JP5770743B2 - High carbon martensitic stainless steel and method for producing the same - Google Patents
High carbon martensitic stainless steel and method for producing the same Download PDFInfo
- Publication number
- JP5770743B2 JP5770743B2 JP2012545847A JP2012545847A JP5770743B2 JP 5770743 B2 JP5770743 B2 JP 5770743B2 JP 2012545847 A JP2012545847 A JP 2012545847A JP 2012545847 A JP2012545847 A JP 2012545847A JP 5770743 B2 JP5770743 B2 JP 5770743B2
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- hot
- rolled
- strip
- martensitic stainless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052799 carbon Inorganic materials 0.000 title claims description 51
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 41
- 229910001105 martensitic stainless steel Inorganic materials 0.000 title claims description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- 238000005266 casting Methods 0.000 claims description 67
- 229910000831 Steel Inorganic materials 0.000 claims description 40
- 239000010959 steel Substances 0.000 claims description 40
- 238000000137 annealing Methods 0.000 claims description 33
- 229910052804 chromium Inorganic materials 0.000 claims description 15
- 239000011651 chromium Substances 0.000 claims description 15
- 238000005097 cold rolling Methods 0.000 claims description 14
- 239000010410 layer Substances 0.000 claims description 12
- 229910001220 stainless steel Inorganic materials 0.000 claims description 10
- 239000010935 stainless steel Substances 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 8
- 238000005554 pickling Methods 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 8
- 238000011282 treatment Methods 0.000 claims description 6
- 230000005499 meniscus Effects 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 238000005422 blasting Methods 0.000 claims description 3
- 239000002344 surface layer Substances 0.000 claims description 3
- -1 chromium carbides Chemical class 0.000 claims 2
- 229910052757 nitrogen Inorganic materials 0.000 claims 2
- 229910052698 phosphorus Inorganic materials 0.000 claims 2
- 238000000034 method Methods 0.000 description 55
- 239000000463 material Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 21
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 12
- 229910003470 tongbaite Inorganic materials 0.000 description 12
- 229910000734 martensite Inorganic materials 0.000 description 11
- 239000013078 crystal Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 7
- 238000007711 solidification Methods 0.000 description 7
- 229910001130 Razor blade steel Inorganic materials 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 238000005204 segregation Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 150000001247 metal acetylides Chemical group 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000677 High-carbon steel Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0637—Accessories therefor
- B22D11/0697—Accessories therefor for casting in a protected atmosphere
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/001—Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
- B22D11/002—Stainless steels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0622—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Continuous Casting (AREA)
- Metal Rolling (AREA)
Description
本発明は、高炭素マルテンサイト系ステンレス鋼およびその製造方法に関し、より詳細には、0.4〜0.8%の炭素、11〜16%のクロムを含む高炭素マルテンサイト系ステンレス鋼をストリップキャスティング工程を用いて製造し、一次カーバイドの大きさを低減させた高炭素マルテンサイト系ステンレス鋼およびその製造方法に関する。 The present invention relates to a high carbon martensitic stainless steel and a method for producing the same, and more particularly, strips a high carbon martensitic stainless steel containing 0.4 to 0.8% carbon and 11 to 16% chromium. The present invention relates to a high-carbon martensitic stainless steel manufactured using a casting process and having a reduced primary carbide size, and a method for manufacturing the same.
一般的に、重量%で、炭素を0.40%以上含む高炭素マルテンサイト系鋼は、耐食性、硬度、そして、耐磨耗性に優れ、カミソリ刃、刀などに使用されている。このようにカミソリ刃などに使用される高炭素マルテンサイト系ステンレス鋼を用いて製造されたカミソリ刃を使用する場合、ひげをそる過程でカミソリ刃が水分と接触する。 Generally, a high carbon martensitic steel containing 0.40% or more of carbon by weight is excellent in corrosion resistance, hardness, and wear resistance, and is used for razor blades, swords, and the like. Thus, when using a razor blade manufactured using a high carbon martensitic stainless steel used for a razor blade or the like, the razor blade comes into contact with moisture during a shaving process.
また、このようなカミソリ刃は、湿った雰囲気で保管するようになるため、腐食抵抗性が必要である。このように、前記環境は高炭素鋼が使用されるには厳し過ぎるものであるため、通常は約13%のクロムを含むマルテンサイト系ステンレス鋼が主に使用される。このようなマルテンサイト系ステンレス鋼を用いて製造されたカミソリ刃は、その基地組織のマルテンサイトが重量百分率で約12%以上のクロムを含み、その結果として、カミソリ刃の表面に薄いクロム酸化物が緻密に生成され、水分からカミソリ刃の基地組織の腐食を抑制する役割を果たす。 In addition, such a razor blade is required to have corrosion resistance because it is stored in a moist atmosphere. Thus, since the environment is too harsh for high carbon steel to be used, usually martensitic stainless steel containing about 13% chromium is mainly used. In the razor blade manufactured using such martensitic stainless steel, the martensite of the base structure contains chromium of about 12% or more by weight, and as a result, a thin chromium oxide is formed on the surface of the razor blade. Is precisely produced and plays a role in suppressing corrosion of the base structure of the razor blade from moisture.
一方、ひげをそることは、カミソリ刃を素材に密着させてひげを切る過程で、高強度のひげを切るために何よりも高い硬度が要求される。カミソリ刃が要求する高い硬度水準は、鋼のマルテンサイト基地組織によって実現される。マルテンサイト組織は、高温のオーステナイトを急速に冷却させる時に生成される非常に硬い微細組織である。高温のオーステナイト相に固溶した炭素の含有量が高いほど、マルテンサイトに固溶した炭素が多く、マルテンサイトの硬度は高くなる。したがって、高硬度を有するカミソリ刃用鋼を製造するためには、できるだけ多量の炭素を鋼に添加させることができなければならない。 On the other hand, shaving is a process in which a razor blade is brought into close contact with a material to cut the beard, and in order to cut a high-strength beard, higher hardness is required. The high hardness level required by razor blades is achieved by the martensitic base structure of steel. The martensite structure is a very hard microstructure produced when rapidly cooling high-temperature austenite. The higher the content of carbon dissolved in the high-temperature austenite phase, the more carbon dissolved in martensite and the higher the hardness of martensite. Therefore, in order to produce a razor blade steel having a high hardness, it must be possible to add as much carbon as possible to the steel.
通常、耐食性と硬度の観点で前記のような要求条件を満たすカミソリ刃用素材として420系のマルテンサイト系ステンレス鋼が主に使用されている。これらの鋼は、重量百分率で0.45〜0.70%の炭素、最大1%のマンガン、最大1%のシリコン、そして、12〜15%のクロムを含む鋼で、なかでも、約0.65%と約13%のクロムに基づく成分系が通常多く使用されている。 In general, 420 series martensitic stainless steel is mainly used as a razor blade material that satisfies the above requirements in terms of corrosion resistance and hardness. These steels are steels containing 0.45 to 0.70% carbon by weight, up to 1% manganese, up to 1% silicon, and 12 to 15% chromium, especially about 0. Component systems based on 65% and about 13% chromium are commonly used.
一方、カミソリ刃の厚さは、一般的に0.2mm以下である。したがって、カミソリ刃を製造するために、0.2mm以下の厚さを有する非常に薄い高炭素マルテンサイト系ステンレス鋼を初期素材として使用する。この初期素材は、フェライト基地組織と均一に分布した微細なクロム炭化物から構成された微細組織を有する。この時、微細なクロム炭化物の分布は、後続の強化熱処理(hardening)工程で高温のオーステナイト相に炭素の迅速な再固溶を可能とし、冷却によって変態したマルテンサイトがカミソリ刃として使用されるのに十分な硬度を有するように調節する主な因子である。 On the other hand, the thickness of the razor blade is generally 0.2 mm or less. Therefore, in order to manufacture a razor blade, a very thin high carbon martensitic stainless steel having a thickness of 0.2 mm or less is used as an initial material. This initial material has a microstructure composed of a ferrite matrix and a fine chromium carbide uniformly distributed. At this time, the distribution of fine chromium carbide enables rapid re-solidification of carbon in the high temperature austenite phase in the subsequent hardening process, and martensite transformed by cooling is used as a razor blade. Is a main factor for adjusting to have sufficient hardness.
そして、初期素材のクロム炭化物の大きさは、単位面積あたりのクロム炭化物の個数として定義することができ、1万倍の高倍率で観察する時、0.1μm以上の大きさを有するクロム炭化物が100μm2の面積あたり50個以上存在しなければならない。この初期素材を適当な幅にスリッティングし、コイリングした後、複数段階の後続工程を経てカミソリ刃を製造する。その後続工程は、高硬度を付与するために、高温のオーステナイト領域に加熱および保持した後冷却する強化熱処理工程、カミソリ刃を鋭利にする(sharpening)工程、耐磨耗性および潤滑性を付与するためのコーティング(coating)工程、そして、カミソリにカミソリ刃を装着するための溶接(welding)などの工程を含む。 And the size of the chromium carbide of the initial material can be defined as the number of chromium carbide per unit area, and when observed at a high magnification of 10,000 times, the chromium carbide having a size of 0.1 μm or more is obtained. There must be 50 or more per 100 μm 2 area. After slitting the initial material to an appropriate width and coiling, a razor blade is manufactured through a plurality of subsequent steps. Subsequent processes provide a tempering heat treatment process that heats and holds the hot austenite region and then cools it to impart high hardness, a process that sharpens the razor blade, wear resistance and lubricity. A coating process for the razor, and a welding process for mounting the razor blade on the razor.
また、カミソリ刃を製造するために使用される薄物(厚さ0.2mm以下)の初期素材は、微細組織内に粗クロム炭化物が不在しなければならないが、その理由は次のとおりである。粗クロム炭化物が存在する場合に、後続工程の、カミソリ刃を鋭利にする工程中にカミソリ刃のエッジ(edge)部分で粗クロム炭化物の脱落が発生し、カミソリ刃のエッジの鋭利さが鈍くなる現象が発生する。この現象をエッジ脱落(edge tear-out)といい、エッジ脱落はひげをそる途中に肌を傷つける主な因子である。粗クロム炭化物のほか、粗い介在物もエッジ脱落を引き起こす要因として作用する。エッジ脱落の観点で許容されるクロム炭化物の最大大きさは10μmである。初期素材に存在し、エッジ脱落発生の主な原因として作用する10μm以上の大きさを有する粗クロム炭化物は、合金鋳造(casting)時に生成される粗い一次カーバイド(primary carbide)である。この粗い一次カーバイドは、合金の熱間加工や熱処理過程中に発生する微細なクロム炭化物(secondary carbide)とは区分される。粗い一次カーバイドは、高炭素マルテンサイト系ステンレス鋼の凝固過程中にデンドライトアーム(dendrite arm)の間に発生する偏析によって生成される。炭素とクロムの偏析は、凝固時に発生する自然現象であるため、一次カーバイドの形成を回避することはできないが、エッジ脱落を防止するために、その大きさは凝固過程中に最小化される必要がある。 In addition, the initial material of a thin object (thickness of 0.2 mm or less) used for manufacturing a razor blade must be free of coarse chromium carbide in the microstructure, for the following reason. When coarse chromium carbide is present, the fall of the coarse chromium carbide occurs at the edge of the razor blade during the subsequent process of sharpening the razor blade, and the sharpness of the edge of the razor blade becomes dull. The phenomenon occurs. This phenomenon is called edge tear-out, which is the main factor that hurts the skin while shaving. In addition to coarse chromium carbide, coarse inclusions also act as factors causing edge dropout. The maximum size of chromium carbide allowed in view of edge dropout is 10 μm. Crude chromium carbide having a size of 10 μm or more, which exists in the initial material and acts as a main cause of occurrence of edge dropout, is coarse primary carbide produced during casting of the alloy. This rough primary carbide is distinguished from fine secondary carbides that are generated during hot working or heat treatment of the alloy. Coarse primary carbide is produced by segregation that occurs between dendrite arms during the solidification process of high carbon martensitic stainless steel. Carbon and chromium segregation is a natural phenomenon that occurs during solidification, so primary carbide formation cannot be avoided, but its size must be minimized during the solidification process to prevent edge shedding. There is.
このようなエッジ脱落問題は、カミソリ刃のみならず、一般的な刃物の用途として刃先の品質を決定する重要な品質因子である。前述したように、高硬度を有するカミソリ刃を製造するためには、できるだけ多量の炭素を鋼に添加させることができなければならないが、炭素含有量が高いほど、凝固時に一次カーバイドが粗く形成されるため、高品質のカミソリ刃の製造を困難にする。 Such an edge drop-off problem is an important quality factor that determines the quality of the cutting edge not only for razor blades but also for general blade applications. As described above, in order to produce a razor blade having high hardness, it is necessary to add as much carbon as possible to the steel. However, the higher the carbon content, the rougher the primary carbide is formed during solidification. This makes it difficult to manufacture high quality razor blades.
このような理由から、従来公知の日本国特許番号第61034161号では、一次カーバイドによるエッジ脱落を最小化するために、炭素の含有量を0.40〜0.55%に低下させた合金成分系を提示している。特に、カミソリ刃鋼素材の製造に一般的に使用されるインゴット鋳造法は偏析が深刻に発生するため、一次炭化物が粗く形成されるという欠点があった。この欠点のため、一次カーバイドを再固溶させるかその大きさを小さくするために、インゴットに付加的な加熱熱処理や鍛造のような熱間加工が必須に適用される。 For this reason, in Japanese Patent No. 6103161, which is conventionally known, an alloy component system in which the carbon content is reduced to 0.40 to 0.55% in order to minimize edge dropout due to primary carbide. Presents. In particular, the ingot casting method generally used for the production of razor blade steel material has a drawback that segregation occurs seriously and primary carbides are formed coarsely. Because of this drawback, in order to re-dissolve the primary carbide or reduce its size, additional heat treatment such as heat treatment or forging is applied to the ingot.
したがって、高品質のカミソリ刃を製造するために、鋳造時に粗い一次カーバイドの形成を抑制させる方法が要求される。特に、通常のカミソリ刃鋼に比べて、炭素含有量を低下させないながらも、一次カーバイドの大きさを微細組織内で効果的に低減させることができる経済的な鋳造法の開発が必要になった。 Therefore, in order to manufacture a high-quality razor blade, a method for suppressing the formation of coarse primary carbide during casting is required. In particular, compared to ordinary razor blade steel, it has become necessary to develop an economical casting method that can effectively reduce the size of the primary carbide within the microstructure without reducing the carbon content. .
本発明は、上記の要望に応じてなされたものであって、既存の高炭素マルテンサイト系鋼の製造に主に使用されるインゴット鋳造法を代替する目的でストリップキャスティング法を新たに活用したものである。本発明によれば、既存のインゴット鋳造法の最も大きな欠点であった、凝固時に生成される粗い一次カーバイドを画期的に抑制させながら、経済的に高炭素を含むマルテンサイト系ステンレス鋼を製造することができる方法を提示することを目的とする。 The present invention has been made in response to the above-mentioned demand, and a strip casting method is newly used for the purpose of replacing the ingot casting method mainly used for the production of existing high carbon martensitic steels. It is. According to the present invention, a martensitic stainless steel containing high carbon is economically produced while dramatically suppressing the primary primary carbide generated during solidification, which was the biggest drawback of the existing ingot casting method. The purpose is to present a method that can be.
本発明は、上記の目的を達成するために、互いに反対方向に回転する一対のロールとその両側面に溶鋼プールを形成するように設けられるエッジダムと、前記溶鋼プールの上部面に不活性窒素ガスを供給するメニスカスシールドとを含むストリップキャスティング装置において、重量%で、C:0.40〜0.80%、Cr:11〜16%を含むステンレス溶鋼を、タンディッシュからノズルを介して前記溶鋼プールに供給してステンレス薄板を鋳造し、前記鋳造されたステンレス薄板を、鋳造直後にインラインローラを用いて5〜40%の圧下率で熱延焼鈍ストリップを製造し、熱延焼鈍ストリップの微細組織内に一次カーバイドが10μm以下となるようにする、高炭素マルテンサイト系ステンレス鋼の製造方法を提供する。 In order to achieve the above object, the present invention provides a pair of rolls rotating in opposite directions, an edge dam provided so as to form a molten steel pool on both side surfaces thereof, and an inert nitrogen gas on the upper surface of the molten steel pool A strip casting apparatus including a meniscus shield for supplying a molten stainless steel containing C: 0.40 to 0.80% and Cr: 11 to 16% in weight% from a tundish through a nozzle to the molten steel pool To produce a hot-rolled annealed strip at a rolling reduction of 5 to 40% using an in-line roller immediately after casting, and within the microstructure of the hot-rolled annealed strip. A method for producing a high carbon martensitic stainless steel in which the primary carbide is 10 μm or less is provided.
また、本発明において、前記マルテンサイト系ステンレス鋼は、重量%で、Si:0.1〜1.0、Mn:0.1〜1.0、Ni:0超過1.0以下、N:0超過0.1以下、S:0超過0.04以下、P:0超過0.05以下、並びに、残部は、Feおよびその他不可避不純物からなる、高炭素マルテンサイト系ステンレス鋼の製造方法を提供する。 Moreover, in this invention, the said martensitic stainless steel is a weight%, Si: 0.1-1.0, Mn: 0.1-1.0, Ni: 0 excess 1.0 or less, N: 0 Provided is a method for producing a high-carbon martensitic stainless steel, wherein the excess is 0.1 or less, S is 0 or more and 0.04 or less, P is 0 or more and 0.05 or less, and the balance is Fe and other inevitable impurities .
さらに、本発明において、前記熱延焼鈍ストリップを、還元性ガス雰囲気下、700〜950℃の温度範囲でバッチ焼鈍(batch annealing)を実施し、熱延焼鈍板を製造する、高炭素マルテンサイト系ステンレス鋼を製造することができる。 Furthermore, in the present invention, the hot-rolled annealed strip is subjected to batch annealing in a reducing gas atmosphere at a temperature range of 700 to 950 ° C. to produce a hot-rolled annealed plate, and a high carbon martensite system Stainless steel can be manufactured.
また、本発明において、前記バッチ焼鈍は、1〜3回の範囲で実施することが好ましい。 Moreover, in this invention, it is preferable to implement the said batch annealing in the range of 1-3 times.
さらに、本発明において、前記バッチ焼鈍処理された熱延焼鈍ストリップは、ショットブラスティング後に酸洗処理を実施することができる。 Furthermore, in the present invention, the hot-rolled annealed strip that has been subjected to the batch annealing treatment can be pickled after shot blasting.
また、本発明において、前記酸洗処理前の熱延焼鈍ストリップにおいて、脱炭層の深さが表層スケール直下20μm以下となり得る。 In the present invention, in the hot-rolled annealing strip before the pickling treatment, the depth of the decarburized layer can be 20 μm or less immediately below the surface scale.
また、本発明において、前記熱延焼鈍ストリップは、後続の冷間圧延を実施することができ、この時、1回の冷間圧下率が最大70%であることが好ましい。 Further, in the present invention, the hot-rolled annealed strip can be subjected to subsequent cold rolling, and at this time, it is preferable that a single cold rolling reduction is 70% at maximum.
さらに、本発明において、前記冷間圧延されたストリップは、還元性ガス雰囲気下、焼鈍が計5回以下で実施できる。 Furthermore, in the present invention, the cold-rolled strip can be annealed in a reducing gas atmosphere with a total of 5 times or less.
なお、本発明において、前記冷間圧延されたストリップは、650〜800℃の温度で冷延焼鈍を実施することができる。 In the present invention, the cold-rolled strip can be subjected to cold rolling annealing at a temperature of 650 to 800 ° C.
また、本発明の他の態様によれば、互いに反対方向に回転する一対のロールとその両側面に溶鋼プールを形成するように設けられるエッジダムと、前記溶鋼プールの上部面に不活性窒素ガスを供給するメニスカスシールドとを含むストリップキャスティング装置において、重量%で、C:0.40〜0.80%、Cr:11〜16%を含むステンレス溶鋼を、タンディッシュからノズルを介して前記溶鋼プールに供給してステンレス薄板を鋳造し、前記鋳造されたステンレス薄板を、鋳造直後にインラインローラを用いて5〜40%の圧下率で熱延焼鈍ストリップを製造し、熱延焼鈍ストリップの微細組織内に一次カーバイドが10μm以下となるようにする、高炭素マルテンサイト系ステンレス鋼を提供することができる。 According to another aspect of the present invention, a pair of rolls rotating in opposite directions, an edge dam provided to form a molten steel pool on both side surfaces thereof, and inert nitrogen gas on the upper surface of the molten steel pool are provided. In a strip casting apparatus including a meniscus shield to be fed, a molten stainless steel containing C: 0.40 to 0.80% and Cr: 11 to 16% by weight is transferred from a tundish to the molten steel pool through a nozzle. A stainless steel sheet is cast to supply a hot rolled annealed strip at a rolling reduction rate of 5 to 40% using an in-line roller immediately after casting. A high carbon martensitic stainless steel having a primary carbide of 10 μm or less can be provided.
上述したように、本発明は、製鋼工程で製造された溶鋼から直接熱延コイルを製造するストリップキャスティング(strip casting)方法を適用することを特徴とする。ストリップキャスティングは、凝固組織で形成される一次カーバイドの大きさを革新的に低減させることができ、高品質のカミソリ刃の製造に非常に有用に適用可能である。特に、カミソリ刃の品質のみならず、溶鋼から直接熱延コイルを製造するため、既存のインゴット鋳造法に比べて、熱延コイルの製造工程が単純で、製造費用が非常に割安になるという利点がある。 As described above, the present invention is characterized by applying a strip casting method for manufacturing a hot-rolled coil directly from molten steel manufactured in a steelmaking process. Strip casting can innovatively reduce the size of the primary carbide formed of the solidified tissue and is very usefully applicable to the production of high quality razor blades. In particular, not only the quality of razor blades but also the production of hot-rolled coils directly from molten steel, the advantages of a simpler hot-rolled coil manufacturing process and a much lower manufacturing cost than existing ingot casting methods. There is.
以下、添付した図面を参照して、本発明の実施形態およびその他当業者が本発明の内容を容易に理解するために必要な事項について詳細に記載する。ただし、本発明は、請求の範囲に記載された範囲内で種々の異なる形態で実現可能であるため、下記に説明する実施形態は、表現の如何にかかわらず、例示的なものに過ぎない。 Hereinafter, embodiments of the present invention and other matters necessary for those skilled in the art to easily understand the contents of the present invention will be described in detail with reference to the accompanying drawings. However, since the present invention can be realized in various different forms within the scope of the claims, the embodiment described below is merely an example regardless of the expression.
本実施形態を説明するにあたり、かかる公知機能あるいは構成に関する具体的な説明が本発明の要旨をあいまいにする可能性があると判断された場合、その詳細な説明は省略する。そして、図面において、同一の構成要素については、たとえ他の図面上に表示されても、できるだけ同一の参照番号および符号で表していることに留意しなければならない。また、図面において、各層の厚さや大きさは、説明の便宜および明確性のために誇張されることがあり、実際の層の厚さや大きさとは異なり得る。 In describing this embodiment, if it is determined that a specific description related to the known function or configuration may obscure the gist of the present invention, the detailed description thereof will be omitted. In the drawings, it should be noted that the same components are denoted by the same reference numerals and symbols as much as possible even if they are displayed on other drawings. In the drawings, the thickness and size of each layer may be exaggerated for convenience of explanation and clarity, and may differ from the actual thickness and size of the layer.
図1は、従来公知のストリップキャスティング設備の概略図である。このストリップキャスティング工程は、溶鋼から直接薄物の熱延焼鈍ストリップを生産する工程であって、熱間圧延工程を省略し、製造コスト、設備投資費用、エネルギー使用量、公害ガス排出量などを画期的に低減できる新たな鉄鋼工程プロセスである。一般的なストリップキャスティング工程に用いられる双ロール型薄板鋳造機は、図1に示すように、溶鋼を取鍋1に収容させ、ノズルに沿ってタンディッシュ2に流入し、タンディッシュ2に流入した溶鋼は、鋳造ロール6の両端部に設けられたエッジダム5の間、すなわち、鋳造ロール6の間に溶鋼注入ノズル3を介して供給され、凝固が開始される。この時、ロールの間の溶湯部には、酸化を防止するためにメニスカスシールド4で溶湯面を保護し、適切なガスを注入して雰囲気を適切に調節する。両ロールが出会うロールニップ7を抜けながら薄板8が製造され、引き抜かれながら、圧延機9を経て圧延された後、冷却工程を経て巻取設備10で巻き取られる。
FIG. 1 is a schematic view of a conventionally known strip casting equipment. This strip casting process is a process for producing thin hot-rolled annealed strips directly from molten steel, omitting the hot-rolling process, and pioneering manufacturing costs, capital investment costs, energy consumption, pollution gas emissions, etc. It is a new steel process that can be reduced. As shown in FIG. 1, a twin roll type thin plate casting machine used in a general strip casting process takes molten steel in a ladle 1 and flows into the tundish 2 along the nozzle and into the tundish 2. Molten steel is supplied through the molten steel injection nozzle 3 between the edge dams 5 provided at both ends of the casting roll 6, that is, between the casting rolls 6, and solidification is started. At this time, the molten metal surface between the rolls is protected by the meniscus shield 4 to prevent oxidation, and an appropriate gas is injected to adjust the atmosphere appropriately. The thin plate 8 is manufactured while passing through the roll nip 7 where both rolls meet, and after being rolled through the rolling mill 9 while being drawn, it is wound by the winding
この時、溶鋼から厚さ10μm以下の薄板を直接製造する双ロール式薄板鋳造工程において重要な技術は、速い速度で反対方向に回転する内部水冷式双ロールの間に注入ノズルを介して溶鋼を供給し、所望の厚さの薄板を、亀裂がなく、実収率が向上するように製造することである。 At this time, an important technique in the twin roll type thin plate casting process in which a thin plate having a thickness of 10 μm or less is directly manufactured from molten steel is to introduce the molten steel through an injection nozzle between internal water-cooled twin rolls rotating in the opposite direction at a high speed. Supplying and manufacturing the thin plate of desired thickness without a crack and improving a real yield.
本発明は、ストリップキャスティング工程を用いた高炭素マルテンサイト系ステンレス鋼の製造方法に関するもので、特に、重量%で、0.40〜0.80%の炭素、11〜16%のクロムを主成分として含む高炭素マルテンサイト系ステンレス鋼をストリップキャスティング法を活用して製造するため、鋳造組織内に形成される一次カーバイドの大きさを10μm以下に低減させることにより、刃先の品質に優れたカミソリ刃用高炭素マルテンサイト系ステンレス鋼を製造することを特徴とする。 The present invention relates to a method for producing a high carbon martensitic stainless steel using a strip casting process, and in particular, the main component is 0.40 to 0.80% carbon and 11 to 16% chromium by weight%. Razor blade with excellent cutting edge quality by reducing the size of primary carbide formed in the cast structure to 10 μm or less in order to manufacture high carbon martensitic stainless steel including It is characterized by producing high carbon martensitic stainless steel.
本発明の特徴であるストリップキャスティング工程は、液状の鋼を1〜5mm厚の板材に直接鋳造しながら、鋳造板に非常に速い冷却速度を印加し、鋳造時に発生する偏析を最小化する製造法である。本発明では、双ロール型ストリップキャスタを用いて熱延コイルを製造した。双ロール型ストリップキャスタは、互いに反対方向に回転する両ロール(twin-drum rolls)と側面ダム(side dams)との間に溶鋼を供給し、水冷するロール表面を介して多くの熱量を放出させながら鋳造することを特徴とする。この時、ロール表面で速い冷却速度で凝固セルを形成し、鋳造後連続して行われるインラインローリングによって1〜5mmの薄い熱延薄板が製造される。 The strip casting process, which is a feature of the present invention, is a production method in which liquid steel is directly cast on a plate material having a thickness of 1 to 5 mm, and a very fast cooling rate is applied to the cast plate to minimize segregation occurring during casting. It is. In the present invention, a hot-rolled coil is manufactured using a twin roll type strip caster. Twin roll strip casters supply molten steel between twin-drum rolls and side dams that rotate in opposite directions, and release a large amount of heat through the water-cooled roll surface. It is characterized by casting. At this time, a solidified cell is formed on the roll surface at a high cooling rate, and a thin hot-rolled sheet having a thickness of 1 to 5 mm is produced by in-line rolling performed continuously after casting.
(実施例)
以下、実施例を用いて本発明を説明する。
(Example)
Hereinafter, the present invention will be described using examples.
本発明で用いられる母材は、高炭素マルテンサイト系ステンレス鋼であって、C:0.4〜0.8%、Cr:11〜16%の範囲を使用する。本発明において、Cの範囲を0.4%以下とする場合、ストリップやインゴットで一次カーバイドが多量生じることはないが、その硬度において好ましくない。また、0.8%以上の場合、ストリップキャスティングで製造しても、粗い一次カーバイドの生成を抑制しにくいことがある。したがって、本発明では、最適な範囲として、C:0.4〜0.8%、Cr:11〜16%を提案する。 The base material used in the present invention is a high carbon martensitic stainless steel, and uses C: 0.4 to 0.8% and Cr: 11 to 16%. In the present invention, when the C content is 0.4% or less, a large amount of primary carbide is not generated in the strip or ingot, but the hardness is not preferable. Moreover, when it is 0.8% or more, even if it is manufactured by strip casting, it may be difficult to suppress generation of coarse primary carbide. Therefore, in this invention, C: 0.4-0.8% and Cr: 11-16% are proposed as an optimal range.
また、本発明の実施形態にかかる前記マルテンサイト系ステンレス鋼は、重量%で、Si:0.1〜1.0、Mn:0.1〜1.0、Ni:0超過1.0以下、N:0超過0.1以下、S:0超過0.04以下、P:0超過0.05以下、並びに、残部は、Feおよびその他不可避不純物からなる成分系に関する合金を対象としている。 Further, the martensitic stainless steel according to the embodiment of the present invention is, by weight, Si: 0.1 to 1.0, Mn: 0.1 to 1.0, Ni: 0 to 1.0 or less, N: 0 excess 0.1 or less, S: 0 excess 0.04 or less, P: 0 excess 0.05 or less, and the balance are intended for alloys related to component systems composed of Fe and other inevitable impurities.
実施例では、既存のインゴット鋳造法を経て製造された熱延焼鈍ストリップとストリップキャスティング法を適用して製造された鋼の微細組織学的特性を比較した。表1は、インゴット鋳造法とストリップキャスティング法で製造された鋼の成分を示したものである。まず、ストリップキャスティング法で鋳造された素材の微細組織を、インゴット鋳造法で製造された素材と比較するために、通常のカミソリ刃鋼をインゴットで製造し、その成分を表1の比較例として(#1)示した。インゴットは、真空誘導溶解法によって50kgの重量で製造された。インゴットは、1200℃の温度で再加熱後、3.5mm厚の板に熱間圧延され、熱間圧延直後に水冷した。そして、双ロール型ストリップキャスタを活用して多様な成分の鋼を熱延板として製造した。それぞれ100トンずつ鋳造し、その成分を表2に示した。ストリップキャスティング法を活用して、水冷するロールの間で鋳造された100トンの素材は、鋳造直後、高温の状態でインラインローラ(in-line roller)で熱間圧延され、1〜5mm厚の熱間圧延コイルで連続製造された。 In the examples, the microstructural characteristics of the steel manufactured by applying the hot-rolled annealing strip manufactured through the existing ingot casting method and the strip casting method were compared. Table 1 shows the components of steel produced by the ingot casting method and the strip casting method. First, in order to compare the microstructure of the material cast by the strip casting method with the material manufactured by the ingot casting method, ordinary razor blade steel is manufactured by an ingot, and the components are shown as comparative examples in Table 1 ( # 1) Shown. The ingot was produced with a weight of 50 kg by vacuum induction melting method. The ingot was re-heated at a temperature of 1200 ° C., hot-rolled to a 3.5 mm-thick plate, and water-cooled immediately after hot-rolling. And steel of various components was manufactured as a hot-rolled sheet using a twin roll type strip caster. 100 tons of each were cast, and the components are shown in Table 2. 100 tons of material cast between water-cooled rolls using the strip casting method is hot-rolled immediately after casting with an in-line roller at a high temperature to produce a 1-5 mm thick heat. It was continuously manufactured with hot rolled coils.
図2に、真空誘導溶解で鋳造した通常の成分鋼である表1の比較例(#1)のインゴットの断面組織を示している。そして、図3は、前記比較例(#1)に関する成分鋼の熱間圧延後水冷した微細組織を示した。図2のインゴットの微細組織から明らかに観察されるように、結晶粒の間に粗い、(primary carbide)として示される一次カーバイドが不規則に生成されていることを示している。このような粗い一次カーバイドは、1200℃の温度で行われる再加熱中にも基地組織として完全に再固溶しないため、熱間圧延後の微細組織内に残存して圧延方向に配列された状態で観察される。これを、図3から確認することができる。 FIG. 2 shows a cross-sectional structure of an ingot of a comparative example (# 1) in Table 1 which is a normal component steel cast by vacuum induction melting. And FIG. 3 showed the microstructure which water-cooled after the hot rolling of the component steel regarding the said comparative example (# 1). As is clearly observed from the microstructure of the ingot of FIG. 2, it is shown that the primary carbide shown as primary carbide is irregularly formed between the grains. Such coarse primary carbide does not completely re-solidify as a base structure even during reheating performed at a temperature of 1200 ° C., and therefore remains in the microstructure after hot rolling and is arranged in the rolling direction. Observed at. This can be confirmed from FIG.
図4は、ストリップキャスティング法で製造され、インゴットで鋳造された本発明の成分鋼(表1、#1)と類似の成分を有する2.1mm厚の熱延コイル(表2、#6)の低倍率の断面組織である。ストリップキャスティングで製造されたコイルにおいて、表層部に展開された、(columnar crystal)として示される柱状晶の微細組織と、厚さ中央部に展開された(equiaxed crystal)として示される等軸晶の微細組織を、それぞれ図5と図6に示した。図2および図3に示すインゴット組織と、図5および図6に示すストリップキャスティング組織から、一次カーバイドの大きさの比較が可能である。すなわち、既存のインゴット鋳造法で製造した場合には、1000倍の倍率で粗い一次カーバイドが形成されたことを明確に観察することができる。しかし、図5および図6に示すストリップキャスティング法を適用して製造された熱延コイルでは、インゴット鋳造法で製造された図2の凝固組織および図3の熱延板から観察可能な粗い一次カーバイドが1000倍の倍率の微細組織で観察されていないことを示している。これは、高炭素を含むマルテンサイト系ステンレス鋼を製造するにあたり、ストリップキャスティング法を用いて鋳造する時、粗い一次カーバイドの形成を革新的に抑制できるという本発明の技術的効果を際立たせる結果である。一方、熱間圧延板において、1000倍の倍率の光学顕微鏡で観察可能な一次カーバイドの大きさを調べ、この結果をまとめて表1および表2に示した。 FIG. 4 shows a 2.1 mm thick hot-rolled coil (Table 2, # 6) having a similar composition to the component steel of the present invention (Table 1, # 1) manufactured by strip casting and cast by an ingot. A low-magnification cross-sectional structure. In a coil manufactured by strip casting, a microstructure of columnar crystals shown as (columnar crystal) developed in the surface layer part and a fine structure of equiaxed crystals shown as (equiaxed crystal) developed in the central part of the thickness. The tissues are shown in FIGS. 5 and 6, respectively. The primary carbide size can be compared from the ingot structure shown in FIGS. 2 and 3 and the strip casting structure shown in FIGS. 5 and 6. That is, when manufactured by the existing ingot casting method, it can be clearly observed that coarse primary carbide is formed at a magnification of 1000 times. However, in the hot rolled coil manufactured by applying the strip casting method shown in FIGS. 5 and 6, the coarse primary carbide observable from the solidified structure of FIG. 2 and the hot rolled plate of FIG. 3 manufactured by the ingot casting method. Is not observed in a fine structure having a magnification of 1000 times. This is the result of highlighting the technical effect of the present invention that when forming a martensitic stainless steel containing high carbon, the formation of coarse primary carbide can be innovatively suppressed when casting using the strip casting method. is there. On the other hand, in the hot-rolled sheet, the size of primary carbide observable with an optical microscope with a magnification of 1000 times was examined, and the results are summarized in Tables 1 and 2.
高炭素マルテンサイト系ステンレス鋼を鋳造するにあたり、ストリップキャスティング法を適用する場合の他の利点は、既存のインゴット鋳造法に比べて、工程が縮小し、製造費用が割安になるということである。インゴット鋳造法で高炭素マルテンサイト系熱延コイルを製造するために造塊後、分塊および熱間圧延のような後続の熱間加工過程が必須に要求されるが、この付加的な工程は、インゴット鋳造法の製造コストを上昇させる主な要因である。また、分塊および熱間圧延のような後続の熱間加工工程で必須に要求される素材の冷却と昇温を含む熱処理工程は、熱衝撃(thermal shock)によるクラックの発生への懸念のため非常にゆっくり行われなければならず、工程間の素材の移送のための作業も高温で注意して行われなければならないため、生産性の面でも非常に不利である。ストリップキャスティング方法は、前記分塊を含む別の熱間加工工程を経ることなく、直接熱延コイルを製造するため、高炭素マルテンサイト系ステンレス鋼を割安に製造できるという大きな利点がある。 When casting a high carbon martensitic stainless steel, another advantage of applying the strip casting method is that the process is reduced and the manufacturing cost is lower than that of the existing ingot casting method. In order to produce a high carbon martensitic hot rolled coil by the ingot casting method, subsequent hot working processes such as slabbing and hot rolling are essential after ingot forming. This is the main factor that increases the manufacturing cost of the ingot casting method. In addition, the heat treatment process, including material cooling and temperature increase, which are essential in subsequent hot working processes such as ingots and hot rolling, are concerned with the occurrence of cracks due to thermal shock. This is very disadvantageous in terms of productivity because it must be performed very slowly and work for transferring materials between processes must be performed carefully at high temperatures. The strip casting method has a great advantage in that a high-carbon martensitic stainless steel can be manufactured at a low cost because a hot-rolled coil is directly manufactured without going through another hot working step including the above-mentioned block.
ストリップキャスティング工程で製造された2.1mm厚の熱延コイルとして、表2の発明鋼6(#6)をバッチ(batch)形態の熱処理炉で長時間バッチ焼鈍した。この時、熱延コイルは、還元性雰囲気下、700〜950℃の焼鈍温度に徐々に加熱され、その温度で長時間保持させた後、再度徐々に炉内で冷却された。この焼鈍熱処理は、少なくて1回から多くて3回まで実施可能である。もちろん、バッチ焼鈍処理回数が多いほど、材質はさらに均質化することができるが、これは、追加の製造費用の上昇をもたらし得る。そして、この過程の熱処理は、熱延コイルの微細組織を構成するマルテンサイトと残留オーステナイトをフェライトとクロム炭化物に変える役割を果たす。この過程を終えた熱延焼鈍組織の硬度は約220Hvとなった。焼鈍された熱延コイルは、ショットブラスティング(shot blasting)を実施し、約70℃の温度で、硫酸と硫酸/硝酸の混酸とから構成された酸洗液で表面のスケールと脱炭層を除去した。この時、脱炭層の深さは、表層スケール直下20μm以下程度に形成されており、酸洗によって容易に除去できた。一般的に、インゴット鋳造法で製造されたインゴットは、鋳造時に発生した合金元素の偏析を緩和させる目的で高温でのインゴットの熱処理が欠かせないが、この工程で脱炭が深刻に発生するため、熱延コイルの製造後に脱炭層を除去するための付加的な作業が要求されたりもする。ストリップキャスティングで製造されたコイルにも脱炭層が存在することはあるが、鋳造後冷却されるまで1000℃以上の高温に露出する時間がわずか5分以内と短く、脱炭層がわずかに発生する。したがって、ストリップキャスティング工程で製造された熱延コイルは、酸洗によって容易に脱炭層が除去可能であるため、脱炭層を除去するために付加的なコイルグラインディングを省略することができ、経済的である。 As a 2.1 mm-thick hot-rolled coil manufactured in the strip casting process, the inventive steel 6 (# 6) in Table 2 was subjected to batch annealing for a long time in a batch-type heat treatment furnace. At this time, the hot-rolled coil was gradually heated to an annealing temperature of 700 to 950 ° C. in a reducing atmosphere, kept at that temperature for a long time, and then gradually cooled again in the furnace. This annealing heat treatment can be performed at least once and at most three times. Of course, the higher the number of batch annealing treatments, the more homogeneous the material can be, but this can lead to additional manufacturing costs. The heat treatment in this process serves to change the martensite and retained austenite constituting the microstructure of the hot rolled coil into ferrite and chromium carbide. The hardness of the hot-rolled annealed structure after this process was about 220 Hv. The annealed hot-rolled coil is shot blasted, and the surface scale and decarburized layer are removed with a pickling solution composed of sulfuric acid and sulfuric acid / nitric acid mixed acid at a temperature of about 70 ° C. did. At this time, the depth of the decarburized layer was formed to be about 20 μm or less just below the surface scale, and could be easily removed by pickling. Generally, ingots manufactured by the ingot casting method are indispensable to heat treatment of ingots at high temperatures to alleviate segregation of alloying elements generated during casting, but decarburization occurs seriously in this process. In addition, additional work for removing the decarburized layer may be required after manufacturing the hot-rolled coil. Although a decarburized layer may be present in a coil manufactured by strip casting, the time for exposure to a high temperature of 1000 ° C. or higher is as short as 5 minutes or less until it is cooled after casting, and a slight decarburized layer is generated. Accordingly, since the decarburized layer can be easily removed by pickling in the hot rolled coil manufactured by the strip casting process, additional coil grinding can be omitted to remove the decarburized layer. It is.
一方、酸洗を終えた熱延コイルとして、表2の発明鋼(#6)に対して冷間圧延を実施した。前述したように、カミソリ刃の製作のための初期素材は0.2mm以下の厚さを有するため、2.1mm厚の熱延焼鈍コイルから初期素材の厚さを目標の厚さまで低下させるために相当な冷間圧下が要求される。特に、カミソリ刃鋼素材は、微細組織内に存在する微細な炭化物に起因し、冷間圧延時に加工硬化が速く、延性の低下が大きい。冷間圧延中にエッジクラックの発生による板破断を防止しながら、目標の厚さに冷間圧延するために、1回の冷間圧延中に最大70%以下の冷間圧延を実施した。その後、エッジトリミング(edge trimming)と中間焼鈍(intermediate annealing)を実施した。この時、中間焼鈍は、約750℃の温度で、5分以内の時間の間実施された。最終目標の厚さに圧延するために、冷間圧延と中間焼鈍を複数回繰り返し実施した。このような方法で0.075mm厚の冷間圧延された薄いコイルを製造した。この時、前記冷延板を得るための総焼鈍回数は、熱延焼鈍ストリップで実施した焼鈍回数を含めて5回以内に制限することが経済的である。本発明では、このように5回以内の焼鈍回数を用いて同等品質で経済性をより向上させることができた。また、冷間圧延されたストリップは、650〜800℃の温度で冷延焼鈍を実施することができる。 On the other hand, cold rolling was performed on the invention steel (# 6) in Table 2 as a hot-rolled coil after pickling. As described above, since the initial material for manufacturing a razor blade has a thickness of 0.2 mm or less, in order to reduce the thickness of the initial material from a 2.1 mm thick hot-rolled annealing coil to a target thickness. Significant cold reduction is required. In particular, razor blade steel materials are caused by fine carbides present in the microstructure, and work hardening is fast during cold rolling, and the ductility is greatly reduced. In order to perform cold rolling to a target thickness while preventing sheet breakage due to the occurrence of edge cracks during cold rolling, a maximum of 70% or less of cold rolling was performed during one cold rolling. Thereafter, edge trimming and intermediate annealing were performed. At this time, the intermediate annealing was performed at a temperature of about 750 ° C. for a time within 5 minutes. In order to roll to the final target thickness, cold rolling and intermediate annealing were repeated several times. In this manner, a cold rolled thin coil having a thickness of 0.075 mm was manufactured. At this time, it is economical to limit the total number of annealing steps for obtaining the cold-rolled sheet within 5 times including the number of annealing steps performed on the hot-rolled annealing strip. In the present invention, it is possible to further improve the economy with the same quality by using the number of annealing times within 5 times. Moreover, the cold-rolled strip can be cold-rolled annealed at a temperature of 650 to 800 ° C.
図7および図8は、0.075mm厚に冷間圧延されたコイルの微細組織を示した。製造されたコイルにおいて、10μm以上の大きさを有する炭化物は存在せず、大部分の炭化物は0.1〜1.5μmの大きさに均一に分布している。すなわち、図8から、エッジ脱落を防止するのに有利な微細組織が形成されていることが分かる。また、図8で観察される0.1μm以上の大きさを有する炭化物の個数は約120EA/100μm2で、カミソリ刃の製作に好適な微細組織として製造されたことが分かる。 7 and 8 showed the microstructure of the coil cold rolled to a thickness of 0.075 mm. In the manufactured coil, there is no carbide having a size of 10 μm or more, and most of the carbide is uniformly distributed in a size of 0.1 to 1.5 μm. That is, it can be seen from FIG. 8 that a fine structure advantageous for preventing edge dropout is formed. Further, the number of carbides having a size of 0.1 μm or more observed in FIG. 8 is about 120 EA / 100 μm 2 , and it can be seen that it was manufactured as a fine structure suitable for manufacturing a razor blade.
上記のように、本発明は、ストリップキャスティング法を活用して、インゴット鋳造法で製造されたカミソリ刃鋼に比べて、粗い一次カーバイドの形成を革新的に抑制し、高品質のカミソリ刃を経済的に製造できることを特徴とする。本発明は、カミソリ刃用途の特定の実施形態の観点で記述されたが、本発明の範囲は、カミソリ刃の用途に限定されず、請求項に記述された範囲を含む。 As described above, the present invention uses the strip casting method to innovatively suppress the formation of coarse primary carbide compared to razor blade steel manufactured by the ingot casting method, and economically produces a high-quality razor blade. It can be manufactured automatically. Although the present invention has been described in terms of particular embodiments of razor blade applications, the scope of the present invention is not limited to razor blade applications, but includes the scope recited in the claims.
本発明の技術思想は、上記の好ましい実施形態により具体的に記述されたが、上記の実施形態は、その説明のためのものであって、それを制限するためのものではないことに注意しなければならない。また、本発明の技術分野における通常の知識を有する者であれば、本発明の技術思想の範囲内で多様な変形例が可能であることを理解することができる。上述した発明に対する権利範囲は、以下の特許請求の範囲で定められるものであって、明細書本文の記載に拘束されず、請求の範囲の均等範囲に属する変形と変更はすべて本発明の範囲に属する。 Although the technical idea of the present invention has been specifically described by the above preferred embodiments, it should be noted that the above embodiments are for the purpose of explanation and not for limitation. There must be. Further, those who have ordinary knowledge in the technical field of the present invention can understand that various modifications are possible within the scope of the technical idea of the present invention. The scope of the right to the invention described above is defined by the following claims, and is not restricted by the description of the specification, and all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention. Belongs.
Claims (14)
重量%で、C:0.40〜0.80%、Cr:11〜16%、Si:0.1〜1.0%、Mn:0.1〜1.0%、Ni:0超過1.0以下%、N:0超過0.1%以下、S:0超過0.04%以下、P:0超過0.05%以下、並びに、残部は、Feおよびその他不可避不純物からなるマルテンサイト系ステンレス溶鋼を、タンディッシュからノズルを介して前記溶鋼プールに供給してステンレス薄板を鋳造し、前記鋳造されたステンレス薄板を、鋳造直後にインラインローラを用いて5〜40%の圧下率で、1〜5mm厚であり且つ微細組織内の一次カーバイドが10μm以下である熱延焼鈍ストリップを製造する際、
前記熱延焼鈍ストリップを、還元性ガス雰囲気下、700〜950℃の温度範囲でバッチ焼鈍を実施し、熱延焼鈍板を製造し、
前記バッチ焼鈍は、1〜3回の範囲で実施する
ことを特徴とする、高炭素マルテンサイト系ステンレス鋼の製造方法。 The strip casting apparatus includes a pair of rolls rotating in opposite directions, an edge dam provided so as to form a molten steel pool on both sides thereof, and a meniscus shield for supplying an inert nitrogen gas to the upper surface of the molten steel pool. In the method for producing carbon martensitic stainless steel,
By weight, C: 0.40 to 0.80%, Cr: 11 to 16% , Si: 0.1 to 1.0%, Mn: 0.1 to 1.0%, Ni: more than 0 Martensitic stainless steel consisting of 0 or less%, N: more than 0, 0.1% or less, S: more than 0, 0.04% or less, P: more than 0, 0.05% or less, and the balance being Fe and other inevitable impurities the molten steel is supplied to the molten steel pool through a nozzle from the tundish to cast the stainless steel sheet, the cast stainless steel sheet, with 5-40% of reduction ratio by using the inline roller immediately after casting, 1 When producing a hot-rolled annealed strip that is ˜5 mm thick and has a primary carbide in the microstructure of 10 μm or less,
The pre SL hot rolled annealed strips, a reducing gas atmosphere, carried out batch annealing in the temperature range of 700 to 950 ° C., to produce a hot-rolled annealed sheets,
The said batch annealing is implemented in the range of 1-3 times, The manufacturing method of the high carbon martensitic stainless steel characterized by the above-mentioned.
重量%で、C:0.40〜0.80%、Cr:11〜16%、Si:0.1〜1.0%、Mn:0.1〜1.0%、Ni:0超過1.0以下%、N:0超過0.1%以下、S:0超過0.04%以下、P:0超過0.05%以下、並びに、残部は、Feおよびその他不可避不純物からなるマルテンサイト系ステンレス溶鋼を、タンディッシュからノズルを介して前記溶鋼プールに供給してステンレス薄板を鋳造し、前記鋳造されたステンレス薄板を、鋳造直後にインラインローラを用いて5〜40%の圧下率で、1〜5mm厚であり且つ微細組織内の一次カーバイドが10μm以下である熱延焼鈍ストリップを製造する際、
前記熱延焼鈍ストリップは、還元性ガス雰囲気下、700〜950℃の温度範囲でバッチ焼鈍を実施して製造された熱延焼鈍板であり、
前記バッチ焼鈍は、1〜3回の範囲で実施することを特徴とする、高炭素マルテンサイト系ステンレス鋼。 Manufactured by a strip casting apparatus including a pair of rolls rotating in opposite directions, an edge dam provided so as to form a molten steel pool on both side surfaces thereof, and a meniscus shield for supplying inert nitrogen gas to the upper surface of the molten steel pool High carbon martensitic stainless steel
By weight, C: 0.40 to 0.80%, Cr: 11 to 16% , Si: 0.1 to 1.0%, Mn: 0.1 to 1.0%, Ni: more than 0 Martensitic stainless steel consisting of 0 or less%, N: more than 0, 0.1% or less, S: more than 0, 0.04% or less, P: more than 0, 0.05% or less, and the balance being Fe and other inevitable impurities the molten steel is supplied to the molten steel pool through a nozzle from the tundish to cast the stainless steel sheet, the cast stainless steel sheet, with 5-40% of reduction ratio by using the inline roller immediately after casting, 1 When producing a hot-rolled annealed strip that is ˜5 mm thick and has a primary carbide in the microstructure of 10 μm or less,
Before SL hot rolled annealed strips, atmosphere a reducing gas, a hot-rolled annealed sheet produced by carrying out the batch annealing in the temperature range of 700 to 950 ° C.,
The said batch annealing is implemented in the range of 1-3 times, The high carbon martensitic stainless steel characterized by the above-mentioned.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090128110A KR101268800B1 (en) | 2009-12-21 | 2009-12-21 | Martensitic stainless steels containing high carbon content and method of manufacturing the same |
KR10-2009-0128110 | 2009-12-21 | ||
PCT/KR2010/009108 WO2011078532A2 (en) | 2009-12-21 | 2010-12-20 | High-carbon martensitic stainless steel and a production method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013514891A JP2013514891A (en) | 2013-05-02 |
JP5770743B2 true JP5770743B2 (en) | 2015-08-26 |
Family
ID=44196276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012545847A Expired - Fee Related JP5770743B2 (en) | 2009-12-21 | 2010-12-20 | High carbon martensitic stainless steel and method for producing the same |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120321501A1 (en) |
JP (1) | JP5770743B2 (en) |
KR (1) | KR101268800B1 (en) |
CN (1) | CN102665964B (en) |
DE (1) | DE112010004925T5 (en) |
WO (1) | WO2011078532A2 (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101312776B1 (en) * | 2009-12-21 | 2013-09-27 | 주식회사 포스코 | Martensitic stainless steel and method of the manufacture the same containing 0.1~0.5% carbon |
KR101239589B1 (en) | 2010-12-27 | 2013-03-05 | 주식회사 포스코 | High corrosion resistance martensite stainless steel and method of manufacturing the same |
KR101246335B1 (en) * | 2011-06-21 | 2013-03-21 | 포항공과대학교 산학협력단 | Steel sheet manufactured by decaburizing a solid pig iron and method for manufacturing the same |
KR101322972B1 (en) * | 2011-08-17 | 2013-11-04 | 주식회사 포스코 | Martensitic stainless steel and method for manufacturing the same |
CN102965580B (en) * | 2012-11-27 | 2016-01-20 | 黄山市新光不锈钢材料制品有限公司 | A kind of high carbon martensite stainless steel |
CN102943211B (en) * | 2012-11-27 | 2015-12-23 | 黄山市新光不锈钢材料制品有限公司 | A kind of manufacture method of high carbon martensite Stainless Steel Band |
KR101463310B1 (en) * | 2012-12-20 | 2014-11-19 | 주식회사 포스코 | Martensitic stainless steel and method of the manufacture the same containing 0.4~0.5% carbon |
EP2982773B1 (en) * | 2013-04-01 | 2017-08-02 | Hitachi Metals, Ltd. | Steel for blades and method for producing same |
EP2982451B1 (en) * | 2013-04-01 | 2018-02-28 | Hitachi Metals, Ltd. | Method for manufacturing martensitic stainless steel for blades |
US9783866B2 (en) | 2013-04-01 | 2017-10-10 | Hitachi Metals, Ltd. | Method for producing steel for blades |
US11148309B2 (en) * | 2013-06-05 | 2021-10-19 | The Gillette Company Llc | Razor components with novel coating |
DE102013013407B4 (en) | 2013-08-07 | 2015-05-28 | Salzgitter Flachstahl Gmbh | Method for producing steel cutting and cutting tools with improved tool life |
KR20150055788A (en) | 2013-11-14 | 2015-05-22 | 주식회사 포스코 | Twin roll casting roll of strip casting and method for manufacturing thereof |
KR101543867B1 (en) * | 2013-11-14 | 2015-08-11 | 주식회사 포스코 | Method for manufacturing martensitic stainless steel sheet using twin roll casting roll |
US20150174648A1 (en) * | 2013-12-24 | 2015-06-25 | Posco | Method of Manufacturing Thin Martensitic Stainless Steel Sheet Using Strip Caster with Twin Rolls and Thin Martensitic Stainless Steel Sheet Manufactured by the Same |
KR101647209B1 (en) * | 2013-12-24 | 2016-08-10 | 주식회사 포스코 | Method for manufacturing thin martensitic stainless steel sheet using strip caster with twin roll and thin martensitic stainless steel sheet produced uising the same |
US9499889B2 (en) | 2014-02-24 | 2016-11-22 | Honeywell International Inc. | Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same |
KR101648271B1 (en) * | 2014-11-26 | 2016-08-12 | 주식회사 포스코 | High-hardness martensitic stainless steel with excellent antibiosis and manufacturing the same |
CN105568169A (en) * | 2016-01-19 | 2016-05-11 | 溧阳市金昆锻压有限公司 | Martensitic stainless steel circular mould |
JP6635890B2 (en) * | 2016-07-15 | 2020-01-29 | 日鉄ステンレス株式会社 | Martensitic stainless steel sheet for cutting tools with excellent manufacturability and corrosion resistance |
KR101834996B1 (en) * | 2016-10-19 | 2018-03-06 | 주식회사 포스코 | High hardness martensitic stainless steel with excellent hardenability and method of manufacturing the same |
CN107186184A (en) * | 2017-04-27 | 2017-09-22 | 酒泉钢铁(集团)有限责任公司 | A kind of martensitic stain less steel double roll strip casting rolling production process |
CN110651053B (en) * | 2017-05-18 | 2021-10-22 | 日立金属株式会社 | Method for manufacturing steel strip for cutting tool and steel strip for cutting tool |
CN107699815B (en) * | 2017-11-27 | 2019-08-30 | 上海大学 | High hardness high toughness cutlery stainless steel and preparation method thereof |
CN108300945A (en) * | 2018-04-30 | 2018-07-20 | 江苏延汉材料科技有限公司 | A kind of martensitic stain less steel and its manufacturing method of manufacture scalpel blade |
JP2020045511A (en) * | 2018-09-17 | 2020-03-26 | 愛知製鋼株式会社 | Martensitic stainless steel for cutting tool |
JP7461366B2 (en) * | 2019-02-28 | 2024-04-03 | エッジウェル パーソナル ケア ブランズ リミテッド ライアビリティ カンパニー | Razor blades and compositions for razor blades |
US11492690B2 (en) | 2020-07-01 | 2022-11-08 | Garrett Transportation I Inc | Ferritic stainless steel alloys and turbocharger kinematic components formed from stainless steel alloys |
CN113523573B (en) * | 2021-06-21 | 2023-05-09 | 甘肃酒钢集团宏兴钢铁股份有限公司 | Welding method for high-carbon martensitic stainless steel hot-rolled coil |
CN115852231B (en) * | 2023-01-30 | 2023-05-09 | 北京科技大学 | Method for refining carbide precipitation of high-carbon chromium martensitic stainless steel |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6134161A (en) | 1984-07-25 | 1986-02-18 | Kawasaki Steel Corp | Stainless steel for cutlery |
JPS61117252A (en) * | 1984-11-13 | 1986-06-04 | Kawasaki Steel Corp | Stainless steel for edge tool |
JPS61189845A (en) * | 1985-02-18 | 1986-08-23 | Nippon Kokan Kk <Nkk> | Manufacture of sheet-shaped slab |
JPS63206431A (en) * | 1987-02-23 | 1988-08-25 | Kobe Steel Ltd | Production of thin stainless steel strip for cutlery |
JPH05140639A (en) * | 1991-11-21 | 1993-06-08 | Kawasaki Steel Corp | Method for butch-annealing stainless steel strip |
JPH07195103A (en) * | 1994-01-07 | 1995-08-01 | Nippon Steel Corp | Manufacture of steel sheet from thin cast billet |
JP3320547B2 (en) * | 1994-02-21 | 2002-09-03 | 日新製鋼株式会社 | Manufacturing method of high carbon content stainless steel sheet |
JPH07251244A (en) * | 1994-03-16 | 1995-10-03 | Nippon Steel Corp | Method for preventing porosity of cast slab in twin roll type continuous casting method |
JP2000219919A (en) * | 1999-01-28 | 2000-08-08 | Taiheiyo Kinzoku Kk | Production of austenitic stainless thin sheet |
KR100584744B1 (en) * | 2001-12-21 | 2006-05-30 | 주식회사 포스코 | Method for Manufacturing Patterned Austenite Stainless Steel Strip |
DE10215597A1 (en) * | 2002-04-10 | 2003-10-30 | Thyssenkrupp Nirosta Gmbh | Method for producing a high carbon martensitic steel strip and use of such a steel strip |
JP2003313612A (en) * | 2002-04-23 | 2003-11-06 | Matsushita Electric Works Ltd | Process for producing grain-refined martensitic stainless steel and cutting tool using the stainless steel |
KR100887109B1 (en) * | 2002-08-30 | 2009-03-04 | 주식회사 포스코 | Method for Manufacturing ??? Stainless Steel Strip with Twin Roll Strip Casting Apparatus |
SE526805C8 (en) * | 2004-03-26 | 2006-09-12 | Sandvik Intellectual Property | steel Alloy |
DE602005015094D1 (en) * | 2005-06-30 | 2009-08-06 | Outokumpu Oy | Martensitic stainless steel |
-
2009
- 2009-12-21 KR KR1020090128110A patent/KR101268800B1/en active IP Right Grant
-
2010
- 2010-12-20 DE DE112010004925T patent/DE112010004925T5/en not_active Ceased
- 2010-12-20 CN CN201080058577.8A patent/CN102665964B/en not_active Expired - Fee Related
- 2010-12-20 WO PCT/KR2010/009108 patent/WO2011078532A2/en active Application Filing
- 2010-12-20 JP JP2012545847A patent/JP5770743B2/en not_active Expired - Fee Related
- 2010-12-20 US US13/517,278 patent/US20120321501A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
CN102665964A (en) | 2012-09-12 |
WO2011078532A3 (en) | 2011-11-03 |
CN102665964B (en) | 2016-04-20 |
KR101268800B1 (en) | 2013-05-28 |
DE112010004925T5 (en) | 2012-11-08 |
KR20110071516A (en) | 2011-06-29 |
WO2011078532A2 (en) | 2011-06-30 |
US20120321501A1 (en) | 2012-12-20 |
JP2013514891A (en) | 2013-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5770743B2 (en) | High carbon martensitic stainless steel and method for producing the same | |
JP5531109B2 (en) | Martensitic stainless steel produced by twin roll thin plate casting process and method for producing the same | |
KR101423826B1 (en) | Martensitic stainless steel and the method of manufacturing the same | |
JP5775879B2 (en) | Martensitic stainless steel and method for producing the same | |
JP5696225B2 (en) | High corrosion resistance martensitic stainless steel and method for producing the same | |
KR20140103297A (en) | High strength austenitic stainless steel, and preparation method thereof | |
CN111254256B (en) | Bearing steel and manufacturing method thereof | |
KR101543867B1 (en) | Method for manufacturing martensitic stainless steel sheet using twin roll casting roll | |
JPH03100124A (en) | Production of cr-ni stainless steel sheet excellent in surface quality | |
US20150174648A1 (en) | Method of Manufacturing Thin Martensitic Stainless Steel Sheet Using Strip Caster with Twin Rolls and Thin Martensitic Stainless Steel Sheet Manufactured by the Same | |
KR950005320B1 (en) | Process for producing thin sheet of cr-ni based stainless steel having excellent surface quality and workability | |
CN113174532B (en) | Preparation method of high-quenching-hardness martensitic stainless steel coil for measuring tool | |
KR102218435B1 (en) | Hot rolled steel sheet having excellent surface qualities and low mechanical properties deviation and method of manufacturing the same | |
JPH0565263B2 (en) | ||
JP2013252558A (en) | Method of manufacturing martensitic stainless steel thin sheet with suppressed generation of coarse carbide | |
EP0378705B2 (en) | PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL | |
KR20120072498A (en) | Rolling roll for manufacturing anti-cracking martensitic stainless hot rolled steel strip by twin roll strip casting process and manufacturing method of anti-cracking martensitic stainless hot rolled steel strip using that rolling roll | |
JPH0788534B2 (en) | Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality | |
JPH02133529A (en) | Production of cr-ni stainless steel sheet having excellent surface quality and material quality | |
KR930000089B1 (en) | Process for production of cr-ni type stainless sheet having excellent surface properties and material quality | |
KR101243259B1 (en) | Martensitic stainless hot rolled steel strip and manufacturing method thereof | |
KR20190072321A (en) | Method for manufacturing high copper stainless steel having good surface quality | |
JPH0826405B2 (en) | Method for producing Cr-Ni type stainless steel thin plate excellent in surface quality and workability | |
JPH0670253B2 (en) | Method for producing Cr-Ni type stainless steel thin plate having excellent surface quality and material | |
KR20170068658A (en) | Mathod for manufacturing high copper stainless steel with twin roll strip casting apparatus and high copper stainless steel manufactured thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130806 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20131106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131108 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20131113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140415 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20140422 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20140627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150417 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150625 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5770743 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |