[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5750570B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP5750570B2
JP5750570B2 JP2011014946A JP2011014946A JP5750570B2 JP 5750570 B2 JP5750570 B2 JP 5750570B2 JP 2011014946 A JP2011014946 A JP 2011014946A JP 2011014946 A JP2011014946 A JP 2011014946A JP 5750570 B2 JP5750570 B2 JP 5750570B2
Authority
JP
Japan
Prior art keywords
water
cooling water
tank
supply
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011014946A
Other languages
Japanese (ja)
Other versions
JP2012156039A (en
Inventor
吉村 昌知
昌知 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011014946A priority Critical patent/JP5750570B2/en
Publication of JP2012156039A publication Critical patent/JP2012156039A/en
Application granted granted Critical
Publication of JP5750570B2 publication Critical patent/JP5750570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、循環ポンプ、供給ポンプを備えた燃料電池システムに関するものである。   The present invention relates to a fuel cell system including a circulation pump and a supply pump.

固体高分子膜を電解質に用いた固体高分子型燃料電池(以下、「燃料電池」と略す)が燃料電池システムに組み込まれている。この燃料電池は、水素ガスを主成分とする燃料ガス中の水素と空気中の酸素との間の発熱反応である電気化学反応により発電する。なお、燃料ガスは、例えば、都市ガス等の炭化水素ガスを水蒸気改質すると得られる。   A polymer electrolyte fuel cell (hereinafter abbreviated as “fuel cell”) using a polymer electrolyte membrane as an electrolyte is incorporated in a fuel cell system. This fuel cell generates electricity by an electrochemical reaction that is an exothermic reaction between hydrogen in fuel gas containing hydrogen gas as a main component and oxygen in air. The fuel gas is obtained, for example, by steam reforming a hydrocarbon gas such as city gas.

前記燃料電池の発電では前述の電気化学反応(発熱反応)が進行するので、燃料電池の発電中の運転温度が、その反応に適した温度(例えば、70℃〜80℃程度)に維持されるよう、燃料電池の内部温度を一定に保つ機構が一般的に採用されている。   In the power generation of the fuel cell, the above-described electrochemical reaction (exothermic reaction) proceeds, so that the operating temperature during power generation of the fuel cell is maintained at a temperature suitable for the reaction (for example, about 70 ° C. to 80 ° C.). Thus, a mechanism for keeping the internal temperature of the fuel cell constant is generally employed.

例えば、燃料電池に冷却水が流れる冷却水経路が配され、当該経路を流れる冷却水の流量などの制御によって燃料電池の内部温度が調整されている。一方、燃料電池を通過した高温状態の冷却水の熱を熱交換によって熱媒体が回収して、このような熱媒体が蓄熱器に蓄えられると、燃料電池システムにおいて蓄熱することができる。   For example, a cooling water path through which cooling water flows is arranged in the fuel cell, and the internal temperature of the fuel cell is adjusted by controlling the flow rate of the cooling water flowing through the path. On the other hand, when the heat medium recovers the heat of the high-temperature cooling water that has passed through the fuel cell by heat exchange, and such a heat medium is stored in the heat accumulator, the heat can be stored in the fuel cell system.

図5は、特許文献1に開示された、燃料電池システムに搭載された排熱回収装置を示したものである。   FIG. 5 shows an exhaust heat recovery device mounted on a fuel cell system disclosed in Patent Document 1. As shown in FIG.

図5において、スタック冷却水タンク103の冷却水は、スタック循環ポンプ104により、燃料電池スタック102から熱交換器108を通って再びスタック冷却水タンク103へ循環されている。   In FIG. 5, the cooling water in the stack cooling water tank 103 is circulated again from the fuel cell stack 102 through the heat exchanger 108 to the stack cooling water tank 103 by the stack circulation pump 104.

また、水素製造装置101から出た水素は熱交換器109を通り、燃料電池スタック102のアノード極を通り電気化学反応(発熱反応)後、熱交換器106を通り、機外へ排出される。   Further, hydrogen discharged from the hydrogen production apparatus 101 passes through the heat exchanger 109, passes through the anode electrode of the fuel cell stack 102, undergoes an electrochemical reaction (exothermic reaction), passes through the heat exchanger 106, and is discharged outside the apparatus.

また一方、排熱回収水は排熱回収水ポンプ105により熱交換器108へ搬送される。燃料電池スタック102内の発電により発生した熱量は熱交換器108により熱交換され、湯水となって図示しない貯湯槽へ回収される。   On the other hand, the exhaust heat recovery water is conveyed to the heat exchanger 108 by the exhaust heat recovery water pump 105. The amount of heat generated by the power generation in the fuel cell stack 102 is heat-exchanged by the heat exchanger 108 and is recovered as hot water in a hot water storage tank (not shown).

特開2005−100873号公報Japanese Patent Laid-Open No. 2005-100903

しかしながら、前記従来の構成では、スタック循環ポンプ104又は排熱回収水ポンプ105に非自給式の遠心式ポンプを使用する必要があった。   However, in the conventional configuration, it is necessary to use a non-self-contained centrifugal pump for the stack circulation pump 104 or the exhaust heat recovery water pump 105.

これは、スタック循環ポンプ104は燃料電池の発電時の運転温度を、その反応に適した温度に維持されるよう冷却水を循環させている。この循環量はきわめて微量に制御する必要があり、燃料電池システムの稼動時間中は連続して運転させなければならない。このためにはコストも考慮し高耐久性のある前記非自給式遠心式ポンプを選定している。   This is because the stack circulation pump 104 circulates the cooling water so that the operating temperature during power generation of the fuel cell is maintained at a temperature suitable for the reaction. This amount of circulation needs to be controlled to a very small amount, and must be continuously operated during the operation time of the fuel cell system. For this purpose, the non-self-contained centrifugal pump having high durability is selected in consideration of cost.

しかし、運転初期に前記非自給式遠心式ポンプによって給水タンクの補給水をスタック循環ポンプ104を使用してスタック冷却水タンク103に補給し、更に、スタック冷却水タンク103に補給された冷却水を、冷却水循環ポンプ104を使用して循環させ、燃料電池102を冷却する際に、スタック循環ポンプ104又は排熱回収水ポンプ105にエア噛みが発生する可能性があった。   However, at the initial stage of operation, the non-self-contained centrifugal pump supplies the supply water to the stack cooling water tank 103 using the stack circulation pump 104, and further supplies the cooling water supplied to the stack cooling water tank 103 to the stack cooling water tank 103. When the fuel cell 102 is circulated using the cooling water circulation pump 104 to cool the fuel cell 102, there is a possibility that air trapping may occur in the stack circulation pump 104 or the exhaust heat recovery water pump 105.

すなわち、スタック循環ポンプ104のエア噛みはスタック冷却水タンク103への給水に時間がかかり、機器の試運転時間が長くなり、スタック冷却水タンク103のエア噛みは冷却水回路内の冷却水が十分に循環できず、燃料電池の冷却不十分から発電効率の低下を招くことになるという課題を有していた。   In other words, the air biting of the stack circulation pump 104 takes time to supply water to the stack cooling water tank 103, and the test run time of the equipment becomes long, and the air biting of the stack cooling water tank 103 has sufficient cooling water in the cooling water circuit. It was not possible to circulate, and there was a problem that power generation efficiency was reduced due to insufficient cooling of the fuel cell.

また、エア噛みによりポンプ内に発生した気泡によりスタック循環ポンプ104又は排熱回収水ポンプ105の内部にキャビテーションが発生し、ポンプ寿命の低下につながるという課題も複合的に有していた。   In addition, there is a complex problem that cavitation occurs inside the stack circulation pump 104 or the exhaust heat recovery water pump 105 due to bubbles generated in the pump due to air biting, leading to a reduction in pump life.

本発明は、上記課題を考慮し、燃料電池システム等に利用される冷却回路への初期水張り時間を短縮し、ひいては発電開始時間の短縮を実現するとともに、冷却回路内のエア噛みを防止して、使い勝手のよい、耐久性にすぐれた燃料電池システムを提供することを目的とする。   In consideration of the above problems, the present invention shortens the initial water filling time for a cooling circuit used in a fuel cell system and the like, and thus shortens the power generation start time, and prevents air from being caught in the cooling circuit. An object is to provide a fuel cell system that is easy to use and excellent in durability.

従来の課題を解決するために、本発明の燃料電池システムは補給水供給回路に水道直圧を利用して直接給水して初期水張りを行うものである。これにより、補給水供給回路、供給ポンプに直接補給水を充填でき、エア噛みがなくキャビテーションも発生しない初期水張りを実現することができ。ひいては給水タンクへの水張り時間を待つことなく冷却水タンクへの補給水の充填が完了して補給水による初期水張り時間を短縮することができる。   In order to solve the conventional problems, the fuel cell system of the present invention performs initial water filling by directly supplying water to the makeup water supply circuit using direct water pressure. As a result, it is possible to fill the makeup water supply circuit and the supply pump directly with makeup water, and to achieve initial water filling without air biting and cavitation. As a result, filling of the cooling water tank with the supplementary water can be completed without waiting for the filling time of the water supply tank, and the initial filling time of the supplementary water can be shortened.

また、本発明の燃料電池は冷却水循環回路に水道直圧を利用して直接給水して初期水張りを行うものである。これにより、冷却水循環回路、冷却水循環ポンプに直接循環水を充填でき、エア噛みがなくキャビテーションも発生しない初期水張りを実現することができ。ひいては冷却水タンクへの水張り時間を待つことなく冷却水循環回路への補給水の充填が完了して補給水による初期水張り時間を短縮することができる。   The fuel cell of the present invention performs initial water filling by directly supplying water to the cooling water circulation circuit using direct water pressure. Thereby, it is possible to fill the cooling water circulation circuit and the cooling water circulation pump directly with the circulating water, and it is possible to realize the initial water filling without air biting and cavitation. As a result, filling of the cooling water circulation circuit with the supplementary water can be completed without waiting for the filling time of the cooling water tank, and the initial filling time with the supplementary water can be shortened.

また、本発明の燃料電池は冷却水循環ポンプに水道直圧を利用して直接給水して初期水張りを行うものである。これにより、冷却水循環ポンプに直接循環水を充填でき、エア噛みがなくキャビテーションも発生しない初期水張りを実現することができ。ひいては冷却水タンクからの冷却水循環回路内への自然滴下による冷却水の充填待ち時間を短縮して初期水張り時間を短縮することができる。   Moreover, the fuel cell of the present invention performs initial water filling by directly supplying water to the cooling water circulation pump using direct water pressure. As a result, the cooling water circulation pump can be directly filled with circulating water, and initial water filling without air biting and cavitation can be realized. As a result, it is possible to shorten the initial filling time by shortening the waiting time for filling the cooling water by natural dripping from the cooling water tank into the cooling water circulation circuit.

本発明の燃料電池システムは、燃料電池システム等に利用される冷却回路若しくは補給水供給回路への初期水張り時間を短縮し、発電開始時間の短縮を実現するとともに、冷却回路内のエア噛みを防止して、燃料電池の十分な冷却効果を得ることができるとともに、キャビテーションが発生せず、ポンプの耐久性能を向上することができる燃料電池システムを提供することができる。   The fuel cell system of the present invention shortens the initial water filling time to the cooling circuit or makeup water supply circuit used in the fuel cell system and the like, shortens the power generation start time, and prevents air from being caught in the cooling circuit. Thus, it is possible to provide a fuel cell system that can obtain a sufficient cooling effect of the fuel cell, does not generate cavitation, and can improve the durability of the pump.

本発明の実施の形態1における燃料電池システムを示す構成図1 is a configuration diagram showing a fuel cell system according to Embodiment 1 of the present invention. 本発明の実施の形態2における燃料電池システムを示す構成図The block diagram which shows the fuel cell system in Embodiment 2 of this invention 本発明の実施の形態3における燃料電池システムを示す構成図The block diagram which shows the fuel cell system in Embodiment 3 of this invention 本発明の実施の形態4における燃料電池システムを示す構成図The block diagram which shows the fuel cell system in Embodiment 4 of this invention 従来の燃料電池システムを示す構成図Configuration diagram showing a conventional fuel cell system

第1の発明は、水素と空気が供給されて発電を行う燃料電池と、前記燃料電池の発電時に発熱する前記燃料電池を冷却する冷却水を循環させる冷却水循環回路と、前記冷却水循環回路に配され冷却水を貯える冷却水タンクと、前記冷却水循環回路内の冷却水を循環させる冷却水循環ポンプと、貯湯槽と、前記貯湯槽から流出した補給水を前記貯湯槽に戻す補給水循環回路と、前記冷却水循環回路の冷却水と前記補給水循環回路の補給水とを熱交換させる冷却水熱交換器と、前記貯湯槽からの補給水を貯える給水タンクと、前記給水タンクの補給水を前記冷却水タンクへ供給する供給ポンプと、前記給水タンクを迂回して前記貯湯槽からの補給水を前記供給ポンプへ供給する第一のバイパス経路と、前記貯湯槽からの補給水を前記給水タンク及び前記第一のバイパス経路のうちのいずれか一方に通水を切り換える第一の切換え手段を備え、水はり運転時に前記第一のバイパス経路に通水するように前記第一の切換え手段を制御する制御部を備えた燃料電池システムであって、補給水供給回路に水道直圧を利用して直接給水して初期水張りを行うものである。これにより、ポンプのエア噛みを防止して、安定した水張りを実現し、ひいては初期水張り時間を短縮することができる。   According to a first aspect of the present invention, there is provided a fuel cell that generates power by supplying hydrogen and air, a cooling water circulation circuit that circulates cooling water that cools the fuel cell that generates heat when the fuel cell generates power, and a cooling water circulation circuit. A cooling water tank that stores the cooling water, a cooling water circulation pump that circulates the cooling water in the cooling water circulation circuit, a hot water storage tank, a supplementary water circulation circuit that returns makeup water that has flowed out of the hot water storage tank to the hot water storage tank, A cooling water heat exchanger for exchanging heat between the cooling water in the cooling water circulation circuit and the makeup water in the makeup water circulation circuit, a water supply tank for storing makeup water from the hot water storage tank, and the makeup water in the water supply tank for the cooling water tank A supply pump that supplies the supply water to the supply pump, bypassing the water supply tank, bypassing the water supply tank, and supply water from the water storage tank and the supply water to the supply pump. First switching means for switching water flow is provided in any one of the first bypass paths, and the first switching means is controlled so that water flows through the first bypass path during water flush operation. A fuel cell system including a control unit is configured to perform initial water filling by directly supplying water to a makeup water supply circuit using direct water pressure. Thereby, the air biting of the pump can be prevented, stable water filling can be realized, and as a result, the initial water filling time can be shortened.

第2の発明は、特に、第1の発明において、前記冷却水タンクを迂回して前記供給ポンプからの補給水を前記冷却水熱交換器へ供給する第二のバイパス経路と、前記供給ポンプからの補給水を前記冷却水タンク及び前記第二のバイパス経路のうちのいずれか一方に通水を切り換える第二の切換え手段をさらに備え、前記制御部は、水はり運転時に前記第二のバイパス経路に通水するように前記第二の切換え手段を制御する燃料電池システムであって、補給水供給回路、冷却水回路に水道直圧を利用して直接給水して初期水張りを行うものである。これにより、ポンプのエア噛みを防止して、安定した水張を実現し、ひいては初期水張り時間を短縮することができる。   According to a second invention, in particular, in the first invention, a second bypass path for bypassing the cooling water tank and supplying makeup water from the supply pump to the cooling water heat exchanger, and the supply pump And a second switching means for switching the supply water to either one of the cooling water tank and the second bypass path, and the control unit is configured to supply the second bypass path during water flush operation. In this fuel cell system, the second switching means is controlled so as to pass through the water, and the initial water filling is performed by directly supplying water to the makeup water supply circuit and the cooling water circuit using direct water pressure. As a result, it is possible to prevent the air from biting in the pump, realize stable water filling, and thus shorten the initial water filling time.

第3の発明は、特に、第1の発明において、前記供給ポンプと前記冷却水タンクとの間に配され水を浄化する水処理装置と、前記水処理装置と前記冷却水タンクとの間から前記冷却水タンクを迂回して前記供給ポンプからの補給水を前記冷却水循環ポンプへ供給する第三のバイパス経路と、前記供給ポンプからの補給水を前記冷却水タンク及び前記第三のバイパス経路のうちのいずれか一方に通水を切り換える第三の切換え手段をさらに備え、前記制御部は、水はり運転時に前記第三のバイパス経路に通水するように前記第三の切換え手段を制御する燃料電池システムであって、冷却水循環ポンプに直接水張を行うことにより、ポンプのエア噛みを防止して、安定した水張を実現し、ひいては初期水張り時間を短縮することができる。   According to a third invention, in particular, in the first invention, the water treatment device is disposed between the supply pump and the cooling water tank to purify water, and between the water treatment device and the cooling water tank. A third bypass path that bypasses the cooling water tank and supplies makeup water from the supply pump to the cooling water circulation pump, and supplies makeup water from the supply pump to the cooling water tank and the third bypass path. And further comprising a third switching means for switching the water flow to any one of them, wherein the control unit controls the third switching means to flow the water to the third bypass path during the water flush operation. In the battery system, by directly filling the cooling water circulation pump with water, stable air filling can be realized by preventing the pump from being caught by air, and thus the initial filling time can be shortened.

第4の発明は、水素と空気が供給されて発電を行う燃料電池と、前記燃料電池の発電時に発熱する前記燃料電池を冷却する冷却水を循環させる冷却水循環回路と、前記冷却水循環回路に配され冷却水を貯える冷却水タンクと、前記冷却水循環回路内の冷却水を循環させる冷却水循環ポンプと、貯湯槽と、前記貯湯槽から流出した補給水を前記貯湯槽に戻す補給水循環回路と、前記冷却水循環回路の冷却水と前記補給水循環回路の補給水とを熱交換させる冷却水熱交換器と、前記貯湯槽からの補給水を貯える給水タンクと、前記給水タンクの補給水を前記冷却水タンクへ供給する供給ポンプと、前記冷却水タンクを迂回して前記供給ポンプからの補給水を前記冷却水熱交換器へ供給する第二のバイパス経路と、前記供給ポンプからの補給水を前記冷却水タンク及び前記第二のバイパス経路のうちのいずれか一方に通水を切り換える第二の切換え手段を備え、水はり運転時に前記第二のバイパス経路に通水するように前記第二の切換え手段を制御する制御部を備えた燃料電池システムである。   According to a fourth aspect of the invention, there is provided a fuel cell that generates power by supplying hydrogen and air, a cooling water circulation circuit that circulates cooling water that cools the fuel cell that generates heat during power generation of the fuel cell, and a cooling water circulation circuit. A cooling water tank that stores the cooling water, a cooling water circulation pump that circulates the cooling water in the cooling water circulation circuit, a hot water storage tank, a supplementary water circulation circuit that returns makeup water that has flowed out of the hot water storage tank to the hot water storage tank, A cooling water heat exchanger for exchanging heat between the cooling water in the cooling water circulation circuit and the makeup water in the makeup water circulation circuit, a water supply tank for storing makeup water from the hot water storage tank, and the makeup water in the water supply tank for the cooling water tank A supply pump that supplies to the coolant, a second bypass path that bypasses the cooling water tank and supplies makeup water from the supply pump to the cooling water heat exchanger, and supplies makeup water from the supply pump to the front. A second switching means for switching water flow to either one of the cooling water tank and the second bypass path is provided, and the second switching is performed so as to pass water to the second bypass path during watering operation. It is a fuel cell system provided with the control part which controls a means.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における燃料電池システムの一構成例を示した構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram showing a configuration example of the fuel cell system according to the first embodiment of the present invention.

図1に示すように、燃料電池システム100は、燃料ガス(水素ガス)を用いて発電および発熱する燃料電池1と燃焼ガス中のメタンと、改質反応を起こさせ、水素を発生させる燃料処理機10を備える。   As shown in FIG. 1, a fuel cell system 100 is a fuel cell that generates hydrogen by generating a reforming reaction between a fuel cell 1 that generates and generates heat using fuel gas (hydrogen gas) and methane in the combustion gas. A machine 10 is provided.

燃料電池1では、燃料電池1のアノード(図示せず)に供給された燃料ガスと、燃料電池1のカソード(図示せず)に供給された酸化ガス(例えば、空気)と、が電気化学的に反応(発熱反応)して、電力および熱が発生する。燃料電池1によって生成された電力は、例えば、様々な電気機器において利用できる。また、燃料電池1によって生成された熱は、様々な用途に利用でき、例えば、家庭の暖房や給湯などにおいても利用できる。   In the fuel cell 1, the fuel gas supplied to the anode (not shown) of the fuel cell 1 and the oxidizing gas (for example, air) supplied to the cathode (not shown) of the fuel cell 1 are electrochemical. In response to heat (exothermic reaction), power and heat are generated. The electric power generated by the fuel cell 1 can be used in various electric devices, for example. Further, the heat generated by the fuel cell 1 can be used for various purposes, for example, at home heating or hot water supply.

なお、燃料電池1の内部構造は公知である。よって、その詳細な説明は省略する。燃料電池1の発電では、上述の電気化学反応(発熱反応)が進行するので、燃料電池1の発電中の運転温度が、その反応に適した温度(例えば、70℃〜80℃程度)に維持されるよう、燃料電池1の温度を一定に保つ機構が一般的に採用されている。   The internal structure of the fuel cell 1 is known. Therefore, the detailed description is abbreviate | omitted. In the power generation of the fuel cell 1, since the above-described electrochemical reaction (exothermic reaction) proceeds, the operating temperature during power generation of the fuel cell 1 is maintained at a temperature suitable for the reaction (for example, about 70 ° C. to 80 ° C.). In general, a mechanism for keeping the temperature of the fuel cell 1 constant is generally employed.

まず、燃料電池冷却回路について説明する。   First, the fuel cell cooling circuit will be described.

燃料電池冷却回路は、図1に示すように、燃料電池1の発電中に前記燃料電池1を冷却するための冷却水を循環する冷却水循環回路2と、前記冷却水循環回路2に設けられた余剰ヒーター3を具備し冷却水を貯える冷却水タンク4と、前記冷却水循環回路2内の冷却水を循環させる冷却水冷却水循環ポンプ6と、前記冷却水循環回路2の廃熱を吸収して貯湯槽20内に蓄熱する冷却水熱交換器5と、燃料電池1の冷却水出口に設けられた温度検出器7を備えたものである。図1では、冷却水の流れの方向が実線の矢印によって示されている。前記冷却水循環回路2は冷却水タンク4と冷却水熱交換器5をつなぐ冷却水循環回路a2aと、冷却水熱交換器5と燃料電池1をつなぐ冷却水循環回路b2bと、燃料電池1と冷却水循環ポンプ6をつなぐ冷却水循環回路c2cと、冷却水循環ポンプ6と冷却水タンク4をつなぐ冷却水循環回路d2dで構成されている。   As shown in FIG. 1, the fuel cell cooling circuit includes a cooling water circulation circuit 2 that circulates cooling water for cooling the fuel cell 1 during power generation of the fuel cell 1, and a surplus provided in the cooling water circulation circuit 2. A cooling water tank 4 provided with a heater 3 for storing cooling water, a cooling water cooling water circulation pump 6 for circulating cooling water in the cooling water circulation circuit 2, and a hot water storage tank 20 that absorbs waste heat of the cooling water circulation circuit 2 A cooling water heat exchanger 5 for storing heat therein and a temperature detector 7 provided at the cooling water outlet of the fuel cell 1 are provided. In FIG. 1, the flow direction of the cooling water is indicated by a solid arrow. The cooling water circulation circuit 2 includes a cooling water circulation circuit a2a that connects the cooling water tank 4 and the cooling water heat exchanger 5, a cooling water circulation circuit b2b that connects the cooling water heat exchanger 5 and the fuel cell 1, and the fuel cell 1 and the cooling water circulation pump. 6, a cooling water circulation circuit c 2 c that connects the cooling water 6, and a cooling water circulation circuit d 2 d that connects the cooling water circulation pump 6 and the cooling water tank 4.

つぎに、燃料電池1に都市ガス等を用いて燃料ガス(水素ガス)を供給する燃料処理機10に改質反応のための反応用の水を供給する改質水供給回路について説明する。   Next, a reformed water supply circuit for supplying reaction water for the reforming reaction to the fuel processor 10 for supplying fuel gas (hydrogen gas) using city gas or the like to the fuel cell 1 will be described.

改質水供給回路は前記冷却水循環回路2の冷却水循環回路d2dから分岐した給水回路12と、燃料処理機に反応用の水を供給する供給ポンプ11と、燃料処理機10への反応用の水の入り切りを行う第1の燃料処理弁15aと、供給ポンプ11から分岐した凝縮水回路14と、第2の燃料処理弁15bと、給水タンク(凝縮水タンク)16と、供給ポンプ13と、冷却水供給回路17bを備えている。図1では、冷却水の流れの方向が点線の矢印によって示されている。前記給水回路12は、燃料電池1と冷却水循環ポンプ6をつなぐ冷却水循環回路c2cから分岐して、供給ポンプ11をつなぐ給水回路a31と、供給ポンプ11、第1の燃料処理弁15aをつなぐ給水回路b32と、第1の燃料処理弁15aと燃料処理機10をつなぐ給水回路c33と、前記給水回路b32の途中から分岐して第2の燃料処理弁15bをつなぐ給水回路d34と、第2の燃料処理弁15bと給水タンク(凝縮水タンク)16をつなぐ給水回路e35で構成されている。   The reforming water supply circuit includes a water supply circuit 12 branched from the cooling water circulation circuit d2d of the cooling water circulation circuit 2, a supply pump 11 for supplying reaction water to the fuel processor, and water for reaction to the fuel processor 10. The first fuel processing valve 15a for turning on and off, the condensed water circuit 14 branched from the supply pump 11, the second fuel processing valve 15b, the water supply tank (condensed water tank) 16, the supply pump 13, and the cooling A water supply circuit 17b is provided. In FIG. 1, the flow direction of the cooling water is indicated by dotted arrows. The water supply circuit 12 branches from a cooling water circulation circuit c2c that connects the fuel cell 1 and the cooling water circulation pump 6, and connects the water supply circuit a31 that connects the supply pump 11, the supply pump 11, and the first fuel processing valve 15a. b32, a water supply circuit c33 connecting the first fuel processing valve 15a and the fuel processor 10, a water supply circuit d34 branching from the water supply circuit b32 and connecting the second fuel processing valve 15b, and a second fuel A water supply circuit e35 connecting the processing valve 15b and a water supply tank (condensate water tank) 16 is formed.

また前記冷却水供給回路17bは冷却水供給回路c17c、冷却水供給回路d17d、冷却水供給回路e17e、で構成されている。   The cooling water supply circuit 17b includes a cooling water supply circuit c17c, a cooling water supply circuit d17d, and a cooling water supply circuit e17e.

つぎに燃料電池の発電工程を通水、循環回路の循環水充填運転(以下初期水張り)燃料処理、燃料電池の発電の順に説明する。   Next, the fuel cell power generation process will be described in the order of water flow, circulating water filling operation of the circulation circuit (hereinafter referred to as initial water filling) fuel treatment, and fuel cell power generation.

燃料電池システムの循環回路内へ水を充填するため、初期水張りを行う。   Initial filling is performed to fill the circulation circuit of the fuel cell system with water.

まず、第1のバイパス回路60に設けられた第1の切り替え手段61の回路を「開」にする。これにより貯湯槽20内の補給水は、貯湯循環回路41、貯湯循環ポンプ21、補給水回路51を通り、第1のバイパス回路60を経て冷却水供給回路c17c、冷却水供給回路d17d、イオン交換樹脂18、冷却水供給回路e17e、を通り、冷却水タンク4に導かれる。これらの一連の動作は貯湯槽20にかかる水道の供給圧により行われる。   First, the circuit of the first switching means 61 provided in the first bypass circuit 60 is set to “open”. Thus, the makeup water in the hot water tank 20 passes through the hot water circulation circuit 41, the hot water circulation pump 21, and the makeup water circuit 51, passes through the first bypass circuit 60, and is supplied with the cooling water supply circuit c17c, the cooling water supply circuit d17d, and the ion exchange. The resin 18 and the cooling water supply circuit e17e are passed to the cooling water tank 4. These series of operations are performed by the supply pressure of the water supply applied to the hot water tank 20.

冷却水タンク4内の水位が上昇すると冷却水タンクレベルスイッチ8が満水を検知して、1の切り替え手段61の回路を「閉」にする。   When the water level in the cooling water tank 4 rises, the cooling water tank level switch 8 detects that the water level is full and “closes” the circuit of one switching means 61.

また、前記初期水張りと同時に、給水タンク(凝縮水タンク)16への水の補給を行う。給水タンク弁22を「開」にして貯湯槽20内の貯水を貯湯循環回路41、貯湯循環ポンプ21、貯湯循環回路b42から分岐した補給水回路a51、補給水回路b52を介して給水タンク(凝縮水タンク)16に補給する。給水タンク(凝縮水タンク)16内の水位が上昇すると給水タンク(凝縮水タンク)レベルスイッチ17が満水を検知して、貯湯循環ポンプ21を停止するとともに給水タンク(凝縮水タンク)弁22を「閉」にする。前記操作は貯湯循環ポンプ21の運転有無に関らず行われる。   Simultaneously with the initial water filling, water is supplied to the water supply tank (condensate water tank) 16. The water supply tank valve 22 is set to “open”, and the water stored in the hot water tank 20 is supplied through the hot water circulation circuit 41, the hot water circulation pump 21 and the hot water circulation circuit b42 through the makeup water circuit a51 and the makeup water circuit b52. Water tank) 16. When the water level in the feed water tank (condensate water tank) 16 rises, the feed water tank (condensate water tank) level switch 17 detects full water, stops the hot water circulation pump 21 and turns the feed water tank (condensate water tank) valve 22 to “ Closed. The operation is performed regardless of whether or not the hot water circulation pump 21 is in operation.

前記の冷却水循環回路2内の冷却水の充填が完了すると燃料処理機10から燃料ガス(水素ガス)が燃料電池1に供給され酸化ガス(例えば、空気)と、反応して発電が開始される。そして、この発電により電力および熱が発生する。この電力は電気機器により消費され、発生した熱は冷却水熱交換器5により、貯湯槽20から貯湯循環ポンプ21により補給水循環回路40を循環する貯湯水により熱交換され貯湯槽20に蓄熱される。   When filling of the cooling water in the cooling water circulation circuit 2 is completed, fuel gas (hydrogen gas) is supplied from the fuel processor 10 to the fuel cell 1 and reacts with the oxidizing gas (for example, air) to start power generation. . Then, electric power and heat are generated by this power generation. This electric power is consumed by the electrical equipment, and the generated heat is heat-exchanged by the cooling water heat exchanger 5 from the hot water storage tank 20 by the hot water circulating through the makeup water circulation circuit 40 by the hot water storage circulation pump 21 and stored in the hot water storage tank 20. .

前記補給水循環回路40は貯湯槽20と貯湯循環ポンプ21をつなぐ貯湯循環回路a41と、貯湯循環ポンプ21と冷却水熱交換器5をつなぐ補給水循環回路b42と、冷却水熱交換器5と貯湯槽20をつなぐ補給水循環回路c43から構成されている。   The makeup water circulation circuit 40 includes a hot water storage circuit a41 that connects the hot water tank 20 and the hot water circulation pump 21, a supplementary water circuit b42 that connects the hot water circulation pump 21 and the cooling water heat exchanger 5, the cooling water heat exchanger 5 and the hot water tank. It is comprised from the makeup water circulation circuit c43 which connects 20.

また、前記燃料電池システムにおいて発電時に余剰電量が生じた場合は、その余剰電力をヒーターにより熱に変換し、貯湯槽20に蓄熱する。具体的には冷却水タンク4に設けられた余剰ヒーター3により余剰電力を温水に変換する。この冷却水タンク内の温水は冷却水循環ポンプ6により冷却水熱交換器5へ送られ、貯湯槽20から貯湯循環ポンプ21により補給水循環回路40を循環する貯湯水により熱交換され貯湯槽20に蓄熱される。冷却水循環ポンプ6は余剰ヒーター3で加熱された冷却水タンク4内の貯水が高温になるため冷却水タンク4の直下へは設置することができず冷却水熱交換器5、燃料電池1より下流の冷却水タンク4から十分離れた位置に設置される。   Further, when surplus electricity is generated during power generation in the fuel cell system, the surplus power is converted into heat by a heater and stored in the hot water tank 20. Specifically, surplus power is converted into hot water by the surplus heater 3 provided in the cooling water tank 4. The hot water in this cooling water tank is sent to the cooling water heat exchanger 5 by the cooling water circulation pump 6, and heat is exchanged from the hot water storage tank 20 by the hot water circulating through the makeup water circulation circuit 40 by the hot water storage circulation pump 21, and heat is stored in the hot water storage tank 20. Is done. The cooling water circulation pump 6 cannot be installed directly under the cooling water tank 4 because the water stored in the cooling water tank 4 heated by the surplus heater 3 becomes high temperature, and is downstream of the cooling water heat exchanger 5 and the fuel cell 1. It is installed at a position sufficiently away from the cooling water tank 4.

以上のように、構成された燃料電池システム等に利用される冷却装置の冷却水供給回路によれば、初期水張りとして冷却水タンク4内に補給水を充填する際、水道直圧を利用して直接給水して初期水張りを行うため初期水張り時間を短縮することができ、供給ポンプにエア噛みがなくキャビテーションも発生しない安定した水張りを行うことができる。   As described above, according to the cooling water supply circuit of the cooling device used in the configured fuel cell system or the like, when filling the cooling water tank 4 as the initial water filling with the makeup water, the direct water pressure is used. Since the initial water filling is performed by supplying water directly, the initial water filling time can be shortened, and stable water filling can be performed without causing air clogging and cavitation in the supply pump.

(実施の形態2)
つぎに、本発明の第2の実施の形態について図2を用いて説明を行う。
(Embodiment 2)
Next, a second embodiment of the present invention will be described with reference to FIG.

燃料電池の発電工程、通水、循環回路の循環水充填運転、燃料処理、燃料電池の発電の順についての説明については(実施の形態1)と同様であるため省略する。本実施の形態は、第2のバイパス回路64と第2の切り替え手段65を持つことに特徴を有する。   The description of the order of the power generation process of the fuel cell, water flow, circulating water filling operation of the circulation circuit, fuel processing, and power generation of the fuel cell is the same as (Embodiment 1), and is therefore omitted. The present embodiment is characterized by having a second bypass circuit 64 and a second switching means 65.

すなわち実施の形態1で説明した第1のバイパス回路60と第1の切り替え手段61で使用した燃料電池システムの循環回路内へ水を充填するための初期水張りに連続して第2のバイパス回路64と第2の切り替え手段65を利用して冷却水循環回路2の初期水張りを行う。   That is, the second bypass circuit 64 is continuously connected to the initial water filling for filling the circulation circuit of the fuel cell system used in the first bypass circuit 60 and the first switching means 61 described in the first embodiment. And the initial water filling of the cooling water circulation circuit 2 is performed using the second switching means 65.

まず、第1のバイパス回路60に設けられた第1の切り替え手段61の回路を「開」にする。これにより貯湯槽20内の補給水は、貯湯循環回路41、貯湯循環ポンプ21、補給水回路51通り、第1のバイパス回路60を経て冷却水供給回路c17c、冷却水供給回路d17d、イオン交換樹脂18、冷却水供給回路e17e、を通り、第2のバイパス回路64に導かれる。このとき第2の切り替え手段65の回路が「開」になる。これにより、貯湯槽20内の補給水が冷却水熱交換器5、燃料電池1を通って冷却水循環ポンプ6を通り冷却水タンク4に導かれる。   First, the circuit of the first switching means 61 provided in the first bypass circuit 60 is set to “open”. As a result, the makeup water in the hot water tank 20 passes through the first hot water circulation circuit 41, the hot water circulation pump 21, the makeup water circuit 51, the first bypass circuit 60, the cooling water supply circuit c17c, the cooling water supply circuit d17d, and the ion exchange resin. 18 through the cooling water supply circuit e17e and led to the second bypass circuit 64. At this time, the circuit of the second switching means 65 is “open”. As a result, the makeup water in the hot water tank 20 is guided to the cooling water tank 4 through the cooling water heat exchanger 5 and the fuel cell 1 and the cooling water circulation pump 6.

つぎに、冷却水タンク4内の水位が上昇すると冷却水タンクレベルスイッチ8が満水を検知して、第2の切り替え手段65の回路および第1の切り替え手段61の回路を「閉」にする。   Next, when the water level in the cooling water tank 4 rises, the cooling water tank level switch 8 detects full water and closes the circuit of the second switching means 65 and the circuit of the first switching means 61.

これらの一連の動作は貯湯槽20にかかる水道の供給圧により行われる。これ以下の動作は実施の形態1で説明した動作と同一となり、説明を省略する。   These series of operations are performed by the supply pressure of the water supply applied to the hot water tank 20. The subsequent operation is the same as that described in the first embodiment, and the description thereof is omitted.

(実施の形態3)
つぎに、本発明の第3の実施の形態について図3を用いて説明を行う。
(Embodiment 3)
Next, a third embodiment of the present invention will be described with reference to FIG.

燃料電池の発電工程、通水、循環回路の循環水充填運転、燃料処理、燃料電池の発電の順についての説明については(実施の形態1)と同様であるため省略する。本実施の形態は、第3のバイパス回路68と第3の切り替え手段69を持つことに特徴を有する。   The description of the order of the power generation process of the fuel cell, water flow, circulating water filling operation of the circulation circuit, fuel processing, and power generation of the fuel cell is the same as (Embodiment 1), and is therefore omitted. The present embodiment is characterized by having a third bypass circuit 68 and a third switching means 69.

すなわち実施の形態1で説明した第1のバイパス回路60と第1の切り替え手段61で使用した燃料電池システムの循環回路内へ水を充填するための初期水張りに連続して第3のバイパス回路68と第3の切り替え手段69を利用して冷却水循環回路2の冷却水循環ポンプ6へ直接初期水張りを行う。   That is, the third bypass circuit 68 continues to the initial water filling for filling the circulation circuit of the fuel cell system used in the first bypass circuit 60 and the first switching means 61 described in the first embodiment. And the initial water filling is performed directly on the cooling water circulation pump 6 of the cooling water circulation circuit 2 using the third switching means 69.

まず、第1のバイパス回路60に設けられた第1の切り替え手段61の回路を「開」にする。これにより貯湯槽20内の補給水は、貯湯循環回路41、貯湯循環ポンプ21、補給水回路51通り、第1のバイパス回路60を経て冷却水供給回路c17c、冷却水供給回路d17d、イオン交換樹脂18、冷却水供給回路e17e、を通り、冷却水タンク4に導かれる。   First, the circuit of the first switching means 61 provided in the first bypass circuit 60 is set to “open”. As a result, the makeup water in the hot water tank 20 passes through the first hot water circulation circuit 41, the hot water circulation pump 21, the makeup water circuit 51, the first bypass circuit 60, the cooling water supply circuit c17c, the cooling water supply circuit d17d, and the ion exchange resin. 18, through the cooling water supply circuit e <b> 17 e, and led to the cooling water tank 4.

次に、第3のバイパス回路68の第3の切り替え手段の回路を「開」にする。これにより貯湯槽20内の補給水は、貯湯循環回路41、貯湯循環ポンプ21、補給水回路51通り、第1のバイパス回路60を経て第3のバイパス回路68を通って冷却水循環ポンプ6へ導かれる。   Next, the circuit of the third switching means of the third bypass circuit 68 is set to “open”. As a result, the makeup water in the hot water tank 20 is led to the cooling water circulation pump 6 through the hot water storage circuit 41, the hot water circulation pump 21, the makeup water circuit 51, the first bypass circuit 60, the third bypass circuit 68. It is burned.

つぎに、冷却水タンク4内の水位が上昇すると冷却水タンクレベルスイッチ8が満水を検知して、冷却タンク弁4b、第1の切り替え手段61、第3の切り替え手段69を「閉」にする。   Next, when the water level in the cooling water tank 4 rises, the cooling water tank level switch 8 detects full water, and the cooling tank valve 4b, the first switching means 61, and the third switching means 69 are closed. .

これらの一連の動作は貯湯槽20にかかる水道の供給圧により行われる。これ以下の動作は実施の形態1で説明した動作と同一となり、説明を省略する。   These series of operations are performed by the supply pressure of the water supply applied to the hot water tank 20. The subsequent operation is the same as that described in the first embodiment, and the description thereof is omitted.

(実施の形態4)
つぎに、本発明の第4の実施の形態について図4を用いて説明を行う。
(Embodiment 4)
Next, a fourth embodiment of the present invention will be described with reference to FIG.

燃料電池の発電工程、通水、循環回路の循環水充填運転、燃料処理、燃料電池の発電の順についての説明については(実施の形態1)と同様であるため省略する。本実施の形態は、第2のバイパス回路64と第2の切り替え手段65を持つことに特徴を有する。   The description of the order of the power generation process of the fuel cell, water flow, circulating water filling operation of the circulation circuit, fuel processing, and power generation of the fuel cell is the same as (Embodiment 1), and is therefore omitted. The present embodiment is characterized by having a second bypass circuit 64 and a second switching means 65.

初期水張りが開始されると、給水タンク弁22が「開」になり、貯湯循環ポンプ21が運転を開始する。これにより、貯湯槽20内の補給水は、貯湯循環回路41、貯湯循環ポンプ21、補給水回路51通り、給水タンク16へ導かれる。   When the initial water filling is started, the water supply tank valve 22 is opened, and the hot water circulation pump 21 starts operation. Thereby, the makeup water in the hot water tank 20 is guided to the water supply tank 16 through the hot water circulation circuit 41, the hot water circulation pump 21, and the makeup water circuit 51.

次に、給水タンク16の給水タンクレベルスイッチ17が給水タンク16の満水を検知すると給水タンク弁22が「閉」になり、給水タンクへの給水が停止される。次に、供給ポンプ13が運転を開始し、給水タンク16内の補給水が冷却水供給回路c17c、冷却水供給回路d17d、イオン交換樹脂18、冷却水供給回路e17e、を通り、第2のバイパス回路64へ導かれる。このとき第2の切り替え手段65の回路が「開」になる。これにより、貯湯槽20内の補給水が冷却水熱交換器5、燃料電池1を通って冷却水循環ポンプ6を通り冷却水タンク4に導かれる。   Next, when the water supply tank level switch 17 of the water supply tank 16 detects that the water supply tank 16 is full, the water supply tank valve 22 is “closed” and water supply to the water supply tank is stopped. Next, the supply pump 13 starts operation, and the replenishing water in the water supply tank 16 passes through the cooling water supply circuit c17c, the cooling water supply circuit d17d, the ion exchange resin 18, and the cooling water supply circuit e17e, and passes through the second bypass. Guided to circuit 64. At this time, the circuit of the second switching means 65 is “open”. As a result, the makeup water in the hot water tank 20 is guided to the cooling water tank 4 through the cooling water heat exchanger 5 and the fuel cell 1 and the cooling water circulation pump 6.

つぎに、冷却水タンク4内の水位が上昇すると冷却水タンクレベルスイッチ8が満水を検知して、第2の切り替え手段65の回路を「閉」にする。   Next, when the water level in the cooling water tank 4 rises, the cooling water tank level switch 8 detects that the water is full, and the circuit of the second switching means 65 is closed.

これ以下の動作は実施の形態1で説明した動作と同一となり、説明を省略する。   The subsequent operation is the same as that described in the first embodiment, and the description thereof is omitted.

以上のように、本発明に係る燃料電池システムは、冷却水循環回路、熱交換器、燃料電池に冷却水をエア噛み無く充填でき、ポンプのエア噛みの冷却水供給回路および冷却水循環回路を実現できる。これにより初期設定性能を満たす十分な熱交換性能を確保して、安定した発電を実施することができる燃料電池システムを提供することができる。   As described above, the fuel cell system according to the present invention can fill the cooling water circulation circuit, the heat exchanger, and the fuel cell with cooling water without biting the air, and can realize the cooling water supply circuit and the cooling water circulation circuit that are pumped with air. . As a result, it is possible to provide a fuel cell system capable of ensuring sufficient heat exchange performance that satisfies the initial setting performance and performing stable power generation.

1 燃料電池
2 冷却水循環回路
3 余剰ヒーター
4 冷却水タンク
5 冷却水熱交換器
6 冷却水循環ポンプ
7 温度検出器
8 冷却水タンクレベルスイッチ
10 燃料処理機
11 供給ポンプ
12 給水回路
13 供給ポンプ
14 凝縮水回路
15a 第1の燃料処理弁
15b 第2の燃料処理弁
16 給水タンク(凝縮水タンク)
16b オーバーフロー
17 給水タンクレベルスイッチ
17b 冷却水供給回路
18 イオン交換樹脂
20 貯湯槽
21 貯湯循環ポンプ
40 補給水循環回路
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Cooling water circulation circuit 3 Surplus heater 4 Cooling water tank 5 Cooling water heat exchanger 6 Cooling water circulation pump 7 Temperature detector 8 Cooling water tank level switch 10 Fuel processor 11 Supply pump 12 Water supply circuit 13 Supply pump 14 Condensed water Circuit 15a First fuel processing valve 15b Second fuel processing valve 16 Water supply tank (condensed water tank)
16b Overflow 17 Supply tank level switch 17b Cooling water supply circuit 18 Ion exchange resin 20 Hot water storage tank 21 Hot water storage circulation pump 40 Supply water circulation circuit

Claims (4)

水素と空気が供給されて発電を行う燃料電池と、
前記燃料電池の発電時に発熱する前記燃料電池を冷却する冷却水を循環させる冷却水循環回路と、
前記冷却水循環回路に配され冷却水を貯える冷却水タンクと、
前記冷却水循環回路内の冷却水を循環させる冷却水循環ポンプと、
貯湯槽と、
前記貯湯槽から流出した補給水を前記貯湯槽に戻す補給水循環回路と、
前記冷却水循環回路の冷却水と前記補給水循環回路の補給水とを熱交換させる冷却水熱交換器と、
前記貯湯槽からの補給水を貯える給水タンクと、
前記給水タンクの補給水を前記冷却水タンクへ供給する供給ポンプと、
前記給水タンクを迂回して前記貯湯槽からの補給水を前記供給ポンプへ供給する第一のバイパス経路と、
前記貯湯槽からの補給水を前記給水タンク及び前記第一のバイパス経路のうちのいずれか一方に通水を切り換える第一の切換え手段を備え、
水はり運転時に前記貯湯槽にかかる水道の供給圧によって前記第一のバイパス経路に通水するように前記第一の切換え手段を制御する制御部を備えた燃料電池システム。
A fuel cell that is supplied with hydrogen and air to generate electricity;
A coolant circulation circuit that circulates coolant for cooling the fuel cell that generates heat during power generation of the fuel cell;
A cooling water tank arranged in the cooling water circulation circuit and storing cooling water;
A cooling water circulation pump for circulating cooling water in the cooling water circulation circuit;
A hot water tank,
A makeup water circulation circuit for returning makeup water flowing out of the hot water tank to the hot water tank;
A cooling water heat exchanger for exchanging heat between the cooling water of the cooling water circulation circuit and the makeup water of the makeup water circulation circuit;
A water supply tank for storing makeup water from the hot water tank;
A supply pump for supplying makeup water from the water supply tank to the cooling water tank;
A first bypass path that bypasses the water supply tank and supplies makeup water from the hot water tank to the supply pump;
Comprising a first switching means for switching the supply water from the hot water storage tank to one of the water supply tank and the first bypass path;
A fuel cell system comprising a control unit for controlling the first switching means so that water flows through the first bypass path by water supply pressure applied to the hot water tank during a water beam operation.
前記冷却水タンクを迂回して前記供給ポンプからの補給水を前記冷却水熱交換器へ供給する第二のバイパス経路と、
前記供給ポンプからの補給水を前記冷却水タンク及び前記第二のバイパス経路のうちのいずれか一方に通水を切り換える第二の切換え手段をさらに備え、
前記制御部は、水はり運転時に前記貯湯槽にかかる水道の供給圧によって前記第二のバイパス経路に通水するように前記第二の切換え手段を制御する請求項1に記載の燃料電池システム。
A second bypass path that bypasses the cooling water tank and supplies makeup water from the supply pump to the cooling water heat exchanger;
A second switching means for switching the supply water from the supply pump to one of the cooling water tank and the second bypass path;
2. The fuel cell system according to claim 1, wherein the control unit controls the second switching unit so that water flows through the second bypass path by a supply pressure of a water supply applied to the hot water storage tank during a water beam operation.
前記供給ポンプと前記冷却水タンクとの間に配され水を浄化する水処理装置と、
前記水処理装置と前記冷却水タンクとの間から前記冷却水タンクを迂回して前記供給ポンプからの補給水を前記冷却水循環ポンプへ供給する第三のバイパス経路と、
前記供給ポンプからの補給水を前記冷却水タンク及び前記第三のバイパス経路のうちのいずれか一方に通水を切り換える第三の切換え手段をさらに備え、
前記制御部は、水はり運転時に前記貯湯槽にかかる水道の供給圧によって前記第三のバイパス経路に通水するように前記第三の切換え手段を制御する請求項1に記載の燃料電池システム。
A water treatment device disposed between the supply pump and the cooling water tank to purify water;
A third bypass path that bypasses the cooling water tank from between the water treatment device and the cooling water tank and supplies makeup water from the supply pump to the cooling water circulation pump;
And further comprising a third switching means for switching the supply water from the supply pump to one of the cooling water tank and the third bypass path,
2. The fuel cell system according to claim 1, wherein the control unit controls the third switching unit so that water flows through the third bypass path by a supply pressure of a water supply applied to the hot water tank during a water beam operation.
水素と空気が供給されて発電を行う燃料電池と、
前記燃料電池の発電時に発熱する前記燃料電池を冷却する冷却水を循環させる冷却水循環回路と、
前記冷却水循環回路に配され冷却水を貯える冷却水タンクと、
前記冷却水循環回路内の冷却水を循環させる冷却水循環ポンプと、
貯湯槽と、
前記貯湯槽から流出した補給水を前記貯湯槽に戻す補給水循環回路と、
前記冷却水循環回路の冷却水と前記補給水循環回路の補給水とを熱交換させる冷却水熱交換器と、
前記貯湯槽からの補給水を貯える給水タンクと、
前記給水タンクの補給水を前記冷却水タンクへ供給する供給ポンプと、
前記冷却水タンクを迂回して前記供給ポンプからの補給水を前記冷却水熱交換器へ供給する第二のバイパス経路と、
前記供給ポンプからの補給水を前記冷却水タンク及び前記第二のバイパス経路のうちのいずれか一方に通水を切り換える第二の切換え手段を備え、
水はり運転時に前記貯湯槽にかかる水道の供給圧によって前記第二のバイパス経路に通水するように前記第二の切換え手段を制御する制御部を備えた燃料電池システム。
A fuel cell that is supplied with hydrogen and air to generate electricity;
A coolant circulation circuit that circulates coolant for cooling the fuel cell that generates heat during power generation of the fuel cell;
A cooling water tank arranged in the cooling water circulation circuit and storing cooling water;
A cooling water circulation pump for circulating cooling water in the cooling water circulation circuit;
A hot water tank,
A makeup water circulation circuit for returning makeup water flowing out of the hot water tank to the hot water tank;
A cooling water heat exchanger for exchanging heat between the cooling water of the cooling water circulation circuit and the makeup water of the makeup water circulation circuit;
A water supply tank for storing makeup water from the hot water tank;
A supply pump for supplying makeup water from the water supply tank to the cooling water tank;
A second bypass path that bypasses the cooling water tank and supplies makeup water from the supply pump to the cooling water heat exchanger;
Comprising second switching means for switching the makeup water from the supply pump to one of the cooling water tank and the second bypass path;
A fuel cell system comprising: a control unit that controls the second switching means so that water flows through the second bypass path by water supply pressure applied to the hot water tank during a water beam operation.
JP2011014946A 2011-01-27 2011-01-27 Fuel cell system Expired - Fee Related JP5750570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011014946A JP5750570B2 (en) 2011-01-27 2011-01-27 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011014946A JP5750570B2 (en) 2011-01-27 2011-01-27 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2012156039A JP2012156039A (en) 2012-08-16
JP5750570B2 true JP5750570B2 (en) 2015-07-22

Family

ID=46837553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011014946A Expired - Fee Related JP5750570B2 (en) 2011-01-27 2011-01-27 Fuel cell system

Country Status (1)

Country Link
JP (1) JP5750570B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6167280B2 (en) * 2013-01-08 2017-07-26 パナソニックIpマネジメント株式会社 Fuel cell system
JP2016192396A (en) * 2015-03-30 2016-11-10 パナソニックIpマネジメント株式会社 Cogeneration system and operation method therefor
CN108511775A (en) * 2018-02-23 2018-09-07 北京亿华通科技股份有限公司 The cold-starting device of hydrogen fuel cell system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107893A (en) * 2004-10-05 2006-04-20 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP4650577B2 (en) * 2009-03-24 2011-03-16 パナソニック株式会社 Fuel cell cogeneration system
JP2011012817A (en) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd Heat pump type water heater
US8962199B2 (en) * 2009-07-08 2015-02-24 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
US9118053B2 (en) * 2009-12-03 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system and method for performing maintenance on fuel cell system

Also Published As

Publication number Publication date
JP2012156039A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
KR101022010B1 (en) Fuel Cell System
US7560181B2 (en) Fuel cell system and method of operating the same
JP5750570B2 (en) Fuel cell system
JP2015103409A (en) Fuel cell system
JP5132143B2 (en) Fuel cell device
JP4845899B2 (en) Fuel cell system
JP2012221723A (en) Fuel cell system
KR101910126B1 (en) System for fuel cell
JP2020053287A (en) Fuel cell system
JP4106356B2 (en) Fuel cell system
JP5564916B2 (en) Fuel cell system
US10020521B2 (en) Fuel cell cogeneration system, method of starting operation of the fuel cell cogeneration system, and method of operating the fuel cell cogeneration system
JP2013004295A (en) Fuel cell device
JP2010211987A (en) Fuel cell cogeneration system
JP2014182923A (en) Fuel cell system and operation method thereof
EP4181247A2 (en) Fuel cell system with waste heat recovery and storage
JP2006172948A (en) Fuel cell system
JP2002117876A (en) Cooling device of fuel cell
JP5502521B2 (en) Fuel cell system
JP2004247084A (en) Fuel cell power generation system
JP2006179346A (en) Fuel cell power generation system and its operation method
KR101200689B1 (en) Heat recovery apparatus of fuel cell
JP5501750B2 (en) Fuel cell system
JP2007115715A5 (en)
JP2018037300A (en) Fuel battery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131009

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20131113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

LAPS Cancellation because of no payment of annual fees