[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5755427B2 - FIBER-REINFORCED MOLDED BODY AND METHOD FOR PRODUCING THE SAME - Google Patents

FIBER-REINFORCED MOLDED BODY AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP5755427B2
JP5755427B2 JP2010247288A JP2010247288A JP5755427B2 JP 5755427 B2 JP5755427 B2 JP 5755427B2 JP 2010247288 A JP2010247288 A JP 2010247288A JP 2010247288 A JP2010247288 A JP 2010247288A JP 5755427 B2 JP5755427 B2 JP 5755427B2
Authority
JP
Japan
Prior art keywords
fiber
thermosetting resin
impregnated
resin
reinforced molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010247288A
Other languages
Japanese (ja)
Other versions
JP2012096482A (en
Inventor
陽介 春日
陽介 春日
益巳 小出
益巳 小出
杉浦 好典
好典 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2010247288A priority Critical patent/JP5755427B2/en
Priority to EP20110821825 priority patent/EP2612754B1/en
Priority to CN201180042090.5A priority patent/CN103079810B/en
Priority to TW100131158A priority patent/TWI558567B/en
Priority to US13/813,594 priority patent/US9132607B2/en
Priority to PCT/JP2011/069655 priority patent/WO2012029810A1/en
Publication of JP2012096482A publication Critical patent/JP2012096482A/en
Application granted granted Critical
Publication of JP5755427B2 publication Critical patent/JP5755427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casings For Electric Apparatus (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、芯材の少なくとも一面に繊維補強材と表面材が積層されて一体化した繊維強化成形体とその製造方法に関する。   The present invention relates to a fiber reinforced molded body in which a fiber reinforcing material and a surface material are laminated and integrated on at least one surface of a core material, and a manufacturing method thereof.

近年、ノートパソコンの筐体など、高剛性が要求される部材として、繊維強化成形体が提案されている。繊維強化成形体としては、例えば炭素繊維プリプレグを積層して反応硬化させることにより得られる炭素繊維強化体がある。炭素繊維を用いる繊維強化成形体としては、例えば以下のものがある。   In recent years, a fiber-reinforced molded body has been proposed as a member that requires high rigidity, such as a casing of a notebook computer. As a fiber reinforced molded object, there exists a carbon fiber reinforced body obtained by laminating | stacking a carbon fiber prepreg and carrying out reaction hardening, for example. Examples of fiber reinforced molded bodies using carbon fibers include the following.

特許文献1には、炭素繊維の連続繊維を一方向にシート状に配列した繊維強化層の複数層を、特定の配列方向で積層した繊維強化成形品が開示されている。
特許文献2には、空隙を有する芯材と、該芯材の両面に配置された、連続した炭素繊維とマトリックス樹脂からなる繊維強化材とからなるサンドイッチ構造体が開示されている。
特許文献3には、少なくとも炭素繊維を含む連続繊維強化織物を軟質部材層の両面に配置したシートを射出成形金型に内にセットし、前記シートの側部に樹脂部品を射出成形した複合成形品が開示されている。
Patent Document 1 discloses a fiber reinforced molded product in which a plurality of fiber reinforced layers in which continuous fibers of carbon fibers are arranged in a sheet shape in one direction are laminated in a specific arrangement direction.
Patent Document 2 discloses a sandwich structure made of a core material having a gap and a fiber reinforcing material made of continuous carbon fibers and a matrix resin disposed on both sides of the core material.
Patent Document 3 discloses a composite molding in which a continuous fiber reinforced fabric containing at least carbon fibers is placed on both sides of a soft member layer, a sheet is set in an injection mold, and a resin part is injection molded on the side of the sheet. The product is disclosed.

また、特許文献4には、弾力性のあるサンドイッチ型の複合材料の製造方法として、エポキシ樹脂を含浸させたガラス繊維からなる織物シートを金型内の上下に配置し、織物シート間にウレタン樹脂発泡体を発泡させる方法が開示されている(特許文献4の実施例1)。   Further, in Patent Document 4, as a method for producing an elastic sandwich-type composite material, fabric sheets made of glass fibers impregnated with an epoxy resin are arranged above and below in a mold, and a urethane resin is interposed between the fabric sheets. A method of foaming a foam is disclosed (Example 1 of Patent Document 4).

しかしながら、炭素繊維織物あるいはガラス繊維織物などの繊維織物を表面に有する繊維強化成形体は、成形体の表面で図6に示すように繊維が重なり合う部分215と、織り目の隙間216の部分との間で段差を生じ、その段差等の影響によって表面の凹凸度合が大きく、外観塗装を施しても前記段差等による影響を小さくすることができず、表面平滑性を得ることが難しかった。符号221は横繊維、222は縦繊維である。また、外観塗装を施した場合に前記段差部分にエアが残って塗膜表面にピンホールを生じる場合がある。特に、美観の向上等の点から外観塗装されることが一般的な用途においては、外観塗装を施した場合の外観状態は重要である。さらに、一般的に炭素繊維などの無機物と、ウレタン塗料やUV塗料との相性(密着性)が良くなく、塗膜が剥がれるおそれもある。   However, a fiber reinforced molded body having a fiber woven fabric such as a carbon fiber woven fabric or a glass fiber woven fabric on the surface has a space between the portion 215 where the fibers overlap on the surface of the molded body and the portion of the gap 216 of the weave as shown in FIG. As a result, the surface unevenness degree is large due to the effect of the step and the like, and even if the appearance is applied, the effect of the step cannot be reduced and it is difficult to obtain surface smoothness. Reference numeral 221 denotes a transverse fiber, and 222 denotes a longitudinal fiber. Moreover, when an external appearance coating is applied, air may remain in the stepped portion and a pinhole may be generated on the surface of the coating film. In particular, in an application in which appearance painting is generally performed from the viewpoint of improving aesthetic appearance, the appearance state when the appearance painting is performed is important. Furthermore, in general, the compatibility (adhesiveness) between an inorganic material such as carbon fiber and a urethane paint or UV paint is not good, and the coating film may be peeled off.

特開2004−209717号公報JP 2004-209717 A WO2006/028107号公報WO2006 / 028107 特開2007−038519号公報JP 2007-038519 A 特開平01−163020号公報Japanese Patent Laid-Open No. 01-163020

本発明は前記の点に鑑みなされたものであって、塗装前の表面の凹凸度合(表面粗さ)が小さく、塗装した場合の外観が良好で塗膜が剥がれるおそれのない繊維強化成形体及びその製造方法の提供を目的とする。   The present invention has been made in view of the above points, and has a fiber-reinforced molded body that has a small degree of unevenness (surface roughness) on the surface before coating, has a good appearance when coated, and does not cause the coating film to peel off. It aims at providing the manufacturing method.

請求項1の発明は、芯材の少なくとも一面に繊維補強材が積層され、前記繊維補強材に表面材が積層されて一体化した繊維強化成形体であって、前記芯材は、合成樹脂からなり、前記繊維補強材は、繊維織物に熱硬化性樹脂が含浸して硬化したものからなり、前記表面材は、セル数8〜80個/25mmの連続気泡を有する多孔性シートに熱硬化性樹脂が含浸して硬化したものからなって表面粗さが30μm以下であることを特徴とする。   The invention of claim 1 is a fiber reinforced molded body in which a fiber reinforcing material is laminated on at least one surface of a core material, and a surface material is laminated on the fiber reinforcing material, and the core material is made of synthetic resin. The fiber reinforcing material is made of a fiber woven fabric impregnated with a thermosetting resin and cured, and the surface material is thermosetting to a porous sheet having open cells of 8 to 80 cells / 25 mm. It is characterized by comprising a resin impregnated and cured and having a surface roughness of 30 μm or less.

請求項2の発明は、請求項1において、前記多孔性シートが樹脂発泡体からなることを特徴とする。
請求項3の発明は、請求項2において、前記樹脂発泡体がウレタン樹脂発泡体からなることを特徴とする。
請求項4の発明は、請求項1から3の何れか一項において、前記熱硬化性樹脂がフェノール樹脂又はエポキシ樹脂からなることを特徴とする。
According to a second aspect of the present invention, in the first aspect, the porous sheet is made of a resin foam.
The invention of claim 3 is characterized in that, in claim 2, the resin foam comprises a urethane resin foam.
According to a fourth aspect of the present invention, in any one of the first to third aspects, the thermosetting resin is made of a phenol resin or an epoxy resin.

請求項5の発明は、請求項1から4の何れか一項において、前記芯材は、連続気泡を有する樹脂発泡体に熱硬化性樹脂が含浸して硬化したものからなり、前記芯材と前記繊維補強材と前記表面材とが、前記連続気泡を有する樹脂発泡体に含浸した熱硬化性樹脂と、前記繊維織物に含浸した熱硬化性樹脂と、前記多孔性シートに含浸した熱硬化性樹脂の硬化により一体化されていることを特徴とする。
請求項6の発明は、請求項1から5の何れか一項において、前記表面材の表面に塗膜が設けられ、前記塗膜の表面粗さが25μm以下であることを特徴とする。
A fifth aspect of the present invention provides the core material according to any one of the first to fourth aspects, wherein the core material is formed by impregnating and curing a resin foam having open cells with a thermosetting resin. The fiber reinforcing material and the surface material are the thermosetting resin impregnated in the resin foam having open cells, the thermosetting resin impregnated in the fiber fabric, and the thermosetting impregnated in the porous sheet. It is characterized by being integrated by curing the resin.
The invention of claim 6 is characterized in that, in any one of claims 1 to 5, a coating film is provided on the surface of the surface material, and the surface roughness of the coating film is 25 μm or less.

請求項7の発明は、合成樹脂製の芯材の少なくとも一面に、繊維織物に熱硬化性樹脂が含浸して硬化した繊維補強材が積層され、連続気泡を有する発泡体のシートに熱硬化性樹脂が含浸して硬化した表面材が前記繊維補強材に積層された繊維強化成形体の製造方法において、前記連続気泡を有する発泡体のシートとして、セル数が8〜80個/25mm、厚みが0.4〜3.0mmであって、熱に溶けて孔が埋まらないものを用い、芯材用部材と前記繊維織物の何れか一方又は両方に対し、前記繊維強化成形体の樹脂比率が50〜80重量%となるように熱硬化性樹脂を含浸又は付着させ、前記芯材用部材の少なくとも一面に前記繊維織物と前記連続気泡を有する発泡体のシートとを順次積層し、前記芯材用部材と前記繊維織物と前記連続気泡を有する発泡体シートを加熱及び圧縮して前記熱硬化性樹脂を硬化させることにより、前記芯材用部材から形成された前記芯材と前記繊維織物に熱硬化性樹脂が含浸して硬化した前記繊維補強材と、前記連続気泡を有する発泡体のシートに熱硬化性樹脂が含浸して硬化した前記表面材を一体化し、前記繊維強化成形体の厚みを0.3〜2.0mmにすることを特徴とする。 According to the seventh aspect of the present invention, at least one surface of a synthetic resin core material is laminated with a fiber reinforcing material obtained by impregnating and curing a fiber fabric with a thermosetting resin, and the foam sheet having open cells is thermosetting. In the method for producing a fiber reinforced molded article in which a surface material impregnated with resin and cured is laminated on the fiber reinforcement, the number of cells is 8 to 80 cells / 25 mm and the thickness is as the foam sheet having the open cells. a 0.4~3.0Mm, using those holes melted into heat not embedded, against either one or both of the textile fabric and the core member, the resin ratio of the fiber-reinforced molded article 50 Impregnating or adhering a thermosetting resin so as to be -80% by weight, and laminating the fiber fabric and the foam sheet having open cells sequentially on at least one surface of the core member; Member, fiber fabric and continuous air By heating and compressing the foam sheet having the above, the thermosetting resin is cured, so that the core material formed from the core member and the fiber fabric are impregnated with the thermosetting resin and cured. The fiber reinforcing material and the foamed sheet having open cells are integrated with the surface material that has been impregnated and cured with a thermosetting resin, so that the thickness of the fiber-reinforced molded body is 0.3 to 2.0 mm . It is characterized by that.

繊維強化成形体に関する本発明は、繊維織物に熱硬化性樹脂が含浸して硬化してなる繊維補強材が芯材の少なくとも一面に積層されているために良好な剛性を有し、さらに繊維補強材に積層された表面材が、セル数8〜80個/25mmの連続気泡を有する多孔性シートに熱硬化性樹脂が含浸して硬化し、表面材の表面粗さが30μm以下のものからなるため、前記表面材が積層された表面では、繊維補強材を構成する繊維織物の織り目の隙間部分等で生じる段差が、多孔性シートに含浸して硬化した熱硬化性樹脂で埋められ、繊維強化成形体の表面が平滑となる。さらに表面材の表面に塗装を施して塗膜を設けた場合に、塗膜の表面粗さを25μm以下にして前記繊維織物の段差の影響を抑えることができると共に、前記段差部分にエアが残って塗膜表面にピンホールを生じるおそれを無くすことができ、良好な塗装外観が得られる。さらに、表面材によって塗料との密着性が良くなり、塗膜の剥がれを防ぐことができる。なお、本発明における表面粗さ(実施例中の凹凸度合)は、試験表面に対し、表面粗さ計を用いて測定された十点平均粗さ(RzJIS82)をいう。   The present invention related to a fiber reinforced molded article has a good rigidity because a fiber reinforcing material obtained by impregnating a fiber woven fabric with a thermosetting resin and being cured is laminated on at least one surface of the core material, and further fiber reinforced. The surface material laminated on the material is impregnated with a thermosetting resin in a porous sheet having open cells of 8 to 80 cells / 25 mm and cured, and the surface material has a surface roughness of 30 μm or less. Therefore, on the surface where the surface material is laminated, a step generated in a gap portion of the weave of the fiber fabric constituting the fiber reinforcing material is filled with a thermosetting resin impregnated in the porous sheet and cured, thereby reinforcing the fiber. The surface of the molded body becomes smooth. Furthermore, when coating is applied to the surface of the surface material, the surface roughness of the coating can be reduced to 25 μm or less to suppress the effect of the step of the fiber fabric, and air remains in the step. This eliminates the possibility of pinholes on the surface of the coating film and provides a good coating appearance. In addition, the surface material improves the adhesion to the paint and prevents the coating film from peeling off. In addition, the surface roughness (degree of unevenness in the examples) in the present invention refers to a ten-point average roughness (RzJIS82) measured using a surface roughness meter with respect to the test surface.

また、繊維強化成形体の製造方法に関する本発明は、高剛性及び外観の良好を実現できる繊維強化成形体を容易に得ることができる。   Moreover, the present invention relating to a method for producing a fiber-reinforced molded body can easily obtain a fiber-reinforced molded body that can realize high rigidity and good appearance.

本発明における繊維強化成形体の一実施形態の断面図である。It is sectional drawing of one Embodiment of the fiber reinforced molded object in this invention. 表面材の表面に塗膜を設けた繊維強化成形体の一実施形態の断面図である。It is sectional drawing of one Embodiment of the fiber reinforced molded object which provided the coating film on the surface of the surface material. 本発明における製造方法の第1実施形態の工程を示す図である。It is a figure which shows the process of 1st Embodiment of the manufacturing method in this invention. 本発明における製造方法の第2実施形態の工程を示す図である。It is a figure which shows the process of 2nd Embodiment of the manufacturing method in this invention. 本発明における製造方法の第3実施形態の工程を示す図である。It is a figure which shows the process of 3rd Embodiment of the manufacturing method in this invention. 繊維織物の平面図及び断面図である。It is the top view and sectional drawing of a textile fabric.

以下、本発明の繊維強化成形体及びその製造方法について図面を用いて説明する。
図1に示す本発明の一実施形態に係る繊維強化成形体10は、芯材11と、前記芯材11の両面に積層一体化された繊維補強材21と、前記芯材11の少なくとも一側の繊維補強材21の表面に積層一体化された表面材25とからなり、前記表面材25の表面に塗装が施されてノートパソコン等の携帯機器の筐体などに用いられる。図示の例では、前記繊維強化成形体10において塗装が行われる側111のみに前記繊維補強材21と前記表面材25を前記芯材11に積層し、前記塗装が行われない側112については、前記繊維補強材21のみを積層して前記表面材25を積層していない。前記繊維強化成形体10の用途等によっては、塗装が行われない側112は、前記繊維補強材21と前記表面材25の何れも積層しないようにしてもよい。また、前記繊維強化成形体10の両側に塗装を行う用途については、前記芯材11の両側の前記繊維補強材21の表面に前記表面材25を積層一体化するのが好ましい。
Hereinafter, the fiber reinforced molded product and the manufacturing method thereof of the present invention will be described with reference to the drawings.
A fiber reinforced molded body 10 according to an embodiment of the present invention shown in FIG. 1 includes a core material 11, a fiber reinforcing material 21 laminated and integrated on both surfaces of the core material 11, and at least one side of the core material 11. The surface material 25 is laminated and integrated on the surface of the fiber reinforcing material 21, and the surface of the surface material 25 is coated and used for a housing of a portable device such as a notebook computer. In the illustrated example, the fiber reinforcing material 21 and the surface material 25 are laminated on the core material 11 only on the side 111 on which the coating is performed in the fiber reinforced molded body 10, and the side 112 on which the coating is not performed is as follows. Only the fiber reinforcing material 21 is laminated, and the surface material 25 is not laminated. Depending on the use or the like of the fiber-reinforced molded body 10, the side 112 on which the coating is not performed may be configured such that neither the fiber reinforcing material 21 nor the surface material 25 is laminated. In addition, for the purpose of coating on both sides of the fiber reinforced molded body 10, the surface material 25 is preferably laminated and integrated on the surface of the fiber reinforcing material 21 on both sides of the core material 11.

前記繊維強化成形体10は、所定サイズの板状からなり、厚みが0.3〜2.0mm、また、曲げ弾性率(JIS K 7074−1988 A法)が30GPa以上60GPa以下、より好ましくは35GPa以上55GPa以下であり、比重が1.2以上1.5以下、より好ましくは1.28以上1.35以下のものが好ましい。厚みが0.3mm未満では剛性が得難く、一方厚みが2.0mmより大の場合には携帯機器全体が厚くなる。なお、前記繊維強化成形体10は、携帯機器の筐体として用いられる場合、筐体の側壁等が、射出成形等のいわゆるアウトサート成形で、所定の表面位置に適宜立設される。   The fiber-reinforced molded body 10 has a plate shape of a predetermined size, a thickness of 0.3 to 2.0 mm, and a flexural modulus (JIS K7074-1988 A method) of 30 GPa to 60 GPa, more preferably 35 GPa. It is preferably 55 GPa or less and a specific gravity of 1.2 to 1.5, more preferably 1.28 to 1.35. If the thickness is less than 0.3 mm, it is difficult to obtain rigidity, whereas if the thickness is greater than 2.0 mm, the entire portable device becomes thick. When the fiber-reinforced molded body 10 is used as a casing of a portable device, the side walls of the casing are appropriately erected at a predetermined surface position by so-called outsert molding such as injection molding.

前記芯材11は、合成樹脂のシートあるいは板状体からなり、特には、連続気泡を有する樹脂発泡体に熱硬化性樹脂が含浸して硬化したものが好ましい。前記連続気泡を有する樹脂発泡体としては、特に限定されるものではなく、例えば、ウレタン樹脂発泡体又はメラミン樹脂発泡体から選択することができる。前記繊維強化成形体10に難燃性が求められる場合には、前記熱硬化性樹脂発泡体としては難燃性のものが好ましく、メラミン樹脂発泡体は樹脂単体が良好な難燃性を有するため、前記熱硬化性樹脂発泡体として好適なものである。   The core material 11 is made of a synthetic resin sheet or plate, and in particular, a resin foam having open cells impregnated with a thermosetting resin and cured is preferable. The resin foam having open cells is not particularly limited, and can be selected from, for example, a urethane resin foam or a melamine resin foam. When the fiber reinforced molded body 10 is required to have flame retardancy, the thermosetting resin foam is preferably flame retardant, and the melamine resin foam has a good flame retardancy as a single resin. The thermosetting resin foam is suitable.

さらに前記芯材11は、連続気泡を有する樹脂発泡体に熱硬化性樹脂が含浸し、前記樹脂発泡体を圧縮した状態で前記熱硬化性樹脂が硬化したものが好ましい。前記樹脂発泡体を圧縮した状態で前記熱硬化性樹脂が硬化することにより、前記繊維強化成形体10の薄肉化と剛性の向上を図ることができる。なお、圧縮程度は、後述する繊維強化成形体の製造時に繊維強化成形体の厚みが0.3〜2.0mmとなるようにするのが好ましい。   Further, it is preferable that the core material 11 is obtained by impregnating a resin foam having open cells with a thermosetting resin, and curing the thermosetting resin in a state where the resin foam is compressed. When the thermosetting resin is cured in a state where the resin foam is compressed, the fiber-reinforced molded body 10 can be thinned and the rigidity can be improved. The degree of compression is preferably such that the thickness of the fiber-reinforced molded body is 0.3 to 2.0 mm during the production of the fiber-reinforced molded body described later.

前記芯材11用の樹脂発泡体の圧縮前の元厚みは、圧縮率により異なるが、例えば、厚さ2mm以下の繊維強化成形体を得ようとする場合、元厚み1〜25mmが好ましい。この範囲に元厚みがあると、適度な量の熱硬化性樹脂を含浸でき、加熱圧縮後の歩留まりも良い。元厚みが1mmより薄いと、含浸した熱硬化性樹脂を樹脂発泡体中に保持できず、樹脂比率がばらつく為、曲げ弾性率(剛性)が低下するようになる。元厚みが25mmより厚いと、厚さ2mm以下の繊維強化成形体を得ようとした場合、圧縮が困難で、均一な厚みの繊維強化成形体が得られない。また、前記芯材11用の樹脂発泡体は、圧縮容易性、含浸性、軽量性、剛性の点から、圧縮前の密度が5〜80kg/mのものが好ましい。 Although the original thickness before compression of the resin foam for the core material 11 varies depending on the compression rate, for example, when trying to obtain a fiber-reinforced molded body having a thickness of 2 mm or less, the original thickness is preferably 1 to 25 mm. When the original thickness is within this range, an appropriate amount of thermosetting resin can be impregnated, and the yield after heat compression is good. If the original thickness is less than 1 mm, the impregnated thermosetting resin cannot be held in the resin foam, and the resin ratio varies, so that the flexural modulus (rigidity) is lowered. When the original thickness is greater than 25 mm, when trying to obtain a fiber reinforced molded product having a thickness of 2 mm or less, compression is difficult and a fiber reinforced molded product having a uniform thickness cannot be obtained. The resin foam for the core material 11 preferably has a density before compression of 5 to 80 kg / m 3 from the viewpoints of easy compression, impregnation, light weight, and rigidity.

前記芯材11用の樹脂発泡体に含浸する熱硬化性樹脂は、特に限定されないが、前記繊維強化成形体10の剛性を高めるためには、熱硬化性樹脂自体がある程度の剛性を有する必要があり、エポキシ樹脂、フェノール樹脂、エポキシ樹脂とフェノール樹脂の混合物からなる群より選択することができる。また、前記繊維強化成形体10に難燃性が求められる場合、前記熱硬化性樹脂は難燃性のものが好ましい。フェノール樹脂は良好な難燃性を有するため、前記樹脂発泡体に含浸させる熱硬化性樹脂として好適なものである。   The thermosetting resin impregnated into the resin foam for the core material 11 is not particularly limited, but in order to increase the rigidity of the fiber reinforced molded body 10, the thermosetting resin itself needs to have a certain degree of rigidity. Yes, it can be selected from the group consisting of epoxy resins, phenol resins, and mixtures of epoxy resins and phenol resins. When the fiber reinforced molded body 10 is required to have flame retardancy, the thermosetting resin is preferably flame retardant. Since the phenol resin has good flame retardancy, it is suitable as a thermosetting resin impregnated in the resin foam.

前記繊維補強材21は、繊維織物に熱硬化性樹脂が含浸し、硬化したものからなる。前記繊維織物としては、ガラス繊維、炭素繊維等からなるものを挙げることができるが、特に炭素繊維織物は、軽量及び高剛性に優れるため、前記繊維織物として好ましいものである。さらに、前記繊維織物は、繊維が一方向のみではない織り方のものが好ましく、例えば、縦糸と横糸で構成される平織、綾織、朱子織及び3方向の糸で構成される三軸織などが好適である。また、前記繊維織物として炭素繊維織物を用いる場合、炭素繊維織物は、熱硬化性樹脂の含浸及び剛性の点から、繊維重さが90〜400g/mのものが好ましい。 The fiber reinforcing material 21 is made by impregnating a fiber fabric with a thermosetting resin and curing it. Examples of the fiber woven fabric include those made of glass fiber, carbon fiber, etc. In particular, the carbon fiber woven fabric is preferable as the fiber woven fabric because it is excellent in light weight and high rigidity. Further, the fiber woven fabric preferably has a weaving method in which the fibers are not only in one direction, for example, a plain weave composed of warp and weft, a twill weave, a satin weave, and a triaxial weave composed of three-direction yarn. Is preferred. When a carbon fiber fabric is used as the fiber fabric, the carbon fiber fabric preferably has a fiber weight of 90 to 400 g / m 2 from the viewpoint of impregnation with a thermosetting resin and rigidity.

前記繊維織物に含浸する熱硬化性樹脂は、特に限定されないが、前記繊維強化成形体10の剛性を高めるためには、熱硬化性樹脂自体がある程度の剛性を有する必要があり、エポキシ樹脂、フェノール樹脂、エポキシ樹脂とフェノール樹脂の混合物からなる群より選択することができる。また、前記繊維強化成形体10に難燃性が求められる場合、前記繊維織物に含浸する熱硬化性樹脂は難燃性のものが好ましい。フェノール樹脂は良好な難燃性を有するため、前記繊維織物に含浸させる熱硬化性樹脂として好適なものである。   The thermosetting resin impregnated in the fiber fabric is not particularly limited, but in order to increase the rigidity of the fiber reinforced molded body 10, the thermosetting resin itself needs to have a certain degree of rigidity. It can be selected from the group consisting of resins, mixtures of epoxy resins and phenolic resins. When the fiber reinforced molded body 10 is required to have flame retardancy, the thermosetting resin impregnated in the fiber fabric is preferably flame retardant. Since the phenol resin has good flame retardancy, it is suitable as a thermosetting resin impregnated in the fiber fabric.

また、前記芯材11用樹脂発泡体にメラミン樹脂を用い、前記樹脂発泡体(メラミン樹脂発泡体)に含浸させる前記熱硬化性樹脂及び前記繊維織物に含浸させる前記熱硬化性樹脂をフェノール樹脂とした場合には、難燃剤を使用しなくても、ノートパソコン等の携帯機器の筐体用として充分な難燃性を有する繊維強化成形体を得ることができる。   In addition, a melamine resin is used for the resin foam for the core material 11, and the thermosetting resin impregnated in the resin foam (melamine resin foam) and the thermosetting resin impregnated in the fiber fabric are phenol resin. In this case, it is possible to obtain a fiber reinforced molded article having sufficient flame retardancy for a casing of a portable device such as a notebook personal computer without using a flame retardant.

また、前記繊維強化成形体10の全体における前記熱硬化性樹脂の量は、[繊維強化成形体内の熱硬化性樹脂(重量)/繊維強化成形体(重量)×100]で求められる樹脂率(重量比率)が50〜80%、特には55〜70%となるようにするのが好ましい。前記樹脂比率とすることにより、前記繊維強化成形体10を薄肉化しても軽量性及び剛性をより良好にすることができる。
なお、前記樹脂比率の式における繊維強化成形体内の熱硬化性樹脂の重量は、熱硬化性樹脂を溶剤に溶かして使用した場合には、溶剤を除去した後の重量である。
In addition, the amount of the thermosetting resin in the entire fiber reinforced molded body 10 is a resin ratio obtained by [thermosetting resin (weight) in fiber reinforced molded body / fiber reinforced molded body (weight) × 100] ( The weight ratio is preferably 50 to 80%, more preferably 55 to 70%. By setting it as the said resin ratio, even if it thins the said fiber reinforced molded object 10, lightness and rigidity can be made more favorable.
In addition, the weight of the thermosetting resin in the fiber reinforced molded body in the formula of the resin ratio is the weight after removing the solvent when the thermosetting resin is dissolved in the solvent.

前記表面材25は、多孔性シートに熱硬化性樹脂が含浸して硬化したものからなる。前記表面材25は、後述する繊維強化成形体10の製造時の圧縮加熱工程において、熱硬化性樹脂が多孔性シートに含浸すると共に多孔性シートの表面から染み出して硬化することにより、表面に平滑な樹脂層が形成され、表面粗さが30μm以下、より好ましくは24μm以下となっている。表面粗さが30μmよりも大(粗い)になると、前記表面材25の表面に塗装した場合、凹凸が目立ち、良好な塗装表面が得難くなる。   The surface material 25 is made of a porous sheet impregnated with a thermosetting resin and cured. In the compression heating process at the time of manufacturing the fiber reinforced molded body 10 described later, the surface material 25 is impregnated into the porous sheet and oozes out from the surface of the porous sheet and hardens. A smooth resin layer is formed, and the surface roughness is 30 μm or less, more preferably 24 μm or less. When the surface roughness is larger (rougher) than 30 μm, when the surface of the surface material 25 is coated, the unevenness is conspicuous and it becomes difficult to obtain a good coated surface.

前記多孔性シートは、熱硬化性樹脂の含浸を良好にし、均一な樹脂層を形成するために、連続気泡を有する多孔性のもの(多数の孔を有するもの)とされる。前記多孔性シートの材質は特に限定されるものではないが、連続気泡を有する多孔性のもの(多数の孔を有するもの)であって、圧縮加熱工程における熱で溶けず、孔が埋まらない程度の耐熱性を有するものが好ましい。また、前記多孔性シートの形態も特に限定されず、織物、不織布、紙、発泡体などから、適宜選択することができる。さらに、前記表面材の多孔性シートに、連続気泡を有する樹脂発泡体を使用すれば、繊維からなる多孔質体と比べて樹脂の骨格形状が安定して空隙が保たれるため、通気性およびマトリクス樹脂の流動性が良好となって、多孔性シートの表面に染み出しやすくなって、表面が平滑になりやすい。連続気泡を有する樹脂発泡体の中でも、ウレタン樹脂発泡体製の多孔性シートは、扱い易く、軽量性に優れ、しかも圧縮により前記繊維補強材21の繊維織物における織り目の隙間部分等の段差を効果的に緩和することができ、好ましいものである。   The porous sheet is a porous sheet having continuous cells (having a large number of pores) in order to improve the impregnation of the thermosetting resin and form a uniform resin layer. The material of the porous sheet is not particularly limited, but is porous with open cells (having a large number of pores) and does not melt by heat in the compression heating process and does not fill the pores. Those having the heat resistance of 1 are preferred. Further, the form of the porous sheet is not particularly limited, and can be appropriately selected from woven fabric, nonwoven fabric, paper, foam and the like. Furthermore, if a resin foam having open cells is used for the porous sheet of the surface material, the skeleton shape of the resin is stably maintained as compared with the porous body made of fibers, so that air permeability and The fluidity of the matrix resin becomes good, the surface of the porous sheet is easily oozed out, and the surface is easily smoothed. Among resin foams having open cells, a porous sheet made of urethane resin foam is easy to handle, has excellent lightness, and has an effect of steps such as gaps in the texture of the fiber fabric of the fiber reinforcing material 21 by compression. It can be relaxed and is preferable.

前記多孔性シートをウレタン樹脂発泡体とする場合には、溶解処理や爆発処理などの公知の除膜処理でセル膜を除去したウレタン樹脂発泡体が特に好ましい。セル膜を除去したウレタン樹脂発泡体は、連続気泡構造となっているため、繊維強化成形体10の製造時の圧縮加熱工程において、熱硬化性樹脂が多孔性シートに含浸し、さらに多孔性シートの表面に染み出し易くなり、熱硬化性樹脂の硬化により前記芯材11と前記繊維補強材21及び表面材25の一体化がより確実なものとなると共に、前記多孔性シートの表面から染み出した熱硬化性樹脂が硬化することによって、表面がより平滑な樹脂層となる。なお、セル膜が除去されていないウレタン樹脂発泡体は、セル膜が残っているため、多孔性シートに用いた場合、熱硬化性樹脂の含浸及び染み出しが良好ではなく、結果として表面の平滑性及び塗装密着性(塗膜の剥がれ難さ)が低下するようになる。   When the porous sheet is a urethane resin foam, a urethane resin foam from which the cell membrane has been removed by a known film removal treatment such as a dissolution treatment or an explosion treatment is particularly preferable. Since the urethane resin foam from which the cell membrane has been removed has an open cell structure, the thermosetting resin is impregnated into the porous sheet in the compression heating step during the production of the fiber reinforced molded body 10, and the porous sheet The core material 11, the fiber reinforcing material 21, and the surface material 25 are more surely integrated by curing the thermosetting resin, and the surface of the porous sheet oozes out. The cured thermosetting resin is cured to form a resin layer with a smoother surface. In addition, since the cell membrane remains in the urethane resin foam from which the cell membrane has not been removed, when used for a porous sheet, impregnation and exudation of the thermosetting resin is not good, resulting in smooth surface. And coating adhesion (hardness of peeling of the coating film) are lowered.

前記多孔性シートは、セル数が8〜80個/25mm(JIS K6400−1)のものが好ましい。セル数が8個/25mmより少ない場合には、薄いシート状に加工した場合に空隙(気孔)が大きくなり過ぎ、前記繊維織物の凹凸を埋めるのに必要な量の熱硬化性樹脂を保持することが難しくなる傾向がある。一方、セル数が80個/25mmより多い場合には、逆に空隙が少なくなって熱硬化性樹脂の含浸性が低下し、多孔性シートの表面から熱硬化性樹脂を充分に染み出させることが難しくなる。   The porous sheet preferably has 8 to 80 cells / 25 mm (JIS K6400-1). When the number of cells is less than 8 pieces / 25 mm, the gap (pores) becomes too large when processed into a thin sheet, and the amount of thermosetting resin necessary to fill the irregularities of the fiber fabric is retained. Tend to be difficult. On the other hand, when the number of cells is more than 80/25 mm, the voids are reduced and the impregnation property of the thermosetting resin is lowered, and the thermosetting resin is sufficiently oozed out from the surface of the porous sheet. Becomes difficult.

使用する前記多孔性シートの厚みは、材質によって異なるが、非圧縮状態(繊維強化成形体の製造前)で0.4mm〜3.0mm、より好ましくは0.6mm〜3.0mmである。非圧縮状態の厚みが0.4mmより小さい場合には、繊維強化成形体10の製造時の圧縮加熱工程において、均一な樹脂層を前記表面材25の表面に形成し難くなり、繊維強化成形体10の表面の平滑性が低下するようになる。一方、前記多孔性シートにおける非圧縮状態(繊維強化成形体の製造前)の厚みが3.0mmより大きくなると、繊維強化成形体10の曲げ弾性率の低下を引き起こすと共に、前記繊維強化成形体10の製造時に多孔性シートから熱硬化性樹脂の染み出しムラが発生し易くなり、前記表面材25の表面の平滑性が低下するようになる。   Although the thickness of the porous sheet to be used varies depending on the material, it is 0.4 mm to 3.0 mm, more preferably 0.6 mm to 3.0 mm in an uncompressed state (before the production of the fiber reinforced molded body). When the thickness in the non-compressed state is smaller than 0.4 mm, it becomes difficult to form a uniform resin layer on the surface of the surface material 25 in the compression heating process at the time of manufacturing the fiber reinforced molded body 10, and the fiber reinforced molded body The smoothness of the surface of 10 will fall. On the other hand, when the thickness of the porous sheet in the non-compressed state (before the production of the fiber reinforced molded body) is larger than 3.0 mm, the bending elastic modulus of the fiber reinforced molded body 10 is lowered and the fiber reinforced molded body 10 is reduced. In the manufacturing process, the seepage unevenness of the thermosetting resin from the porous sheet is likely to occur, and the surface smoothness of the surface material 25 decreases.

前記芯材11と前記繊維補強材21及び前記表面材25の一体化は、前記芯材と前記繊維織物の一方又は両方に熱硬化性樹脂を含浸あるいは塗布した後に、前記芯材の少なくとも一面(前記の例では両面)に前記繊維織物及び前記多孔性シートを順に積層し、圧縮した状態で前記熱硬化性樹脂を硬化させることによって行うことができる。前記芯材と前記繊維織物の両方に熱硬化性樹脂を塗布又は含浸させる場合には、前記芯材に含浸又は塗布される熱硬化性樹脂と前記繊維織物に含浸又は塗布する熱硬化性樹脂とは、同一種類でも異種類でもよいが、前記芯材11と前記繊維補強材21との接着性を良好にするには同一種類とするのが好ましい。   The core material 11, the fiber reinforcing material 21, and the surface material 25 are integrated by impregnating or applying one or both of the core material and the fiber fabric with a thermosetting resin, and then at least one surface of the core material ( In the above example, the fiber woven fabric and the porous sheet can be laminated in order on both surfaces), and the thermosetting resin can be cured in a compressed state. When a thermosetting resin is applied or impregnated to both the core material and the fiber fabric, a thermosetting resin impregnated or applied to the core material and a thermosetting resin impregnated or applied to the fiber fabric; These may be the same type or different types, but the same type is preferable for improving the adhesion between the core material 11 and the fiber reinforcing material 21.

前記繊維強化成形体10における前記表面材25の表面には、用途に応じて所定の方法で塗装が施され、塗膜が形成される。塗料としては、ウレタン系・アクリル系・ポリエステル系・酢酸ビニル系等が挙げられ、また塗装方法としては、スプレー塗装、コーター塗装、ディッピング塗装等が挙げられる。塗装量は適宜決定されるが、例として、膜厚5〜40μmを挙げる。図2に、前記表面材25の表面に塗装によって塗膜27を設けた繊維強化成形体100を示す。前記塗膜27の凹凸度合からなる表面粗さは25μm以下、より好ましくは20μm未満である。   The surface of the surface material 25 in the fiber reinforced molded body 10 is coated by a predetermined method according to the use, and a coating film is formed. Examples of the paint include urethane, acrylic, polyester, and vinyl acetate, and examples of the coating method include spray coating, coater coating, and dipping coating. Although the coating amount is determined as appropriate, a film thickness of 5 to 40 μm is given as an example. FIG. 2 shows a fiber reinforced molded body 100 in which a coating film 27 is provided on the surface of the surface material 25 by painting. The surface roughness comprising the degree of unevenness of the coating film 27 is 25 μm or less, more preferably less than 20 μm.

次に、本発明の繊維強化成形体の製造方法について、前記繊維強化成形体10の製造を例にして説明する。前記繊維強化成形体10の製造方法は、含浸又は付着工程、積層工程、圧縮加熱工程とからなる。
まず、第1実施形態について説明する。第1実施形態の製造方法では、図3に示す(3−1)の含浸又は付着工程において、繊維織物21Aに熱硬化性樹脂21Bを含浸又は付着させ、含浸又は付着済み炭素繊維織物21Cを形成する。前記繊維織物21A及び前記熱硬化性樹脂21Bは、前記繊維強化成形体10において説明したとおりである。含浸又は付着時に用いる熱硬化性樹脂21Bは、未硬化の液状からなる。また、含浸又は付着を容易にするためには、前記熱硬化性樹脂21Bは溶剤に溶かしたものが好ましく、含浸又は付着後に、含浸又は付着済み繊維織物21Cを前記熱硬化性樹脂の硬化反応を生じない温度で乾燥させることにより、前記含浸又は付着済み繊維織物21Cから溶剤を除去する。含浸又は付着手段は、液状の熱硬化性樹脂21Bを収容した槽に前記繊維織物21Aを浸ける方法、スプレーにより塗布する方法、ロールコータにより塗布する方法等、適宜の方法により行うことができる。その際、前記繊維織物21Aに、前記式樹脂比率が、50〜80%、特には55〜70%となるように熱硬化性樹脂21Bを含浸又は付着させることが好ましい。なお、第1実施形態では、前記含浸又は付着工程において繊維織物21Aのみに熱硬化性樹脂21Bを含浸させる。
Next, the manufacturing method of the fiber reinforced molded body of the present invention will be described taking the manufacturing of the fiber reinforced molded body 10 as an example. The manufacturing method of the said fiber reinforced molded object 10 consists of an impregnation or adhesion process, a lamination process, and a compression heating process.
First, the first embodiment will be described. In the manufacturing method of the first embodiment, in the impregnation or adhesion step (3-1) shown in FIG. 3, the fiber woven fabric 21A is impregnated or adhered with the thermosetting resin 21B to form the impregnated or adhered carbon fiber woven fabric 21C. To do. The fiber fabric 21A and the thermosetting resin 21B are as described in the fiber reinforced molded body 10. The thermosetting resin 21B used at the time of impregnation or adhesion is made of an uncured liquid. In order to facilitate the impregnation or adhesion, the thermosetting resin 21B is preferably dissolved in a solvent. After the impregnation or adhesion, the impregnated or adhered fiber fabric 21C is subjected to a curing reaction of the thermosetting resin. By drying at a temperature that does not occur, the solvent is removed from the impregnated or adhered fiber fabric 21C. The impregnation or adhesion means can be performed by an appropriate method such as a method of immersing the fiber fabric 21A in a tank containing the liquid thermosetting resin 21B, a method of applying by spraying, a method of applying by a roll coater. At that time, it is preferable to impregnate or attach the thermosetting resin 21B to the fiber fabric 21A so that the formula resin ratio is 50 to 80%, particularly 55 to 70%. In the first embodiment, only the fiber fabric 21A is impregnated with the thermosetting resin 21B in the impregnation or adhesion step.

図3に示す(3−2)の積層工程では、芯材用の部材11Aの両面に、前記(3−1)の含浸又は付着工程で得られた含浸又は付着済み繊維織物21Cを配置し、さらに前記芯材用部材11Aの一側における前記含浸又は付着済み繊維織物21Cの表面に表面材用の多孔性シート25Aを配置して積層体10Aとする。前記芯材用の部材11A及び前記多孔性シート25Aは、前記繊維強化成形体10において説明したとおりである。なお、前記積層作業は、次に行う(3−3)の圧縮加熱工程で用いるプレス成形用下型31の上面に、前記含浸又は付着済み繊維織物21C、前記芯材用部材11A、前記含浸又は付着済み繊維織物21C、前記多孔性シート25Aの順に重ねて行ってもよい。また、前記含浸又は付着済み繊維織物21Cと前記芯材用部材11A及び多孔性シート25Aは、平面サイズが同サイズのものが好ましいが、異なっている場合には、後述の圧縮加熱工程後にトリミングすればよい。   In the laminating step (3-2) shown in FIG. 3, the impregnated or adhered fiber fabric 21C obtained in the impregnation or adhering step of (3-1) is disposed on both surfaces of the core member 11A. Furthermore, a porous sheet 25A for a surface material is disposed on the surface of the impregnated or adhered fiber fabric 21C on one side of the core member 11A to form a laminate 10A. The core material member 11 </ b> A and the porous sheet 25 </ b> A are as described in the fiber reinforced molded body 10. The laminating operation is performed on the upper surface of the press-molding lower mold 31 used in the compression heating step (3-3) to be performed next, the impregnated or adhered fiber fabric 21C, the core member 11A, the impregnation or Alternatively, the attached fiber fabric 21C and the porous sheet 25A may be stacked in this order. Further, the impregnated or adhered fiber fabric 21C, the core member 11A, and the porous sheet 25A preferably have the same plane size, but if they are different, they are trimmed after the compression heating step described later. That's fine.

図3に示す(3−3)の圧縮加熱工程では、前記積層体10Aをプレス成形用下型31と上型33により圧縮すると共に加熱する。圧縮は、前記積層体10Aの厚みが0.3〜2.0mmとなるようにするのが好ましい。前記圧縮加熱工程時、前記プレス成形用下型31と上型33間には適宜の位置にスペーサを設置して、前記プレス成形用下型31と上型33間が所定間隔(積層体の所定圧縮厚み)となるようにされる。また、積層体の加熱方法は特に限定されないが、前記プレス成形用下型31と上型33にヒータ等の加熱手段を設けて、前記プレス成形用下型31と上型33を介して加熱するのが簡単である。加熱温度は、前記含浸している熱硬化性樹脂の硬化反応温度以上とされる。   In the compression heating step (3-3) shown in FIG. 3, the laminate 10A is compressed and heated by the press mold lower mold 31 and the upper mold 33. The compression is preferably performed so that the thickness of the laminated body 10A is 0.3 to 2.0 mm. During the compression heating step, a spacer is installed at an appropriate position between the press molding lower mold 31 and the upper mold 33, and a predetermined interval (predetermined of the laminate) is provided between the press molding lower mold 31 and the upper mold 33. Compression thickness). The heating method of the laminated body is not particularly limited, but heating means such as a heater is provided in the lower mold 31 for press molding and the upper mold 33, and heating is performed via the lower mold 31 for press molding and the upper mold 33. It's easy. The heating temperature is set to be equal to or higher than the curing reaction temperature of the impregnated thermosetting resin.

前記圧縮加熱工程時に前記積層体10Aが圧縮されると、前記積層体10Aの含浸又は付着済み繊維織物21Cから熱硬化性樹脂が押し出され、前記含浸又は付着済み繊維織物21Cと接している前記芯材用部材11Aに付着又は含浸すると共に前記多孔性シート25Aに含浸する。前記多孔性シート25Aに含浸した前記熱硬化性樹脂は、前記多孔性シート25Aの表面に染み出して均一な樹脂層を形成する。その際、圧縮後の熱硬化性樹脂発泡体、繊維織物、多孔性シートの空間容積を上回る過剰な熱硬化性樹脂は、型外部へ押し出されて、熱硬化性樹脂中に存在する微小なボイドや意図せずにできた微小な空隙は除いて、実質的に空隙が存在していない積層体となる。前記積層体10Aに含浸又は付着した熱硬化性樹脂は、加熱により硬化反応を開始し、前記積層体10Aが圧縮された状態で硬化する。なお、前記芯材用部材11Aが、連続気泡を有する樹脂発泡体からなる場合、前記芯材用部材11Aは、前記含浸又は付着済み繊維織物21Cの熱硬化性樹脂が含浸し、圧縮された状態で熱硬化性樹脂が硬化する。また、前記多孔性シート25Aがウレタン樹脂発泡体からなる場合、前記多孔性シート25Aも圧縮された状態で前記熱硬化性樹脂が硬化する。前記芯材用部材11Aから前記芯材11が形成され、また、前記含浸又は付着済み繊維織物21Cから前記繊維補強材21が形成され、前記多孔性シート25Aからは前記表面材25が形成され、前記芯材11と前記繊維補強材21及び前記表面材25が一体化して前記繊維強化成形体10が形成される。その後、加熱圧縮を解除して前記繊維強化成形体10を得る。このようにして得られた繊維強化成形体10は、前記表面材25の表面が、前記多孔性シート25Aの表面に染み出した熱硬化性樹脂の硬化によって平滑な樹脂層となっている。   When the laminate 10A is compressed during the compression heating step, a thermosetting resin is extruded from the impregnated or attached fiber fabric 21C of the laminate 10A, and the core is in contact with the impregnated or attached fiber fabric 21C. It adheres to or impregnates the material member 11A and impregnates the porous sheet 25A. The thermosetting resin impregnated in the porous sheet 25A oozes out on the surface of the porous sheet 25A to form a uniform resin layer. At that time, excess thermosetting resin exceeding the space volume of the thermosetting resin foam, fiber fabric, and porous sheet after compression is pushed out of the mold, and minute voids present in the thermosetting resin Except for minute voids that are not intentionally formed, the laminate is substantially free of voids. The thermosetting resin impregnated or adhered to the laminated body 10A starts a curing reaction by heating, and is cured in a state where the laminated body 10A is compressed. When the core member 11A is made of a resin foam having open cells, the core member 11A is impregnated with the thermosetting resin of the impregnated or attached fiber fabric 21C and compressed. The thermosetting resin is cured. When the porous sheet 25A is made of a urethane resin foam, the thermosetting resin is cured while the porous sheet 25A is also compressed. The core material 11 is formed from the core material member 11A, the fiber reinforcing material 21 is formed from the impregnated or adhered fiber fabric 21C, and the surface material 25 is formed from the porous sheet 25A. The core material 11, the fiber reinforcing material 21, and the surface material 25 are integrated to form the fiber reinforced molded body 10. Thereafter, the heat compression is released to obtain the fiber reinforced molded body 10. In the fiber reinforced molded body 10 thus obtained, the surface of the surface material 25 is a smooth resin layer by curing of the thermosetting resin that has oozed out on the surface of the porous sheet 25A.

製造方法の第2実施形態では、図4に示す(4−1)の含浸又は付着工程において、芯材用部材11Aに熱硬化性樹脂11Bを含浸又は付着させ、含浸又は付着済み熱硬化性樹脂発泡体11Cを形成する。なお、前記芯材用部材11Aが連続気泡を有する樹脂発泡体からなる場合には、前記芯材用部材11Aに熱硬化性樹脂11Bを含浸させ、一方、前記芯材用部材11Aが、含浸の難しい部材、例えば非多孔質の部材からなる場合には、前記芯材用部材11Aの表面に熱硬化性樹脂11Bを付着させる。前記芯材用部材11A及び前記熱硬化性樹脂11Bは、前記繊維強化成形体10において説明したとおりである。含浸あるいは付着時に用いる熱硬化性樹脂11Bは、未硬化の液状からなる。また、含浸又は付着を容易にするため、前記熱硬化性樹脂11Bは溶剤に溶かしたものが好ましく、含浸あるいは付着後に、含浸又は付着済み芯材用部材11Cを前記熱硬化性樹脂の硬化反応を生じない温度で乾燥させて含浸又は付着済み芯材用部材11Cから溶剤を除去する。含浸又は付着手段は、液状の熱硬化性樹脂11Bを収容した槽に前記芯材用部材11Aを浸ける方法、スプレーにより塗布する方法、ロールコータにより塗布する方法等、適宜の方法により行う。   In the second embodiment of the manufacturing method, the thermosetting resin 11B is impregnated or adhered to the core member 11A in the impregnation or adhesion step (4-1) shown in FIG. A foam 11C is formed. When the core member 11A is made of a resin foam having open cells, the core member 11A is impregnated with the thermosetting resin 11B, while the core member 11A is impregnated. In the case of a difficult member, for example, a non-porous member, the thermosetting resin 11B is adhered to the surface of the core member 11A. The core member 11A and the thermosetting resin 11B are as described in the fiber-reinforced molded body 10. The thermosetting resin 11B used at the time of impregnation or adhesion is made of an uncured liquid. Further, in order to facilitate the impregnation or adhesion, the thermosetting resin 11B is preferably dissolved in a solvent, and after impregnation or adhesion, the impregnated or adhered core member 11C is subjected to a curing reaction of the thermosetting resin. The solvent is removed from the impregnated or adhered core member 11C by drying at a temperature that does not occur. The impregnation or adhesion means is carried out by an appropriate method such as a method of immersing the core member 11A in a tank containing the liquid thermosetting resin 11B, a method of applying by spraying, a method of applying by roll coater.

前記芯材用部材11Aに、前記樹脂比率が、50〜80%、特には55〜70%となるように前記熱硬化性樹脂11Bを含浸あるいは付着させることが好ましい。
なお、第2実施形態では、前記含浸又は付着工程において前記芯材用部材11Aのみに熱硬化性樹脂11Bを含浸させている。前記芯材用部材11Aに含浸又は付着した熱硬化性樹脂11Bが、後述するように圧縮加熱工程で前記繊維織物21A及び多孔性シート25Aに含浸する。
It is preferable that the thermosetting resin 11B is impregnated or adhered to the core member 11A so that the resin ratio is 50 to 80%, particularly 55 to 70%.
In the second embodiment, only the core member 11A is impregnated with the thermosetting resin 11B in the impregnation or adhesion step. The thermosetting resin 11B impregnated or attached to the core member 11A impregnates the fiber fabric 21A and the porous sheet 25A in a compression heating step as will be described later.

図4に示す(4−2)の積層工程では、前記含浸又は付着済み芯材用部材11Cの両面に繊維織物21Aを配置し、さらに前記含浸又は付着済み芯材用部材11Cの一方の側の面における繊維織物21Aの表面に多孔性シート25Aを配置して積層体10Bを得る。前記繊維織物21A及び前記多孔性シート25Aは、前記繊維強化成形体10において説明したとおりである。なお、前記積層作業は、次に行う(4−3)の圧縮加熱工程で用いるプレス成形用下型31の上面に、前記繊維織物21A、前記含浸又は付着済み芯材用部材11C、前記繊維織物21A、前記多孔性シート25Aの順に重ねて行ってもよい。また、前記含浸又は付着済み芯材用部材11Cと繊維織物21A及び多孔性シート25Aは、平面サイズが同サイズのものが好ましいが、異なっている場合には、後述の圧縮加熱工程、最終的にトリミングすればよい。   In the laminating step (4-2) shown in FIG. 4, the fiber fabric 21A is disposed on both surfaces of the impregnated or adhered core member 11C, and further on one side of the impregnated or adhered core member 11C. A porous sheet 25A is arranged on the surface of the fiber fabric 21A on the surface to obtain a laminate 10B. The fiber fabric 21A and the porous sheet 25A are as described in the fiber reinforced molded body 10. The laminating operation is performed on the upper surface of the press molding lower mold 31 used in the compression heating step (4-3) to be performed next, the fiber fabric 21A, the impregnated or adhered core member 11C, and the fiber fabric. 21A and the porous sheet 25A may be stacked in this order. Further, the impregnated or adhered core member 11C, the fiber fabric 21A, and the porous sheet 25A preferably have the same planar size, but if they are different, the compression heating step described below is finally performed. Just trim it.

図4に示す(4−3)の圧縮加熱工程では、前記積層体10Bをプレス成形用下型31と上型33により、圧縮すると共に加熱する。圧縮は、前記積層体10Bの厚みが0.3〜2.0mmとなるようにするのが好ましい。前記圧縮加熱工程時、前記プレス成形用下型31と上型33間には適宜の位置にスペーサを設置して、前記プレス成形用下型31と上型33間が所定間隔(積層体の所定圧縮厚み)となるようにされる。また、積層体の加熱方法は特に限定されないが、前記プレス成形用下型31と上型33にヒータ等の加熱手段を設けて、前記プレス成形用下型31と上型33を介して行うのが簡単である。加熱温度は、前記含浸している熱硬化性樹脂の硬化反応温度以上とされる。   In the compression heating step (4-3) shown in FIG. 4, the laminate 10 </ b> B is compressed and heated by the press mold lower mold 31 and the upper mold 33. The compression is preferably performed so that the thickness of the laminate 10B is 0.3 to 2.0 mm. During the compression heating step, a spacer is installed at an appropriate position between the press molding lower mold 31 and the upper mold 33, and a predetermined interval (predetermined of the laminate) is provided between the press molding lower mold 31 and the upper mold 33. Compression thickness). Further, the heating method of the laminate is not particularly limited, and heating means such as a heater is provided in the press molding lower mold 31 and the upper mold 33, and the heating is performed via the press molding lower mold 31 and the upper mold 33. Is simple. The heating temperature is set to be equal to or higher than the curing reaction temperature of the impregnated thermosetting resin.

前記圧縮加熱工程時に前記積層体10Bが圧縮されると、前記芯材用部材が連続気泡を有する樹脂発泡体からなる場合には、前記含浸又は付着済み芯材用部材11Cから熱硬化性樹脂が押し出され、前記含浸又は付着済み芯材用部材11Cと接している前記繊維織物21Aに含浸し、さらには前記多孔性シート25Aに含浸する。一方、前記芯材用部材が含浸の難しい部材、例えば非多孔質の部材からなる場合には、圧縮によって、熱硬化性樹脂が、前記付着済み芯材用部材11Cの表面から、前記繊維織物21Aに含浸し、さらには前記多孔性シート25Aに含浸する。前記多孔性シート25Aに含浸した前記熱硬化性樹脂は、前記多孔性シート25Aの表面に染み出して均一な樹脂層を形成する。その際、圧縮後の芯材用部材、繊維織物、多孔性シートの空間容積を上回る過剰な熱硬化性樹脂は、型外部へ押し出されて、熱硬化性樹脂中に存在する微小なボイドや意図せずにできた微小な空隙は除いて、実質的に空隙が存在していない積層体となる。前記積層体10Bの全体に含浸又は付着した熱硬化性樹脂は、加熱により硬化反応を開始し、前記積層体10Bの圧縮状態で硬化する。なお、前記芯材用部材11Aは、連続気泡を有する樹脂発泡体からなる場合、圧縮された状態で熱硬化性樹脂が硬化する。また、前記多孔性シート25Aがウレタン樹脂発泡体からなる場合、前記多孔性シート25Aも圧縮された状態で前記熱硬化性樹脂が硬化する。それにより、前記含浸又は付着済み芯材用部材11Cから前記芯材11が形成され、また、前記繊維織物21Aから前記繊維補強材21が形成され、前記多孔性シート25Aから前記表面材25が形成され、前記芯材11と前記繊維補強材21及び前記表面材25が一体化して前記繊維強化成形体10が形成される。その後、加熱圧縮を解除して前記繊維強化成形体10を得る。このようにして得られた繊維強化成形体10は、前記表面材25の表面が、前記多孔性シート25Aの表面に染み出した熱硬化性樹脂の硬化によって平滑な樹脂層となっている。   When the laminate 10B is compressed during the compression heating step, when the core member is made of a resin foam having open cells, a thermosetting resin is introduced from the impregnated or adhered core member 11C. Extruded and impregnated into the fibrous fabric 21A in contact with the impregnated or adhered core member 11C, and further impregnated into the porous sheet 25A. On the other hand, when the core member is made of a member that is difficult to impregnate, for example, a non-porous member, the thermosetting resin is compressed by the fiber fabric 21A from the surface of the attached core member 11C. And further impregnating the porous sheet 25A. The thermosetting resin impregnated in the porous sheet 25A oozes out on the surface of the porous sheet 25A to form a uniform resin layer. At that time, excessive thermosetting resin that exceeds the space volume of the core member, fiber fabric, and porous sheet after compression is pushed out of the mold to form minute voids and intentions present in the thermosetting resin. Except for the minute voids that are not formed, the laminate is substantially free of voids. The thermosetting resin impregnated or adhered to the entire laminated body 10B starts a curing reaction by heating and is cured in a compressed state of the laminated body 10B. When the core member 11A is made of a resin foam having open cells, the thermosetting resin is cured in a compressed state. When the porous sheet 25A is made of a urethane resin foam, the thermosetting resin is cured while the porous sheet 25A is also compressed. Thereby, the core material 11 is formed from the impregnated or adhered core material member 11C, the fiber reinforcing material 21 is formed from the fiber fabric 21A, and the surface material 25 is formed from the porous sheet 25A. Then, the core material 11, the fiber reinforcing material 21, and the surface material 25 are integrated to form the fiber reinforced molded body 10. Thereafter, the heat compression is released to obtain the fiber reinforced molded body 10. In the fiber reinforced molded body 10 thus obtained, the surface of the surface material 25 is a smooth resin layer by curing of the thermosetting resin that has oozed out on the surface of the porous sheet 25A.

製造方法の第3実施形態では、含浸又は付着工程が、含浸又は付着工程Aと含浸又は付着工程Bの2種類の工程からなる。
図5に示す(5−1)のように、含浸又は付着工程Aでは、芯材用部材11Aに熱硬化性樹脂11Bを含浸又は付着させ、含浸又は付着済み芯材用用部材11Cを得る。一方、含浸又は付着工程Bでは、繊維織物21Aに熱硬化性樹脂21Bを含浸又は付着させ、含浸又は付着済み繊維織物21Cを形成する。前記芯材用部材11A、前記熱硬化性樹脂11B、前記繊維織物21A、前記熱硬化性樹脂21Bは、前記繊維強化成形体10において説明したとおりである。含浸又は付着時に用いる熱硬化性樹脂11B,21Bは、未硬化の液状からなる。また、含浸又は付着を容易にするため、前記熱硬化性樹脂11B,21Bは溶剤に溶かしたものが好ましく、含浸又は付着後に、含浸又は付着済み芯材用部材11C及び含浸又は付着済み繊維織物21Cを、前記熱硬化性樹脂の硬化反応を生じない温度で乾燥させて含浸又は付着済み芯材用部材11C及び含浸又は付着済み繊維織物21Cから溶剤を除去する。含浸又は付着手段は、液状の熱硬化性樹脂を収容した槽に前記芯材用部材あるいは繊維織物を浸ける方法、スプレーにより塗布する方法、ロールコータにより塗布する方法等、適宜の方法により行う。
In the third embodiment of the manufacturing method, the impregnation or adhesion step is composed of two types of steps: an impregnation or adhesion step A and an impregnation or adhesion step B.
As shown in (5-1) in FIG. 5, in the impregnation or adhesion step A, the core member 11A is impregnated or adhered with the thermosetting resin 11B to obtain the impregnated or adhered core member 11C. On the other hand, in the impregnation or adhesion step B, the fiber woven fabric 21A is impregnated or adhered with the thermosetting resin 21B to form the impregnated or adhered fiber woven fabric 21C. The core member 11A, the thermosetting resin 11B, the fiber fabric 21A, and the thermosetting resin 21B are as described in the fiber reinforced molded body 10. The thermosetting resins 11B and 21B used at the time of impregnation or adhesion are made of an uncured liquid. In order to facilitate impregnation or adhesion, the thermosetting resins 11B and 21B are preferably dissolved in a solvent. After impregnation or adhesion, the impregnated or adhered core member 11C and the impregnated or adhered fiber fabric 21C are used. Is dried at a temperature that does not cause a curing reaction of the thermosetting resin, and the solvent is removed from the impregnated or adhered core member 11C and the impregnated or adhered fiber fabric 21C. The impregnation or adhesion means is performed by an appropriate method such as a method of immersing the core member or fiber fabric in a tank containing a liquid thermosetting resin, a method of applying by spraying, a method of applying by a roll coater, or the like.

前記芯材用部材11Aへの前記熱硬化性樹脂11Bの含浸又は付着と、前記繊維織物21Aへの熱硬化性樹脂21Bの含浸又は付着は、前記樹脂比率が、50〜80%、特には55〜70%となるようにすることが好ましい。   In the impregnation or adhesion of the thermosetting resin 11B to the core member 11A and the impregnation or adhesion of the thermosetting resin 21B to the fiber fabric 21A, the resin ratio is 50 to 80%, particularly 55. It is preferable to be set to ˜70%.

図5に示す(5−2)の積層工程では、前記含浸又は付着済み芯材用部材11Cの両面に、前記含浸又は付着済み繊維織物21Cを配置し、さらに前記含浸又は付着済み芯材用部材11Cの一方の側の面における前記含浸又は付着済み繊維織物21Cの表面に多孔性シート25Aを配置して積層体10Cとする。前記多孔性シート25Aは前記繊維強化成形体10において説明したとおりである。なお、前記積層作業は、次に行う(5−3)の圧縮加熱工程で用いるプレス成形用下型31の上面に、前記含浸又は付着済み繊維織物21C、前記含浸又は付着済み芯材用部材11C、前記含浸又は付着済み繊維織物21C、前記多孔性シート25Aの順に重ねて行ってもよい。また、前記含浸又は付着済み芯材用部材11Cと含浸又は付着済み繊維織物21C及び多孔性シート25Aは、平面サイズが同サイズのものが好ましいが、異なっている場合には、後述の圧縮加熱工程後、最終的にトリミングすればよい。   In the laminating step (5-2) shown in FIG. 5, the impregnated or adhered fiber fabric 21C is disposed on both surfaces of the impregnated or adhered core material member 11C, and the impregnated or adhered core material member is further disposed. A porous sheet 25A is arranged on the surface of the impregnated or adhered fiber fabric 21C on the surface on one side of 11C to obtain a laminate 10C. The porous sheet 25A is as described in the fiber-reinforced molded body 10. The laminating operation is performed on the upper surface of the press-molding lower die 31 used in the compression heating step (5-3) to be performed next, and the impregnated or adhered fiber fabric 21C and the impregnated or adhered core member 11C. The impregnated or adhered fiber fabric 21C and the porous sheet 25A may be stacked in this order. The impregnated or adhered core material member 11C, the impregnated or adhered fiber fabric 21C, and the porous sheet 25A preferably have the same planar size, but if they are different, the compression heating step described later is performed. After that, it may be finally trimmed.

図5に示す(5−3)の圧縮加熱工程では、前記積層体10Cをプレス成形用下型31と上型33により、圧縮すると共に加熱する。圧縮は、前記積層体10Cの厚みが0.3〜2.0mmとなるようにするのが好ましい。前記圧縮加熱工程時、前記プレス成形用下型31と上型33間には適宜の位置にスペーサを設置して、前記プレス成形用下型31と上型33間が所定間隔(積層体の所定圧縮厚み)となるようにされる。また、加熱方法は特に限定されないが、前記プレス成形用下型31と上型33にヒータ等の加熱手段を設けて、前記プレス成形用下型31と上型33を介して行うのが簡単である。加熱温度は、前記含浸している熱硬化性樹脂の硬化反応温度以上とされる。   In the compression heating step (5-3) shown in FIG. 5, the laminate 10C is compressed and heated by the press molding lower die 31 and the upper die 33. The compression is preferably performed so that the thickness of the laminated body 10C becomes 0.3 to 2.0 mm. During the compression heating step, a spacer is installed at an appropriate position between the press molding lower mold 31 and the upper mold 33, and a predetermined interval (predetermined of the laminate) is provided between the press molding lower mold 31 and the upper mold 33. Compression thickness). The heating method is not particularly limited, and it is easy to perform heating via the press molding lower mold 31 and the upper mold 33 by providing heating means such as a heater in the press molding lower mold 31 and the upper mold 33. is there. The heating temperature is set to be equal to or higher than the curing reaction temperature of the impregnated thermosetting resin.

前記圧縮加熱工程における圧縮により、前記含浸又は付着済み繊維織物21Cの熱硬化性樹脂と前記含浸又は付着済み芯材用部材11Cの熱硬化性樹脂が確実に接触すると共に、前記含浸又は付着済み繊維織物21Cの熱硬化性樹脂が前記多孔性シート25Aに含浸する。前記多孔性シート25Aに含浸した前記熱硬化性樹脂は、前記多孔性シート25Aの表面に染み出して均一な樹脂層を形成する。その際、圧縮後の芯材用部材、繊維織物、多孔性シートの空間容積を上回る過剰な熱硬化性樹脂は、型外部へ押し出されて、熱硬化性樹脂中に存在する微小なボイドや意図せずにできた微小な空隙は除いて、実質的に空隙が存在していない積層体となる。そして前記圧縮加熱工程における加熱により、前記積層体10Cの熱硬化性樹脂は硬化反応を開始し、前記積層体10Cの圧縮状態で硬化する。なお、前記芯材用部材11Aは、連続気泡を有する樹脂発泡体からなる場合、圧縮された状態で熱硬化性樹脂が硬化する。また、前記多孔性シート25Aがウレタン樹脂発泡体からなる場合、前記多孔性シート25Aも圧縮された状態で前記熱硬化性樹脂が硬化する。それにより、前記含浸又は付着済み芯材用部材11Cから前記芯材11が形成され、また、前記含浸又は付着済み繊維織物21Cから前記繊維補強材21が形成され、前記多孔性シート25Aから表面材25が形成され、前記芯材11と前記繊維補強材21及び前記表面材25が一体化して前記繊維強化成形体10が形成される。その後、加熱圧縮を解除して前記繊維強化成形体10を得る。このようにして得られた繊維強化成形体10は、前記表面材25の表面が、前記多孔性シート25Aの表面に染み出した熱硬化性樹脂の硬化によって平滑な樹脂層となっている。   The compression in the compression heating step ensures that the thermosetting resin of the impregnated or attached fiber fabric 21C and the thermosetting resin of the impregnated or attached core member 11C are in contact with each other, and the impregnated or attached fiber The porous sheet 25A is impregnated with the thermosetting resin of the fabric 21C. The thermosetting resin impregnated in the porous sheet 25A oozes out on the surface of the porous sheet 25A to form a uniform resin layer. At that time, excessive thermosetting resin that exceeds the space volume of the core member, fiber fabric, and porous sheet after compression is pushed out of the mold to form minute voids and intentions present in the thermosetting resin. Except for the minute voids that are not formed, the laminate is substantially free of voids. And by the heating in the said compression heating process, the thermosetting resin of the said laminated body 10C starts hardening reaction, and it hardens | cures in the compression state of the said laminated body 10C. When the core member 11A is made of a resin foam having open cells, the thermosetting resin is cured in a compressed state. When the porous sheet 25A is made of a urethane resin foam, the thermosetting resin is cured while the porous sheet 25A is also compressed. As a result, the core material 11 is formed from the impregnated or adhered core material member 11C, the fiber reinforcing material 21 is formed from the impregnated or adhered fiber fabric 21C, and the surface material is formed from the porous sheet 25A. 25, the core material 11, the fiber reinforcing material 21, and the surface material 25 are integrated to form the fiber reinforced molded body 10. Thereafter, the heat compression is released to obtain the fiber reinforced molded body 10. In the fiber reinforced molded body 10 thus obtained, the surface of the surface material 25 is a smooth resin layer by curing of the thermosetting resin that has oozed out on the surface of the porous sheet 25A.

前記の各実施形態で示したように、前記含浸又は付着工程では、芯材用部材と繊維織物の何れか一方又は両方に熱硬化性樹脂を含浸又は付着させ、前記多孔性シートには熱硬化性樹脂を含浸も付着もさせず、その後の加熱圧縮工程において初めて前記多孔性シートに熱硬化性樹脂を含浸させている。そのため、積層工程において多孔性シートを弛みなく積層することができ、皺を生じることも防ぐことができる。もし、積層前の含浸又は付着工程で多孔性シートに熱硬化性樹脂を含浸させると、含浸した多孔性シートが弛みを生じて積層工程時に皺を生じ、繊維強化成形体における表面材の表面が良好な平滑表面にならなくなるおそれがある。   As shown in each of the above-described embodiments, in the impregnation or adhesion step, one or both of the core member and the fiber fabric are impregnated or adhered, and the porous sheet is thermally cured. The porous sheet is impregnated with the thermosetting resin for the first time in the subsequent heat-compression step without impregnating or adhering the curable resin. Therefore, the porous sheet can be laminated without slack in the lamination process, and wrinkles can be prevented from occurring. If the porous sheet is impregnated with the thermosetting resin in the impregnation or adhesion process before lamination, the impregnated porous sheet is loosened and wrinkles during the lamination process, and the surface of the surface material in the fiber reinforced molded article is There is a possibility that the surface is not smooth.

また、図2に示したように、前記表面材25の表面に塗膜27を設ける場合には、前記の各実施形態における圧縮加熱工程後に、塗装工程を行って前記表面材の表面に塗膜を形成する。塗装工程では、スプレー塗装、コーター塗装、ディッピング塗装等によって、前記表面材の表面に塗装を施した後、乾燥させて塗膜を表面材の表面に形成する。塗料は特に限定されるものではなく、前記のように、ウレタン系・アクリル系・ポリエステル系・酢酸ビニル系等を挙げることができ、また、所定膜厚、例えば膜厚5〜40μm程度となるように塗装が施される。   In addition, as shown in FIG. 2, when a coating film 27 is provided on the surface of the surface material 25, a coating process is performed after the compression heating process in each of the above-described embodiments, and a coating film is formed on the surface of the surface material. Form. In the coating process, the surface of the surface material is coated by spray coating, coater coating, dipping coating or the like, and then dried to form a coating film on the surface of the surface material. The paint is not particularly limited, and as described above, examples thereof include urethane-based, acrylic-based, polyester-based, vinyl acetate-based, and the like, and have a predetermined film thickness, for example, a film thickness of about 5 to 40 μm. Is painted.

・実施例1
熱硬化性樹脂としてフェノール樹脂(旭有機材料株式会社製、品名;PAPS−4と旭有機材料株式会社製、品名;ヘキサメチレンテトラミンを100:12で混合したもの)をメタノールに30wt%の濃度となるように溶解した。このフェノール樹脂溶液中に繊維織物として平織の炭素繊維織物(東邦テナックス株式会社製、品名;W−3101、繊維重さ200g/m)を漬け、取り出した後に25℃の室温にて2時間自然乾燥し、更に60℃の雰囲気下にて1時間乾燥させて含浸済み繊維織物を2枚形成した。炭素繊維織物は、200×300mmの平面サイズに裁断したもの(重量12g/枚)を使用した。乾燥後の含浸済み繊維織物は1枚あたり28gであった。
Example 1
As a thermosetting resin, phenol resin (Asahi Organic Materials Co., Ltd., product name: PAPS-4 and Asahi Organic Materials Co., Ltd., product name: hexamethylenetetramine mixed at 100: 12) in methanol with a concentration of 30 wt% It dissolved so that it might become. A plain-woven carbon fiber fabric (manufactured by Toho Tenax Co., Ltd., product name: W-3101, fiber weight 200 g / m 2 ) is immersed in this phenol resin solution as a fiber fabric. It was dried and further dried at 60 ° C. for 1 hour to form two impregnated fiber fabrics. The carbon fiber fabric used was cut into a plane size of 200 × 300 mm (weight 12 g / sheet). The impregnated fiber fabric after drying was 28 g per sheet.

また、芯材用部材の連続気泡を有する熱硬化性樹脂発泡体として、厚み10mm、平面サイズ200×300mm(重量5.4g)に切り出したメラミン樹脂発泡体(BASF社製、品名:バソテクトV3012、密度9kg/m)を、繊維織物と同様にしてフェノール樹脂溶液に漬け、取り出した後に25℃の室温にて2時間自然乾燥し、更に60℃の雰囲気下にて1時間乾燥させて含浸済み芯材用部材を形成した。乾燥後の含浸済み芯材用熱部材の重量は27gであった。また、繊維織物と芯材用部材の全体に含まれる樹脂比率は65%であった。 Further, as a thermosetting resin foam having open cells of the core member, a melamine resin foam cut out to a thickness of 10 mm and a planar size of 200 × 300 mm (weight 5.4 g) (manufactured by BASF, product name: Bazotect V3012, 9 kg / m 3 ) is immersed in a phenolic resin solution in the same manner as the fiber fabric, taken out, dried naturally at room temperature of 25 ° C. for 2 hours, and further dried at 60 ° C. for 1 hour to be impregnated. A core member was formed. The weight of the impregnated core member after drying was 27 g. Moreover, the resin ratio contained in the whole fiber fabric and the core member was 65%.

次に、予め離型剤を表面に塗布したSUS製のプレス成形用の下型(平板状)の上に、含浸済み繊維織物、含浸済み芯材用部材、含浸済み繊維織物、多孔性シートの順に重ねて配置することにより、含浸済み芯材用部材の両面に含浸済み繊維織物を配置し、さらに含浸済み芯材用部材の一側の面における含浸済み繊維織物の表面に多孔性シートを配置した積層体を、プレス成形用下型上にセットした。多孔性シートは、溶解処理によりセル膜を除去したウレタン樹脂発泡体(株式会社イノアックコーポレーション製、品名;MF−50、嵩比重0.03、セル数50個/25mm)を、非圧縮状態の厚み0.4mmに裁断したものを用いた。なお、使用したウレタン樹脂発泡体の空隙率は97.1%である。空隙率の計算式は次の通りである。空隙率(%)=(ウレタン樹脂真比重−嵩比重(≒発泡体見かけ密度))/ウレタン樹脂真比重×100   Next, an impregnated fiber fabric, an impregnated core material member, an impregnated fiber fabric, and a porous sheet are formed on a lower mold (flat plate shape) made of SUS having a release agent applied to the surface in advance. By placing them one after another, the impregnated fiber fabric is arranged on both sides of the impregnated core member, and the porous sheet is arranged on the surface of the impregnated fiber fabric on one side of the impregnated core member. The laminated body was set on the lower mold for press molding. The porous sheet is a non-compressed thickness of a urethane resin foam (product name: MF-50, bulk specific gravity 0.03, number of cells 50/25 mm, manufactured by Inoac Corporation) from which the cell membrane has been removed by dissolution treatment. What was cut into 0.4 mm was used. In addition, the porosity of the used urethane resin foam is 97.1%. The formula for calculating the porosity is as follows. Porosity (%) = (Urethane resin true specific gravity−bulk specific gravity (≈foam apparent density)) / urethane resin true specific gravity × 100

前記積層体をプレス成形用下型上にセットした状態で、180℃で3分間、5MPaの面圧をかけてプレス成形用上型(平板状)で前記積層体を押圧し、圧縮及び加熱を行ない、前記圧縮状態でフェノール樹脂を反応硬化させた。その際の積層体の加熱は、上下のプレス型に取り付けられた鋳込みヒーターにより行なった。また、プレス成形用下型と上型間には厚み0.9mmのSUS製スペーサを介在させて下型と上型間の間隔、すなわち積層体の圧縮厚みを調整した。その後、プレス成形用下型と上型を室温で冷却させた後に下型と上型を開き、芯材の両面に繊維補強材が積層し、さらに一側の繊維補強材に多孔性シートから形成された表面材が積層一体化した繊維強化成形体を得た。この繊維強化成形体を170×260mmにトリミングして実施例1の繊維強化成形体とした。   In a state where the laminate is set on the lower mold for press molding, the laminate is pressed with the upper mold for press molding (flat plate shape) by applying a surface pressure of 5 MPa at 180 ° C. for 3 minutes, and compressed and heated. Then, the phenol resin was reaction-cured in the compressed state. At that time, the laminate was heated by a casting heater attached to the upper and lower press dies. Further, a 0.9 mm thick SUS spacer was interposed between the lower mold for press molding and the upper mold to adjust the distance between the lower mold and the upper mold, that is, the compression thickness of the laminate. Then, after lowering the press mold lower mold and upper mold at room temperature, the lower mold and upper mold are opened, fiber reinforcing material is laminated on both sides of the core material, and a porous sheet is formed on one side fiber reinforcing material As a result, a fiber-reinforced molded body in which the finished surface material was laminated and integrated was obtained. This fiber reinforced molded body was trimmed to 170 × 260 mm to obtain a fiber reinforced molded body of Example 1.

・実施例2
前記実施例1における多孔性シートの厚み(非圧縮状態の厚み)を0.6mmにした以外は実施例1と同様にして実施例2の繊維強化成形体を作成した。
Example 2
A fiber-reinforced molded article of Example 2 was prepared in the same manner as in Example 1 except that the thickness of the porous sheet in Example 1 (thickness in an uncompressed state) was 0.6 mm.

・実施例3
前記実施例1における多孔性シートの厚み(非圧縮状態の厚み)を1.0mmにした以外は実施例1と同様にして実施例3の繊維強化成形体を作成した。
・実施例4
前記実施例1における多孔性シートの厚み(非圧縮状態の厚み)を2.0mmにした以外は実施例1と同様にして実施例4の繊維強化成形体を作成した。
・実施例5
前記実施例1における多孔性シートの厚み(非圧縮状態の厚み)を3.0mmにした以外は実施例1と同様にして実施例5の繊維強化成形体を作成した。
Example 3
A fiber-reinforced molded article of Example 3 was prepared in the same manner as in Example 1 except that the thickness of the porous sheet in Example 1 (thickness in an uncompressed state) was 1.0 mm.
Example 4
A fiber-reinforced molded body of Example 4 was prepared in the same manner as in Example 1 except that the thickness of the porous sheet in Example 1 (thickness in an uncompressed state) was 2.0 mm.
Example 5
A fiber-reinforced molded body of Example 5 was prepared in the same manner as in Example 1 except that the thickness of the porous sheet in Example 1 (thickness in an uncompressed state) was 3.0 mm.

・実施例6
前記実施例1における多孔性シートに代えて、溶解処理によりセル膜を除去したウレタン樹脂発泡体(株式会社イノアックコーポレーション製、品名;MF−80、嵩比重0.05、セル数80個/25mm)、空隙率95.2%、非圧縮時の厚み1.0mmを用い、他は実施例1と同様にして実施例6の繊維強化成形体を作成した。
・実施例7
前記実施例1における多孔性シートに代えて、溶解処理によりセル膜を除去したウレタン樹脂発泡体(株式会社イノアックコーポレーション製、品名;MF−10、嵩比重0.028、セル数10個/25mm)、空隙率97.3%、非圧縮時の厚み1.0mmを用い、他は実施例1と同様にして実施例7の繊維強化成形体を作成した。
・実施例8
前記実施例1における多孔性シートに代えて、溶解処理によりセル膜を除去したウレタン樹脂発泡体(株式会社イノアックコーポレーション製、品名;MF−8、嵩比重0.027、セル数8個/25mm)、空隙率97.4%、非圧縮時の厚み1.0mmを用い、他は実施例1と同様にして実施例8の繊維強化成形体を作成した。
・実施例9
前記実施例1における多孔性シートに代えて、セル膜除去処理が行われていないセル膜有りのウレタン樹脂発泡体(株式会社イノアックコーポレーション製、品名;SP−50、嵩比重0.031、セル数50個/25mm)、空隙率97.0%、非圧縮時の厚み1.0mmを用い、他は実施例1と同様にして実施例9の繊維強化成形体を作成した。
Example 6
Instead of the porous sheet in Example 1, a urethane resin foam from which the cell membrane was removed by dissolution treatment (product name: MF-80, bulk specific gravity 0.05, number of cells 80/25 mm, manufactured by Inoac Corporation) A fiber-reinforced molded body of Example 6 was prepared in the same manner as in Example 1 except that the porosity was 95.2% and the non-compressed thickness was 1.0 mm.
-Example 7
In place of the porous sheet in Example 1, a urethane resin foam from which the cell membrane was removed by dissolution treatment (manufactured by Inoac Corporation, product name: MF-10, bulk specific gravity 0.028, number of cells 10/25 mm) A fiber reinforced molded article of Example 7 was prepared in the same manner as in Example 1 except that the porosity was 97.3% and the non-compressed thickness was 1.0 mm.
Example 8
Instead of the porous sheet in Example 1, the urethane resin foam from which the cell membrane was removed by dissolution treatment (manufactured by Inoac Corporation, product name: MF-8, bulk specific gravity 0.027, number of cells 8/25 mm) A fiber reinforced molded article of Example 8 was prepared in the same manner as in Example 1 except that the porosity was 97.4% and the non-compressed thickness was 1.0 mm.
Example 9
In place of the porous sheet in Example 1, a urethane resin foam with a cell membrane that has not been subjected to cell membrane removal treatment (product name: SP-50, bulk specific gravity 0.031, number of cells, manufactured by Inoac Corporation) 50/25 mm), a porosity of 97.0%, and a non-compressed thickness of 1.0 mm were used, and a fiber-reinforced molded article of Example 9 was prepared in the same manner as in Example 1.

・比較例1
前記実施例1における表面の多孔性シートを無くして比較例1の繊維強化成形体を作成した。
・比較例2
前記実施例1における表面の多孔性シートの厚み(非圧縮状態の厚み)を4.0mmにした以外は実施例1と同様にして比較例2の繊維強化成形体を作成した。
・比較例3
前記実施例1における多孔性シートに代えて、溶解処理によりセル膜を除去したウレタン樹脂発泡体(株式会社イノアックコーポレーション製、品名;MF−100、嵩比重0.075、セル数100個/25mm)、空隙率92.8%、非圧縮時の厚み1.0mmを用い、他は実施例1と同様にして比較例3の繊維強化成形体を作成した。
Comparative example 1
The fiber-reinforced molded body of Comparative Example 1 was prepared without the porous sheet on the surface in Example 1.
Comparative example 2
A fiber-reinforced molded article of Comparative Example 2 was prepared in the same manner as in Example 1 except that the thickness of the porous sheet on the surface in Example 1 (thickness in an uncompressed state) was 4.0 mm.
Comparative example 3
In place of the porous sheet in Example 1, a urethane resin foam from which the cell membrane was removed by dissolution treatment (product name: MF-100, bulk specific gravity 0.075, number of cells 100/25 mm, manufactured by Inoac Corporation) A fiber reinforced molded article of Comparative Example 3 was prepared in the same manner as in Example 1 except that the porosity was 92.8% and the non-compressed thickness was 1.0 mm.

前記実施例及び比較例のそれぞれについて、塗装前の全体厚み及び曲げ弾性率(JIS K7074−1988 A法、繊維方向)及び表面材の表面の凹凸度合(表面粗さ)を測定した。凹凸度合(表面粗さ)は、表面材の表面に対し、表面粗さ計(東京精密製、品名;Surfcom113A)を用いて、基準長さ20mmにおいて、十点平均粗さ(RzJIS82)を測定した。RzJIS82は、旧規格JIS B0601:1982の十点平均粗さで、基準長さの断面曲線において、最高の山頂から高い順に5番目までの山高さの平均と最深の谷底から深い順に5番目までの谷深さの平均の和である。測定結果を表1に示す。   About each of the said Example and a comparative example, the total thickness and the bending elastic modulus (JIS K7074-1988 A method, fiber direction) before coating, and the unevenness | corrugation degree (surface roughness) of the surface material were measured. The degree of unevenness (surface roughness) was measured with respect to the surface of the surface material by using a surface roughness meter (manufactured by Tokyo Seimitsu, product name: Surfcom 113A), with a 10-point average roughness (RzJIS82) at a reference length of 20 mm. . RzJIS82 is the ten-point average roughness of the old standard JIS B0601: 1982. In the cross-sectional curve of the standard length, the average of the peak height from the highest peak to the fifth highest and the fifth from the deepest valley bottom to the fifth deepest. The average sum of valley depths. The measurement results are shown in Table 1.

また、前記実施例及び比較例のそれぞれについて、表面材の表面(比較例1については繊維織物の表面)に2液硬化型ウレタン系塗料を用いて、スプレー塗装により膜厚20μmになるように塗装を施して塗膜を形成し、塗装外観、塗装表面の凹凸度合(表面粗さ)、塗装密着性を調べた。塗装外観は、塗膜外観であり、乾燥後の塗膜表面を目視で観察し、凹凸が全く分からない場合を◎、僅かに凹凸が分かる場合を○、明確に凹凸が分かる場合を×と判定した。塗装表面の凹凸度合は、塗膜の表面粗さであり、乾燥後の塗膜表面に対し、表面粗さ計(東京精密製、品名;Surfcom)を用いてRz;10点測定し、その平均値の表面粗さ(μm)で表した。塗装密着性は、塗膜の密着性であり、乾燥後の塗膜表面に、カッターを用いて間隔1mmで格子状の切り込み(クロスカット)を100升形成し、その切り込みを形成した100升部分に、幅25mm、長さ75mmのセロハンテープを接着し、その後セロハンテープを剥がして塗膜が剥がれなかった升の数(密着数)によって塗装密着性を表した。測定結果を表1に示す。   For each of the above Examples and Comparative Examples, the surface of the surface material (the surface of the fiber fabric in Comparative Example 1) is coated with a two-component curable urethane-based paint so as to have a film thickness of 20 μm by spray coating. Was applied to form a coating film, and the coating appearance, the degree of unevenness of the coating surface (surface roughness), and coating adhesion were examined. The appearance of the coating is the appearance of the coating film. When the coating film surface after drying is visually observed, ◎ indicates that the unevenness is not known at all, ○ indicates that the unevenness is slightly recognized, and X indicates that the unevenness is clearly understood. did. The degree of unevenness of the coating surface is the surface roughness of the coating film. Rz: 10 points are measured with respect to the coating film surface after drying using a surface roughness meter (Tokyo Seimitsu, product name: Surfcom), and the average It was represented by the surface roughness (μm) of the value. The coating adhesion is the adhesion of the coating film. On the surface of the coating film after drying, 100 mm of grid-like cuts (cross cuts) are formed at intervals of 1 mm using a cutter, and the 100 mm portion where the cuts are formed. The cellophane tape having a width of 25 mm and a length of 75 mm was adhered to the film, and then the cellophane tape was peeled off, and the coating adhesion was expressed by the number of wrinkles (the number of adhesion) in which the coating film was not removed. The measurement results are shown in Table 1.

Figure 0005755427
Figure 0005755427

表面に多孔性シート(表面材)を設けた実施例1〜9は、表面に多孔性シートを設けなかった比較例1と比べて塗装前の凹凸度合及び塗装後の凹凸度合の何れも小さく、かつ塗装外観が良好であり、塗装密着性が良好で塗膜が剥がれにくいものであった。特に、多孔性シートの有無のみが異なる実施例1と比較例1を比べた場合、多孔性シートの無い比較例1は、多孔性シートを有する実施例1よりも塗装前及び塗装後の凹凸度合が倍以上の大きい値からなり、かつ塗装外観及び塗装密着においても実施例1より著しく劣っていた。   In Examples 1 to 9 in which a porous sheet (surface material) was provided on the surface, the degree of unevenness before painting and the degree of unevenness after painting were small compared to Comparative Example 1 in which no porous sheet was provided on the surface. In addition, the coating appearance was good, the coating adhesion was good, and the coating film was difficult to peel off. In particular, when Example 1 and Comparative Example 1 that differ only in the presence or absence of a porous sheet are compared, Comparative Example 1 without a porous sheet is more uneven than before Example 1 and after coating than Example 1 having a porous sheet. Was larger than double, and the coating appearance and coating adhesion were significantly inferior to those of Example 1.

また、多孔性シートのセル膜が除去されている実施例3と多孔性シートのセル膜が除去されていない実施例9とを比べると、セル膜が除去されている実施例3は、セル膜が除去されていない実施例9よりも塗装前及び塗装後における凹凸度合が半分以下の値となる凹凸の極めて小さいものであり、かつ塗装外観及び塗装密着においても実施例9より良好であった。   Further, comparing Example 3 in which the cell membrane of the porous sheet was removed and Example 9 in which the cell membrane of the porous sheet was not removed, Example 3 in which the cell membrane was removed The degree of unevenness before and after coating was less than half that of Example 9 in which no is removed, and the coating appearance and adhesion were also better than Example 9.

また、多孔性シートの厚み(非圧縮状態の厚み)を、実施例1の0.4mmの厚みから4.0mmの厚みにした以外は実施例1と同じ比較例2は、実施例1と比べて曲げ弾性率が半分ほどであると共に、塗装前及び塗装後の凹凸度合が倍近い値となる凹凸の極めて大きいものであり、かつ塗装外観及び塗装密着において実施例1よりも劣っていた。   Further, Comparative Example 2, which is the same as Example 1, except that the thickness of the porous sheet (thickness in an uncompressed state) was changed from the thickness of 0.4 mm of Example 1 to 4.0 mm, was compared with Example 1. In addition, the bending elastic modulus was about half, the unevenness before and after coating was extremely large, and the coating appearance and adhesion were inferior to those of Example 1.

多孔性シートのセル数を100個/25mmとした比較例3は、セル数以外が同じである実施例3(セル数50個/25mm)、実施例6(セル数80個/25mm)、実施例7(セル数10個/25mm)及び実施例8(セル数8個/25mm)と比べて、塗装前及び塗装後の凹凸度合が約2倍〜約4倍の値となる凹凸の極めて大きいものであり、かつ塗装外観及び塗装密着においても実施例3、6、7及び8よりも劣っていた。   Comparative Example 3 in which the number of cells in the porous sheet was 100/25 mm was the same as in Example 3 (number of cells 50/25 mm), Example 6 (number of cells 80/25 mm), except for the number of cells. Compared to Example 7 (number of cells 10/25 mm) and Example 8 (number of cells 8/25 mm), the unevenness before and after coating is about 2 to 4 times greater than the unevenness. It was also inferior to Examples 3, 6, 7 and 8 in coating appearance and coating adhesion.

このように、本発明の実施例品は、薄肉、高剛性を有し、かつ塗装した場合の外観が良好で塗膜が剥がれるおそれのないものであり、ノートパソコン等の携帯機器の筐体等として好適なものである。なお、前記の実施例では、芯材の一側の面における繊維補強材の表面のみに表面材(多孔性シート)を積層したが、芯材の両側の面における繊維補強材の表面に表面材(多孔性シート)を積層してもよい。また、繊維強化成形体の用途によっては、芯材の一側の面にのみ繊維補強材と表面材を設けてもよい。   As described above, the product according to the present invention is thin, has high rigidity, has a good appearance when coated, and does not peel off the coating film. Is suitable. In the above embodiment, the surface material (porous sheet) is laminated only on the surface of the fiber reinforcing material on one surface of the core material, but the surface material on the surface of the fiber reinforcing material on both surfaces of the core material. (Porous sheet) may be laminated. Further, depending on the use of the fiber reinforced molded body, the fiber reinforcing material and the surface material may be provided only on one surface of the core material.

10 繊維強化成形体
10A,10B,10C 積層体
11 芯材
11A 芯材用部材
11B 熱硬化性樹脂
11C 含浸又は付着済み芯材用部材
21 繊維補強材
21A 繊維織物
21B 熱硬化性樹脂
21C 含浸又は付着済み繊維織物
25 表面材
25A 多孔性シート
27 塗膜
DESCRIPTION OF SYMBOLS 10 Fiber reinforced molded object 10A, 10B, 10C Laminated body 11 Core material 11A Core material member 11B Thermosetting resin 11C Impregnated or adhered core material 21 Fiber reinforcement 21A Textile fabric 21B Thermosetting resin 21C Impregnation or adhesion Finished fiber fabric 25 Surface material 25A Porous sheet 27 Paint film

Claims (7)

芯材の少なくとも一面に繊維補強材が積層され、前記繊維補強材に表面材が積層されて一体化した繊維強化成形体であって、
前記芯材は、合成樹脂からなり、
前記繊維補強材は、繊維織物に熱硬化性樹脂が含浸して硬化したものからなり、
前記表面材は、セル数8〜80個/25mmの連続気泡を有する多孔性シートに熱硬化性樹脂が含浸して硬化したものからなって表面粗さが30μm以下であることを特徴とする繊維強化成形体。
A fiber reinforced molded body in which a fiber reinforcing material is laminated on at least one surface of a core material, and a surface material is laminated on and integrated with the fiber reinforcing material,
The core material is made of synthetic resin,
The fiber reinforcing material consists of a fiber woven fabric impregnated with a thermosetting resin and cured,
The surface material is made of a porous sheet having open cells of 8 to 80 cells / 25 mm and impregnated with a thermosetting resin, and has a surface roughness of 30 μm or less. Reinforced molded body.
前記多孔性シートが樹脂発泡体からなることを特徴とする請求項1に記載の繊維強化成形体。   The fiber-reinforced molded body according to claim 1, wherein the porous sheet is made of a resin foam. 前記樹脂発泡体がウレタン樹脂発泡体からなることを特徴とする請求項2に記載の繊維強化成形体。   The fiber-reinforced molded body according to claim 2, wherein the resin foam is a urethane resin foam. 前記熱硬化性樹脂がフェノール樹脂又はエポキシ樹脂からなることを特徴とする請求項1から3の何れか一項に記載の繊維強化成形体。   The fiber-reinforced molded body according to any one of claims 1 to 3, wherein the thermosetting resin is made of a phenol resin or an epoxy resin. 前記芯材は、連続気泡を有する樹脂発泡体に熱硬化性樹脂が含浸して硬化したものからなり、
前記芯材と前記繊維補強材と前記表面材とが、前記連続気泡を有する樹脂発泡体に含浸した熱硬化性樹脂と、前記繊維織物に含浸した熱硬化性樹脂と、前記多孔性シートに含浸した熱硬化性樹脂の硬化により一体化されていることを特徴とする請求項1から4の何れか一項に記載の繊維強化成形体。
The core material is composed of a resin foam having open cells impregnated with a thermosetting resin and cured,
The core material, the fiber reinforcing material, and the surface material are impregnated in the thermosetting resin impregnated in the resin foam having the open cells, the thermosetting resin impregnated in the fiber fabric, and the porous sheet. The fiber-reinforced molded body according to any one of claims 1 to 4, wherein the fiber-reinforced molded body is integrated by curing of the cured thermosetting resin.
前記表面材の表面に塗膜が設けられ、前記塗膜の表面粗さが25μm以下であることを特徴とする請求項1から5の何れか一項に記載の繊維強化成形体。   The fiber-reinforced molded article according to any one of claims 1 to 5, wherein a coating film is provided on the surface of the surface material, and the surface roughness of the coating film is 25 µm or less. 合成樹脂製の芯材の少なくとも一面に、繊維織物に熱硬化性樹脂が含浸して硬化した繊維補強材が積層され、連続気泡を有する発泡体のシートに熱硬化性樹脂が含浸して硬化した表面材が前記繊維補強材に積層された繊維強化成形体の製造方法において、
前記連続気泡を有する発泡体のシートとして、セル数が8〜80個/25mm、厚みが0.4〜3.0mmであって、熱に溶けて孔が埋まらないものを用い、
芯材用部材と前記繊維織物の何れか一方又は両方に対し、前記繊維強化成形体の樹脂比率が50〜80重量%となるように熱硬化性樹脂を含浸又は付着させ、
前記芯材用部材の少なくとも一面に前記繊維織物と前記連続気泡を有する発泡体のシートとを順次積層し、
前記芯材用部材と前記繊維織物と前記連続気泡を有する発泡体シートを加熱及び圧縮して前記熱硬化性樹脂を硬化させることにより、前記芯材用部材から形成された前記芯材と前記繊維織物に熱硬化性樹脂が含浸して硬化した前記繊維補強材と、前記連続気泡を有する発泡体のシートに熱硬化性樹脂が含浸して硬化した前記表面材を一体化し、前記繊維強化成形体の厚みを0.3〜2.0mmにすることを特徴とする繊維強化成形体の製造方法。
At least one surface of the synthetic resin core material is laminated with a fiber reinforcing material which is cured by impregnating a fiber fabric with a thermosetting resin, and the foam sheet having open cells is impregnated with the thermosetting resin and cured. In the method for producing a fiber-reinforced molded body in which a surface material is laminated on the fiber reinforcing material,
As the foam sheet having the open cells, the number of cells is 8 to 80 cells / 25 mm, the thickness is 0.4 to 3.0 mm, and it is melted by heat and does not fill the hole ,
A core material for a member against either one or both of the fiber fabric, the thermosetting resin impregnated or adhered to so that the resin ratio of the fiber-reinforced molded body is 50 to 80 wt%,
The fiber fabric and the foam sheet having the open cells are sequentially laminated on at least one surface of the core member,
The core member and the fiber formed from the core member by heating and compressing the foam member having the core member, the fiber fabric, and the open cells to cure the thermosetting resin. The fiber reinforced molding is formed by integrating the fiber reinforcing material impregnated and cured with a thermosetting resin into a woven fabric and the surface material impregnated with the thermosetting resin and cured with the foam sheet having the open cells. A method for producing a fiber-reinforced molded body, wherein the thickness of the body is 0.3 to 2.0 mm .
JP2010247288A 2010-08-30 2010-11-04 FIBER-REINFORCED MOLDED BODY AND METHOD FOR PRODUCING THE SAME Active JP5755427B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010247288A JP5755427B2 (en) 2010-11-04 2010-11-04 FIBER-REINFORCED MOLDED BODY AND METHOD FOR PRODUCING THE SAME
EP20110821825 EP2612754B1 (en) 2010-08-30 2011-08-30 Fiber reinforced molded article and manufacturing method therefor
CN201180042090.5A CN103079810B (en) 2010-08-30 2011-08-30 Fibre-reinforced formed body and manufacture method thereof
TW100131158A TWI558567B (en) 2010-08-30 2011-08-30 Fiber reinforced shaped body and method for producing the same
US13/813,594 US9132607B2 (en) 2010-08-30 2011-08-30 Fiber-reinforced molded product and method for manufacturing the same
PCT/JP2011/069655 WO2012029810A1 (en) 2010-08-30 2011-08-30 Fiber reinforced molded article and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247288A JP5755427B2 (en) 2010-11-04 2010-11-04 FIBER-REINFORCED MOLDED BODY AND METHOD FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JP2012096482A JP2012096482A (en) 2012-05-24
JP5755427B2 true JP5755427B2 (en) 2015-07-29

Family

ID=46388969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247288A Active JP5755427B2 (en) 2010-08-30 2010-11-04 FIBER-REINFORCED MOLDED BODY AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP5755427B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101936609B1 (en) * 2012-09-28 2019-04-03 삼성전자주식회사 Housing for electronic device and manufacturing method thereof
JP6043678B2 (en) * 2013-03-29 2016-12-14 積水化成品工業株式会社 Method for producing fiber reinforced composite and fiber reinforced composite
JP5661898B2 (en) * 2013-11-07 2015-01-28 株式会社イノアックコーポレーション Prepreg and fiber reinforced molding
US11225037B2 (en) * 2014-10-17 2022-01-18 Toray Industries, Inc. Method of producing fiber-reinforced composite material, resin base material and preform
CN108357157A (en) * 2018-04-02 2018-08-03 江苏美龙航空部件有限公司 A kind of high intensity Phonelic foam sandwich board that resistance to compression is anti-shearing and its manufacturing method
JP6685616B2 (en) * 2018-11-20 2020-04-22 株式会社イノアックコーポレーション Carbon fiber composite material and manufacturing method thereof
JP7178251B2 (en) * 2018-12-17 2022-11-25 株式会社イノアックコーポレーション CARBON FIBER REINFORCED MOLDED PRODUCT AND METHOD FOR MANUFACTURING THE SAME
CN110636158A (en) * 2019-09-12 2019-12-31 华为技术有限公司 Middle frame, rear cover, preparation method of middle frame and rear cover and electronic equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735451B2 (en) * 1989-12-25 1995-04-19 池田物産株式会社 Structural material
JPH044137A (en) * 1990-04-20 1992-01-08 Showa Shell Sekiyu Kk Fiber reinforced board and production thereof
JPH082606B2 (en) * 1990-06-25 1996-01-17 積水化成品工業株式会社 Fiber-reinforced phenolic resin foam and method for producing the same
JPH0740490A (en) * 1993-07-28 1995-02-10 Sekisui Chem Co Ltd Fiber reinforced resin composite material
JPH0723539U (en) * 1993-10-12 1995-05-02 タキロン株式会社 Architectural panel

Also Published As

Publication number Publication date
JP2012096482A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
TWI558567B (en) Fiber reinforced shaped body and method for producing the same
JP5755427B2 (en) FIBER-REINFORCED MOLDED BODY AND METHOD FOR PRODUCING THE SAME
JP4558091B1 (en) Fiber-reinforced molded body and method for producing the same
JP5743271B2 (en) FIBER-REINFORCED MOLDED BODY AND METHOD FOR PRODUCING THE SAME
JP6479340B2 (en) Carbon fiber composite material
JP6685616B2 (en) Carbon fiber composite material and manufacturing method thereof
JP2023054045A (en) Lamination body
US20130052417A1 (en) Rigid reinforced composite material and manufacturing method thereof
WO2020262483A1 (en) Honeycomb layered body and production method therefor
JP6847510B2 (en) Carbon fiber composite veneer
JP7356840B2 (en) Honeycomb laminate with irregularities formed on the surface and its manufacturing method
JP7498317B2 (en) Manufacturing method of honeycomb laminate, honeycomb laminate, laminate
KR20040070999A (en) Sandwich composite panel having resin lattice core with foam and manufacturing method of the same
JPH05309792A (en) Frp composite panel and production thereof
JPH11207843A (en) Manufacture of honeycomb composite body
JP7220004B2 (en) Fiber-reinforced resin composite molding and method for producing the same
JP6752612B2 (en) Fiber reinforced molded product and its manufacturing method
TWI853964B (en) Honeycomb laminate and manufacturing method thereof
IT201800006700A1 (en) LIGHTENED MARBLE SHEET INCLUDING A PANEL IN EXPANDED MATERIAL AND METHOD FOR ITS PRODUCTION.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150527

R150 Certificate of patent or registration of utility model

Ref document number: 5755427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250