[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5759670B2 - Organic light emitting device - Google Patents

Organic light emitting device Download PDF

Info

Publication number
JP5759670B2
JP5759670B2 JP2009272911A JP2009272911A JP5759670B2 JP 5759670 B2 JP5759670 B2 JP 5759670B2 JP 2009272911 A JP2009272911 A JP 2009272911A JP 2009272911 A JP2009272911 A JP 2009272911A JP 5759670 B2 JP5759670 B2 JP 5759670B2
Authority
JP
Japan
Prior art keywords
group
light emitting
organic light
compound
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009272911A
Other languages
Japanese (ja)
Other versions
JP2011119308A (en
Inventor
良明 高橋
良明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2009272911A priority Critical patent/JP5759670B2/en
Publication of JP2011119308A publication Critical patent/JP2011119308A/en
Application granted granted Critical
Publication of JP5759670B2 publication Critical patent/JP5759670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、発光層を含む一層以上の有機化合物層に電圧を印加することにより発光し、発光層に電荷輸送性ポリマーを含む有機発光素子に関する。   The present invention relates to an organic light emitting device that emits light by applying a voltage to one or more organic compound layers including a light emitting layer and includes a charge transporting polymer in the light emitting layer.

近年、有機発光素子の用途を拡大するために、高い発光効率と耐久性を有する材料開発が活発に行なわれている。しかし有機発光素子をディスプレイや照明用途へ展開させるためには、さらに発光効率が高く、素子の安定した駆動を持続する材料の開発が必須である。中でも正孔と電子の結合により生成する三重項励起状態から発光する燐光発光材料は、有機発光素子の発光効率を大幅に向上できる材料として期待されている。(非特許文献1)
有機発光素子は、一般的に、一対の電極間に挟まれた1層または複数層の有機層を含む構成をとる。これらの層を形成する材料として、ポリマー化合物またはポリマー化合物と非ポリマー化合物の混合物を用いると、これを溶解した溶液を塗布して簡便に成膜でき、素子の大面積化および量産化が可能となる。このようなポリマー化合物としては電荷輸送性の構造を側鎖に有する電荷輸送性ポリマーが知られており、特許文献1および2に開示されているように、トリアリールアミン誘導体は高い正孔移動度を示すために電荷輸送性ポリマーの側鎖構造として好ましい。
In recent years, materials having high luminous efficiency and durability have been actively developed in order to expand the applications of organic light emitting devices. However, in order to develop organic light-emitting elements for display and lighting applications, it is essential to develop materials that have higher luminous efficiency and maintain stable driving of the elements. Among them, a phosphorescent material that emits light from a triplet excited state generated by the combination of holes and electrons is expected as a material that can greatly improve the light emission efficiency of an organic light emitting device. (Non-Patent Document 1)
An organic light emitting element generally has a configuration including one or more organic layers sandwiched between a pair of electrodes. When a polymer compound or a mixture of a polymer compound and a non-polymer compound is used as a material for forming these layers, it is possible to easily form a film by applying a solution in which the polymer compound is dissolved, and the device can have a large area and can be mass-produced. Become. As such a polymer compound, a charge transporting polymer having a charge transporting structure in its side chain is known, and as disclosed in Patent Documents 1 and 2, triarylamine derivatives have high hole mobility. Therefore, it is preferable as a side chain structure of the charge transporting polymer.

しかし、電荷輸送性ポリマーが側鎖に正孔輸送性のトリアリールアミン構造と電子輸送性の構造を同時に有する場合、ポリマーを光励起すると、トリアリールアミン構造および電子輸送性構造単独の発光に加えて、より低エネルギーの発光が観察される。この発光エネルギーはしばしば電荷輸送性ポリマー中に分散された発光体の励起エネルギーよりも小さいため、発光体からの発光を低下させる原因となり、特に励起エネルギーの大きな燐光発光体の場合には、有機発光素子の発光効率が大きく低下してしまう。   However, if the charge-transporting polymer has both a hole-transporting triarylamine structure and an electron-transporting structure in the side chain, when the polymer is photoexcited, in addition to the light emission of the triarylamine structure and the electron-transporting structure alone A lower energy emission is observed. This emission energy is often lower than the excitation energy of the phosphor dispersed in the charge transporting polymer, causing the emission from the phosphor to decrease, especially in the case of phosphorescent emitters with high excitation energy. The luminous efficiency of the device is greatly reduced.

特開平7−53953JP-A-7-53953 特開平8−269133JP-A-8-269133

Applied Physics Letters 75巻、4−6ページ、1999年Applied Physics Letters 75, 4-6, 1999

本発明はトリアリールアミン構造と電子輸送性構造を同一分子内に同時に含む電荷輸送性ポリマーにおいて、それぞれの構造に由来する発光よりも低いエネルギーの発光を抑制した電荷輸送性ポリマーを提供し、それを用いた有機発光素子の発光効率を高めることを課題とする。   The present invention provides a charge transporting polymer that contains a triarylamine structure and an electron transporting structure in the same molecule at the same time, and suppresses light emission at a lower energy than light emission derived from each structure, and It is an object to increase the light emission efficiency of an organic light emitting device using the above.

本発明者らは、上記の問題を解決すべく鋭意検討した結果、トリアリールアミン構造と電子輸送性構造に加えて特定の構造を側鎖とする電荷輸送性ポリマーを発光層の材料として用いることにより有機発光素子の発光効率が向上すること見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors use a charge transporting polymer having a specific structure as a side chain in addition to a triarylamine structure and an electron transporting structure as a material for the light emitting layer. As a result, it was found that the luminous efficiency of the organic light emitting device was improved, and the present invention was completed.

すなわち、本発明は、以下の[1]〜[4]に関する。
[1]一対の電極および、発光層を含む一層以上の有機化合物層を有し、前記一対の電極間に電圧を印加することにより発光する有機発光素子であって、前記発光層が正孔輸送性および電子輸送性を有する電荷輸送性ポリマーと発光性化合物を含み、前記電荷輸送性ポリマーが下記式(1)〜(3)で表される繰り返し単位からなり、式(1)で表される繰り返し単位の数をx、式(2)で表される繰り返し単位の数をy、式(3)で表される繰り返し単位の数をzとしたとき、x、yおよびzは1以上であり、zがxとyの和の倍以上200倍以下であることを特徴とする有機発光素子。
That is, the present invention relates to the following [1] to [4].
[1] An organic light emitting device having a pair of electrodes and one or more organic compound layers including a light emitting layer and emitting light by applying a voltage between the pair of electrodes, wherein the light emitting layer transports holes. The charge transporting polymer comprises a repeating unit represented by the following formulas (1) to (3), and is represented by the formula (1). When the number of repeating units is x, the number of repeating units represented by formula (2) is y, and the number of repeating units represented by formula (3) is z, x, y and z are 1 or more. , Z is 4 times or more and 200 times or less of the sum of x and y, The organic light emitting element characterized by the above-mentioned.

Figure 0005759670
上記式(1)中、ArおよびArはそれぞれ独立に、フェニル基、またはジアリールアミノフェニル基を表し、該フェニル基、またはジアリールアミノフェニル基は、アルキル基及びアルコキシ基から選ばれる置換基を有してもよい。
Figure 0005759670
In the above formula (1), Ar 1 and Ar 2 are each independently a phenyl group, or represents a diarylamino phenyl group, the phenyl group, or diaryl amino phenyl group, selected from alkyl and alkoxy groups which may have a substituent that is not good.

Figure 0005759670
上記式(2)中、Aはトリアリールボラン誘導体を表す。
Figure 0005759670
In the above formula (2), A represents a triarylborane derivative .

Figure 0005759670
Figure 0005759670

[2] 前記発光層が燐光発光性化合物を含む、[1]に記載の有機発光素子 [2] The organic light-emitting element according to [1], wherein the light-emitting layer includes a phosphorescent compound .

本発明の有機発光素子は、塗布によって成膜可能な電荷輸送性ポリマーを発光層に含み、電荷輸送性ポリマーによる発光体の発光効率低下を抑えることによって高い発光効率を有する。   The organic light emitting device of the present invention includes a charge transporting polymer that can be formed into a film by coating in the light emitting layer, and has a high light emitting efficiency by suppressing a decrease in the light emitting efficiency of the light emitter due to the charge transporting polymer.

次に、本発明について具体的に説明する。
本発明の有機発光素子は、発光層に、上記式(1)〜(3)で表される繰り返し単位からなり、電荷輸送性を有する共重合体および発光性化合物を含むことを特徴とする。上記共重合体は、発光層を構成する成分の30〜99重量%であることが好ましく、60〜99重量%であることがより好ましい。
Next, the present invention will be specifically described.
The organic light-emitting device of the present invention is characterized in that the light-emitting layer comprises a repeating unit represented by the above formulas (1) to (3) and contains a copolymer having a charge transporting property and a light-emitting compound. The copolymer is preferably 30 to 99% by weight, more preferably 60 to 99% by weight of the components constituting the light emitting layer.

上記式(1)で表される繰り返し単位は、トリアリールアミン構造を含む繰り返し単位である。Ar1およびAr2はそれぞれ独立に、フェニル基、ビフェニル基、ターフェニル基、ナフチル基またはジアリールアミノフェニル基を表し、これらはアルキル基やアルコキシ基などの置換基を有していてもよい。 The repeating unit represented by the above formula (1) is a repeating unit containing a triarylamine structure. Ar 1 and Ar 2 each independently represent a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, or a diarylaminophenyl group, which may have a substituent such as an alkyl group or an alkoxy group.

上記のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、アミル基、ヘキシル基、オクチル基、デシル基などが挙げられる。   Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, an amyl group, a hexyl group, an octyl group, and a decyl group.

上記のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、t−ブトキシ基、ヘキシルオキシ基、2−エチルヘキシルオキシ基、デシルオキシ基などが挙げられる。   Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a t-butoxy group, a hexyloxy group, a 2-ethylhexyloxy group, and a decyloxy group.

また、Ar1およびAr2は、さらにジアリールアミノ基またはジアリールアミノフェニル基を置換基として有することによって、式(1)で表される繰り返し単位が、一つの繰り返し単位にトリアリールアミン構造を二つ以上含む構造を形成していてもよい。 Ar 1 and Ar 2 further have a diarylamino group or a diarylaminophenyl group as a substituent, so that the repeating unit represented by the formula (1) has two triarylamine structures in one repeating unit. A structure including the above may be formed.

上記式(1)におけるR1は炭素数1〜20のアルキル基または炭素数1〜20のアルコキシ基を表し、該アルキル基としては例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、アミル基、ヘキシル基、オクチル基、デシル基などが挙げられ、該アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、t−ブトキシ基、ヘキシルオキシ基、2−エチルヘキシルオキシ基、デシルオキシ基などが挙げられる。 R 1 in the above formula (1) represents an alkyl group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. , Isobutyl group, t-butyl group, amyl group, hexyl group, octyl group, decyl group and the like. Examples of the alkoxy group include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group. Group, t-butoxy group, hexyloxy group, 2-ethylhexyloxy group, decyloxy group and the like.

上記式(1)で表される繰り返し単位の具体例を以下に示す。   Specific examples of the repeating unit represented by the above formula (1) are shown below.

Figure 0005759670
上記式(2)で表される繰り返し単位におけるAは電子輸送性を有する基を表す。電子輸送性を有する基としては、例えば、ヘテロ芳香族化合物誘導体やトリアリールボラン誘導体を挙げることができ、これらは上記式(A−1)〜(A−8)で表される構造であることが好ましい。
Figure 0005759670
A in the repeating unit represented by the above formula (2) represents a group having an electron transporting property. Examples of the group having an electron transporting property include heteroaromatic compound derivatives and triarylborane derivatives, and these are structures represented by the above formulas (A-1) to (A-8). Is preferred.

式(A−1)〜(A−8)中、R11、R16、R17、R19〜R22は、それぞれ独立にフッ素原子、シアノ基、アルキル基、アリール基、アルコキシ基またはシリル基を表す。ここで、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、アミル基、ヘキシル基、オクチル基、デシル基などが挙げられ、アリール基としては、例えば、フェニル基、トリル基、キシリル基、メシチル基、ナフチル基、ビフェニル基、ターフェニル基およびピリジル基、ピラジル基、キノリル基、イソキノリル基、ピロリル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、オキサジアゾリル基、トアゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、チエニル基、フリル基、テトラゾール基、カルバゾリル基、カルバゾリルフェニル基などのヘテロアリール基が挙げられ、アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、t−ブトキシ基、ヘキシルオキシ基、2−エチルヘキシルオキシ基、デシルオキシ基などが挙げられ、シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、t−ブチルジメチルシリル基、トリメトキシシリル基などが挙げられる。これらの置換基の中では、アルキル基、アリール基、アルコキシ基が好ましく、メチル基、t−ブチル基、フェニル基、トリル基、ビフェニル基、カルバゾリル基、カルバゾリルフェニル基がより好ましい。 In formulas (A-1) to (A-8), R 11 , R 16 , R 17 and R 19 to R 22 are each independently a fluorine atom, a cyano group, an alkyl group, an aryl group, an alkoxy group or a silyl group. Represents. Here, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, an amyl group, a hexyl group, an octyl group, and a decyl group. Examples of the group include phenyl group, tolyl group, xylyl group, mesityl group, naphthyl group, biphenyl group, terphenyl group and pyridyl group, pyrazyl group, quinolyl group, isoquinolyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, oxazolyl group. Groups, oxadiazolyl groups, toazolyl groups, benzoxazolyl groups, benzthiazolyl groups, thienyl groups, furyl groups, tetrazole groups, carbazolyl groups, carbazolylphenyl groups and the like heteroaryl groups. Examples of alkoxy groups include Methoxy group, ethoxy group, propoxy group, Examples include a propoxy group, a butoxy group, an isobutoxy group, a t-butoxy group, a hexyloxy group, a 2-ethylhexyloxy group, a decyloxy group. Examples of the silyl group include a trimethylsilyl group, a triethylsilyl group, and a t-butyldimethylsilyl group. Group, trimethoxysilyl group and the like. Among these substituents, an alkyl group, an aryl group, and an alkoxy group are preferable, and a methyl group, a t-butyl group, a phenyl group, a tolyl group, a biphenyl group, a carbazolyl group, and a carbazolylphenyl group are more preferable.

上記式(A−1)〜(A−8)中、Ar11〜Ar19、Ar21はそれぞれアリール基を表し、例えばフェニル基、トリル基、キシリル基、メシチル基、ナフチル基、ビフェニル基、ターフェニル基、カルバゾリル基、カルバゾリルフェニル基などが挙げられ、好ましくはフェニル基、トリル基、キシリル基、ビフェニル基、カルバゾリル基、カルバゾリルフェニル基である。これらの基はさらにアリール基で置換されていてもよい。 In the above formulas (A-1) to (A-8), Ar 11 to Ar 19 and Ar 21 each represent an aryl group. For example, phenyl group, tolyl group, xylyl group, mesityl group, naphthyl group, biphenyl group, ter Examples thereof include a phenyl group, a carbazolyl group, a carbazolylphenyl group, and the like, preferably a phenyl group, a tolyl group, a xylyl group, a biphenyl group, a carbazolyl group, and a carbazolylphenyl group. These groups may be further substituted with an aryl group.

上記式(A−1)〜(A−8)で表される化合物の具体例を以下に示す。   Specific examples of the compounds represented by the above formulas (A-1) to (A-8) are shown below.

Figure 0005759670
Figure 0005759670

Figure 0005759670
Figure 0005759670

Figure 0005759670
Figure 0005759670

Figure 0005759670
上記式(3)で表される繰り返し単位におけるR2は炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基、置換基を有してもよいフェニル基、置換基を有してもよいビフェニル基または置換基を有してもよいターフェニル基を表し、該アルキル基としては例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、アミル基、ヘキシル基、オクチル基、デシル基などが挙げられ、該アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、t−ブトキシ基、ヘキシルオキシ基、2−エチルヘキシルオキシ基、デシルオキシ基などが挙げられる。上記フェニル基、ビフェニル基およびターフェニル基は置換基としてアルキル基やアルコキシ基を有していてもよい。
Figure 0005759670
R 2 in the repeating unit represented by the above formula (3) has an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an optionally substituted phenyl group, and a substituent. Represents an optionally substituted biphenyl group or an optionally substituted terphenyl group, and examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, and an amyl group. Group, hexyl group, octyl group, decyl group and the like. Examples of the alkoxy group include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, t-butoxy group, hexyloxy group. , 2-ethylhexyloxy group, decyloxy group and the like. The phenyl group, biphenyl group and terphenyl group may have an alkyl group or an alkoxy group as a substituent.

上記式(3)で表される繰り返し単位は、上記式(1)で表される繰り返し単位および上記式(2)で表される繰り返し単位よりも大きなバンドギャップを有しているため、上記の低エネルギー発光を抑制することができる。   The repeating unit represented by the above formula (3) has a larger band gap than the repeating unit represented by the above formula (1) and the repeating unit represented by the above formula (2). Low energy emission can be suppressed.

本発明における上記共重合体において、上記式(1)で表される繰り返し単位の数をx、上記式(2)で表される繰り返し単位の数をy、上記式(3)で表される繰り返し単位の数をzとしたとき、x、yおよびzは1以上であり、zはxとyの和の2倍以上である。zがxとyの和の2倍よりも小さいと、上記の低エネルギーの発光を抑制する効果が小さいため、有機発光素子の発光効率は高くならない。zはxとyの和の2倍を超えて、より大きいほど上記の低エネルギー発光を抑制する効果が高く、xとyの和の4倍以上であることがより好ましく、6倍以上であることがさらに好ましいが、200倍を超えると式(1)で表される繰り返し単位および式(2)で表される繰り返し単位の電荷輸送性が低下してしまうため、200倍以下であることが好ましい。   In the copolymer of the present invention, the number of repeating units represented by the above formula (1) is x, the number of repeating units represented by the above formula (2) is y, and the above formula (3). When the number of repeating units is z, x, y and z are 1 or more, and z is 2 or more times the sum of x and y. If z is smaller than twice the sum of x and y, the light emission efficiency of the organic light emitting device does not increase because the effect of suppressing the low energy emission is small. z is more than twice the sum of x and y, and the larger it is, the higher the effect of suppressing the above-mentioned low energy emission is, and it is more preferably 4 times or more of the sum of x and y, more preferably 6 times or more. More preferably, when it exceeds 200 times, the charge transport properties of the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) are deteriorated. preferable.

共重合体中におけるxとyの比、すなわちx/yの最適値は、各繰り返し単位の電荷輸送能、濃度などによって決まるが、通常はそれぞれ0.05〜20の範囲にあることが好ましく、0.25〜4の範囲にあることがより好ましい。このような共重合体中における各繰り返し単位の比は、13C−NMR測定によって見積もられる。 The ratio of x and y in the copolymer, that is, the optimum value of x / y is determined by the charge transporting ability, concentration, etc. of each repeating unit, but is preferably preferably in the range of 0.05 to 20, respectively. More preferably, it is in the range of 0.25-4. The ratio of each repeating unit in such a copolymer is estimated by 13 C-NMR measurement.

上記共重合体は、異なる構造の上記式(1)で表される繰り返し単位、異なる構造の上記式(2)で表される繰り返し単位および/または異なる構造の上記式(3)で表される繰り返し単位を含んでいてもよい。この場合、上記のx、yおよびzは、それぞれ式(1)、(2)および(3)で表される繰り返し単位の数の合計として定義される。   The copolymer is represented by the repeating unit represented by the above formula (1) having a different structure, the repeating unit represented by the above formula (2) having a different structure, and / or the above formula (3) having a different structure. Repeating units may be included. In this case, the above x, y, and z are defined as the total number of repeating units represented by the formulas (1), (2), and (3), respectively.

上記共重合体の重量平均分子量は、通常1,000〜2,000,000であり、5,000〜1,000,000であることが好ましい。重量平均分子量がこの範囲にあると、上記高分子化合物が有機溶媒に可溶であり、均一な薄膜を得られるため好ましい。ここで、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によって、テトラヒドロフランを溶媒として、40℃で測定される値である。   The weight average molecular weight of the copolymer is usually 1,000 to 2,000,000, and preferably 5,000 to 1,000,000. When the weight average molecular weight is in this range, the polymer compound is soluble in an organic solvent, and a uniform thin film can be obtained. Here, the weight average molecular weight is a value measured at 40 ° C. using tetrahydrofuran as a solvent by gel permeation chromatography (GPC).

上記共重合体は、各繰り返し単位に対応する、ビニル基を有するモノマーを、所定の比で含む組成物を、ラジカル重合、カチオン重合またはアニオン重合することによって製造することができるが、共重合体の製造が容易である観点でラジカル重合により製造することが好ましい。なお、上記共重合体はランダム共重合体であることが望ましい。   The copolymer can be produced by radical polymerization, cation polymerization or anion polymerization of a composition containing a vinyl group monomer corresponding to each repeating unit in a predetermined ratio. From the viewpoint of easy production, it is preferable to produce by radical polymerization. The copolymer is preferably a random copolymer.

本発明に係る有機発光素子の構成の一例として、透明基板上に設けた陽極および陰極の間に、正孔輸送層、発光層および電子輸送層を、この順で積層した構成が挙げられる。他の有機発光素子の構成では、例えば、前記有機発光素子の陽極と陰極の間に、1)正孔輸送層/発光層、2)発光層/電子輸送層のいずれかを設けてもよい。また、3)正孔輸送材料、発光材料、電子輸送材料を含む層、4)正孔輸送材料、発光材料を含む層、5)発光材料、電子輸送材料を含む層、6)上記発光層のいずれかの層を1層のみ設けてもよい。さらに、発光層を2層以上積層してもよい。上記の有機層は基板上の電極面内に設けられた細孔(キャビティ)内部に形成されていてもよい。   As an example of the configuration of the organic light-emitting device according to the present invention, a configuration in which a hole transport layer, a light-emitting layer, and an electron transport layer are laminated in this order between an anode and a cathode provided on a transparent substrate can be given. In the configuration of another organic light emitting device, for example, either 1) a hole transport layer / light emitting layer or 2) a light emitting layer / electron transport layer may be provided between the anode and the cathode of the organic light emitting device. 3) a layer containing a hole transport material, a light emitting material, an electron transport material, 4) a layer containing a hole transport material, a light emitting material, 5) a layer containing a light emitting material, an electron transport material, 6) Any one of the layers may be provided. Further, two or more light emitting layers may be stacked. The organic layer may be formed inside pores (cavities) provided in the electrode surface on the substrate.

上記の各層は、バインダとして高分子材料を混合して、形成されていてもよい。上記高分子材料としては、例えば、ポリメチルメタクリレート、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイドなどが挙げられる。   Each of the above layers may be formed by mixing a polymer material as a binder. Examples of the polymer material include polymethyl methacrylate, polycarbonate, polyester, polysulfone, and polyphenylene oxide.

また、上記発光層は発光性化合物を含み、該発光性化合物は燐光発光性化合物であることが好ましい。燐光発光性化合物の例としては、アリールピリジンやカルベンなどの配位子を有するイリジウム錯体、白金錯体、オスミウム錯体などが挙げられる。イリジウム錯体のより具体的な例として以下の化合物(E1−1)〜(E1−39)が挙げられる。   The light-emitting layer preferably contains a light-emitting compound, and the light-emitting compound is preferably a phosphorescent compound. Examples of the phosphorescent compound include an iridium complex having a ligand such as aryl pyridine and carbene, a platinum complex, and an osmium complex. More specific examples of the iridium complex include the following compounds (E1-1) to (E1-39).

Figure 0005759670
Figure 0005759670

Figure 0005759670
Figure 0005759670

Figure 0005759670
Figure 0005759670

Figure 0005759670
上記発光層は、上記共重合体100重量部に対して、上記発光性化合物を、好ましくは1〜50重量部、より好ましくは5〜20重量部の量で含むことが望ましい。また、上記発光性化合物は、上記式(1)で表される共重合体の側鎖構造として含まれていてもよい。
Figure 0005759670
The light emitting layer preferably contains the light emitting compound in an amount of 1 to 50 parts by weight, more preferably 5 to 20 parts by weight, with respect to 100 parts by weight of the copolymer. Moreover, the said luminescent compound may be contained as a side chain structure of the copolymer represented by the said Formula (1).

上記の各層に用いられる正孔輸送材料および電子輸送材料は、それぞれ単独で各層を形成しても、機能の異なる材料を混合して、各層を形成していてもよい。本発明に係る有機発光素子における発光層においても、本発明に係る共重合体および上記燐光発光性化合物の他に、キャリア輸送性を補う目的で、さらに他の公知の正孔輸送材料および/または電子輸送材料が含まれていてもよい。このような輸送材料は、低分子化合物であっても、高分子化合物であってもよく、上記の共重合体100重量部に対して、好ましくは5〜95重量部、より好ましくは20〜80重量部の割合で含まれる。   The hole transport material and the electron transport material used for each of the above layers may be formed independently, or may be formed by mixing materials having different functions. Also in the light emitting layer in the organic light emitting device according to the present invention, in addition to the copolymer according to the present invention and the phosphorescent compound, other known hole transport materials and / or for the purpose of supplementing the carrier transport property. An electron transport material may be included. Such a transport material may be a low molecular compound or a high molecular compound, and is preferably 5 to 95 parts by weight, more preferably 20 to 80 parts by weight based on 100 parts by weight of the copolymer. Included in parts by weight.

上記発光層の成膜方法としては、特に限定されないが、例えば、以下のように成膜できる。まず、上記共重合体および上記発光性化合物および必要に応じて電荷輸送性の化合物を溶解した溶液を調製する。上記溶液の調製に用いる溶媒としては、特に限定されないが、例えば、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン、アニソール等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒などが用いられる。次いで、このように調製した溶液を、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の湿式成膜法などにより基板上に成膜する。用いる化合物および成膜条件などに依存するが、例えば、スピンコート法やディップコート法の場合には、上記溶液は、上記共重合体、発光性化合物および電荷輸送性化合物の混合物を0.5〜5重量%の量で含むことが好ましい。   The method for forming the light emitting layer is not particularly limited, and for example, the light emitting layer can be formed as follows. First, a solution in which the copolymer, the light-emitting compound and, if necessary, a charge transporting compound are dissolved is prepared. The solvent used for the preparation of the solution is not particularly limited. For example, a chlorine solvent such as chloroform, methylene chloride, dichloroethane, an ether solvent such as tetrahydrofuran and anisole, an aromatic hydrocarbon solvent such as toluene and xylene, Ketone solvents such as acetone and methyl ethyl ketone, and ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate are used. Next, the solution thus prepared is subjected to spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, spray coating, and screen printing. The film is formed on the substrate by a wet film forming method such as a flexographic printing method, an offset printing method, or an ink jet printing method. For example, in the case of a spin coating method or a dip coating method, the solution contains a mixture of the copolymer, the light-emitting compound, and the charge transporting compound in an amount of 0.5 to 0.5. It is preferably included in an amount of 5% by weight.

本発明の有機発光素子の基板としては、上記発光材料の発光波長に対して透明な絶縁性基板が好適に用いられ、具体的には、ガラスのほか、PET(ポリエチレンテレフタレート)、ポリカーボネート等の透明プラスチックなどが用いられる。   As the substrate of the organic light emitting device of the present invention, an insulating substrate transparent to the emission wavelength of the light emitting material is preferably used. Specifically, in addition to glass, transparent materials such as PET (polyethylene terephthalate) and polycarbonate are used. Plastic or the like is used.

上記陽極と発光層との間には、正孔注入において注入障壁を緩和するために、正孔注入層が設けられていてもよい。上記正孔注入層を形成するためには、銅フタロシアニン、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の混合体、フルオロカーボン、二酸化ケイ素などの公知の材料が用いられる。   A hole injection layer may be provided between the anode and the light emitting layer in order to relax the injection barrier in hole injection. In order to form the hole injection layer, a known material such as copper phthalocyanine, a mixture of polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS), fluorocarbon, silicon dioxide or the like is used.

上記陰極と電子輸送層との間、または陰極と陰極に隣接して積層される有機化合物層との間に、電子注入効率を向上させるために、厚さ0.1〜10nmの絶縁層が設けられていてもよい。上記絶縁層を形成するためには、フッ化リチウム、フッ化ナトリウム、フッ化マグネシウム、酸化マグネシウム、アルミナなどの公知の材料が用いられる。   An insulating layer having a thickness of 0.1 to 10 nm is provided between the cathode and the electron transport layer or between the cathode and the organic compound layer laminated adjacent to the cathode in order to improve electron injection efficiency. It may be done. In order to form the insulating layer, known materials such as lithium fluoride, sodium fluoride, magnesium fluoride, magnesium oxide, and alumina are used.

上記正孔輸送層を形成する正孔輸送材料、または発光層中に混合させる正孔輸送材料としては、例えば、TPD(N,N’−ジメチル−N,N’−(3−メチルフェニル)−1,1’−ビフェニル−4,4’ジアミン);α−NPD(4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル);m−MTDATA(4、4’,4’’−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン)等の低分子トリフェニルアミン誘導体、4,4‘−ジカルバゾリルビフェニル、1,3−ジカルバゾリルビフェニルなどの低分子カルバゾール誘導体などが挙げられる。上記正孔輸送材料は、1種単独でも、2種以上を混合して用いてもよく、異なる正孔輸送材料を積層して用いてもよい。正孔輸送層の厚さは、正孔輸送層の導電率などに依存するため、一概に限定できないが、好ましくは1nm〜5μm、より好ましくは5nm〜1μm、特に好ましくは10nm〜500nmであることが望ましい。   As a hole transport material for forming the hole transport layer or a hole transport material mixed in the light emitting layer, for example, TPD (N, N′-dimethyl-N, N ′-(3-methylphenyl)- 1,1′-biphenyl-4,4′diamine); α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl); m-MTDATA (4,4 ′, Low molecular weight triphenylamine derivatives such as 4 ″ -tris (3-methylphenylphenylamino) triphenylamine), low molecular weight such as 4,4′-dicarbazolylbiphenyl, 1,3-dicarbazolylbiphenyl And carbazole derivatives. The above hole transport materials may be used singly or in combination of two or more, or different hole transport materials may be laminated and used. Since the thickness of the hole transport layer depends on the conductivity of the hole transport layer and the like, it cannot be unconditionally limited, but is preferably 1 nm to 5 μm, more preferably 5 nm to 1 μm, and particularly preferably 10 nm to 500 nm. Is desirable.

上記電子輸送層を形成する電子輸送材料、または発光層中に混合させる電子輸送材料としては、例えば、Alq3(アルミニウムトリスキノリノレート)等のキノリノール誘導体金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、トリアジン誘導体、トリアリールボラン誘導体等の公知化合物などが挙げられる。上記電子輸送材料は、1種単独でも、2種以上を混合して用いてもよく、異なる電子輸送材料を積層して用いてもよい。電子輸送層の厚さは、電子輸送層の導電率などに依存するため、一概に限定できないが、好ましくは1nm〜5μm、より好ましくは5nm〜1μm、特に好ましくは10nm〜500nmであることが望ましい。   Examples of the electron transport material for forming the electron transport layer or the electron transport material mixed in the light emitting layer include quinolinol derivative metal complexes such as Alq3 (aluminum trisquinolinolate), oxadiazole derivatives, triazole derivatives, imidazole. Examples include known compounds such as derivatives, triazine derivatives, and triarylborane derivatives. The electron transport materials may be used singly or in combination of two or more, or different electron transport materials may be laminated and used. The thickness of the electron transport layer depends on the conductivity of the electron transport layer and cannot be generally limited, but is preferably 1 nm to 5 μm, more preferably 5 nm to 1 μm, and particularly preferably 10 nm to 500 nm. .

また、発光層の陰極側に隣接して、正孔が発光層を通過することを抑え、発光層内で正孔と電子とを効率よく再結合させる目的で、正孔ブロック層が設けられていてもよい。上記正孔ブロック層を形成するために、トリアゾール誘導体、オキサジアゾール誘導体、フェナントロリン誘導体などの公知の材料が用いられる。   In addition, a hole blocking layer is provided adjacent to the cathode side of the light emitting layer for the purpose of preventing holes from passing through the light emitting layer and efficiently recombining holes and electrons in the light emitting layer. May be. In order to form the hole blocking layer, a known material such as a triazole derivative, an oxadiazole derivative, or a phenanthroline derivative is used.

発光層、正孔輸送層および電子輸送層の成膜方法としては、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法等の乾式成膜法のほか、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の湿式成膜法(塗布法)などを用いることができる。本発明の化合物を含む層は有機発光素子の製造コストを抑えられる塗布法により成膜できる利点を有する。   Examples of film formation methods for the light-emitting layer, the hole transport layer, and the electron transport layer include dry coating methods such as resistance heating evaporation, electron beam evaporation, and sputtering, as well as spin coating, casting, and microgravure. Wet film forming methods such as coating methods, gravure coating methods, bar coating methods, roll coating methods, wire bar coating methods, dip coating methods, spray coating methods, screen printing methods, flexographic printing methods, offset printing methods, and inkjet printing methods ( Application method) can be used. The layer containing the compound of the present invention has an advantage that it can be formed by a coating method capable of suppressing the manufacturing cost of the organic light emitting device.

本発明の有機発光素子に用いる陽極材料としては、例えば、ITO(酸化インジウムスズ)、酸化錫、酸化亜鉛、ポリチオフェン、ポリピロール、ポリアニリン等の導電性高分子など、公知の透明導電材料が好適に用いられる。この透明導電材料によって形成された電極の表面抵抗は、1〜50Ω/□(オーム/スクエアー)であることが好ましい。陽極の厚さは50〜300nmであることが好ましい。   As an anode material used for the organic light emitting device of the present invention, for example, a known transparent conductive material such as ITO (indium tin oxide), tin oxide, zinc oxide, polythiophene, polypyrrole, polyaniline or the like is preferably used. It is done. The surface resistance of the electrode formed of the transparent conductive material is preferably 1 to 50Ω / □ (ohm / square). The thickness of the anode is preferably 50 to 300 nm.

本発明の有機EL素子に用いる陰極材料としては、例えば、Li、Na、K、Cs等のアルカリ金属;Mg、Ca、Ba等のアルカリ土類金属;Al;MgAg合金;AlLi、AlCa等のAlとアルカリ金属またはアルカリ土類金属との合金など、公知の陰極材料が好適に用いられる。陰極の厚さは、好ましくは10nm〜1μm、より好ましくは50〜500nmであることが望ましい。アルカリ金属、アルカリ土類金属などの活性の高い金属を使用する場合には、陰極の厚さは、好ましくは0.1〜100nm、より好ましくは0.5〜50nmであることが望ましい。また、この場合には、上記陰極金属を保護する目的で、この陰極上に、大気に対して安定な金属層が積層される。上記金属層を形成する金属として、例えば、Al、Ag、Au、Pt、Cu、Ni、Crなどが挙げられる。上記金属層の厚さは、好ましくは10nm〜1μm、より好ましくは50〜500nmであることが望ましい。   Examples of the cathode material used in the organic EL device of the present invention include alkali metals such as Li, Na, K, and Cs; alkaline earth metals such as Mg, Ca, and Ba; Al; MgAg alloys; Al such as AlLi and AlCa A known cathode material such as an alloy of alkali metal or alkaline earth metal is preferably used. The thickness of the cathode is preferably 10 nm to 1 μm, more preferably 50 to 500 nm. When a highly active metal such as an alkali metal or alkaline earth metal is used, the thickness of the cathode is preferably 0.1 to 100 nm, more preferably 0.5 to 50 nm. In this case, a metal layer that is stable to the atmosphere is laminated on the cathode for the purpose of protecting the cathode metal. Examples of the metal forming the metal layer include Al, Ag, Au, Pt, Cu, Ni, and Cr. The thickness of the metal layer is preferably 10 nm to 1 μm, more preferably 50 to 500 nm.

また、上記陽極材料の成膜方法としては、例えば、電子ビーム蒸着法、スパッタリング法、化学反応法、コーティング法などが用いられ、上記陰極材料の成膜方法としては、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法などが用いられる。   In addition, as a method for forming the anode material, for example, an electron beam evaporation method, a sputtering method, a chemical reaction method, a coating method, or the like is used. As a method for forming the cathode material, for example, a resistance heating evaporation method, An electron beam evaporation method, a sputtering method, an ion plating method, or the like is used.

本発明の有機発光素子は、公知の方法で、マトリックス方式またはセグメント方式による画素として画像表示装置に好適に用いられる。また、上記有機EL素子は、画素を形成せずに、面発光光源としても好適に用いられる。   The organic light-emitting element of the present invention is suitably used in an image display device as a matrix-type or segment-type pixel by a known method. The organic EL element is also suitably used as a surface light source without forming pixels.

本発明の有機発光素子は、具体的には、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信などに好適に用いられる。   Specifically, the organic light-emitting device of the present invention is suitably used for displays, backlights, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signboards, interiors, optical communications, and the like.

次に、本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
参考合成例1)
下記の化合物(M−1)、(M−2)および(M−3)を共重合することによって、参考共重合体(1−1)を合成した。なお、化合物(M−1)および(M−2)は、特開2005−200638に記載された方法に従って合成し、(M−3)は東京化成工業社から購入したものを、減圧蒸留して用いた。
Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited by these.
( Reference Synthesis Example 1)
A reference copolymer (1-1) was synthesized by copolymerizing the following compounds (M-1), (M-2) and (M-3). Compounds (M-1) and (M-2) were synthesized according to the method described in JP-A-2005-200508, and (M-3) was distilled from Tokyo Chemical Industry Co., Ltd. under reduced pressure. Using.

Figure 0005759670
密閉容器に化合物(M−1)200mg(0.33mmol)、化合物(M−2)200mg(0.34mmol)および化合物(M−3)140mg(1.34mmol)を入れ、脱水トルエン(5.0mL)を加えた。次いで、V−601(和光純薬工業(株)製)のトルエン溶液(0.1M、0.10mL)を加え、凍結脱気操作を5回繰り返した。真空のまま密閉し、60℃で60時間撹拌した。反応後、反応液をアセトン200mL中に滴下し、沈殿を得た。さらにトルエン−アセトンでの再沈殿精製を2回繰り返した後、50℃で一晩真空乾燥して、参考共重合体(1−1)を得た。参考共重合体(1−1)の重量平均分子量(Mw)は34500、分子量分布指数(Mw/Mn)は2.05であった。13C−NMR測定の結果から見積もった参考共重合体(1−1)におけるx/yの値は1.00であり、z/(x+y)は2.13であった。
Figure 0005759670
Compound (M-1) 200 mg (0.33 mmol), compound (M-2) 200 mg (0.34 mmol) and compound (M-3) 140 mg (1.34 mmol) were placed in a sealed container, and dehydrated toluene (5.0 mL). ) Was added. Next, a toluene solution (0.1 M, 0.10 mL) of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the freeze degassing operation was repeated 5 times. It sealed in vacuum and stirred at 60 ° C. for 60 hours. After the reaction, the reaction solution was dropped into 200 mL of acetone to obtain a precipitate. Further, reprecipitation purification with toluene-acetone was repeated twice, followed by vacuum drying at 50 ° C. overnight to obtain a reference copolymer (1-1). The weight average molecular weight (Mw) of the reference copolymer (1-1) was 34500, and the molecular weight distribution index (Mw / Mn) was 2.05. The value of x / y in the reference copolymer (1-1) estimated from the result of 13 C-NMR measurement was 1.00, and z / (x + y) was 2.13.

(合成例2)
重合に用いた化合物(M−1)、化合物(M−2)および化合物(M−3)の量を、それぞれ150mg(0.25mmol)、150mg(0.26mmol)および210mg(2.02mmol)としたほかは、参考合成例1と同様にして重合を行い、共重合体(1−2)を得た。共重合体(1−2)の重量平均分子量(Mw)は29600、分子量分布指数(Mw/Mn)は2.18であった。13C−NMR測定の結果から見積もった共重合体(1−2)におけるx/yの値は1.00であり、z/(x+y)は4.05であった。
(Synthesis Example 2)
The amounts of compound (M-1), compound (M-2) and compound (M-3) used for the polymerization were 150 mg (0.25 mmol), 150 mg (0.26 mmol) and 210 mg (2.02 mmol), respectively. The copolymerization was conducted in the same manner as in Reference Synthesis Example 1 to obtain a copolymer (1-2). The weight average molecular weight (Mw) of the copolymer (1-2) was 29600, and the molecular weight distribution index (Mw / Mn) was 2.18. The value of x / y in the copolymer (1-2) estimated from the result of 13 C-NMR measurement was 1.00, and z / (x + y) was 4.05.

(比較合成例1)
重合に用いた化合物(M−1)、化合物(M−2)および化合物(M−3)の量を、それぞれ200mg(0.33mmol)、200mg(0.34mmol)および70mg(0.67mmol)としたほかは、参考合成例1と同様にして重合を行い、比較共重合体(C1−1)を得た。比較共重合体(C1−1)の重量平均分子量(Mw)は36600、分子量分布指数(Mw/Mn)は2.15であった。13C−NMR測定の結果から見積もった比較共重合体(C1−1)におけるx/yの値は1.00であり、z/(x+y)は1.00であった。
(Comparative Synthesis Example 1)
The amounts of compound (M-1), compound (M-2) and compound (M-3) used for the polymerization were 200 mg (0.33 mmol), 200 mg (0.34 mmol) and 70 mg (0.67 mmol), respectively. Otherwise, polymerization was carried out in the same manner as in Reference Synthesis Example 1 to obtain a comparative copolymer (C1-1). The weight average molecular weight (Mw) of the comparative copolymer (C1-1) was 36600, and the molecular weight distribution index (Mw / Mn) was 2.15. The value of x / y in the comparative copolymer (C1-1) estimated from the result of 13 C-NMR measurement was 1.00, and z / (x + y) was 1.00.

(比較合成例2)
重合に用いた化合物(M−1)、化合物(M−2)および化合物(M−3)の量を、それぞれ200mg(0.33mmol)、200mg(0.34mmol)および0mg(0mmol)としたほかは、参考合成例1と同様にして重合を行い、比較共重合体(C1−2)を得た。比較共重合体(C1−2)の重量平均分子量(Mw)は35100、分子量分布指数(Mw/Mn)は2.07であった。13C−NMR測定の結果から見積もった比較共重合体(C1−2)におけるx/yの値は0.92であり、z/(x+y)は0であった。
(Comparative Synthesis Example 2)
The amount of the compound (M-1), compound (M-2) and compound (M-3) used for the polymerization was 200 mg (0.33 mmol), 200 mg (0.34 mmol) and 0 mg (0 mmol), respectively. Were polymerized in the same manner as in Reference Synthesis Example 1 to obtain a comparative copolymer (C1-2). The weight average molecular weight (Mw) of the comparative copolymer (C1-2) was 35100, and the molecular weight distribution index (Mw / Mn) was 2.07. The value of x / y in the comparative copolymer (C1-2) estimated from the result of 13 C-NMR measurement was 0.92, and z / (x + y) was 0.

参考例1]
ITO付き基板(ニッポ電機(株)製)を用いた。これは、25mm角のガラス基板の一方の面に、幅4mmのITO(酸化インジウム錫)電極(陽極)が、ストライプ状に2本形成された基板であった。
[ Reference Example 1]
A substrate with ITO (manufactured by Nippon Electric Co., Ltd.) was used. This was a substrate in which two ITO (indium tin oxide) electrodes (anodes) having a width of 4 mm were formed in one stripe on one surface of a 25 mm square glass substrate.

まず、上記ITO付き基板上に、N,N'−ジ(1−ナフチル)−N,N'−ジフェニル−4,4'−ジアミノビフェニル(Sigma−Aldrich社製、昇華精製品、純度99%)を8.5×10-5Paの減圧下、抵抗加熱蒸着法により0.2nm/secの速度で約50nmの膜厚になるように正孔輸送層を成膜した。次に、参考共重合体(1−1)82mgおよび燐光発光体(E1−4)8mgの混合物をトルエン(和光純薬工業(株)製、特級)2910mgに溶解し、この溶液を孔径0.2μmのフィルターでろ過し、塗布溶液を調製した。次いで、上記正孔輸送層上に、上記塗布溶液を、回転数3000rpm、塗布時間30秒の条件で、スピンコート法により塗布した。塗布後、室温(25℃)で30分間乾燥し、発光層を形成した。得られた発光層の膜厚は、約50nmであった。 First, on the substrate with ITO, N, N′-di (1-naphthyl) -N, N′-diphenyl-4,4′-diaminobiphenyl (manufactured by Sigma-Aldrich, sublimation purified product, purity 99%) A hole transport layer was formed to a thickness of about 50 nm at a rate of 0.2 nm / sec by resistance heating vapor deposition under a reduced pressure of 8.5 × 10 −5 Pa. Next, a mixture of 82 mg of the reference copolymer (1-1) and 8 mg of the phosphorescent emitter (E1-4) was dissolved in 2910 mg of toluene (special grade, manufactured by Wako Pure Chemical Industries, Ltd.). The solution was filtered through a 2 μm filter to prepare a coating solution. Next, the coating solution was coated on the hole transport layer by a spin coating method under the conditions of a rotation speed of 3000 rpm and a coating time of 30 seconds. After the application, it was dried at room temperature (25 ° C.) for 30 minutes to form a light emitting layer. The film thickness of the obtained light emitting layer was about 50 nm.

次に上記発光層の上に2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(Sigma−Aldrich社製、昇華精製品、純度99.99%)およびAlq3(東京化成工業社製、昇華精製品、純度98%)を8.5×10-5Paの減圧下、抵抗加熱蒸着法により0.2nm/secの速度でそれぞれ20nmおよび30nmの膜厚になるように成膜し、電子輸送層を形成した。次いで、8.5×10-5Paの減圧下でバリウムおよびアルミニウムを重量比1:10で共蒸着し、陽極の延在方向に対して直交するように、幅3mmの陰極をストライプ状に2本形成した。得られた陰極の膜厚は、約50nmであった。 Next, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (manufactured by Sigma-Aldrich, sublimation purified product, purity 99.99%) and Alq3 (manufactured by Tokyo Chemical Industry Co., Ltd.) are formed on the light emitting layer. , Sublimation refined product, purity 98%) under reduced pressure of 8.5 × 10 −5 Pa by resistance heating vapor deposition method to a film thickness of 20 nm and 30 nm respectively at a rate of 0.2 nm / sec. An electron transport layer was formed. Next, barium and aluminum were co-evaporated at a weight ratio of 1:10 under a reduced pressure of 8.5 × 10 −5 Pa, and a cathode having a width of 3 mm was striped in a shape of 2 so as to be orthogonal to the extending direction of the anode. The book was formed. The film thickness of the obtained cathode was about 50 nm.

最後に、アルゴン雰囲気中で、陽極と陰極とにリード線(配線)を取り付けて、縦4mm×横3mmの有機発光素子を4個作製した。上記有機EL素子に、プログラマブル直流電圧/電流源(TR6143、(株)アドバンテスト社製)を用いて電圧を印加して発光させた。   Finally, in an argon atmosphere, lead wires (wirings) were attached to the anode and the cathode to produce four organic light emitting elements having a length of 4 mm and a width of 3 mm. A voltage was applied to the organic EL element to emit light using a programmable DC voltage / current source (TR6143, manufactured by Advantest Corporation).

作製した有機発光素子の発光外部量子効率は8.6%であった。
[実施例2]
参考共重合体(1−1)の代わりに共重合体(1−2)を用いた以外は、参考例1と同様にして有機発光素子を作製した。作製した有機発光素子の発光外部量子効率は9.9%であった。
The light emitting external quantum efficiency of the produced organic light emitting device was 8.6%.
[Example 2]
An organic light emitting device was produced in the same manner as in Reference Example 1 except that the copolymer (1-2) was used instead of the reference copolymer (1-1). The light-emitting external quantum efficiency of the produced organic light-emitting device was 9.9%.

[比較例1]
参考共重合体(1−1)の代わりに共重合体(C1−1)を用いた以外は、参考例1と同様にして有機発光素子を作製した。作製した有機発光素子の発光外部量子効率は6.5%であった。
[Comparative Example 1]
An organic light emitting device was produced in the same manner as in Reference Example 1 except that the copolymer (C1-1) was used instead of the reference copolymer (1-1). The produced organic light emitting device had a light emission external quantum efficiency of 6.5%.

[比較例2]
参考共重合体(1−1)の代わりに共重合体(C1−2)を用いた以外は、参考例1と同様にして有機発光素子を作製した。作製した有機発光素子の発光外部量子効率は5.5%であった。
[Comparative Example 2]
An organic light emitting device was produced in the same manner as in Reference Example 1 except that the copolymer (C1-2) was used instead of the reference copolymer (1-1). The produced organic light emitting device had a light emission external quantum efficiency of 5.5%.

本発明の有機発光素子は、具体的には、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信などに好適に用いられる。   Specifically, the organic light-emitting device of the present invention is suitably used for displays, backlights, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signboards, interiors, optical communications, and the like.

Claims (2)

一対の電極および、発光層を含む一層以上の有機化合物層を有し、前記一対の電極間に電圧を印加することにより発光する有機発光素子であって、前記発光層が正孔輸送性および電子輸送性を有する電荷輸送性ポリマーと発光性化合物を含み、前記電荷輸送性ポリマーが下記式(1)〜(3)で表される繰り返し単位からなり、式(1)で表される繰り返し単位の数をx、式(2)で表される繰り返し単位の数をy、式(3)で表される繰り返し単位の数をzとしたとき、x、yおよびzは1以上であり、zがxとyの和の4倍以上200倍以下であることを特徴とする有機発光素子。
Figure 0005759670
上記式(1)中、ArおよびArはそれぞれ独立に、フェニル基、またはジアリールアミノフェニル基を表し、該フェニル基、またはジアリールアミノフェニル基は、アルキル基及びアルコキシ基から選ばれる置換基を有してもよい。
Figure 0005759670
上記式(2)中、Aはトリアリールボラン誘導体を表す。
Figure 0005759670
An organic light emitting device having a pair of electrodes and one or more organic compound layers including a light emitting layer and emitting light by applying a voltage between the pair of electrodes, wherein the light emitting layer has a hole transport property and an electron. A charge transporting polymer having a transporting property and a light-emitting compound, wherein the charge transporting polymer is composed of repeating units represented by the following formulas (1) to (3), and the repeating unit represented by the formula (1): When the number is x, the number of repeating units represented by formula (2) is y, and the number of repeating units represented by formula (3) is z, x, y and z are 1 or more, and z is An organic light emitting device characterized by being 4 to 200 times the sum of x and y.
Figure 0005759670
In the above formula (1), Ar 1 and Ar 2 are each independently a phenyl group, or represents a diarylamino phenyl group, the phenyl group, or diaryl amino phenyl group, selected from alkyl and alkoxy groups which may have a substituent that is not good.
Figure 0005759670
In the above formula (2), A represents a triarylborane derivative .
Figure 0005759670
前記発光層が燐光発光性化合物を含む、請求項1に記載の有機発光素子 The organic light emitting device according to claim 1, wherein the light emitting layer contains a phosphorescent compound .
JP2009272911A 2009-11-30 2009-11-30 Organic light emitting device Active JP5759670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009272911A JP5759670B2 (en) 2009-11-30 2009-11-30 Organic light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009272911A JP5759670B2 (en) 2009-11-30 2009-11-30 Organic light emitting device

Publications (2)

Publication Number Publication Date
JP2011119308A JP2011119308A (en) 2011-06-16
JP5759670B2 true JP5759670B2 (en) 2015-08-05

Family

ID=44284336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009272911A Active JP5759670B2 (en) 2009-11-30 2009-11-30 Organic light emitting device

Country Status (1)

Country Link
JP (1) JP5759670B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10319912B2 (en) 2015-01-29 2019-06-11 Samsung Electronics Co., Ltd. Charge-transporting material and organic light-emitting device including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363227A (en) * 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd New polymer and luminescent element using the same
JP4234383B2 (en) * 2002-09-19 2009-03-04 Tdk株式会社 Organic EL element and organic EL display
JP4225043B2 (en) * 2002-12-03 2009-02-18 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT DEVICE, ITS MANUFACTURING METHOD, DISPLAY DEVICE, LIGHTING DEVICE, AND LIGHT SOURCE

Also Published As

Publication number Publication date
JP2011119308A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP4879591B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP2007031678A (en) Polymeric luminescent material and organic electroluminescence element using the polymeric luminescent material
JPWO2009011270A1 (en) Triazine ring-containing polymer compound and organic light-emitting device using the polymer compound
US8025987B2 (en) Light emitting polymer material, organic electroluminescence device and display device comprising light emitting polymer material
JP2007262135A (en) Polymer luminescent material, organic electroluminescent element and display
JP5043329B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP5461793B2 (en) Phosphorescent polymer compound and organic electroluminescence device using the same
JP5342103B2 (en) Organic light emitting device
JP4916791B2 (en) Organic electroluminescence element and display device
JP5031276B2 (en) POLYMER LIGHT EMITTING MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT AND DISPLAY DEVICE USING POLYMER LIGHT EMITTING MATERIAL
JP4896512B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP5759670B2 (en) Organic light emitting device
JP4916792B2 (en) Organic electroluminescence element and display device
JP4749871B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP4823601B2 (en) Polymer light emitting material, organic electroluminescence element, and display device
JP4790382B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP2008010649A (en) Organic electroluminescence element, and display
JP2011116805A (en) Copolymer and organic light-emitting element
JP5466747B2 (en) High molecular compound
JP4790381B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP2007084612A (en) High molecular light emission material, organic electroluminescent element and display
JP4749887B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP5043346B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP4932246B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device
JP4790383B2 (en) Polymer light-emitting material, organic electroluminescence element, and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5759670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250