JP5750605B2 - Multi-pipe once-through boiler feed water control device - Google Patents
Multi-pipe once-through boiler feed water control device Download PDFInfo
- Publication number
- JP5750605B2 JP5750605B2 JP2011003428A JP2011003428A JP5750605B2 JP 5750605 B2 JP5750605 B2 JP 5750605B2 JP 2011003428 A JP2011003428 A JP 2011003428A JP 2011003428 A JP2011003428 A JP 2011003428A JP 5750605 B2 JP5750605 B2 JP 5750605B2
- Authority
- JP
- Japan
- Prior art keywords
- water supply
- water
- supply amount
- value
- boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Description
本発明は、多管式貫流ボイラの給水制御装置に関する。さらに詳しくは、給水ポンプの回転数変動を抑制しながら、汽水分離器の水位を安定させることができる多管式貫流ボイラの給水制御装置に関する。 The present invention relates to a water supply control device for a multi-tube once-through boiler. More specifically, the present invention relates to a water supply control device for a multi-pipe once-through boiler that can stabilize the water level of a brackish water separator while suppressing fluctuations in the rotation speed of a water supply pump.
従来より、図13に示すような構成とされた多管式貫流ボイラBが、蒸気を得るために用いられている。この多管式貫流ボイラBにおいては、構成の簡素化および低コスト化の観点から給水ポンプをオン・オフさせることにより汽水分離器の水位制御がなされている。 Conventionally, a multitubular once-through boiler B configured as shown in FIG. 13 has been used to obtain steam. In this multi-pipe once-through boiler B, the water level of the brackish water separator is controlled by turning on and off the feed water pump from the viewpoint of simplification of configuration and cost reduction.
しかるに、よく知られているように、多管式貫流ボイラBはその所要数を並列運転させて所望の蒸気量を確保することがなされている。そのため、負荷変動が大きい場合には、並列運転されている多管式貫流ボイラBのそれぞれは頻繁に起動・停止されることになる。また、このことは、給水ポンプも頻繁にオン・オフされることにもつながる。ただし、頻繁なオン・オフは給水ポンプにとっては好ましくはないことなので、図14に示すように、水位制御値と水位測定値と偏差に基づいて給水ポンプをいわゆるPID制御して給水ポンプの頻繁なオン・オフを回避しようとする試みがなされている。 However, as is well known, the required number of multi-tube once-through boilers B are operated in parallel to ensure a desired amount of steam. Therefore, when the load fluctuation is large, each of the multi-pipe once-through boilers B that are operated in parallel is frequently started and stopped. This also leads to frequent turning on and off of the water supply pump. However, since frequent ON / OFF is not preferable for the water supply pump, as shown in FIG. 14, the water supply pump is frequently controlled by so-called PID control based on the water level control value, the water level measurement value, and the deviation. Attempts have been made to avoid on / off.
しかしながら、多管式貫流ボイラBは、前記の如き構成とされているところから、ボイラの水位は燃焼量の変化によっても敏感に変動する。 However, since the multi-pipe once-through boiler B is configured as described above, the water level of the boiler varies sensitively even when the amount of combustion changes.
このため、図14に示すようなPID制御を行っても給水ポンプをオン・オフさせた状態と似たようなこととなり、汽水分離器の水位の安定と、給水ポンプの安定した運転とを両立させることができない。 For this reason, even if PID control as shown in FIG. 14 is performed, it is similar to the state where the water supply pump is turned on / off, and both the water level of the brackish water separator and the stable operation of the water supply pump are compatible. I can't let you.
本発明はかかる従来技術の課題に鑑みなされたものであって、多管式貫流ボイラの汽水分離器の水位を安定させながら、しかも給水制御量の変動が抑制される多管式貫流ボイラの給水制御装置を提供することを目的としている。 The present invention has been made in view of the above-described problems of the prior art, and stabilizes the water level of a brackish water separator of a multi-pipe once-through boiler, while suppressing fluctuations in the feed water control amount. The object is to provide a control device.
本発明の多管式貫流ボイラの給水制御装置は、給水量制御値演算手段と、給水量指令値演算手段と、蒸気圧力により給水量指令値を補正する指令値補正手段とを備え、前記給水量制御値演算手段は、水位制御値と水位測定値との偏差に基づいて給水量入力値を算出するものとされ、前記給水量指令値演算手段は、比例動作と積分動作とにより前記給水量入力値と給水量測定値との偏差に基づいて給水量指令値を演算するものとされ、前記蒸気圧力により給水量指令値を補正する指令値補正手段は、給水流量の下限値を常用圧力時に50%とする点とゼロ点とを結ぶ直線上に規定する一方、給水流量の上限値を蒸気圧力がゼロの時に100%給水量の90%とし、常用圧力以降は100%給水量となるように規定するよう蒸気圧力を補正するようにされてなることを特徴とする。 A water supply control device for a multi-tube type once-through boiler according to the present invention comprises a water supply amount control value calculating means, a water supply amount command value calculating means, and a command value correcting means for correcting a water supply amount command value by steam pressure , The amount control value calculation means calculates a water supply amount input value based on a deviation between the water level control value and the water level measurement value, and the water supply amount command value calculation means performs the water supply amount by a proportional operation and an integration operation. Based on the deviation between the input value and the measured water supply value, the water supply command value is calculated, and the command value correcting means for correcting the water supply command value by the steam pressure sets the lower limit value of the water supply flow rate at the normal pressure. On the straight line connecting the point to be 50% and the zero point, the upper limit value of the water supply flow rate is 90% of the 100% water supply amount when the steam pressure is zero, and the water supply amount after the normal pressure is 100%. The steam pressure will be corrected as specified in Characterized by comprising been.
また、本発明の多管式貫流ボイラの給水制御装置においては、水位測定値を補正する測定水位補正手段を備えてなるのが好ましい。 Moreover, it is preferable that the water supply control device for a multi-tube type once-through boiler according to the present invention includes a measurement water level correcting means for correcting the water level measurement value.
さらに、本発明の多管式貫流ボイラの給水制御装置においては、給水量指令値演算手段は微分動作も含むものとされ、前記微分動作により給水量測定値の微分がなされるのが好ましい。 Furthermore, in the water supply control device for a multi-pipe once-through boiler according to the present invention, it is preferable that the water supply command value calculation means includes a differential operation, and the differential of the water supply measurement value is performed by the differential operation.
さらに、本発明の多管式貫流ボイラの給水制御装置においては、給水量測定値の移動平均を算出する給水量移動平均演算手段を備えてなるのが好ましい。 Furthermore, in the water supply control device for a multi-pipe once-through boiler according to the present invention, it is preferable that the water supply amount moving average calculating means for calculating the moving average of the water supply amount measurement values is provided.
さらに、本発明の多管式貫流ボイラの給水制御装置においては、給水量測定値をフィルター処理するローパスフィルターを備えなるのが好ましい。 Furthermore, in the water supply control device for a multi-pipe once-through boiler according to the present invention, it is preferable to include a low-pass filter that filters the measured value of the water supply amount.
さらに、本発明の多管式貫流ボイラの給水制御装置においては、水位測定値をフィルター処理するローパスフィルターを備えなるのが好ましい。 Furthermore, in the water supply control device for a multi-pipe once-through boiler according to the present invention, it is preferable to include a low-pass filter for filtering the water level measurement value.
さらに、本発明の多管式貫流ボイラの給水制御装置においては、給水量指令値の上限を規定するリミッタを備えてなるのが好ましい。 Furthermore, in the water supply control device for a multi-pipe once-through boiler according to the present invention, it is preferable that a limiter for defining an upper limit of the water supply amount command value is provided.
さらに、本発明の多管式貫流ボイラの給水制御装置においては、給水量指令値の変化率を規定する変化率リミッタを備えてなるのが好ましい。 Further, the water supply control device for a multi-tube once-through boiler according to the present invention preferably includes a change rate limiter that defines a change rate of the water supply amount command value.
本発明は前記の如く構成されているので、汽水分離器の水位を一定に保ちながら、給水制御量の変動が抑制されるという優れた効果が得られる。 Since this invention is comprised as mentioned above, the outstanding effect that the fluctuation | variation of water supply control amount is suppressed is obtained, keeping the water level of a brackish water separator constant.
以下、添付図面を参照しながら本発明を実施形態に基づいて説明するが、本発明はかかる実施形態のみに限定されるものではない。 Hereinafter, although the present invention is explained based on an embodiment, referring to an accompanying drawing, the present invention is not limited only to this embodiment.
実施形態1
図1に、本発明の実施形態1に係る多管式貫流ボイラ(以下、単にボイラということもある)の給水制御装置(以下、単に制御装置という)C1を示す。
Embodiment 1
FIG. 1 shows a water supply control device (hereinafter simply referred to as a control device) C1 of a multitubular once-through boiler (hereinafter also simply referred to as a boiler) according to Embodiment 1 of the present invention.
制御装置C1は、図1に示すように、給水量制御値演算手段1と、給水量指令値演算手段2とを主要構成要素として含むものとされる。 As shown in FIG. 1, the control device C <b> 1 includes a water supply amount control value calculation unit 1 and a water supply amount command value calculation unit 2 as main components.
給水量制御値演算手段1は、制御水位と測定水位との偏差から要求給水量、つまり給水量入力値を演算するものとされる。給水量指令値演算手段2は、給水量制御値演算手段1により算出された給水量入力値と給水量測定値との偏差から給水量指令値、つまり給水制御量を演算するものとされる。 給水量指令値演算手段2は、より具体的にはPI制御、すなわち比例動作と積分動作とを組み合わせた制御により給水量指令値を演算するものとされる。 The water supply amount control value calculating means 1 calculates a required water supply amount, that is, a water supply amount input value, from the deviation between the control water level and the measured water level. The water supply amount command value calculation means 2 calculates a water supply amount command value, that is, a water supply control amount, from the deviation between the water supply amount input value calculated by the water supply amount control value calculation means 1 and the water supply amount measurement value. More specifically, the water supply amount command value calculation means 2 calculates the water supply amount command value by PI control, that is, control that combines proportional operation and integration operation.
ここで、給水量指令値演算手段2の入力を給水量とするのは、前述したように、汽水分離器内の水位変動が大きいところから、汽水分離器の水位を入力にした場合には、制御の安定性を欠き、従来技術におけるPID制御と同様に給水ポンプの安定した運転を確保できなくなるおそれがあることによる。 Here, the input of the feed water amount command value calculation means 2 is the feed water amount, as described above, when the water level fluctuation in the brackish water separator is large, when the water level of the brackish water separator is input, This is because the stability of the control is lacking, and there is a possibility that the stable operation of the water supply pump cannot be secured as in the PID control in the prior art.
なお、前記機能を有する各手段は、マイコンに対応するプログラムを格納することにより実現される。あるいは、いわゆるPID調整計により実現されてもよい。 Each means having the functions is realized by storing a program corresponding to the microcomputer. Alternatively, it may be realized by a so-called PID adjuster.
このように、実施形態1によれば、制御水位と測定水位との偏差から給水流量入力値を演算により算出し、それと給水流量測定値との偏差を給水量指令値演算手段2の入力としているので、水位偏差を入力する場合に比して燃焼負荷による水位変動を緩和しつつ、汽水分離器の水位をほぼ一定としながら、給水制御量の変動を小さくすることができる。 Thus, according to the first embodiment, the feed water flow rate input value is calculated by calculation from the deviation between the control water level and the measured water level, and the deviation between it and the feed water flow rate measurement value is used as the input to the feed water amount command value calculation means 2. Therefore, compared with the case where the water level deviation is input, the fluctuation of the water supply control amount can be reduced while the water level fluctuation due to the combustion load is alleviated and the water level of the brackish water separator is made substantially constant.
実施形態2
本発明の実施形態2に係る制御装置C2の要部を図2にブロック図で示す。
Embodiment 2
The principal part of the control apparatus C2 which concerns on Embodiment 2 of this invention is shown with a block diagram in FIG.
実施形態2は実施形態1を改変してなるものであって、給水量指令値演算手段2の出力を多管式貫流ボイラの蒸気圧力により補正する指令値補正手段3を備えてなるものとされる。 The second embodiment is a modification of the first embodiment, and includes command value correcting means 3 for correcting the output of the water supply command value calculating means 2 with the steam pressure of the multi-tube once-through boiler. The
ここで、給水量指令値演算手段2の出力を蒸気圧力により補正するのは、給水ポンプの回転数が同じであっても、ボイラの圧力が異なれば実際にボイラに給水される給水量が異なるためである。とりわけ、多管式貫流ボイラにおいては、前述したように台数制御が予定されているところから、蒸気圧力がゼロの状態から給水することもめずらしくないためである。 Here, the output of the water supply amount command value calculating means 2 is corrected by the steam pressure, even if the rotation speed of the water supply pump is the same, if the boiler pressure is different, the water supply amount actually supplied to the boiler is different. Because. In particular, in a multi-tube once-through boiler, since the number control is scheduled as described above, it is not uncommon to supply water from a state where the steam pressure is zero.
蒸気圧力による補正は、例えば図3のようにしてなされる。すなわち、給水流量の下限値を常用圧力時に50%とする点とゼロ点とを結ぶ直線上に規定する一方、給水流量の上限値を蒸気圧力がゼロの時に最高給水量(100%給水量)の例えば90%とし、常用圧力以降は最高給水量(100%給水量)となるように規定される。 The correction by the steam pressure is performed as shown in FIG. 3, for example. In other words, the lower limit value of the feed water flow rate is defined on a straight line connecting the point where the normal pressure is 50% and the zero point, while the upper limit value of the feed water flow rate is the maximum water supply amount when the steam pressure is zero (100% water supply amount). For example, it is 90%, and it is defined to be the maximum water supply amount (100% water supply amount) after the normal pressure.
なお、実施形態2のその余の構成は、実施形態1と同様とされているので、その詳細な説明は省略する。 Since the remaining configuration of the second embodiment is the same as that of the first embodiment, detailed description thereof is omitted.
このように、実施形態2においては、給水量指令値演算手段2により出力された給水量指令値を多管式貫流ボイラの蒸気圧力により補正するようにしているので、蒸気圧力に応じた給水がなし得る。そのため、給水制御量の変動を実施形態1に比して小さくすることができる。 Thus, in Embodiment 2, since the water supply amount command value output by the water supply amount command value calculating means 2 is corrected by the steam pressure of the multi-tube once-through boiler, the water supply according to the steam pressure is performed. You can get none. Therefore, the fluctuation of the water supply control amount can be reduced as compared with the first embodiment.
なお、実施形態2のその余の作用・効果は実施形態1と同様であるので、その詳細な説明は省略する。 In addition, since the other effect | action and effect of Embodiment 2 are the same as that of Embodiment 1, the detailed description is abbreviate | omitted.
実施形態3
本発明の実施形態3の要部を図4にブロック図で示す。
Embodiment 3
The principal part of Embodiment 3 of this invention is shown with a block diagram in FIG.
実施形態3は実施形態1を改変してなるものであって、測定水位を補正する測定水位補正手段4を備えてなるものとされる。 The third embodiment is obtained by modifying the first embodiment, and includes measurement water level correcting means 4 for correcting the measurement water level.
測定水位補正手段4を設けるのは、前述した理由によりボイラの圧力が変動し、この圧力変動により比体積が変動して水位測定器により測定される水位に誤差が生じるので、この誤差を補正するためである。 The measurement water level correction means 4 is provided because the pressure of the boiler fluctuates due to the above-described reason, and the specific volume fluctuates due to this pressure fluctuation, and an error occurs in the water level measured by the water level measuring instrument. Because.
なお、実施形態3のその余の構成は、実施形態1と同様とされているので、その詳細な説明は省略する。 Since the remaining configuration of the third embodiment is the same as that of the first embodiment, detailed description thereof is omitted.
このように、実施形態3においては、測定水位補正手段4により水位測定器で測定された水位を補正して実水位に近づけているので、ボイラの圧力変動による影響を緩和できて汽水分離器の水位をほぼ一定としながら、給水制御量の変動を実施形態1に比して小さくすることができる。 Thus, in Embodiment 3, since the water level measured by the water level measuring device is corrected by the measured water level correcting means 4 and brought close to the actual water level, it is possible to alleviate the influence due to the pressure fluctuation of the boiler and The variation of the water supply control amount can be reduced as compared with the first embodiment while the water level is substantially constant.
なお、実施形態3のその余の作用・効果は実施形態1と同様であるので、その詳細な説明は省略する。 In addition, since the other effect | action and effect of Embodiment 3 are the same as that of Embodiment 1, the detailed description is abbreviate | omitted.
実施形態4
本発明の実施形態4の要部を図5にブロック図で示す。
Embodiment 4
The principal part of Embodiment 4 of this invention is shown with a block diagram in FIG.
実施形態4は実施形態1を改変してなるものであって、給水量指令値演算手段2に給水量測定値も入力し、給水量測定値の微分値も組み合わせて、つまり微分動作を含むPID制御により給水量指令値を演算して算出するものとされる。 The fourth embodiment is a modification of the first embodiment, in which a feed water amount measurement value is also input to the feed water amount command value calculation means 2 and a differential value of the feed water amount measurement value is combined, that is, a PID including a differential operation. The water supply amount command value is calculated and calculated by the control.
なお、実施形態4のその余の構成は、実施形態1と同様とされているので、その詳細な説明は省略する。 Since the remaining configuration of the fourth embodiment is the same as that of the first embodiment, detailed description thereof is omitted.
このように、実施形態4においては、給水量測定値も用いてPID制御により給水量指令値を算出しているので、実施形態1に比して制御性能が向上する。つまり、給水制御量の変動をより小さくすることができる。 As described above, in the fourth embodiment, since the water supply amount command value is calculated by the PID control using the water supply amount measurement value, the control performance is improved as compared with the first embodiment. That is, the fluctuation of the water supply control amount can be further reduced.
なお、実施形態4のその余の作用・効果は実施形態1と同様であるので、その詳細な説明は省略する。 In addition, since the other effect | action and effect of Embodiment 4 are the same as that of Embodiment 1, the detailed description is abbreviate | omitted.
実施形態5
本発明の実施形態5の要部を図6にブロック図で示す。
Embodiment 5
The principal part of Embodiment 5 of this invention is shown with a block diagram in FIG.
実施形態5は実施形態3を改変してなるものであって、給水量移動平均演算手段5を設け、給水量測定値の所定時間の移動平均を演算して算出し、その算出された移動平均値を給水量制御値演算手段からの出力に加算し、その加算された値と給水量測定値との偏差を給水量指令値演算手段の入力としてなるものとされる。所定時間は、15秒間から30秒間とされる。所定時間をこのように選定するのは、あまり短時間であると、移動平均をとる意義がなくなり、その逆にあまり長時間であると、制御の応答性が悪くなるためである。 The fifth embodiment is a modification of the third embodiment, and is provided with a water supply amount moving average calculation means 5 to calculate and calculate a moving average of a water supply amount measurement value for a predetermined time, and the calculated moving average. The value is added to the output from the water supply amount control value calculation means, and the deviation between the added value and the water supply amount measurement value is input to the water supply amount command value calculation means. The predetermined time is 15 seconds to 30 seconds. The reason for selecting the predetermined time in this way is that if the time is too short, the meaning of taking the moving average is lost, and conversely, if the time is too long, the control responsiveness deteriorates.
このように給水量測定値の移動平均値を加算するのは、燃焼による水位の外乱を補償して制御の安定を確保するためである。 The reason for adding the moving average value of the measured water supply amount is to compensate for disturbance of the water level due to combustion to ensure stable control.
つまり、多管式貫流ボイラにおいては並列運転がなされる関係上、個々のボイラにおける負荷変動が激しいところから燃焼量が常に変化しているので、ボイラが発生する蒸発量も常に変化している。そのような状態において給水量を一定とすれば、蒸発量が給水量を上回っているといつしかボイラはいわゆる空缶となり、その逆に給水量が蒸発量を上回っているといつしかボイラが満水となるという状態が発生する。 That is, in a multi-tube once-through boiler, the amount of combustion constantly changes from the point where the load fluctuation in each boiler is severe due to the parallel operation, so the amount of evaporation generated by the boiler is also constantly changing. If the amount of water supply is constant in such a state, the boiler will become a so-called empty can whenever the amount of evaporation exceeds the amount of water supply, and conversely, the boiler will become full only when the amount of water supply exceeds the amount of evaporation. This occurs.
かかる状態を回避するため、一般的にボイラにおいては水位制御がなされているわけであるが、多管式貫流ボイラの場合は、燃焼量の変化が外乱となり、水位(汽水分離器側)変動が激しくなる特性がある。そのため、水位に基づいて算出される給水量指令値による制御では安定した制御がなし得ないおそれがある。そこで、給水量制御値演算手段1により算出された給水量制御値に、給水量測定値の移動平均値を加味することにより制御の安定性を図ることにしたのである。 In order to avoid such a situation, the water level is generally controlled in the boiler. However, in the case of a multi-tube once-through boiler, the change in the combustion amount becomes a disturbance, and the fluctuation of the water level (brake separator side) There is a characteristic that becomes intense. For this reason, there is a possibility that stable control cannot be performed by the control based on the water supply amount command value calculated based on the water level. Therefore, the stability of control is achieved by adding the moving average value of the water supply amount measurement value to the water supply amount control value calculated by the water supply amount control value calculating means 1.
なお、実施形態5のその余の構成は、実施形態3と同様とされていので、その詳細な説明は省略する。 Since the remaining configuration of the fifth embodiment is the same as that of the third embodiment, detailed description thereof is omitted.
このように、実施形態5においては、給水量制御値演算手段1により算出される給水量制御値に給水量測定値の移動平均値を加味しているので、負荷変動が激しい場合にも、給水制御量の変動を小さく抑えることができるという実施形態3では得られない効果も得られる。 Thus, in the fifth embodiment, since the moving average value of the water supply measured value is added to the water supply control value calculated by the water supply control value calculating means 1, the water There is also an effect that cannot be obtained in the third embodiment, in which variation in the control amount can be suppressed to a small level.
なお、実施形態5のその余の作用・効果は実施形態3と同様であるので、その詳細な説明は省略する。 In addition, since the other effect | action and effect of Embodiment 5 are the same as that of Embodiment 3, the detailed description is abbreviate | omitted.
実施形態6
本発明の実施形態6の要部を図7にブロック図で示す。
Embodiment 6
The principal part of Embodiment 6 of this invention is shown with a block diagram in FIG.
実施形態6は実施形態4を改変してなるものであって、給水量測定値をローパスフィルター6を通した後に給水量指令値演算手段2に入力してなるものとされる。つまり、ローパスフィルター処理をされた給水量測定値を入力としてなるものとされる。 The sixth embodiment is obtained by modifying the fourth embodiment, and the water supply amount measurement value is input to the water supply amount command value calculating means 2 after passing through the low-pass filter 6. That is, the measured water supply value subjected to the low-pass filter process is used as an input.
なお、実施形態6のその余の構成は、実施形態3と同様とされているので、その詳細な説明は省略する。 Since the remaining configuration of the sixth embodiment is the same as that of the third embodiment, detailed description thereof is omitted.
このように、実施形態6においては、ローパスフィルター処理をされた給水量測定値を入力としているので、給水量測定値に含まれるノイズが除去されるため、実施形態4に比して制御の安定性が向上する。つまり、給水制御量の変動をより抑制できる。 As described above, in the sixth embodiment, since the water supply amount measurement value subjected to the low-pass filter processing is input, noise included in the water supply amount measurement value is removed, so that the control is more stable than that in the fourth embodiment. Improves. That is, the fluctuation of the water supply control amount can be further suppressed.
なお、実施形態6のその余の作用・効果は実施形態4と同様であるので、その詳細な説明は省略する。 In addition, since the other effect | action and effect of Embodiment 6 are the same as that of Embodiment 4, the detailed description is abbreviate | omitted.
実施形態7
本発明の実施形態7の要部を図8にブロック図で示す。
Embodiment 7
The principal part of Embodiment 7 of this invention is shown with a block diagram in FIG.
実施形態7は実施形態3を改変してなるものであって、水位測定値はローパスフィルター7を通した後に測定水位補正手段4に入力されてなるものとされる。つまり、ローパスフィルター処理をされた水位測定値を入力としてなるものとされる。 The seventh embodiment is obtained by modifying the third embodiment, and the water level measurement value is input to the measurement water level correcting means 4 after passing through the low-pass filter 7. That is, the water level measurement value that has been subjected to the low-pass filter process is used as an input.
なお、実施形7のその余の構成は、実施形態3と同様とされているので、その詳細な説明は省略する。 Since the remaining configuration of the seventh embodiment is the same as that of the third embodiment, detailed description thereof is omitted.
このように、実施形態7においては、ローパスフィルター処理をされた水位測定値を入力としているので、水位測定値に含まれるノイズが除去されるため、実施形態3に比して制御の安定性が向上する。つまり、給水制御量の変動をより抑制できる。 As described above, in the seventh embodiment, since the water level measurement value subjected to the low-pass filter process is input, noise included in the water level measurement value is removed, so that the control stability is higher than that in the third embodiment. improves. That is, the fluctuation of the water supply control amount can be further suppressed.
以上、本発明を実施形態に基づいて説明してきたが、本発明はかかる実施形態のみに限定されるものではなく種々改変が可能である。 As mentioned above, although this invention has been demonstrated based on embodiment, this invention is not limited only to this embodiment, A various change is possible.
例えば、図9に示すように、給水量指令値演算手段2から出力される給水量指令値の上限を規定するリミッタ8や変化率を規定する変化率リミッタ9を設けるようにされてもよく、あるいは給水量制御値演算手段1からの出力の上限を規定するリミッタ10を設けるようにされてもよい。 For example, as shown in FIG. 9, a limiter 8 that defines the upper limit of the water supply amount command value output from the water supply amount command value calculating means 2 and a change rate limiter 9 that defines the change rate may be provided. Or the limiter 10 which prescribes | regulates the upper limit of the output from the water supply amount control value calculating means 1 may be provided.
また、図10に示すように、給水量移動平均演算手段5の入力の上限を規定するリミッタ11を設けるようにされてもよい。 Further, as shown in FIG. 10, a limiter 11 that defines the upper limit of the input of the water supply moving average calculating means 5 may be provided.
以下、本発明を実施例に基づいてより詳細に説明する。 Hereinafter, the present invention will be described in more detail based on examples.
実施例
下記に示す仕様の多管式貫流ボイラにおいて、実施形態5の給水制御を適用してその負荷変動に対する汽水分離器の水位および給水量の30分間における変動を測定し、その結果を図11に模式図で示す。
Example In a multi-tube once-through boiler having the specifications shown below, the water supply control of the fifth embodiment is applied to measure the fluctuations in the water level and the water supply amount of the brackish water separator with respect to the load fluctuations in 30 minutes, and the results are shown in FIG. Is shown in a schematic diagram.
比較例
実施例と同一仕様の多管式貫流ボイラにおいて、図14に示すPID制御を適用してその負荷変動に対する汽水分離器の水位および給水量の30分間における変動を測定し、その結果を図12に模式図で示す。
Comparative Example In a multi-tube type once-through boiler having the same specifications as in the example, the PID control shown in FIG. 14 is applied to measure the fluctuations in the water level of the brackish water separator and the amount of water supply for 30 minutes, and the results are shown in the figure 12 is a schematic diagram.
図11および図12より、実施例においては給水量の変動を抑制しながら、しかも汽水分離器の水位がほぼ一定に保たれているのがわかる。 From FIG. 11 and FIG. 12, it can be seen that in the embodiment, the water level of the brackish water separator is kept substantially constant while suppressing fluctuations in the water supply amount.
ボイラ要目
圧力 1MPa
蒸発量 6T/H
Outline of boiler Pressure 1MPa
Evaporation 6T / H
本発明は多管式貫流ボイラの給水制御に利用できる。 The present invention can be used for water supply control of a multi-tube once-through boiler.
1 給水量制御値演算手段
2 給水量指令値演算手段
3 指令値補正手段
4 測定水位補正手段
5 給水量移動平均値算出手段
6 ローパスフィルター
7 ローパスフィルター
8 リミッタ
9 変化率リミッタ
10 リミッタ
11 リミッタ
B 多管式貫流ボイラ
C 給水量制御装置
DESCRIPTION OF SYMBOLS 1 Water supply amount control value calculation means 2 Water supply amount command value calculation means 3 Command value correction means 4 Measurement water level correction means 5 Water supply amount moving average value calculation means 6 Low pass filter 7 Low pass filter 8 Limiter 9 Change rate limiter 10 Limiter 11 Limiter B Many Pipe once-through boiler C Water supply control device
Claims (8)
給水量制御値演算手段と、給水量指令値演算手段と、蒸気圧力により給水量指令値を補正する指令値補正手段とを備え、
前記給水量制御値演算手段は、水位制御値と水位測定値との偏差に基づいて給水量入力値を算出するものとされ、
前記給水量指令値演算手段は、比例動作と積分動作とにより前記給水量入力値と給水量測定値との偏差に基づいて給水量指令値を演算するものとされ、
前記蒸気圧力により給水量指令値を補正する指令値補正手段は、給水流量の下限値を常用圧力時に50%とする点とゼロ点とを結ぶ直線上に規定する一方、給水流量の上限値を蒸気圧力がゼロの時に100%給水量の90%とし、常用圧力以降は100%給水量となるように規定するよう蒸気圧力を補正するようにされてなる
ことを特徴とする多管式貫流ボイラの給水制御装置。 A water supply control device for a multi-tube once-through boiler,
Water supply amount control value calculation means , water supply amount command value calculation means, and command value correction means for correcting the water supply amount command value by the steam pressure ,
The water supply amount control value calculating means calculates a water supply amount input value based on a deviation between the water level control value and the water level measurement value,
The water supply amount command value calculating means is configured to calculate a water supply amount command value based on a deviation between the water supply amount input value and the water supply amount measurement value by a proportional operation and an integration operation .
The command value correction means for correcting the feed water amount command value by the steam pressure defines the lower limit value of the feed water flow rate on a straight line connecting the point where the normal pressure is 50% and the zero point, while the upper limit value of the feed water flow rate is A multi-tube once-through boiler characterized in that the steam pressure is corrected so as to be defined as 90% of the 100% water supply amount when the steam pressure is zero, and 100% water supply amount after the normal pressure. Water supply control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011003428A JP5750605B2 (en) | 2011-01-11 | 2011-01-11 | Multi-pipe once-through boiler feed water control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011003428A JP5750605B2 (en) | 2011-01-11 | 2011-01-11 | Multi-pipe once-through boiler feed water control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012145264A JP2012145264A (en) | 2012-08-02 |
JP5750605B2 true JP5750605B2 (en) | 2015-07-22 |
Family
ID=46789000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011003428A Expired - Fee Related JP5750605B2 (en) | 2011-01-11 | 2011-01-11 | Multi-pipe once-through boiler feed water control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5750605B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5982702B2 (en) * | 2012-04-26 | 2016-08-31 | 川重冷熱工業株式会社 | Boiler feed water control method and feed water control apparatus |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61295401A (en) * | 1985-06-21 | 1986-12-26 | 株式会社日立製作所 | Controller for feed pump |
JPS63150503A (en) * | 1986-12-15 | 1988-06-23 | 三菱重工業株式会社 | Feedwater controller for steam generator |
JPH0321611U (en) * | 1989-07-07 | 1991-03-05 | ||
US5148775A (en) * | 1992-01-22 | 1992-09-22 | The Babcock & Wilcox Company | Feedwater control for drum type steam generators |
DE19510619A1 (en) * | 1995-03-23 | 1996-09-26 | Abb Management Ag | Method of water supply regulation for waste heat steam generator |
JPH08292080A (en) * | 1995-04-21 | 1996-11-05 | Hitachi Ltd | Differential pressure type water level measuring device |
JPH11287405A (en) * | 1998-04-01 | 1999-10-19 | Meidensha Corp | Water level control device for boiler |
JP2003240206A (en) * | 2002-02-15 | 2003-08-27 | Kawasaki Thermal Engineering Co Ltd | Water supply inverter control method with pressure control correction, and device thereof |
JP3960467B2 (en) * | 2002-04-01 | 2007-08-15 | 川重冷熱工業株式会社 | Water supply method in unit control operation of multi-pipe once-through boiler |
JP2005282932A (en) * | 2004-03-29 | 2005-10-13 | Miura Co Ltd | Water feed control method for boiler and its device |
JP5221971B2 (en) * | 2008-02-04 | 2013-06-26 | バブコック日立株式会社 | A once-through exhaust heat recovery boiler with water level control and superheat control. |
JP2010121890A (en) * | 2008-11-20 | 2010-06-03 | Hitachi Ltd | Tank water level control system |
JP5306000B2 (en) * | 2009-03-16 | 2013-10-02 | 株式会社東芝 | Water supply control device and water supply control method |
-
2011
- 2011-01-11 JP JP2011003428A patent/JP5750605B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012145264A (en) | 2012-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5470888B2 (en) | Water quality reforming system | |
JP5177140B2 (en) | Multi-mode control algorithm | |
JP2009150644A (en) | System and method for controlling liquid level in vessel | |
WO2014132489A1 (en) | Boiler system | |
KR20140004583A (en) | Pressure control device, flow rate control device and recording medium having programs used for pressure control device, recording medium having programs used for flow rate control device | |
JP5959752B2 (en) | Internal combustion engine control method and internal combustion engine | |
JP2019159687A (en) | Flow controller, flow control method, and program for flow controllers | |
JP5750605B2 (en) | Multi-pipe once-through boiler feed water control device | |
CN108625951B (en) | Method for correcting offset of ammonia sensor | |
JP2010043768A (en) | Control method of boiler and boiler system using the control method | |
KR102553575B1 (en) | Vibration suppression device, vibration suppression method and program | |
CN110688755A (en) | Method and system for calculating residual life of engine filter element | |
CN107962076B (en) | Cold-rolling mill second flow method for controlling thickness and system based on adaptive controller | |
JP5709289B2 (en) | Humidity control method for tobacco materials | |
US8925896B2 (en) | Positioner | |
JP5672276B2 (en) | Boiler system | |
KR102379432B1 (en) | System and method for evaporator outlet temperature control | |
CN112066360B (en) | Control method for drum liquid level display, storage medium and electronic equipment | |
US20150184548A1 (en) | Boiler system | |
JP5948165B2 (en) | Horsepower limiting device and horsepower limiting method | |
JP2010162500A (en) | Water quality modification system | |
JP5982702B2 (en) | Boiler feed water control method and feed water control apparatus | |
JP6398762B2 (en) | Boiler system | |
JP6248764B2 (en) | Boiler system | |
JP6115093B2 (en) | Boiler system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140717 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140821 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150309 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5750605 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |