[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5776372B2 - Ignition control device for internal combustion engine - Google Patents

Ignition control device for internal combustion engine Download PDF

Info

Publication number
JP5776372B2
JP5776372B2 JP2011142779A JP2011142779A JP5776372B2 JP 5776372 B2 JP5776372 B2 JP 5776372B2 JP 2011142779 A JP2011142779 A JP 2011142779A JP 2011142779 A JP2011142779 A JP 2011142779A JP 5776372 B2 JP5776372 B2 JP 5776372B2
Authority
JP
Japan
Prior art keywords
feedback
switching element
ignition
igbt
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011142779A
Other languages
Japanese (ja)
Other versions
JP2013011181A (en
Inventor
伊藤 健治
健治 伊藤
竹田 俊一
俊一 竹田
鳥山 信
信 鳥山
剛 深沢
剛 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011142779A priority Critical patent/JP5776372B2/en
Publication of JP2013011181A publication Critical patent/JP2013011181A/en
Application granted granted Critical
Publication of JP5776372B2 publication Critical patent/JP5776372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Description

本発明は、内燃機関に搭載された点火コイルの一次コイルへの通電と遮断を制御する、内燃機関用点火制御装置に関する。   The present invention relates to an ignition control device for an internal combustion engine that controls energization and shut-off of a primary coil of an ignition coil mounted on the internal combustion engine.

内燃機関の点火装置は、一次コイルへの通電をIGBT(点火用スイッチング素子)で遮断することにより、二次電圧を昇圧して火花放電させる構成が一般的であるが、一次コイルの通電を遮断させることに伴い、電気ノイズ(遮断ノイズ)が生じる。   In general, an ignition device for an internal combustion engine has a configuration in which a secondary voltage is boosted and spark discharge is performed by interrupting energization of the primary coil with an IGBT (ignition switching element), but the energization of the primary coil is interrupted. As a result, electrical noise (blocking noise) is generated.

この遮断ノイズは、一次電流I1の遮断速度I1/dtを遅くすることで低減できる。そこで従来では、IGBTのゲートへの通電オフを開始した後、IGBTのコレクタ電位がゲート電位よりも所定以上高くなった時に、IGBTのコレクタからゲートへ帰還電流を流す回路(帰還回路)を設けている(特許文献1参照)。これによれば、ゲート通電オフの後、帰還電流によりゲート電位が持ち上げられるので、ゲート通電オフを開始してからゲート電圧がゼロになるまでのゲート電圧低下速度が遅くなる。そのため、前記遮断速度I1/dtを遅くすることができ、ひいては遮断ノイズの低減を実現できる。   This interruption noise can be reduced by slowing down the interruption speed I1 / dt of the primary current I1. Therefore, conventionally, a circuit (feedback circuit) is provided that allows a feedback current to flow from the collector of the IGBT to the gate when the collector potential of the IGBT becomes higher than the gate potential after the start of turning off the energization to the gate of the IGBT. (See Patent Document 1). According to this, since the gate potential is raised by the feedback current after the gate energization is turned off, the gate voltage decrease rate from when the gate energization is started until the gate voltage becomes zero becomes slow. For this reason, the shutoff speed I1 / dt can be slowed down, and thus the shutoff noise can be reduced.

特許第3917865号公報Japanese Patent No. 3917865

しかしながら、上記従来の帰還回路では、遮断ノイズが瞬時的に発生した後においても帰還電流を流すようになるので、遮断速度I1/dtを遅くする期間が過剰に長くなっていると言える。その結果、遮断ノイズを確実に低減できるものの、遮断速度I1/dtが遅いことに起因して二次電圧が低くなり、火花放電安定化の妨げとなる。また、このように遮断速度I1/dtが遅くなると、IGBTのゲートへの通電をオフしてから火花放電が為されるまでに要する時間(点火応答時間)が長くなる。   However, in the above-described conventional feedback circuit, a feedback current is allowed to flow even after the interruption noise is instantaneously generated. Therefore, it can be said that the period during which the interruption speed I1 / dt is delayed is excessively long. As a result, although the cut-off noise can be reliably reduced, the secondary voltage is lowered due to the low cut-off speed I1 / dt, which prevents the spark discharge from being stabilized. In addition, when the shutoff speed I1 / dt is reduced in this way, the time (ignition response time) required from when the IGBT is turned off to when spark discharge is performed becomes longer.

本発明は、上記課題を解決するためになされたものであり、その目的は、二次電圧の高圧化および点火応答時間の短縮と、遮断ノイズ低減との両立を図った内燃機関用点火制御装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide an internal combustion engine ignition control device that achieves both a high secondary voltage, a short ignition response time, and a cut-off noise reduction. Is to provide.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

第1の発明では、点火コイルを構成する一次コイルへの通電と遮断を制御する点火用スイッチング素子と、前記点火用スイッチング素子の入力端子と導通制御端子との間に接続され、前記入力端子の電圧を前記導通制御端子へ印加して帰還させるか否かを制御する帰還用スイッチング素子と、を備える。 In the first invention, the ignition switching element for controlling energization and interruption to the primary coil constituting the ignition coil, and connected between the input terminal and the conduction control terminal of the ignition switching element, And a feedback switching element that controls whether or not to apply a voltage to the conduction control terminal for feedback.

そして、前記点火用スイッチング素子のオフ作動に伴い前記入力端子に生じた遮断ノイズ電圧により、前記帰還用スイッチング素子の帰還入力端子および帰還導通制御端子間に存在する寄生コンデンサが充電され、この充電により前記帰還導通制御端子の制御電圧が上昇して前記帰還用スイッチング素子はオン作動するように構成され、かつ、前記寄生コンデンサが放電することにより前記制御電圧が下降して前記帰還用スイッチング素子はオフ作動するように構成されていることを特徴とする。   A parasitic capacitor existing between the feedback input terminal and the feedback conduction control terminal of the feedback switching element is charged by the cut-off noise voltage generated at the input terminal due to the off operation of the ignition switching element. The feedback switching element is configured to be turned on when the control voltage of the feedback conduction control terminal is increased, and when the parasitic capacitor is discharged, the control voltage is decreased and the feedback switching element is turned off. It is configured to operate.

以下、点火用スイッチング素子および帰還用スイッチング素子にIGBT(絶縁ゲートバイポーラトランジスタ)を採用した図1の例を参照して、上記発明について説明する。   The above invention will be described below with reference to the example of FIG. 1 in which an IGBT (insulated gate bipolar transistor) is employed for the ignition switching element and the feedback switching element.

上記発明は、点火用スイッチング素子(メインIGBT31)の入力端子(コレクタCm)から導通制御端子(ゲートGm)へ帰還電流を流すにあたり、帰還用スイッチング素子(サブIGBT32)の寄生コンデンサCparaを次のように利用したものである。   In the above invention, when a feedback current flows from the input terminal (collector Cm) of the ignition switching element (main IGBT 31) to the conduction control terminal (gate Gm), the parasitic capacitor Cpara of the feedback switching element (sub-IGBT 32) is set as follows. It was used for.

すなわち、メインIGBT31のオフ作動に伴い、一次コイルによって誘起される遮断ノイズ電圧がコレクタCmに生じるが、この遮断ノイズ電圧により寄生コンデンサCparaが充電され、この充電により帰還導通制御端子(ゲートGs)の制御電圧が上昇してサブIGBT32はオン作動するように構成されている。   That is, a cutoff noise voltage induced by the primary coil is generated in the collector Cm as the main IGBT 31 is turned off, and the parasitic capacitor Cpara is charged by this cutoff noise voltage, and this charging causes the feedback conduction control terminal (gate Gs) to be charged. The sub-IGBT 32 is configured to be turned on when the control voltage increases.

そのため、メインIGBT31のオフ作動に伴いサブIGBT32がオン作動して、メインIGBT31のコレクタCmからゲートGmへ帰還電流が流れる。その結果、ゲートGmの電位が持ち上げられてゲートGmの電圧低下速度が遅くなり、ひいては一次電流の遮断速度I1/dtが遅くなる。よって、遮断ノイズの低減を図ることができる。   Therefore, the sub IGBT 32 is turned on with the main IGBT 31 being turned off, and a feedback current flows from the collector Cm of the main IGBT 31 to the gate Gm. As a result, the potential of the gate Gm is raised, the voltage drop rate of the gate Gm is decreased, and the primary current cutoff rate I1 / dt is also decreased. Therefore, the cut-off noise can be reduced.

さらに上記発明では、寄生コンデンサCparaが充電された後、寄生コンデンサCparaが放電することによりサブIGBT32のゲートGsの制御電圧が下降して、サブIGBT32はオフ作動するように構成されている。   Further, in the above invention, the parasitic capacitor Cpara is charged and then the parasitic capacitor Cpara is discharged, whereby the control voltage of the gate Gs of the sub IGBT 32 is lowered, and the sub IGBT 32 is turned off.

そのため、遮断ノイズが生じると寄生コンデンサCparaの充電によりサブIGBT32がオン作動して帰還電流が流れ、その後直ぐに寄生コンデンサCparaが放電することにより、サブIGBT32がオフ作動して帰還電流が流れなくなる。したがって、遮断ノイズが生じている瞬間だけ帰還電流が流れるようになるので、一次電流の遮断速度I1/dtを遅くする期間を、遮断ノイズの発生時に合わせることができる。そのため、遮断ノイズの発生終了以降にも帰還電流を流す従来の手法に比べて、二次電圧の高圧化および点火応答時間の短縮を図ることができる。   For this reason, when cut-off noise occurs, the sub-IGBT 32 is turned on by the charging of the parasitic capacitor Cpara and a feedback current flows. Then, the parasitic capacitor Cpara is immediately discharged, so that the sub-IGBT 32 is turned off and the feedback current does not flow. Therefore, since the feedback current flows only at the moment when the cut-off noise is generated, the period during which the cut-off speed I1 / dt of the primary current is delayed can be matched with the occurrence of the cut-off noise. Therefore, it is possible to increase the secondary voltage and shorten the ignition response time as compared with the conventional method in which the feedback current is supplied even after the generation of the interruption noise.

以上により、上記発明によれば、遮断ノイズの発生時に合わせて帰還電流を流すので、二次電圧の高圧化および点火応答時間の短縮と、遮断ノイズ低減との両立を図ることができる。   As described above, according to the above-described invention, since the feedback current is caused to flow in accordance with the occurrence of the cut-off noise, it is possible to achieve both higher secondary voltage and shorter ignition response time and cut-off noise.

第2の発明では、前記寄生コンデンサのうち前記帰還導通制御端子の側から、前記帰還用スイッチング素子の帰還出力端子へ放電されるよう構成されており、前記帰還導通制御端子および前記帰還出力端子間に接続され、前記寄生コンデンサからの前記放電を抑制する放電抑制手段を備えることを特徴とする。 In the second invention, the parasitic capacitor is configured to be discharged from the feedback conduction control terminal side to the feedback output terminal of the feedback switching element, and between the feedback conduction control terminal and the feedback output terminal. And a discharge suppressing means for suppressing the discharge from the parasitic capacitor.

ここで、上記放電抑制手段を備えずに帰還導通制御端子と帰還出力端子をショートすると、サブIGBT32のコレクタ側に遮断ノイズ電圧が印加されても、寄生コンデンサCparaのゲート側の電荷が蓄えられることなくそのまま放電していくおそれがある。すると、寄生コンデンサCparaへの充電が十分に為されなくなり、サブIGBT32のゲートGsにおける制御電圧を十分に上昇できなくなり、サブIGBT32を確実にオン作動させることが困難になる。この点を鑑みた上記発明によれば、放電抑制手段(例えば図1に例示する抵抗R2)を備えることにより、寄生コンデンサCparaへの充電を十分にして、サブIGBT32のゲートGsにおける制御電圧を十分に上昇できるようになるので、サブIGBT32を確実にオン作動させることが可能になる。   Here, if the feedback conduction control terminal and the feedback output terminal are short-circuited without the discharge suppression means, even if a cutoff noise voltage is applied to the collector side of the sub IGBT 32, the charge on the gate side of the parasitic capacitor Cpara is stored. There is a risk of discharging the battery as it is. Then, the parasitic capacitor Cpara is not sufficiently charged, the control voltage at the gate Gs of the sub-IGBT 32 cannot be sufficiently increased, and it is difficult to reliably turn on the sub-IGBT 32. According to the above invention in view of this point, by providing the discharge suppression means (for example, the resistor R2 illustrated in FIG. 1), the parasitic capacitor Cpara is sufficiently charged, and the control voltage at the gate Gs of the sub-IGBT 32 is sufficient. As a result, the sub IGBT 32 can be reliably turned on.

ちなみに、放電抑制手段は抵抗R2に限られるものではなく、例えばスイッチング素子を放電抑制手段として採用してもよく、この場合には、寄生コンデンサCparaへの充電期間にはスイッチング素子(放電抑制手段)をオフ作動し、放電期間にはオン作動させればよい。   Incidentally, the discharge suppression means is not limited to the resistor R2. For example, a switching element may be employed as the discharge suppression means. In this case, the switching element (discharge suppression means) is used during the charging period of the parasitic capacitor Cpara. May be turned off and turned on during the discharge period.

第3の発明では、前記点火用スイッチング素子と前記帰還用スイッチング素子が、同一のチップ上に形成されていることを特徴とする。また、第4の発明では、前記点火用スイッチング素子と前記帰還用スイッチング素子が、同一のヒートシンク上に配置されていることを特徴とする。 In a third aspect of the invention, the ignition switching element and the feedback switching element are formed on the same chip. According to a fourth aspect of the present invention, the ignition switching element and the feedback switching element are disposed on the same heat sink.

ここで、寄生コンデンサを利用した第1の発明に反して、メインIGBT31のコレクタ−ゲート間に実際のコンデンサおよび抵抗を設けることによっても、遮断ノイズ電圧により前記コンデンサに充電して帰還電流を流すようにでき、ひいては遮断ノイズの発生時に合わせて帰還電流を流すようにできることを本発明者らは見出した。しかしながら、このようにコンデンサを設ける構成にすると、メインIGBT31と同一のチップ上に前記コンデンサを形成することは困難となる。 Here, contrary to the first invention using a parasitic capacitor, an actual capacitor and a resistor are provided between the collector and gate of the main IGBT 31 so that the capacitor is charged with a cutoff noise voltage and a feedback current flows. Thus, the present inventors have found that the feedback current can be made to flow in accordance with the occurrence of the cut-off noise. However, when the capacitor is provided as described above, it is difficult to form the capacitor on the same chip as the main IGBT 31.

これに対し、サブIGBT32の寄生コンデンサCparaを利用した第1の発明によれば、上記第3の発明の如く、メインIGBT31と同一のチップ上にサブIGBT32を形成することを容易に実現でき、ひいては内燃機関用点火制御装置の搭載スペースを小さくできる。また、上記第4の発明の如く、メインIGBT31とサブIGBT32を同一のヒートシンク上に配置することを容易に実現でき、ひいては内燃機関用点火制御装置の搭載スペースを小さくできる。 On the other hand, according to the first invention using the parasitic capacitor Cpara of the sub-IGBT 32, it is possible to easily form the sub-IGBT 32 on the same chip as the main IGBT 31, as in the third invention. The mounting space of the ignition control device for an internal combustion engine can be reduced. Further, as in the fourth aspect of the invention, it is possible to easily arrange the main IGBT 31 and the sub-IGBT 32 on the same heat sink, thereby reducing the mounting space for the internal combustion engine ignition control device.

第5の発明では、前記導通制御端子から、前記帰還用スイッチング素子を通じて、前記入力端子へ電流が流れることを制限する制限手段を備えることを特徴とする。 According to a fifth aspect of the invention, there is provided limiting means for limiting a current from flowing from the conduction control terminal to the input terminal through the feedback switching element.

ここで、上記発明に反して、制限手段を廃止すると、メインIGBT31のゲートGmの電位がコレクタCmの電位より高くなった時に、ゲートGmからサブIGBT32を通じてコレクタCmへ電流が逆流することが懸念される。この点を鑑み、上記発明では、導通制御端子から、前記帰還用スイッチング素子を通じて、前記入力端子へ電流が流れることを制限する制限手段(例えば図5に例示するダイオード33)を備えるので、上記懸念を解消できる。   Here, contrary to the above invention, if the limiting means is abolished, there is a concern that when the potential of the gate Gm of the main IGBT 31 becomes higher than the potential of the collector Cm, current flows backward from the gate Gm to the collector Cm through the sub IGBT 32. The In view of this point, the above-described invention includes a restriction unit (for example, the diode 33 illustrated in FIG. 5) that restricts the flow of current from the conduction control terminal to the input terminal through the feedback switching element. Can be eliminated.

ちなみに、制限手段はダイオード33に限られるものではなく、例えばスイッチング素子を制限手段として採用してもよく、この場合には、メインIGBT31のゲートGmの電位がコレクタCmの電位より高くなった時にスイッチング素子(制限手段)をオフ作動し、それ以外の時にはオン作動させればよい。   Incidentally, the limiting means is not limited to the diode 33. For example, a switching element may be employed as the limiting means. In this case, switching is performed when the potential of the gate Gm of the main IGBT 31 becomes higher than the potential of the collector Cm. The element (restricting means) is turned off, and it may be turned on at other times.

本発明の第1実施形態にかかる点火制御装置と、当該制御装置の制御対象である点火装置を示す回路図。The circuit diagram which shows the ignition control apparatus concerning 1st Embodiment of this invention, and the ignition device which is the control object of the said control apparatus. 図1のサブIGBT32の作動を説明する図。The figure explaining the action | operation of the sub IGBT32 of FIG. 第1実施形態において、遮断ノイズ発生の一瞬だけ帰還電流を流すように作動した時の各種変化を示すタイムチャート。The time chart which shows the various changes when it act | operates so that a feedback current may be sent only for the moment in generation | occurrence | production of interruption noise in 1st Embodiment. 図3(b)(c)の拡大図。The enlarged view of FIG.3 (b) (c). 本発明の第2実施形態にかかる点火制御装置を示す回路図。The circuit diagram which shows the ignition control apparatus concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかる点火制御装置を示す構成図。The block diagram which shows the ignition control apparatus concerning 3rd Embodiment of this invention.

以下、本発明を具体化した各実施形態を図面に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。また、以下に説明する各実施形態は、車両に搭載された内燃機関の点火装置を制御対象としている。   Hereinafter, embodiments embodying the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are denoted by the same reference numerals in the drawings, and the description of the same reference numerals is used. Further, in each embodiment described below, an ignition device for an internal combustion engine mounted on a vehicle is a control target.

(第1実施形態)
図1は、本実施形態にかかる点火制御装置と、当該制御装置の制御対象である点火装置を示す回路図である。点火装置は、一次コイル11および二次コイル12を有して構成される点火コイル10、および点火プラグ13を備える。そして、車両に搭載された直流のバッテリ20から一次コイル11へ通電し、その通電を遮断することにより、二次コイル12に誘起電圧(二次電圧V2)を生じさせて、その二次電圧V2を点火プラグ13に印加して火花放電させる。なお、バッテリ20からは車両に搭載された各種電気機器21へも電力供給されるよう、各種電気機器21および点火装置は並列接続されている。
(First embodiment)
FIG. 1 is a circuit diagram illustrating an ignition control device according to the present embodiment and an ignition device that is a control target of the control device. The ignition device includes an ignition coil 10 including a primary coil 11 and a secondary coil 12, and an ignition plug 13. Then, the primary coil 11 is energized from the direct current battery 20 mounted on the vehicle, and the energization is interrupted to generate an induced voltage (secondary voltage V2) in the secondary coil 12, and the secondary voltage V2 is generated. Is applied to the spark plug 13 to cause a spark discharge. The various electric devices 21 and the ignition device are connected in parallel so that electric power is supplied from the battery 20 to the various electric devices 21 mounted on the vehicle.

一次コイル11への通電と遮断の切り替えは、メインIGBT31(点火用スイッチング素子)により制御される。そして、メインIGBT31のオンオフ作動は、モノシリック集積回路(MICチップ40)が有するゲート駆動回路41から出力されるゲート信号により制御される。また、ゲート駆動回路41は、電子制御ユニット(ECU50)から出力される点火信号により制御される。   Switching between energization and cutoff of the primary coil 11 is controlled by the main IGBT 31 (ignition switching element). The on / off operation of the main IGBT 31 is controlled by a gate signal output from the gate drive circuit 41 included in the monolithic integrated circuit (MIC chip 40). The gate drive circuit 41 is controlled by an ignition signal output from the electronic control unit (ECU 50).

ECU50は、内燃機関の出力回転速度や内燃機関の負荷等に応じて目標点火時期を算出し、その目標点火時期に点火コイル10で火花放電することとなるよう、点火信号をゲート駆動回路41へ出力する。   The ECU 50 calculates a target ignition timing according to the output rotation speed of the internal combustion engine, the load of the internal combustion engine, and the like, and sends an ignition signal to the gate drive circuit 41 so that the ignition coil 10 performs a spark discharge at the target ignition timing. Output.

点火信号は5Vのパルス信号であり、点火信号のパルスの立ち上がりタイミングで、ゲート駆動回路41はゲート信号を出力し、抵抗R1により電圧調整されたゲート信号(ゲート電圧VGm)がメインIGBT31のゲートGm(導通制御端子)へ印加される。その結果、メインIGBT31のコレクタCm(入力端子)からエミッタEm(出力端子)へ電流I1が流れるようにメインIGBT31はオン作動し、一次コイル11へバッテリ20から供給される電流(一次電流I1)が流れる。   The ignition signal is a 5V pulse signal. At the rising timing of the ignition signal pulse, the gate drive circuit 41 outputs the gate signal, and the gate signal (gate voltage VGm) adjusted by the resistor R1 is the gate Gm of the main IGBT 31. Applied to (conduction control terminal). As a result, the main IGBT 31 is turned on so that the current I1 flows from the collector Cm (input terminal) to the emitter Em (output terminal) of the main IGBT 31, and the current (primary current I1) supplied from the battery 20 to the primary coil 11 is supplied. Flowing.

一方、点火信号のパルスの立ち下がりタイミングで、ゲート駆動回路41はゲート信号の出力を停止し、ゲートGmへ印加されていたゲート電圧VGmが遮断される。その結果、メインIGBT31はオフ作動して一次電流I1が遮断され、二次電圧V2が点火プラグ13へ印加されて火花放電する。   On the other hand, at the falling timing of the ignition signal pulse, the gate drive circuit 41 stops outputting the gate signal, and the gate voltage VGm applied to the gate Gm is cut off. As a result, the main IGBT 31 is turned off, the primary current I1 is cut off, and the secondary voltage V2 is applied to the spark plug 13 to cause a spark discharge.

なお、点火制御装置には、一次電流I1が所定値以上にならないように制限する電流制限回路42が備えられており、図1に示す例では、電流制限回路42とゲート駆動回路41を同一のモノシリック集積回路(MICチップ40)上に設けている。また、メインIGBT31は、以下に説明するサブIGBT32および抵抗R2(放電抑制手段)と同一の集積回路(IGBTチップ30)上に設けられている。そして、IGBTチップ30およびMICチップ40は同一の筐体に収容されてイグナイタIgを構成しており、このイグナイタIgと点火コイル10は、1つの組付体(点火コイルアッシーAs)としてユニット化されている。   The ignition control device includes a current limiting circuit 42 that limits the primary current I1 so as not to exceed a predetermined value. In the example shown in FIG. 1, the current limiting circuit 42 and the gate drive circuit 41 are the same. It is provided on a monolithic integrated circuit (MIC chip 40). The main IGBT 31 is provided on the same integrated circuit (IGBT chip 30) as the sub-IGBT 32 and the resistor R2 (discharge suppression means) described below. The IGBT chip 30 and the MIC chip 40 are housed in the same housing to form an igniter Ig. The igniter Ig and the ignition coil 10 are unitized as one assembly (ignition coil assembly As). ing.

また、イグナイタIgはノイズ除去用のコンデンサCを備えており、このコンデンサCは、イグナイタIgの外部から伝播してくるノイズを除去するよう機能するとともに、イグナイタIgの内部で生じたノイズを除去して外部へ伝播することを抑制するよう機能する。   The igniter Ig includes a noise removing capacitor C. The capacitor C functions to remove noise propagating from the outside of the igniter Ig, and removes noise generated inside the igniter Ig. Function to suppress propagation to the outside.

サブIGBT32は、メインIGBT31のコレクタCmとゲートGmの間に接続され、コレクタCmの電圧(つまり一次コイル11に印加される一次電圧V1)をゲートGmへ印加して帰還させるか否かを制御する。   The sub IGBT 32 is connected between the collector Cm and the gate Gm of the main IGBT 31, and controls whether or not the voltage of the collector Cm (that is, the primary voltage V1 applied to the primary coil 11) is applied to the gate Gm and returned. .

つまり、サブIGBT32のゲートGs(帰還導通制御端子)への印加電圧(ゲート電圧VGs)が閾値Vth以上になると、サブIGBT32のコレクタCs(帰還入力端子)からエミッタEs(帰還出力端子)へ電流Iretが流れるようにサブIGBT32はオン作動する。その結果、メインIGBT31のコレクタCmからゲートGmへ帰還電流Iretが流れる。一方、サブIGBT32のゲート電圧VGsが閾値Vth未満になると、サブIGBT32はオフ作動して帰還電流Iretが遮断される。   That is, when the applied voltage (gate voltage VGs) to the gate Gs (feedback conduction control terminal) of the sub IGBT 32 becomes equal to or higher than the threshold Vth, the current Iret from the collector Cs (feedback input terminal) of the sub IGBT 32 to the emitter Es (feedback output terminal). So that the sub-IGBT 32 is turned on. As a result, a feedback current Iret flows from the collector Cm of the main IGBT 31 to the gate Gm. On the other hand, when the gate voltage VGs of the sub IGBT 32 becomes less than the threshold value Vth, the sub IGBT 32 is turned off and the feedback current Iret is cut off.

ここで、メインIGBT31へのゲート信号をオフして一次コイル11への一次電流I1を遮断すると、その遮断した一瞬だけ、メインIGBT31のコレクタCmに大きな電圧が遮断ノイズとして生じる。すると、電気機器21および点火コイル10等にバッテリ20から電力供給する電気経路上に存在する寄生コイルLpara、及び先述したコンデンサCにより遮断ノイズがLC共振して、点火コイルアッシーAsに接続されるワイヤハーネスW等を流れて各種の電気機器21へ伝播することが懸念される。   Here, when the gate signal to the main IGBT 31 is turned off and the primary current I1 to the primary coil 11 is cut off, a large voltage is generated as a cut-off noise in the collector Cm of the main IGBT 31 for the moment when the gate current is cut off. Then, the cutoff noise is LC-resonated by the parasitic coil Lpara existing on the electric path for supplying electric power from the battery 20 to the electric device 21 and the ignition coil 10 and the capacitor C, and the wire connected to the ignition coil assembly As. There is concern over propagation to various electrical devices 21 through the harness W or the like.

このような遮断ノイズは、一次コイル11の遮断速度を遅くして一次電圧(つまりメインIGBT31のコレクタ電圧VCm)の低下速度を遅くすることで低減できる。そこで、ゲート信号をオフして一次電流I1を遮断する一瞬だけ帰還電流Iretを流すことで、メインIGBT31のゲート電圧VGmの低下速度を遅くする。これにより、コレクタ電圧VCm(一次電圧V1)の遮断時の低下速度を遅くすることができ、ひいては遮断ノイズの低減を実現できる。   Such cut-off noise can be reduced by slowing the cut-off speed of the primary coil 11 and slowing down the primary voltage (that is, the collector voltage VCm of the main IGBT 31). Therefore, the rate of decrease of the gate voltage VGm of the main IGBT 31 is slowed by flowing the feedback current Iret for a moment when the gate signal is turned off and the primary current I1 is cut off. As a result, the rate at which the collector voltage VCm (primary voltage V1) is cut off can be reduced, and the cut-off noise can be reduced.

但し、一次電圧V1の低下速度を遅くする期間を長くするほど、二次電圧V2が低くなり、点火プラグ13での火花放電安定化の妨げとなる。また、このように遮断速度を遅くする期間を長くするほど、点火信号をパルスオフさせてゲート信号をオフしてから、点火プラグ13で火花放電するまでに要する時間(点火応答時間)が長くなり、目標点火時期で火花放電させることを高精度で制御できなくなる。   However, the longer the period during which the primary voltage V1 is decreased, the lower the secondary voltage V2, which hinders spark discharge stabilization at the spark plug 13. Further, the longer the period for slowing down the shutoff speed in this way, the longer the time (ignition response time) required to spark discharge with the spark plug 13 after the ignition signal is pulsed off and the gate signal is turned off, Spark discharge at the target ignition timing cannot be controlled with high accuracy.

したがって、一次電流I1を遮断する一瞬だけサブIGBT32をオン作動させて帰還電流Iretを流すようにすれば、二次電圧V2の高圧化および点火応答時間の短縮と、遮断ノイズ低減との両立を図ることができる。そこで本実施形態では、以下に説明する寄生コンデンサCparaおよび抵抗R2により、遮断の一瞬だけサブIGBT32のゲート電圧VGsを印加してオン作動させることを実現させている。   Therefore, if the sub-IGBT 32 is turned on for a moment when the primary current I1 is cut off to feed the feedback current Iret, the secondary voltage V2 can be increased, the ignition response time can be shortened, and the cut-off noise can be reduced. be able to. Therefore, in this embodiment, the parasitic capacitor Cpara and the resistor R2, which will be described below, apply the gate voltage VGs of the sub-IGBT 32 for an instant of interruption to realize the on operation.

すなわち、図1および図2に示すように、サブIGBT32のゲートGsとエミッタEsの間には、抵抗R2が接続されている。また、図1では図示を省略しているが、図2に示すように、サブIGBT32のコレクタCsとゲートGsの間には、寄生コンデンサCparaが存在している。   That is, as shown in FIGS. 1 and 2, the resistor R <b> 2 is connected between the gate Gs and the emitter Es of the sub IGBT 32. Although not shown in FIG. 1, a parasitic capacitor Cpara exists between the collector Cs and the gate Gs of the sub IGBT 32 as shown in FIG.

そのため、メインIGBT31をオフ作動させると、その瞬間に生じた遮断ノイズ電圧(コレクタCm,Csの電圧)により寄生コンデンサCparaが充電されることとなる(図2(a)参照)。ちなみに、抵抗R2を廃止してゲートGsとエミッタEsをショートさせると、寄生コンデンサCparaのうちゲートGs側の電荷はエミッタEsへそのまま移動するだけであり、サブIGBT32のゲート電圧VGsを高くすることができない。よって、遮断ノイズ電圧によりコレクタCm,Csの電圧が高くなってもサブIGBT32はオン作動しない。   Therefore, when the main IGBT 31 is turned off, the parasitic capacitor Cpara is charged by the cut-off noise voltage (the voltages of the collectors Cm and Cs) generated at that moment (see FIG. 2A). Incidentally, when the resistor R2 is eliminated and the gate Gs and the emitter Es are short-circuited, the charge on the gate Gs side of the parasitic capacitor Cpara only moves to the emitter Es as it is, and the gate voltage VGs of the sub IGBT 32 can be increased. Can not. Therefore, even if the voltage of the collectors Cm and Cs becomes high due to the cut-off noise voltage, the sub IGBT 32 is not turned on.

一方、遮断ノイズ電圧が無くなり、コレクタCm,Csの電圧が低下していくと、寄生コンデンサCparaから放電されることとなる(図2(b)参照)。具体的には、寄生コンデンサCparaに充電された電荷が、抵抗R2により制限されながらエミッタEsへ徐々に移動していく。つまり、ゲート電圧VGsは徐々に低下していく。   On the other hand, when the cut-off noise voltage disappears and the voltages of the collectors Cm and Cs decrease, the parasitic capacitor Cpara is discharged (see FIG. 2B). Specifically, the electric charge charged in the parasitic capacitor Cpara gradually moves to the emitter Es while being limited by the resistor R2. That is, the gate voltage VGs gradually decreases.

したがって、抵抗R2の抵抗値が大きいほど、遮断ノイズが無くなった後におけるサブIGBT32のゲート電圧VGsの低下速度が遅くなり、その結果、メインIGBT31のゲート電圧VGmの低下速度が遅くなり、一次コイル11の遮断速度が遅くなる。つまり、抵抗R2の抵抗値を調整することで、ゲート電圧VGsの低下速度を調整でき、ひいてはゲート電圧VGmの低下速度を調整して一次コイル11の遮断速度を調整できると言える。要するに、二次電圧V2の高圧化および点火応答時間の短縮と、遮断ノイズ低減とのバランスを最適にする前記抵抗値を試験等により決定して、抵抗R2を選定すればよい。   Therefore, as the resistance value of the resistor R2 is larger, the rate of decrease of the gate voltage VGs of the sub-IGBT 32 after the interruption noise is eliminated becomes slower. As a result, the rate of decrease of the gate voltage VGm of the main IGBT 31 is decreased. The shut-off speed of is slow. That is, it can be said that the rate of decrease of the gate voltage VGs can be adjusted by adjusting the resistance value of the resistor R2, and consequently the rate of decrease of the gate voltage VGm can be adjusted to adjust the cutoff rate of the primary coil 11. In short, the resistance R2 may be selected by determining the resistance value that optimizes the balance between increasing the secondary voltage V2 and shortening the ignition response time and reducing the cut-off noise by testing or the like.

図3は、上述の如く遮断ノイズ発生の一瞬だけ帰還電流Iretを流すように作動した時のタイムチャートである。図中の(a)はECU50から出力される点火信号、(b)はメインIGBT31のゲート電圧VGm、(c)はメインIGBT31のコレクタ電圧VCm、(d)は一次電流I1、(e)はワイヤハーネスWを流れる電流Iw、(f)はイグナイタIgに設けられたバッテリ供給端子の電圧VB、(g)は二次電圧V2の変化を示す。   FIG. 3 is a time chart when the operation is performed so that the feedback current Iret is allowed to flow only for a moment when the cutoff noise is generated as described above. In the figure, (a) is an ignition signal output from the ECU 50, (b) is a gate voltage VGm of the main IGBT 31, (c) is a collector voltage VCm of the main IGBT 31, (d) is a primary current I1, and (e) is a wire. A current Iw flowing through the harness W, (f) indicates a voltage VB of a battery supply terminal provided in the igniter Ig, and (g) indicates a change in the secondary voltage V2.

先ず、t1時点で点火信号のパルスオンがECU50から出力されると((a)参照)、ゲート電圧VGmは徐々に上昇していく((b)参照)、そして、ゲート電圧VGmがバッテリ電圧+Bに達したt2時点で、メインIGBT31がオン作動して、コレクタCmからエミッタEmへ一次電流I1が流れはじめる。つまり、t2時点でコレクタ電圧(一次電圧V1)は接地電圧とほぼ同じ電位にまで低下し((c)参照)、一次電流I1および電流Iwは上昇を開始する((d)(e)参照)。   First, when the ignition signal pulse-on is output from the ECU 50 at time t1 (see (a)), the gate voltage VGm gradually increases (see (b)), and the gate voltage VGm becomes the battery voltage + B. At time t2 when the main IGBT 31 is reached, the main IGBT 31 is turned on, and the primary current I1 starts to flow from the collector Cm to the emitter Em. That is, at time t2, the collector voltage (primary voltage V1) drops to substantially the same potential as the ground voltage (see (c)), and the primary current I1 and current Iw start to rise (see (d) and (e)). .

その後、t3時点で点火信号のパルスオンがECU50から出力されると((a)参照)、ゲート電圧VGmは徐々に下降していきく((b)参照)。そして、ゲート電圧VGmが所定の閾値まで低下したt4時点で、メインIGBT31がオフ作動を開始するとともに、一次電圧V1に遮断ノイズNが発生する((c)参照)。   Thereafter, when the ignition signal pulse-on is output from the ECU 50 at time t3 (see (a)), the gate voltage VGm gradually decreases (see (b)). Then, at time t4 when the gate voltage VGm decreases to a predetermined threshold value, the main IGBT 31 starts to turn off, and a cutoff noise N is generated in the primary voltage V1 (see (c)).

図4は図3(b)(c)の拡大図であり、図中の(h)はサブIGBT32のゲート電圧VGs、(i)はサブIGBT32の作動状態変化を示す。そして、遮断ノイズNが生じたt4時点で、寄生コンデンサCparaが充電されてサブIGBT32のゲート電圧VGsが持ち上げられて((h)参照)、サブIGBT32がオン作動を開始する((i)参照)。その後、寄生コンデンサCparaからの放電に伴いゲート電圧VGsが下降していき、ゲート電圧VGsが所定の閾値Vthにまで低下したt5時点で、サブIGBT32はオフ作動に切り替わる。   FIG. 4 is an enlarged view of FIGS. 3B and 3C, in which (h) indicates the gate voltage VGs of the sub-IGBT 32, and (i) indicates changes in the operating state of the sub-IGBT 32. Then, at time t4 when the cutoff noise N occurs, the parasitic capacitor Cpara is charged and the gate voltage VGs of the sub-IGBT 32 is raised (see (h)), and the sub-IGBT 32 starts to turn on (see (i)). . Thereafter, the gate voltage VGs decreases with the discharge from the parasitic capacitor Cpara, and at time t5 when the gate voltage VGs decreases to the predetermined threshold value Vth, the sub IGBT 32 is switched to the off operation.

したがって、遮断ノイズNが生じたt4時点から、寄生コンデンサCparaの放電がある程度為されるt5時点までの期間に、メインIGBT31のゲートGmに帰還電流Iretが流れ込むこととなり、前記期間t4〜t5におけるゲート電圧VGmの低下速度(一次電流I1の遮断速度(I1/dt))を遅くしている。   Therefore, the feedback current Iret flows into the gate Gm of the main IGBT 31 during the period from the time t4 when the cut-off noise N occurs to the time t5 when the parasitic capacitor Cpara is discharged to some extent, and the gate during the period t4 to t5 The rate of decrease in voltage VGm (the cutoff rate (I1 / dt) of primary current I1) is reduced.

ちなみに、先述した特許文献1等に記載の従来手法による帰還電流の流し方では、図4中の点線に示すように、遮断ノイズNが無くなった後のt6時点までサブIGBT32をオン作動させてしまい、帰還電流を流す期間t4〜t6が過剰に長くなっていると言える。   Incidentally, in the method of flowing the feedback current by the conventional method described in the above-mentioned Patent Document 1 and the like, as shown by the dotted line in FIG. 4, the sub-IGBT 32 is turned on until t6 after the interruption noise N disappears. It can be said that the period t4 to t6 in which the feedback current flows is excessively long.

以上により、本実施形態によれば、寄生コンデンサCparaおよび抵抗R2により、遮断ノイズNの電圧でサブIGBT32をオン作動させるようにできるので、遮断ノイズNが発生している瞬間(t4〜t5の期間)だけ帰還電流Iretを流すようにできる。   As described above, according to the present embodiment, the sub-IGBT 32 can be turned on with the voltage of the cut-off noise N by the parasitic capacitor Cpara and the resistor R2, so that the moment when the cut-off noise N is generated (period t4 to t5) ) The feedback current Iret.

よって、遮断ノイズNが発生していない時にまで帰還電流Iretを流す特許文献1記載の装置に比べ、一次電流I1の遮断速度を速くすることができるので、二次電圧V2を高圧化して火花放電の安定化を図ることができる。また、点火信号をパルスオフさせるt3時点から、二次電圧V2がピークに達するt7時点までに要する応答遅れ(点火応答時間)を短縮でき、目標点火時期で火花放電させることを高精度で制御できる。   Therefore, compared to the device described in Patent Document 1 in which the feedback current Iret flows until no interruption noise N occurs, the interruption speed of the primary current I1 can be increased, so that the secondary voltage V2 is increased to spark discharge. Can be stabilized. Further, the response delay (ignition response time) required from the time point t3 when the ignition signal is pulsed off to the time point t7 when the secondary voltage V2 reaches the peak can be shortened, and the spark discharge at the target ignition timing can be controlled with high accuracy.

それでいて、遮断ノイズNが発生している瞬間t4〜t5については、帰還電流Iretが流れて一次電流I1の遮断速度が遅くなるので、遮断ノイズ低減を図ることができる。具体的には、ワイヤハーネスWの電流Iwおよびバッテリ供給端子の電圧VBが、図3(e)(f)に示すように遮断ノイズNのLC共振により脈動する度合いを低減できる。以上により、二次電圧V2の高圧化および点火応答時間の短縮と、遮断ノイズ低減との両立を図ることができる。   Nevertheless, at the instants t4 to t5 when the cut-off noise N is generated, the feedback current Iret flows and the cut-off speed of the primary current I1 becomes slow, so that cut-off noise can be reduced. Specifically, the degree to which the current Iw of the wire harness W and the voltage VB of the battery supply terminal pulsate due to the LC resonance of the cutoff noise N can be reduced as shown in FIGS. As described above, it is possible to achieve both the increase in the secondary voltage V2 and the shortening of the ignition response time and the reduction of the cut-off noise.

しかも、抵抗R2の抵抗値を調整することで、帰還電流Iretが流れる期間t4〜t5の終了時期t5を容易に調整できるので、遮断ノイズNが発生している瞬間だけ帰還電流Iretが流れるようにすることを容易に実現できる。   In addition, by adjusting the resistance value of the resistor R2, the end timing t5 of the period t4 to t5 in which the feedback current Iret flows can be easily adjusted, so that the feedback current Iret flows only at the moment when the cutoff noise N is generated. Can be easily realized.

(第2実施形態)
図5に示す本実施形態では、サブIGBT32のエミッタEsとメインIGBT31のゲートGmとの間に、ダイオード33(制限手段)を接続させている。なお、ダイオード33を設けた以外の点については、本実施形態にかかる点火制御装置は上記第1実施形態と同じである。
(Second Embodiment)
In the present embodiment shown in FIG. 5, a diode 33 (limiter) is connected between the emitter Es of the sub IGBT 32 and the gate Gm of the main IGBT 31. The ignition control device according to this embodiment is the same as that of the first embodiment except for the provision of the diode 33.

上記ダイオード33は、メインIGBT31のコレクタCmからゲートGmへ帰還電流Iretを流すことを許容し、その逆向きの電流(図5中の符号Ia参照)を流すことは阻止する向きに接続されている。具体的には、ダイオード33のアノード側がエミッタEsに接続され、カソード側がゲートGmに接続されている。   The diode 33 is connected in such a direction as to allow the feedback current Iret to flow from the collector Cm of the main IGBT 31 to the gate Gm and prevent the reverse current (see reference numeral Ia in FIG. 5) from flowing. . Specifically, the anode side of the diode 33 is connected to the emitter Es, and the cathode side is connected to the gate Gm.

以上により、本実施形態によれば、メインIGBT31のゲートGmの電位がコレクタCmの電位よりも高くなったとしても、ダイオード33が備えられているので、メインIGBT31のゲートGmからコレクタCmへ、サブIGBT32を通じて電流Iaが流れることを阻止できる。   As described above, according to the present embodiment, even if the potential of the gate Gm of the main IGBT 31 is higher than the potential of the collector Cm, the diode 33 is provided, so that the gate Gm of the main IGBT 31 is transferred to the collector Cm. The current Ia can be prevented from flowing through the IGBT 32.

(第3実施形態)
図6(a)に示す本実施形態では、メインIGBT31を構成する集積回路(IGBTチップ30)上に、サブIGBT32を設けている。したがって、メインIGBT31に取り付けられているヒートシンク31Hは、サブIGBT32の放熱にも利用される。なお、図6では図示を省略しているが、抵抗R2およびダイオード33の少なくとも一方はIGBTチップ30上に設けられている。
(Third embodiment)
In the present embodiment shown in FIG. 6A, the sub IGBT 32 is provided on the integrated circuit (IGBT chip 30) that constitutes the main IGBT 31. Therefore, the heat sink 31H attached to the main IGBT 31 is also used for heat dissipation of the sub-IGBT 32. Although not shown in FIG. 6, at least one of the resistor R 2 and the diode 33 is provided on the IGBT chip 30.

ここで、本発明者らは、寄生コンデンサCparaに替えてコンデンサを実装させることを検討した。しかし、コンデンサはIGBTチップ30上に設けることが困難であるため、IGBTチップ30とは別にコンデンサの収容スペースが必要になるので、イグナイタIgの大型化を招く。   Here, the present inventors examined mounting a capacitor instead of the parasitic capacitor Cpara. However, since it is difficult to provide the capacitor on the IGBT chip 30, a space for accommodating the capacitor is required in addition to the IGBT chip 30, so that the igniter Ig is increased in size.

これに対し、寄生コンデンサCparaを利用した本発明によれば、本実施形態の如く、サブIGBT32をメインIGBT31と同一のチップ30上に設けることを容易に実現できるので、イグナイタIgの小型化を図ることができる。さらに本実施形態によれば、メインIGBT31のヒートシンク31HをサブIGBT32の放熱にも利用するので、サブIGBT32専用のヒートシンクを備えさせる場合に比べて、イグナイタIgの小型化を促進できる。   On the other hand, according to the present invention using the parasitic capacitor Cpara, the sub-IGBT 32 can be easily provided on the same chip 30 as the main IGBT 31 as in the present embodiment, so that the igniter Ig can be downsized. be able to. Furthermore, according to the present embodiment, since the heat sink 31H of the main IGBT 31 is also used for heat dissipation of the sub IGBT 32, it is possible to promote downsizing of the igniter Ig as compared with the case where a heat sink dedicated to the sub IGBT 32 is provided.

図6(b)は、図6(a)の変形例を示す図であり、メインIGBT31を構成するICチップ30Aと、サブIGBT32を構成するICチップ30Bとを別々に設けている。この場合、抵抗R2はサブIGBT32と同一のICチップ30B上に設けることが望ましい。   FIG. 6B is a diagram showing a modification of FIG. 6A, in which an IC chip 30A constituting the main IGBT 31 and an IC chip 30B constituting the sub IGBT 32 are provided separately. In this case, it is desirable to provide the resistor R2 on the same IC chip 30B as that of the sub IGBT 32.

なお、このように別々のICチップ30A,30Bを設けた場合であっても、図6(b)に示すように、両方のICチップ30A,30Bを共通のヒートシンク31Hで放熱させて、イグナイタIgの小型化を図ることが望ましい。   Even when separate IC chips 30A and 30B are provided in this way, as shown in FIG. 6B, both IC chips 30A and 30B are radiated by a common heat sink 31H, and an igniter Ig is obtained. It is desirable to reduce the size.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・上記各実施形態では、点火用スイッチング素子および帰還用スイッチング素子に絶縁ゲートバイポーラトランジスタ(IGBT)を採用しているが、これらのスイッチング素子の少なくとも一方に、金属酸化物半導体電界効果トランジスタ(MOSFET)を採用してもよい。   In each of the above embodiments, an insulated gate bipolar transistor (IGBT) is employed as the ignition switching element and the feedback switching element, and at least one of these switching elements is a metal oxide semiconductor field effect transistor (MOSFET). May be adopted.

・上記各実施形態では、放電抑制手段に抵抗R2を採用しているが、例えばスイッチング素子を放電抑制手段として採用してもよい。この場合には、遮断ノイズN発生時にはスイッチング素子(放電抑制手段)をオフ作動させて寄生コンデンサCparaへ充電させ、遮断ノイズN発生終了後または発生期間中に、スイッチング素子オン作動させて寄生コンデンサCparaの放電を開始させればよい。   In each of the above embodiments, the resistor R2 is employed as the discharge suppression unit. However, for example, a switching element may be employed as the discharge suppression unit. In this case, when the cutoff noise N is generated, the switching element (discharge suppression means) is turned off to charge the parasitic capacitor Cpara. After the generation of the cutoff noise N or during the generation period, the switching element is turned on to turn on the parasitic capacitor Cpara. It is sufficient to start the discharge.

・上記各実施形態では、制限手段にダイオード33を採用しているが、例えばスイッチング素子を制限手段として採用してもよい。この場合には、メインIGBT31のゲートGmの電位がコレクタCmの電位より高くなった時に、スイッチング素子(制限手段)をオフ作動させて図5中の符号Iaに示す逆流を防ぎ、それ以外の時にはオン作動させればよい。   In each of the above embodiments, the diode 33 is used as the limiting unit. However, for example, a switching element may be used as the limiting unit. In this case, when the potential of the gate Gm of the main IGBT 31 becomes higher than the potential of the collector Cm, the switching element (restricting means) is turned off to prevent the reverse flow indicated by reference numeral Ia in FIG. It only has to be turned on.

11…一次コイル、30…IGBTチップ、31…メインIGBT(点火用スイッチング素子)、31H…ヒートシンク、32…サブIGBT(帰還用スイッチング素子)、33…ダイオード(制限手段)、Cm…コレクタ(点火用スイッチング素子の入力端子)、Gm…ゲート(点火用スイッチング素子の導通制御端子)、Cs…コレクタ(帰還用スイッチング素子の帰還入力端子)、Gs…ゲート(帰還用スイッチング素子の帰還導通制御端子)、Cpara…寄生コンデンサ、Iret…帰還電流、R2…抵抗(放電抑制手段)、VGs…ゲート電圧(制御電圧)。   DESCRIPTION OF SYMBOLS 11 ... Primary coil, 30 ... IGBT chip, 31 ... Main IGBT (switching element for ignition), 31H ... Heat sink, 32 ... Sub IGBT (switching element for feedback), 33 ... Diode (limitation means), Cm ... Collector (for ignition) Switching element input terminal), Gm ... gate (conduction control terminal of ignition switching element), Cs ... collector (feedback input terminal of feedback switching element), Gs ... gate (feedback control terminal of feedback switching element), Cpara: parasitic capacitor, Iret: feedback current, R2: resistance (discharge suppression means), VGs: gate voltage (control voltage).

Claims (4)

点火コイルを構成する一次コイルへの通電と遮断を制御する点火用スイッチング素子と、
前記点火用スイッチング素子の入力端子と導通制御端子との間に接続され、前記入力端子の電圧を前記導通制御端子へ印加して帰還させるか否かを制御する帰還用スイッチング素子と、
を備え、
前記点火用スイッチング素子のオフ作動に伴い前記入力端子に生じた遮断ノイズ電圧により、前記帰還用スイッチング素子の帰還入力端子および帰還導通制御端子間に存在する寄生コンデンサであって前記帰還用スイッチング素子が有する寄生容量からなる寄生コンデンサが充電され、この充電により前記帰還導通制御端子の制御電圧が上昇して前記帰還用スイッチング素子はオン作動するように構成され、
かつ、前記寄生コンデンサが放電することにより前記制御電圧が下降して前記帰還用スイッチング素子はオフ作動するように構成されており、
前記寄生コンデンサのうち前記帰還導通制御端子の側から、前記帰還用スイッチング素子の帰還出力端子へ放電されるよう構成されており、
前記帰還導通制御端子および前記帰還出力端子間に接続され、前記寄生コンデンサからの前記放電を抑制する放電抑制手段を備えることを特徴とする内燃機関用点火制御装置。
An ignition switching element for controlling energization and shutoff of the primary coil constituting the ignition coil;
A feedback switching element that is connected between an input terminal of the ignition switching element and a conduction control terminal, and that controls whether to apply a voltage of the input terminal to the conduction control terminal for feedback; and
With
A parasitic capacitor that exists between a feedback input terminal and a feedback conduction control terminal of the feedback switching element due to a cut-off noise voltage generated at the input terminal as a result of the ignition switching element being turned off. A parasitic capacitor having a parasitic capacitance is charged, and by this charging, the control voltage of the feedback conduction control terminal rises, and the feedback switching element is configured to be turned on,
And, when the parasitic capacitor is discharged, the control voltage is lowered and the feedback switching element is configured to be turned off .
The parasitic capacitor is configured to be discharged from the feedback conduction control terminal side to the feedback output terminal of the feedback switching element,
An ignition control device for an internal combustion engine, comprising: a discharge suppression unit that is connected between the feedback conduction control terminal and the feedback output terminal and suppresses the discharge from the parasitic capacitor.
前記点火用スイッチング素子と前記帰還用スイッチング素子が、同一のチップ上に形成されていることを特徴とする請求項1に記載の内燃機関用点火制御装置。 The ignition control device for an internal combustion engine according to claim 1, wherein the ignition switching element and the feedback switching element are formed on the same chip. 前記点火用スイッチング素子と前記帰還用スイッチング素子が、同一のヒートシンク上に配置されていることを特徴とする請求項1または2に記載の内燃機関用点火制御装置。 The ignition control device for an internal combustion engine according to claim 1 or 2, wherein the ignition switching element and the feedback switching element are disposed on the same heat sink. 前記導通制御端子から、前記帰還用スイッチング素子を通じて、前記入力端子へ電流が流れることを制限する制限手段を備えることを特徴とする請求項1〜3のいずれか1つに記載の内燃機関用点火制御装置。 The internal combustion engine ignition according to any one of claims 1 to 3 , further comprising limiting means for restricting a current from flowing from the conduction control terminal to the input terminal through the feedback switching element. Control device.
JP2011142779A 2011-06-28 2011-06-28 Ignition control device for internal combustion engine Active JP5776372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011142779A JP5776372B2 (en) 2011-06-28 2011-06-28 Ignition control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011142779A JP5776372B2 (en) 2011-06-28 2011-06-28 Ignition control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2013011181A JP2013011181A (en) 2013-01-17
JP5776372B2 true JP5776372B2 (en) 2015-09-09

Family

ID=47685263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011142779A Active JP5776372B2 (en) 2011-06-28 2011-06-28 Ignition control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5776372B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101725156B1 (en) * 2015-11-03 2017-04-11 현대오트론 주식회사 Supply voltage boosting device for ignition coil
KR101937409B1 (en) 2017-05-25 2019-01-10 현대오트론 주식회사 An Apparatus and A Method For Supplying Electric Power By Using Ignition Coil
JP6968212B2 (en) * 2020-01-16 2021-11-17 三菱電機株式会社 Internal combustion engine ignition system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780570B1 (en) * 1995-12-18 2002-08-14 Fuji Electric Co., Ltd. Semiconductor ignition circuit device with current limitation for internal combustion engine
JP3186619B2 (en) * 1995-12-18 2001-07-11 富士電機株式会社 Internal combustion engine ignition circuit device and internal combustion engine ignition semiconductor device
JP2982785B2 (en) * 1998-04-03 1999-11-29 富士電機株式会社 Depletion type MOS semiconductor device and MOS power IC
DE60021618T2 (en) * 2000-05-26 2006-06-01 Hitachi, Ltd. IGNITION DEVICE FOR INTERNAL COMBUSTION ENGINES
JP3740008B2 (en) * 2000-10-11 2006-01-25 株式会社日立製作所 In-vehicle igniter, insulated gate semiconductor device and engine system

Also Published As

Publication number Publication date
JP2013011181A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5423377B2 (en) Power semiconductor device for igniter
US9531377B2 (en) Semiconductor device
JP4455972B2 (en) Semiconductor device
JP6375452B2 (en) Ignition device for internal combustion engine and ignition control method for internal combustion engine ignition device
US9800024B2 (en) Igniter and vehicle, and method for controlling ignition coil
JP4650688B2 (en) Insulated gate transistor drive circuit device
JP6291929B2 (en) Semiconductor device
JP2004036438A (en) Electronic device for internal combustion engine such as ignition device
JP5454412B2 (en) Semiconductor device with current control function
US20120085327A1 (en) Internal-combustion-engine electronic control system
US20160010615A1 (en) Ignition control device for internal combustion engine
JP2013194530A (en) Semiconductor device
JP5776372B2 (en) Ignition control device for internal combustion engine
JP4912444B2 (en) Semiconductor device
JP7020498B2 (en) Semiconductor device
JP2008291728A (en) Igniter for internal combustion engine
JP7250181B2 (en) power semiconductor equipment
JP2019002360A (en) Semiconductor device
JP2014037778A (en) Ignition device for internal combustion engine
TW201200721A (en) Ignition device for internal combustion engine
WO2019239713A1 (en) Electromagnetic coil drive device and semiconductor integrated circuit device
JP6631304B2 (en) Ignition device
JP2019143507A (en) Ignition device for internal combustion engine
JP7150039B2 (en) Ignition device for internal combustion engine
JP6462461B2 (en) Ignition device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R151 Written notification of patent or utility model registration

Ref document number: 5776372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250