon dioxide gas are generated by methane fermentation.

メタン発酵に用いられる微生物としては、活性汚泥や消化汚泥を嫌気条件下で集積培養したものが挙げられる。   Examples of microorganisms used for methane fermentation include activated sludge and digested sludge accumulated and cultured under anaerobic conditions.

メタン発酵は、一般的に25〜65℃、好ましくは30〜40℃、高温菌の場合は50〜60℃で行われる。メタン発酵は、一般的にpH5〜10、好ましくは7〜9のアルカリ側で行われる。必要に応じてpH調整剤の添加によってpH調整を行ってもよい。   Methane fermentation is generally performed at 25 to 65 ° C, preferably 30 to 40 ° C, and in the case of thermophilic bacteria, 50 to 60 ° C. Methane fermentation is generally carried out on the alkaline side at pH 5-10, preferably 7-9. You may adjust pH by adding a pH adjuster as needed.

発酵槽1の下部12内では、攪拌手段により発酵液を適度に攪拌する。下部12内の攪拌の主目的は、沈殿の発生防止であり、発酵液の均一化は付随的なものである。図1に示すように、発酵液の流れ62は発酵槽1の下端面で放射状に広がり、壁面にあたると壁面を伝う上昇流となる。しかし、上昇流は壁面の摩擦のため徐々に減衰し、中心部に向かう流れと合流し、中心部で下降流に変化する。   In the lower part 12 of the fermenter 1, the fermented liquid is appropriately stirred by stirring means. The main purpose of stirring in the lower part 12 is to prevent precipitation, and the homogenization of the fermentation broth is incidental. As shown in FIG. 1, the fermented liquid flow 62 spreads radially at the lower end surface of the fermenter 1. However, the upward flow gradually attenuates due to the friction of the wall surface, merges with the flow toward the center, and changes to the downward flow at the center.

上部11と下部12との間の物質移動は多孔隔壁13により制限されているが、下部12内の発酵液が多孔隔壁13の孔を通過して上部12内にあまり進入しない程度に攪拌する。攪拌手段としては、例えば、回転翼、ポンプ、ブロワが挙げられる。図1に示す攪拌手段は回転翼14である。図4には、下部12における攪拌手段として、回転翼14の軸が発酵槽1の円筒形状の側面に取り付けられた実施態様を示す。攪拌は、間欠的に行ってもよい。   Although the mass transfer between the upper part 11 and the lower part 12 is restricted by the porous partition wall 13, stirring is performed to such an extent that the fermentation liquid in the lower part 12 does not enter the upper part 12 through the holes of the porous partition wall 13. As a stirring means, a rotary blade, a pump, and a blower are mentioned, for example. The stirring means shown in FIG. FIG. 4 shows an embodiment in which the shaft of the rotary blade 14 is attached to the cylindrical side surface of the fermenter 1 as a stirring means in the lower part 12. Stirring may be performed intermittently.

緩やかに攪拌することで、発酵槽1の下部12内の上下方向に物質の濃度分布ができる。下部12内では、物質の濃度が高く、微生物が高濃度に存在するため、効率よくメタン発酵が行われる。   By gently stirring, the concentration distribution of the substance can be made in the vertical direction in the lower part 12 of the fermenter 1. In the lower part 12, since the concentration of the substance is high and the microorganisms are present at a high concentration, methane fermentation is performed efficiently.

(バイオガスおよび発酵残渣の回収)
水素発酵で発生した水素ガスおよび二酸化炭素からなる混合ガスは、上部11内の上方にあるガス相に移行する。また、メタン発酵で発生したメタンガスおよび二酸化炭素からなる混合ガスは、多孔隔壁13の孔を通過して、上部11内を経由して上部11内の上方にあるガス相に移行する。これらのバイオガスを、上部11内の上方にあるガス相からバイオガス回収手段3によって発酵槽1外に連続的に回収する。バイオガスは、そのまま貯留してもよく、二酸化炭素を除去した後、貯留してもよい。
(Recovery of biogas and fermentation residue)
The mixed gas composed of hydrogen gas and carbon dioxide generated by hydrogen fermentation shifts to the upper gas phase in the upper portion 11. In addition, the mixed gas composed of methane gas and carbon dioxide generated by methane fermentation passes through the holes of the porous partition wall 13 and moves to the gas phase above the upper portion 11 through the upper portion 11. These biogas are continuously recovered out of the fermenter 1 by the biogas recovery means 3 from the gas phase in the upper part 11. Biogas may be stored as it is, or may be stored after removing carbon dioxide.

水素発酵およびメタン発酵に利用されなかった物質を含む発酵残渣を、発酵残渣回収手段4によって発酵槽1外に連続的または間欠的に回収する。   The fermentation residue containing substances that have not been used for hydrogen fermentation and methane fermentation is continuously or intermittently recovered outside the fermenter 1 by the fermentation residue recovery means 4.

本発明の方法では、滞留時間は、好ましくは5〜25日、より好ましくは10〜20日である。   In the method of the present invention, the residence time is preferably 5 to 25 days, more preferably 10 to 20 days.

以下に、実施例を挙げて本発明を説明するが、本発明は以下の実施例に限定されない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the following examples.

(実施例1)
図1に示すような、高さ12mおよび直径3.5mの円筒形状で、円筒の下端面から8.4mの高さに多孔隔壁13を有する発酵槽1を備えた水素メタン発酵装置に芋焼酎粕(固形物濃度6.0%、有機物濃度5.4%)5ton/dayを連続的に供給して水素発酵とメタン発酵とを連動して行った。有機物濃度は、芋焼酎粕を乾燥後、600℃にて2時間加熱する強熱減量試験の結果から算出した。発酵槽内の発酵液の液面の高さは、円筒の下端面から10.5mであった。攪拌は、1時間ごとに運転と停止とを繰り返すように間欠的に行った。水素発酵は、35℃にて、pHをpH5.2に制御して行った。メタン発酵は、35℃にて、pHを制御せずに行った。ガス発生量は容積式ガス流量計を用いて測定し、ガス成分はガスクロマトグラフィによって測定した。結果を表1に示す。
Example 1
As shown in FIG. 1, a soy shochu is added to a hydrogen methane fermentation apparatus having a fermenter 1 having a cylindrical shape with a height of 12 m and a diameter of 3.5 m and having a porous partition wall 13 at a height of 8.4 m from the lower end surface of the cylinder. Hydrogen fermentation and methane fermentation were performed in an interlocked manner by continuously supplying 5 tons / day of koji (solids concentration 6.0%, organic matter concentration 5.4%). The organic substance concentration was calculated from the result of an ignition loss test in which the shochu shochu was dried and then heated at 600 ° C. for 2 hours. The height of the liquid level of the fermentation liquid in the fermenter was 10.5 m from the lower end surface of the cylinder. Stirring was performed intermittently so that operation and stop were repeated every hour. Hydrogen fermentation was performed at 35 ° C. with the pH adjusted to pH 5.2. Methane fermentation was performed at 35 ° C. without controlling the pH. The amount of gas generated was measured using a positive displacement gas flow meter, and the gas component was measured by gas chromatography. The results are shown in Table 1.

Figure 0005778949
Figure 0005778949

(実施例2)
芋焼酎粕に代えて麦焼酎粕(固形物濃度10.5%、有機物濃度10.0%)を用いたこと以外は、実施例1と同様にして、水素発酵とメタン発酵とを連動して行った。結果を表1に示す。
(Example 2)
Hydrogen fermentation and methane fermentation are linked in the same manner as in Example 1 except that barley shochu (solids concentration 10.5%, organic matter concentration 10.0%) is used instead of shochu shochu. went. The results are shown in Table 1.

(比較例1)
水素メタン発酵装置に代えて完全混合槽型発酵装置を用いたこと以外は、実施例1と同様にして、発酵を行った。結果を表1に示す。
(Comparative Example 1)
Fermentation was carried out in the same manner as in Example 1 except that a complete mixing tank type fermentation apparatus was used instead of the hydrogen methane fermentation apparatus. The results are shown in Table 1.

(比較例2)
水素メタン発酵装置に代えて完全混合槽型発酵装置を用いたこと以外は、実施例2と同様にして、発酵を行った。結果を表1に示す。
(Comparative Example 2)
Fermentation was carried out in the same manner as in Example 2 except that a complete mixing tank type fermentation apparatus was used instead of the hydrogen methane fermentation apparatus. The results are shown in Table 1.

表1から明らかなように、芋焼酎粕または麦焼酎粕のいずれを用いた場合も、水素メタン発酵装置では、完全混合槽型発酵装置と比べて、発酵により発生した水素ガス、メタンガスまたはこれらを含むバイオガスのいずれのガスも量が多いことがわかる。特に、水素ガスの量は顕著に多いことがわかる。このように、本発明の水素メタン発酵装置を用いれば、水素発酵とメタン発酵とを効率よく行うことができることがわかった。   As is clear from Table 1, when either shochu shochu or barley shochu is used, the hydrogen methane fermentation apparatus uses hydrogen gas, methane gas, or these generated by fermentation as compared with a complete mixing tank type fermentation apparatus. It can be seen that the amount of any of the contained biogas is large. It can be seen that the amount of hydrogen gas is particularly large. Thus, it was found that hydrogen fermentation and methane fermentation can be performed efficiently by using the hydrogen methane fermentation apparatus of the present invention.

本発明によれば、水素発酵とメタン発酵とを効率よく行うための装置および方法を提供することができる。本発明の装置は、単槽の発酵槽を備えるため、製造コストを抑制することができる。また、高い発酵効率をもたらすため、サイズを小さくすることができ、組立て後に設置場所に陸上輸送することができるため、製造コストをさらに抑制することができる。本発明の方法は、バイオマスからバイオガスを効率よく回収できるため、環境汚染の防止とエネルギーの再生産とに寄与することができる。   ADVANTAGE OF THE INVENTION According to this invention, the apparatus and method for performing hydrogen fermentation and methane fermentation efficiently can be provided. Since the apparatus of the present invention includes a single fermenter, the production cost can be reduced. Moreover, since high fermentation efficiency is brought about, size can be made small and since it can be transported by land to an installation place after an assembly, manufacturing cost can further be suppressed. Since the method of the present invention can efficiently recover biogas from biomass, it can contribute to prevention of environmental pollution and energy reproduction.

1 発酵槽
11 発酵層内上部
12 発酵層内下部
13 多孔隔壁
14 回転翼
15 移送手段
16 ブロワ
17 水素ガス分離膜
2 バイオマス供給手段
3 バイオガス回収手段
4 発酵残渣回収手段
5 水素ガス
61 発酵液面
62 発酵液の流れ
71 バイオマス
72 バイオガス
73 発酵残渣
74 水素ガス
DESCRIPTION OF SYMBOLS 1 Fermenter 11 Upper part in fermentation layer 12 Lower part in fermentation layer 13 Porous partition 14 Rotary blade 15 Transfer means 16 Blower 17 Hydrogen gas separation membrane 2 Biomass supply means 3 Biogas recovery means 4 Fermentation residue recovery means 5 Hydrogen gas 61 Fermentation liquid level 62 Flow of fermentation broth 71 Biomass 72 Biogas 73 Fermentation residue 74 Hydrogen gas

Claims (9)

水素発酵とメタン発酵とを連動して行うための水素メタン発酵装置であって、
該装置が、単槽の発酵槽、該発酵槽と連結し該発酵槽内にバイオマスを供給するためのバイオマス供給手段、該発酵槽と連結し該発酵槽内で発生するバイオガスを該発酵槽外に回収するためのバイオガス回収手段、および該発酵槽と連結し該発酵槽内で発生する発酵残渣を該発酵槽外に回収するための発酵残渣回収手段を備え、
該発酵槽が、該発酵槽内を水素発酵用上部とメタン発酵用下部とに隔離し、かつバイオマス中の固形物が下部に移動できる多孔隔壁、該上部および該下部の内部をそれぞれ攪拌するための攪拌手段、および該上部内の発酵液を該下部内に移送するための移送手段を備える、装置。
A hydrogen methane fermentation apparatus for performing hydrogen fermentation and methane fermentation in conjunction with each other,
The apparatus is a single fermenter, biomass supply means for connecting to the fermenter and supplying biomass into the fermenter, and biogas generated in the fermenter connected to the fermenter. A biogas recovery means for recovering outside, and a fermentation residue recovery means for recovering the fermentation residue generated in the fermenter connected to the fermenter to the outside of the fermenter,
The fermenter isolates the inside of the fermenter into an upper part for hydrogen fermentation and a lower part for methane fermentation , and a porous partition wall capable of moving solids in biomass to the lower part, for stirring the inside of the upper part and the lower part, respectively. And a transfer means for transferring the fermentation broth in the upper part into the lower part.
前記発酵槽が円筒の形状であり、該円筒の高さと直径との比が2:1〜4:1である、請求項1に記載の装置。   The apparatus according to claim 1, wherein the fermenter has a cylindrical shape, and a ratio of the height and diameter of the cylinder is 2: 1 to 4: 1. 前記円筒の高さが、8〜12mである、請求項2に記載の装置。 The apparatus according to claim 2 , wherein the cylinder has a height of 8 to 12 m. 前記発酵槽の下端面と上端面との距離と、前記発酵槽の下端面と前記隔壁との距離との比が、10:7〜10:8である、請求項1から3のいずれかの項に記載の装置。   The ratio of the distance between the lower end surface and the upper end surface of the fermenter and the distance between the lower end surface of the fermenter and the partition wall is 10: 7 to 10: 8. The device according to item. 前記隔壁の孔の内径が、50〜100mmである、請求項1から4のいずれかの項に記載の装置。   The device according to any one of claims 1 to 4, wherein an inner diameter of the hole of the partition wall is 50 to 100 mm. 前記攪拌手段が、回転翼、ポンプおよびブロワからなる群より選択される、請求項1から5のいずれかに記載の装置。   The apparatus according to claim 1, wherein the stirring means is selected from the group consisting of a rotor blade, a pump, and a blower. 水素発酵とメタン発酵とを連動して行うための方法であって、請求項1から6のいずれかに記載の装置内にバイオマスを連続的または間欠的に供給し、該装置内の上部で水素発酵と該装置内の下部でメタン発酵とを連続的に行い、そして該装置内からバイオガスおよび発酵残渣を連続的または間欠的に回収する工程を含む、方法。 A method for performing hydrogen fermentation and methane fermentation in conjunction with each other, wherein biomass is continuously or intermittently supplied into the apparatus according to any one of claims 1 to 6, and hydrogen is supplied at an upper portion in the apparatus. A method comprising continuously performing fermentation and methane fermentation at a lower part in the apparatus, and continuously or intermittently recovering biogas and fermentation residue from the apparatus. 前記工程で回収したバイオガスを前記装置内の発酵槽内にブロワすることにより該発酵槽内を攪拌する、請求項7に記載の方法。   The method of Claim 7 which stirs the inside of this fermenter by blowing the biogas collect | recovered at the said process in the fermenter in the said apparatus. 前記工程で回収したバイオガスから水素ガスを分離して残ったガスを前記装置内の発酵槽内にブロワすることにより該発酵槽内を攪拌する、請求項7または8に記載の方法。   The method of Claim 7 or 8 which stirs the inside of this fermenter by blowing the gas which isolate | separated hydrogen gas from the biogas collect | recovered at the said process into the fermenter in the said apparatus.
JP2011048263A 2011-03-04 2011-03-04 Hydrogen methane fermentation equipment Expired - Fee Related JP5778949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011048263A JP5778949B2 (en) 2011-03-04 2011-03-04 Hydrogen methane fermentation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011048263A JP5778949B2 (en) 2011-03-04 2011-03-04 Hydrogen methane fermentation equipment

Publications (2)

Publication Number Publication Date
JP2012183481A JP2012183481A (en) 2012-09-27
JP5778949B2 true JP5778949B2 (en) 2015-09-16

Family

ID=47014068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048263A Expired - Fee Related JP5778949B2 (en) 2011-03-04 2011-03-04 Hydrogen methane fermentation equipment

Country Status (1)

Country Link
JP (1) JP5778949B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140044463A (en) * 2012-10-05 2014-04-15 대우조선해양 주식회사 Biomass energy producing apparatus for passenger boat and producing method thereof
CN108220135A (en) * 2017-12-30 2018-06-29 郑州赫恩电子信息技术有限公司 It is a kind of to prevent the high-efficiency methane generator that material layering is sunk to the bottom
JP7051141B2 (en) * 2020-08-24 2022-04-11 バイオ畜産研究合同会社 A methane gas separator having a scum trap function and a methane fermentation purification system using the methane gas separator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066996A (en) * 1996-08-28 1998-03-10 Osaka Gas Co Ltd Formation of methane and device therefor
JP2001000998A (en) * 1999-06-22 2001-01-09 Mitsubishi Heavy Ind Ltd Apparatus and method for methane fermentation of organic waste
JP2002263699A (en) * 2001-03-12 2002-09-17 Sumitomo Heavy Ind Ltd Digester
JP2003019491A (en) * 2001-07-06 2003-01-21 Ataka Construction & Engineering Co Ltd Method for anaerobically treating eat and oil
JP3706076B2 (en) * 2002-02-28 2005-10-12 株式会社西原環境テクノロジー Hydrogen fermentation equipment
JP2006205030A (en) * 2005-01-27 2006-08-10 Fuji Electric Holdings Co Ltd Method and apparatus for methane fermentation
JP2007054731A (en) * 2005-08-24 2007-03-08 Taisei Corp Methane gas recovery apparatus

Also Published As

Publication number Publication date
JP2012183481A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
Singh et al. Application of polyethylene glycol immobilized Clostridium sp. LS2 for continuous hydrogen production from palm oil mill effluent in upflow anaerobic sludge blanket reactor
Fernandes et al. Potential to produce biohydrogen from various wastewaters
EP2391706B1 (en) Integrated system for hydrogen and methane production from industrial organic wastes and biomass
CN102703514B (en) Kitchen waste disposal method and anaerobic fermentation reaction device
US8283159B2 (en) Fermenter for producing biogas from organic material
JP5374044B2 (en) Hydrogen fermentation apparatus and method for producing hydrogen
WO2011017420A2 (en) Multi-phase, gas-lift bioreactor for generation of biogas or biofuel from organic material
TW201002818A (en) Process for the production of biogas
CN105776745A (en) Biological treatment method of high-ammonia nitrogen pig raising biogas slurry
CN102459563A (en) Bioreactor process for producing hydrogen from biomass
CN105152508B (en) Enhance sludge anaerobic installation for fermenting
JP5778949B2 (en) Hydrogen methane fermentation equipment
CN111348805A (en) Anaerobic treatment process for organic wastewater
KR102240142B1 (en) Apparatus for Biohydrogen Production using Dynamic Biofilm and Manufacturing method thereof
CN105836886A (en) Novel anaerobic membrane integrated biological reactor
CN1766119A (en) Production method and device of methane and hydrogen gas
JP2005066420A (en) Hydrogen and methane two-stage fermentation treatment method for waste bread
JP2004089858A (en) Organic waste processing method and apparatus
Najafpour et al. Bioconversion of cheese whey to methane in an upflow anaerobic packed bed bioreactor
JP2005218898A (en) Methane fermentation system
JP4354311B2 (en) Method and apparatus for anaerobic treatment of processing object containing cellulosic organic matter
JP2006314920A (en) Method for recovering energy from biomass
WO2012168341A1 (en) Waste digestion
CN1199876C (en) Method and device for treatment of organic waste water
CN202658153U (en) Anaerobic fermentation reaction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150710

R150 Certificate of patent or registration of utility model

Ref document number: 5778949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees