JP5744499B2 - Grout cement composition and grout material - Google Patents
Grout cement composition and grout material Download PDFInfo
- Publication number
- JP5744499B2 JP5744499B2 JP2010274943A JP2010274943A JP5744499B2 JP 5744499 B2 JP5744499 B2 JP 5744499B2 JP 2010274943 A JP2010274943 A JP 2010274943A JP 2010274943 A JP2010274943 A JP 2010274943A JP 5744499 B2 JP5744499 B2 JP 5744499B2
- Authority
- JP
- Japan
- Prior art keywords
- grout
- parts
- expansion
- cement
- clinker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 76
- 239000004568 cement Substances 0.000 title claims description 45
- 239000011440 grout Substances 0.000 title claims description 43
- 239000000203 mixture Substances 0.000 title claims description 28
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 48
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 24
- 239000003638 chemical reducing agent Substances 0.000 claims description 22
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 18
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 18
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 18
- 239000004571 lime Substances 0.000 claims description 18
- 239000004570 mortar (masonry) Substances 0.000 claims description 18
- 239000001569 carbon dioxide Substances 0.000 claims description 15
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 12
- 238000004898 kneading Methods 0.000 claims description 4
- 239000002994 raw material Substances 0.000 description 20
- 239000007789 gas Substances 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 13
- 229910052500 inorganic mineral Inorganic materials 0.000 description 11
- 239000011707 mineral Substances 0.000 description 11
- 235000010755 mineral Nutrition 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- 230000000740 bleeding effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000000378 calcium silicate Substances 0.000 description 5
- 229910052918 calcium silicate Inorganic materials 0.000 description 5
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000004567 concrete Substances 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 235000019738 Limestone Nutrition 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- 239000010440 gypsum Substances 0.000 description 4
- 229910052602 gypsum Inorganic materials 0.000 description 4
- 239000006028 limestone Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052925 anhydrite Inorganic materials 0.000 description 2
- 229910001570 bauxite Inorganic materials 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000006114 decarboxylation reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 150000004683 dihydrates Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 2
- 125000005702 oxyalkylene group Chemical group 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000000275 quality assurance Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 1
- WETINTNJFLGREW-UHFFFAOYSA-N calcium;iron;tetrahydrate Chemical compound O.O.O.O.[Ca].[Fe].[Fe] WETINTNJFLGREW-UHFFFAOYSA-N 0.000 description 1
- 238000007707 calorimetry Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、主に、土木・建築分野において使用されるグラウト用セメント組成物およびグラウト材料に関する。 The present invention mainly relates to a cement composition for grout and a grout material used in the field of civil engineering and construction.
グラウト材料は、モルタル、コンクリートの作業性や充填性を改善し、グラウト工事を円滑に行うために使用されている。
主な用途としては、地下構造物の施工、橋梁支承部の据付け、各種機械類の据付け、耐震補強における壁、柱の間隙充填等であり、構造物の間隙を充填して一体化するために、(1)充填箇所および充填方法等に応じた所要の流動性、(2)充填後にブリーディング、沈下および空隙を発生させない無収縮性、(3)構造物の使用条件に応じた所要の各種強度などが要求される。(非特許文献1)
Grout materials are used to improve the workability and filling properties of mortar and concrete and to facilitate grout construction.
Main applications include construction of underground structures, installation of bridge supports, installation of various machinery, filling of gaps in walls and pillars in seismic reinforcement, etc. , (1) Required fluidity according to filling location and filling method, (2) Non-shrinkage that does not generate bleeding, subsidence and voids after filling, (3) Various required strengths according to the conditions of use of the structure Etc. are required. (Non-Patent Document 1)
セメント硬化体は、セメントの水和あるいは乾燥に伴って体積が減少することから、ひび割れが発生したり、既存構造体との付着性能が低下する危険性がある。ひび割れの発生は美観を損ねるばかりか、それらは構造物の安定性や防水性や水密性に悪影響を与える危険性がある。
そのため、セメントの収縮を補償し、ひび割れ発生抑制や、構造体との付着性能を保持する目的で、使用される膨張材としては、例えば、3CaO・3Al2O3・CaSO4(アウイン)、CaSO4及びCaOを主成分とするカルシウムサルホアルミネート系(以下、アウイン系膨張材という。)と、遊離石灰を主成分とする石灰系(以下、石灰系膨張材という。)のほか、遊離石灰−水硬性物質−セッコウ類を含有してなる膨張材等がある。
Since the volume of the hardened cement body decreases with hydration or drying of the cement, there is a risk that cracking may occur or the adhesion performance with the existing structure may deteriorate. The occurrence of cracks not only detracts from aesthetics, they also have the risk of adversely affecting the stability, waterproofing and watertightness of the structure.
For this reason, for example, 3CaO.3Al2O3.CaSO4 (auin), CaSO4 and CaO are mainly used as expansion materials for the purpose of compensating for the shrinkage of cement, suppressing the occurrence of cracking, and maintaining the adhesion performance to the structure. In addition to calcium sulfoaluminate (hereinafter referred to as Auin-based expandable material) as a component and lime-based (hereinafter referred to as lime-based expandable material) mainly composed of free lime, free lime-hydraulic substance-gypsum There is an expansion material containing a kind.
セメント、膨張材の他、特定の減水剤を組み合せることにより、温度依存性が少なく、流動性・充填性保持効果が著しく高く、長期に亘り強度増進効果を付与したグラウト材料が提案されている。(特許文献1)
さらに、優れた流動性、泡発生の抑制、最適な長さ変化率、体積膨張率が保持した高強度グラウト材料が提案されている。(特許文献2)
Grout materials that are less dependent on temperature, have a remarkably high fluidity / fillability retention effect, and provide a strength enhancement effect over a long period of time by combining a specific water reducing agent in addition to cement and expansion material have been proposed. . (Patent Document 1)
Furthermore, a high-strength grout material having excellent fluidity, suppression of foam generation, optimum length change rate, and volume expansion rate has been proposed. (Patent Document 2)
しかしながら、膨張材を含有するセメント組成物は、品質保証期間を超えて貯蔵すると外部より浸入してくる水分によって、膨張性能が低下する場合があり、それによって硬化体のひび割れ発生や構造体との付着性能が低下する危険性があった。 However, when the cement composition containing the expansion material is stored beyond the quality assurance period, the expansion performance may deteriorate due to moisture entering from the outside. There was a risk that the adhesion performance would decrease.
そこで、貯蔵によるセメントプレミックス製品の劣化(モルタル性状の劣悪化、膨張性能の低下)を遅延させる方法としてセメント、石灰系膨張材、及び減水剤を主成分とする結合材からなるセメントプレミックス組成物をポリエチレン袋に梱包したセメントプレミックス製品が提案されている。(特許文献3) Therefore, a cement premix composition comprising cement, a lime-based expansion material, and a binder mainly composed of a water reducing agent as a method for delaying deterioration of cement premix products due to storage (deterioration of mortar properties, deterioration of expansion performance). Cement premix products in which things are packed in polyethylene bags have been proposed. (Patent Document 3)
この方法によると、セメントプレミックス組成物の品質保証期間は延長させるものの、特殊な梱包材を使用することが必要であり、さらに梱包時の製造効率を向上させるため、包装袋にピンホールやスリットを入れるなど、梱包材に特殊な加工を施す必要があった。 According to this method, although the quality assurance period of the cement premix composition is extended, it is necessary to use a special packaging material, and in order to improve the manufacturing efficiency at the time of packaging, pinholes and slits are added to the packaging bag. It was necessary to apply special processing to the packing material, such as putting
本発明は、前記課題を解決しようとするものであり、長期間貯蔵しても膨張性能の低下が少なく、さらに特殊な梱包材を用いないでも、貯蔵安定性に優れたグラウト組成物およびグラウト材料を提供する。 The present invention is intended to solve the above-mentioned problems, and a grout composition and a grout material which are excellent in storage stability even when stored for a long period of time and have little decrease in expansion performance, and even without using a special packing material. I will provide a.
本発明者は、前記課題を解決すべく種々検討を重ねた結果、特定の膨張材を併用したグラウト用セメント組成物を採用することにより前記課題が解決できるとの知見を得て本発明を完成するに至った。
すなわち、本発明は、(1)セメントと膨張材と減水剤を含有してなり、膨張材が、遊離石灰、水硬性化合物、および無水石膏を含有するクリンカまたはクリンカ粉砕物を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させて得られる、遊離石灰、水硬性化合物、無水石膏、および炭酸カルシウムが同一粒子中に存在している粒子を含有してなる膨張材であり、セメントと膨張材からなる結合材100部中、膨張材が2〜15部であるグラウト用セメント組成物、(2)クリンカ100部中、遊離石灰10〜70部、水硬性化合物10〜50部、無水石膏1〜50部を含有してなる(1)のグラウト用セメント組成物、(3)さらに、収縮低減剤を含有してなる(1)または(2)のグラウト用セメント組成物、(4)(1)〜(3)のいずれかのグラウト用セメント組成物と細骨材とを含有してなるグラウト材料、(5)(4)のグラウト材料と水を混練りしてなるグラウトモルタル、である。
As a result of various studies to solve the above problems, the present inventor has obtained the knowledge that the above problems can be solved by adopting a cement composition for grouting combined with a specific expansion material, thereby completing the present invention. It came to do.
That is, the present invention includes (1) a cement, an expander, and a water reducing agent, and the expander heats a clinker or clinker pulverized product containing free lime, a hydraulic compound, and anhydrous gypsum in a carbon dioxide atmosphere. It is an expansion material containing particles in which free lime, hydraulic compound, anhydrous gypsum, and calcium carbonate are present in the same particle, which is obtained by processing to produce calcium carbonate, and consists of cement and an expansion material. Cement composition for grout in which the expansion material is 2 to 15 parts in 100 parts of the binder , (2) in 100 parts of clinker, 10 to 70 parts of free lime, 10 to 50 parts of hydraulic compound, 1 to 50 parts of anhydrous gypsum (1) A grout cement composition according to (1), (3) (1) or (2) a grout cement composition further comprising a shrinkage reducing agent, (4) (1) to ( 3) Grout cement composition Zureka and fine aggregate and grout material comprising a, (5) a grout mortar, formed by kneading the grout material and water (4).
本発明のグラウト用セメント組成物およびグラウト材料は、長期間貯蔵しても膨張性能の低下が少なく、貯蔵安定性に優れるなどの効果を奏する。 The cement composition for grout and the grout material of the present invention exhibit such effects as little deterioration in expansion performance even when stored for a long period of time and excellent storage stability.
以下、本発明を詳細に説明する。
本発明で使用する部や%は特に規定のない限り質量基準である。
Hereinafter, the present invention will be described in detail.
Parts and% used in the present invention are based on mass unless otherwise specified.
本発明では、セメントと特定の膨張材と減水剤を含有してなるグラウト用セメント組成物であり、必要に応じ細骨材を配合したグラウト材料であり、さらに水と混練して、グラウトモルタルを調製するものである。 In the present invention, a cement composition for grout comprising cement, a specific expansion material and a water reducing agent, a grout material containing fine aggregate as necessary, and further kneaded with water to produce grout mortar. To be prepared.
本発明で使用する膨張材は、遊離石灰、水硬性化合物、および無水石膏を含有するクリンカ、またはクリンカ粉砕物を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させて得られるものである。
遊離石灰、水硬性化合物、無水石膏、および炭酸カルシウムが同一粒子中に存在している粒子を含有していることが好ましい。
また、炭酸カルシウムの含有量が0.5〜10%であることが好ましく、ブレーン比表面積が1500〜9000cm2/gであることが好ましい。
The expansion material used in the present invention is obtained by heat-treating clinker or clinker pulverized material containing free lime, hydraulic compound, and anhydrous gypsum in a carbon dioxide atmosphere to generate calcium carbonate.
It is preferred that free lime, hydraulic compound, anhydrous gypsum and calcium carbonate contain particles present in the same particle.
Moreover, it is preferable that content of calcium carbonate is 0.5 to 10%, and it is preferable that a brain specific surface area is 1500-9000 cm < 2 > / g.
本発明の膨張材は、CaO原料、Al2O3原料、Fe2O3原料、SiO2原料、およびCaSO4原料を適宜混合して熱処理して得られるクリンカまたはクリンカ粉砕物を炭酸ガスで処理して得られるものである。
本発明で云う遊離石灰とは、通常f−CaOと呼ばれるものである。
本発明で云う水硬性化合物とは、3CaO・3Al2O3・CaSO4で表されるアウイン、3CaO・SiO2(C3Sと略記)や2CaO・SiO2(C2Sと略記)で表されるカルシウムシリケート、4CaO・Al2O3・Fe2O3(C4AFと略記)や6CaO・2Al2O3・Fe2O3(C6A2Fと略記)、6CaO・Al2O3・Fe2O3(C6AFと略記)で表されるカルシウムアルミノフェライト、2CaO・Fe2O3(C2Fと略記)等のカルシウムフェライトなどであり、これらのうちの1種または2種以上を含むことが好ましい。本発明の膨張材に含まれる炭酸カルシウムの形態は特に限定されるものではない。
The expansion material of the present invention is a clinker or clinker pulverized material obtained by appropriately mixing and heat-treating CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material with carbon dioxide gas. Is obtained.
The free lime referred to in the present invention is usually called f-CaO.
Table In the hydraulic compound referred to in the present invention, Auin represented by 3CaO · 3Al 2 O 3 · CaSO 4, 3CaO · SiO 2 (C 3 S for short) and 2CaO · SiO 2 (C 2 S for short) Calcium silicate, 4CaO.Al 2 O 3 .Fe 2 O 3 (abbreviated as C 4 AF), 6CaO.2Al 2 O 3 .Fe 2 O 3 (abbreviated as C 6 A 2 F), 6CaO.Al 2 O Calcium aluminoferrite represented by 3 · Fe 2 O 3 (abbreviated as C 6 AF), calcium ferrite such as 2CaO · Fe 2 O 3 (abbreviated as C 2 F), and one or two of these Preferably it contains more than one species. The form of calcium carbonate contained in the expansion material of the present invention is not particularly limited.
CaO原料としては石灰石や消石灰などが挙げられ、Al2O3原料としてはボーキサイトやアルミ残灰などが挙げられ、Fe2O3原料としては銅カラミや市販の酸化鉄などが、SiO2原料としては珪石などが、CaSO4原料としては二水石膏、半水石膏および無水石膏などが挙げられる。
これら原料には不純物を含む場合があるが、本発明の効果を阻害しない範囲内では特に問題とはならない。不純物としては、MgO、TiO2、ZrO2、MnO、P2O5、Na2O、K2O、Li2O、硫黄、フッ素、塩素などが挙げられる。
The CaO feed include such as limestone or slaked lime, as the Al 2 O 3 raw material include such as bauxite and aluminum residual ash, etc. Fe 2 O 3 copper Karami and commercial iron oxide as a raw material, as SiO 2 raw material Includes silica, and examples of the CaSO 4 raw material include dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum.
These raw materials may contain impurities, but this is not a problem as long as the effects of the present invention are not impaired. Examples of impurities include MgO, TiO 2 , ZrO 2 , MnO, P 2 O 5 , Na 2 O, K 2 O, Li 2 O, sulfur, fluorine, and chlorine.
本発明の膨張材に使用するクリンカの熱処理方法は特に限定されるものではないが、電気炉やキルン等を用いて1100〜1600℃の温度で焼成することが好ましく、1200〜1500℃がより好ましい。1100℃未満では膨張性能が充分でなく、1600℃を超えると無水石膏が分解する場合がある。 Although the heat processing method of the clinker used for the expansion material of this invention is not specifically limited, It is preferable to bake at the temperature of 1100-1600 degreeC using an electric furnace, a kiln, etc., and 1200-1500 degreeC is more preferable. . If it is less than 1100 ° C., the expansion performance is not sufficient, and if it exceeds 1600 ° C., anhydrous gypsum may decompose.
本発明の膨張材に使用するクリンカに含まれる各鉱物の割合は、以下の範囲であることが好ましい。遊離石灰の含有量は、クリンカ100部中、10〜70部が好ましく、40〜60部がより好ましい。水硬性化合物の含有量は、クリンカ100部中、10〜50部が好ましく、20〜30部がより好ましい。無水石膏の含有量は、クリンカ100部中、1〜50部が好ましく20〜30部がより好ましい。前記範囲外では、膨張量が極端に大きくなって圧縮強度が低下したり、膨張量が小さくなる場合がある。 It is preferable that the ratio of each mineral contained in the clinker used for the expansion material of the present invention is in the following range. The content of free lime is preferably 10 to 70 parts, more preferably 40 to 60 parts, in 100 parts of clinker. As for content of a hydraulic compound, 10-50 parts are preferable in 100 parts of clinker, and 20-30 parts are more preferable. The content of anhydrous gypsum is preferably 1 to 50 parts and more preferably 20 to 30 parts in 100 parts of clinker. Outside the above range, the amount of expansion may become extremely large and the compression strength may decrease, or the amount of expansion may decrease.
鉱物の含有量は、従来一般の分析方法で確認することができる。例えば、粉砕した試料を粉末X線回折装置にかけ、生成鉱物を確認するとともにデータをリートベルト法にて解析し、鉱物を定量することができる。また、化学成分と粉末X線回折の同定結果に基づいて、鉱物量を計算によって求めることもできる。 The mineral content can be confirmed by a conventional analysis method. For example, the pulverized sample can be applied to a powder X-ray diffractometer to confirm the produced mineral and analyze the data by the Rietveld method to quantify the mineral. Further, based on the identification result of chemical components and powder X-ray diffraction, the amount of minerals can also be obtained by calculation.
本発明の膨張材を調製するための炭酸ガスの処理条件は以下の範囲であることが好ましい。
炭酸化処理容器への炭酸ガスの流量は、炭酸化処理容器の容積1Lあたり0.01〜0.1L/minであることが好ましい。0.01L/min未満ではクリンカの炭酸化に時間がかかる場合があり、0.1L/min以上に高めても更なる炭酸化処理速度の向上が得られず不経済である。なお、本条件は、炭酸化処理容器としてるつぼを使用し、るつぼを電気炉内に静置し、炭酸ガスを流して反応させた場合の条件であり、他の方法でクリンカと炭酸ガスを反応させる場合はこの限りではない。
炭酸化処理容器の温度は200〜800℃とすることが好ましい。200℃未満ではクリンカの炭酸化反応が進行しない場合があり、800℃以上では一度炭酸カルシウムに変化したとしても再び脱炭酸化反応が生じ、炭酸カルシウムを生成させることができない場合がある。
なお、クリンカの炭酸化は未粉砕のクリンカをそのまま炭酸化しても良いし、クリンカを粉砕してから炭酸化しても良い。本発明でいう炭酸化処理容器は特に限定されるものではなく、クリンカと炭酸ガスを接触させ反応させることが出来ればよく、電気炉でも良いし、流動層式加熱炉でも良いし、クリンカを粉砕するミルでも良い。
The treatment conditions of carbon dioxide gas for preparing the expansion material of the present invention are preferably in the following ranges.
The flow rate of carbon dioxide gas to the carbonation treatment container is preferably 0.01 to 0.1 L / min per 1 L of the volume of the carbonation treatment container. If it is less than 0.01 L / min, it may take time to carbonize the clinker, and even if it is increased to 0.1 L / min or more, further improvement in the carbonation treatment rate cannot be obtained, which is uneconomical. This condition is a condition when a crucible is used as a carbonation treatment container, the crucible is left in an electric furnace and carbon dioxide gas is allowed to flow, and the clinker and carbon dioxide gas are reacted by other methods. This is not the case.
It is preferable that the temperature of a carbonation processing container shall be 200-800 degreeC. If it is less than 200 ° C., the carbonation reaction of the clinker may not proceed, and if it is 800 ° C. or more, even if it is once changed to calcium carbonate, the decarbonation reaction occurs again, and calcium carbonate may not be generated.
In addition, carbonation of a clinker may carbonize an unpulverized clinker as it is, or may pulverize and then carbonize the clinker. The carbonation treatment container referred to in the present invention is not particularly limited, as long as the clinker and carbon dioxide gas can be brought into contact with each other and reacted, and an electric furnace or a fluidized bed heating furnace may be used, or the clinker is pulverized. It can be a mill.
炭酸カルシウムの割合は、クリンカ100部中、0.5〜10部であることが好ましく、1〜5部がより好ましい。各鉱物の組成割合が前記範囲内にないと優れた膨張性能や初期の圧縮強度、貯蔵安定性が得られない場合がある。
炭酸カルシウムの含有量は、示差熱天秤(TG−DTA)や示差熱熱量測定(DSC)などによって、炭酸カルシウムの脱炭酸に伴う重量変化から定量することができる。
The proportion of calcium carbonate is preferably 0.5 to 10 parts, more preferably 1 to 5 parts, in 100 parts of clinker. If the composition ratio of each mineral is not within the above range, excellent expansion performance, initial compressive strength, and storage stability may not be obtained.
The content of calcium carbonate can be quantified from a change in weight accompanying decarboxylation of calcium carbonate by a differential thermal balance (TG-DTA), differential thermal calorimetry (DSC), or the like.
本発明の膨張材は、同一粒子中に遊離石灰、水硬性化合物、無水石膏、および炭酸カルシウムが存在する粒子を含有していることが好ましい。
遊離石灰、水硬性化合物、無水石膏、および炭酸カルシウムが同一粒子中に存在しているかどうかは電子顕微鏡などによって確認することができる。具体的には、膨張材を樹脂で包埋し、アルゴンイオンビームで表面処理を行い、粒子断面の組織を観察するとともに、元素分析を行うことで炭酸カルシウムが同一粒子内に存在しているか確認することができる。
The expansion material of the present invention preferably contains particles in which free lime, a hydraulic compound, anhydrous gypsum, and calcium carbonate are present in the same particle.
Whether or not free lime, hydraulic compound, anhydrous gypsum, and calcium carbonate are present in the same particle can be confirmed by an electron microscope or the like. Specifically, the expansion material is embedded in resin, surface treatment is performed with an argon ion beam, the structure of the particle cross section is observed, and elemental analysis is performed to confirm that calcium carbonate is present in the same particle. can do.
本発明の膨張材の粉末度は、ブレーン比表面積で2000〜9000cm2/gが好ましく、3000〜6000cm2/gがより好ましい。2000cm2/g未満では長期に亘って膨張し硬化体組織が壊れたり、ブリーディングが生じやすい場合があり、9000cm2/gを超えると膨張性能が低下したり、流動性が低下したり、フローダウンが大きくなる場合がある。 Fineness of the expansion material of the present invention is preferably 2000~9000cm 2 / g in Blaine specific surface area, 3000~6000cm 2 / g is more preferable. If it is less than 2000 cm 2 / g, it may expand over a long period of time, and the cured body structure may be broken or bleeding may occur easily. If it exceeds 9000 cm 2 / g, the expansion performance may be reduced, the fluidity may be reduced, or the flow may be reduced. May become larger.
本発明の膨張材の使用量は、グラウト材料の配合によって変化するため特に限定されるものではないが、通常、セメントと膨張材からなる結合材100部中、2〜15部が好ましく、3〜10部がより好ましい。2部未満では充分な膨張性能が得られない場合があり、15部を超えて使用すると過膨張となり硬化体に膨張クラックを生じる場合がある。 The amount of the expansion material of the present invention is not particularly limited because it varies depending on the composition of the grout material, but usually 2 to 15 parts are preferable in 100 parts of the binder composed of cement and the expansion material. 10 parts is more preferred. If it is less than 2 parts, sufficient expansion performance may not be obtained, and if it is used in excess of 15 parts, it may overexpand and may cause expansion cracks in the cured product.
本発明のセメント組成物で使用するセメントとしては、普通、早強、超早強、低熱、および中庸熱などの各種ポルトランドセメント、これらセメントに高炉スラグ、フライアッシュ、シリカを混合した各種混合セメント、ならびに石灰石粉末を混合したフィラーセメントなどが挙げられる。 As the cement used in the cement composition of the present invention, various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, various mixed cements obtained by mixing blast furnace slag, fly ash and silica with these cements, And filler cement mixed with limestone powder.
本発明で使用する減水剤は特に限定させるものでなく、セメントに対する分散作用や空気連行作用を有し、流動性改善や強度増進するものの総称であり、具体的には、ナフタレンスルホン酸系減水剤、メラミンスルホン酸系減水剤、リグニンスルホン酸系減水剤、およびポリカルボン酸系減水剤が使用でき、減水剤の使用形態は、液体、粉体のいずれも使用可能であるが、プレミックス製品として使用する際には粉体が好ましい。
減水剤の使用量は特に限定されるものではない。減水剤の種類により減水率に差があり適正量はそれぞれ異なるが、通常、結合材100部に対して、固形分換算で0.1〜2部が好ましい。0.1部未満では流動性が充分でなくなる場合があり、2部を超えると材料分離を起すおそれがある。
The water reducing agent used in the present invention is not particularly limited, and is a generic name for those having a dispersing action and air entraining action on cement, improving fluidity and increasing strength, specifically, naphthalenesulfonic acid-based water reducing agent , Melamine sulfonic acid-based water reducing agent, lignin sulfonic acid-based water reducing agent, and polycarboxylic acid-based water reducing agent can be used, and either water or powder can be used as the pre-mixed product. When used, powder is preferred.
The amount of water reducing agent used is not particularly limited. Although there are differences in the water reduction rate depending on the type of water reducing agent and the appropriate amounts are different, usually 0.1 to 2 parts in terms of solid content is preferable with respect to 100 parts of the binder. If it is less than 0.1 part, fluidity may not be sufficient. If it exceeds 2 parts, material separation may occur.
本発明では細骨材を使用することが可能である。細骨材としては通常使われている川砂、海砂、砕砂、及び珪砂などが使用可能であり、プレミックス製品として使用する際にはそれらの乾燥砂が好ましい。
細骨材の使用量は、結合材100部に対して、0〜250部が好ましい。250部を超えると強度や流動性が低下する場合がある。
In the present invention, fine aggregate can be used. As fine aggregates, commonly used river sand, sea sand, crushed sand, silica sand and the like can be used, and when used as a premix product, those dry sands are preferred.
The amount of fine aggregate used is preferably 0 to 250 parts with respect to 100 parts of the binder. If it exceeds 250 parts, the strength and fluidity may decrease.
本発明で使用する収縮低減剤は、硬化後のグラウトモルタルの乾燥収縮を抑制し、ひび割れの発生を抑制するもので、構成する収縮低減成分としては、R 0 ( A 0 ) n H( ただし、Rは炭素数4〜6のアルキル基、Aは炭素数2〜3の一種又は二種以上のアルキレン基、nは1〜10の整数)で示される低級アルコールのアルキレンオキサイド付加物を主体としたものや、一般式X{ 0 ( A 0 ) n R } m(ただし、Xは2〜8個の水素基を有する化合物の残基、A 0は炭素数2〜18のオキシアルキレン基、Rは水素原子、炭素数1〜18の炭化水素基、又は炭素数2〜18のアシル基、nは30〜1,000、mは2〜8)で示され、そのオキシアルキレン基の60モル%以上はオキシエチレン基であるポリオキシアルキレン誘導体などを使用することが可能である。
収縮低減剤の使用量は、結合材100部に対して、1〜6部が好ましく、2〜5部がより好ましい。1部未満では乾燥収縮低減効果が小さい場合があり、6部を超えると強度発現性が低下する場合がある。
The shrinkage reducing agent used in the present invention suppresses drying shrinkage of grout mortar after curing and suppresses the occurrence of cracks. As a shrinkage reducing component, R 0 (A 0) n H (however, R is an alkyl group having 4 to 6 carbon atoms, A is one or more alkylene groups having 2 to 3 carbon atoms, and n is an integer of 1 to 10). Or a general formula X {0 (A0) nR} m (where X is a residue of a compound having 2 to 8 hydrogen groups, A0 is an oxyalkylene group having 2 to 18 carbon atoms, and R is A hydrogen atom, a hydrocarbon group having 1 to 18 carbon atoms, or an acyl group having 2 to 18 carbon atoms, n is 30 to 1,000, m is 2 to 8), and 60 mol% or more of the oxyalkylene group Can use polyoxyalkylene derivatives that are oxyethylene groups It is.
The amount of the shrinkage reducing agent used is preferably 1 to 6 parts and more preferably 2 to 5 parts with respect to 100 parts of the binder. If it is less than 1 part, the drying shrinkage reduction effect may be small, and if it exceeds 6 parts, strength development may be reduced.
本発明で使用する練混ぜ水量は特に限定されるものではないが、通常、水/結合材比で25〜50%が好ましく、30〜45%がより好ましい。この範囲外では、流動性が大きく低下したり、材料分離や強度低下を起こす場合もある。 The amount of kneading water used in the present invention is not particularly limited, but is usually preferably 25 to 50% and more preferably 30 to 45% in terms of water / binder ratio. Outside this range, fluidity may be greatly reduced, and material separation and strength reduction may occur.
本発明ではガス発泡剤を使用することが可能である。ガス発泡物質はグラウト材料として利用する場合、構造物と一体化させるために、また、まだ固まらない状態のグラウトモルタルが沈下や収縮するのを抑止するために、さらには、乾燥状態に置かれた際のひび割れ抵抗性を向上させるために使用できるものであれば特に限定されるものではない。
ガス発泡物質の具体例としては、例えば、植物油、鉱物油、またはステアリン酸などで表面処理したアルミニウム粉末やアトマイズアルミニウム粉末アルミ粉や、窒素ガス発泡物質の他、過炭酸塩、過硫酸塩、過ホウ酸塩および過マンガン酸塩などの過酸化物質などが挙げられる。窒素ガス発泡物質とは、セメント組成物中に含まれるセメントが、水と共に練混ぜた際に生成するアルカリとの反応により、窒素ガスを発生する化合物を含有するもので、一酸化炭素、二酸化炭素、およびアンモニアなどのガスを副生してもよい。
In the present invention, a gas blowing agent can be used. When used as a grout material, the gas foam material was placed in a dry state in order to integrate with the structure, and to prevent the grout mortar that has not yet solidified from sinking or shrinking. There is no particular limitation as long as it can be used to improve the resistance to cracking.
Specific examples of the gas foaming material include, for example, aluminum powder and atomized aluminum powder aluminum powder surface-treated with vegetable oil, mineral oil, or stearic acid, nitrogen gas foaming material, percarbonate, persulfate, persulfate, and the like. Examples include peroxides such as borates and permanganates. The nitrogen gas foaming substance contains a compound that generates nitrogen gas by reaction with alkali generated when the cement contained in the cement composition is kneaded with water. Carbon monoxide, carbon dioxide , And gases such as ammonia may be by-produced.
ガス発泡物質の配合割合は、特に限定されるものではないが、結合材100部に対して、0.0001〜0.1部の範囲で使用でき、0.001〜0.01部の範囲がより好ましい。0.0001部未満では、充分な初期膨張効果を付与することができない場合があり、0.1部を超えて使用すると、過膨張となって強度発現性が悪くなる場合がある。
使用量がこれら範囲外では充分な初期膨張効果を付与することができない場合があり、体積膨張量が大きく強度低下が著しくなる場合がある。
The mixing ratio of the gas foaming substance is not particularly limited, but can be used in the range of 0.0001 to 0.1 part with respect to 100 parts of the binder, and the range of 0.001 to 0.01 part. More preferred. If the amount is less than 0.0001 part, a sufficient initial expansion effect may not be imparted. If the amount exceeds 0.1 part, excessive expansion may occur and strength development may be deteriorated.
If the amount used is outside these ranges, a sufficient initial expansion effect may not be imparted, and the volume expansion amount may be large and the strength may be significantly reduced.
本発明では更に、粗骨材を使用してコンクリートとしたり、添加材(剤)として消泡剤、増粘剤、防錆剤、防凍剤、ポリマーディスパージョン、再乳化樹脂、および凝結調整剤ならびにセメント急硬材、ベントナイトなどの粘土鉱物、ゼオライトなどのイオン交換体、シリカ質微粉末、炭酸カルシウム、水酸化カルシウム、石膏、ケイ酸カルシウムなどや、ビニロン繊維、アクリル繊維、炭素繊維等の繊維状物質のうち1種又は2種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。 In the present invention, the coarse aggregate is further used as a concrete, or as an additive (agent), an antifoaming agent, a thickener, a rust inhibitor, a defrosting agent, a polymer dispersion, a re-emulsifying resin, and a setting modifier, Cement rapid hardwood, clay minerals such as bentonite, ion exchangers such as zeolite, siliceous fine powder, calcium carbonate, calcium hydroxide, gypsum, calcium silicate, etc. and fibrous forms such as vinylon fiber, acrylic fiber, carbon fiber It is possible to use 1 type (s) or 2 or more types of a substance in the range which does not inhibit substantially the objective of this invention.
以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
「実験例1」
CaO原料、Al2O3原料、Fe2O3原料、SiO2原料、CaSO4原料を表1に示す鉱物割合となるように配合し、混合粉砕した後1350℃で熱処理してクリンカを合成し、ボールミルを用いてブレーン比表面積で3000cm2/gに粉砕した。この粉砕物25gをアルミナ製るつぼに入れて電気炉内にセットし、炭酸ガスの流量を電気炉内容積1Lあたり0.05L/min、焼成温度600℃、1hr反応させ、生成した炭酸カルシウムの生成量を定量して膨張材とした。
この膨張材を使用して、セメントと膨張材からなる結合材100部中、膨張材を5部、結合材100部に対して減水剤1.5部、細骨材150部とをV型ブレンダーにて均一に混合した。そのグラウト用セメント組成物を20℃の室内で、結合材100部に対して練混ぜ水40部を添加して高速ハンドミキサを用いて練混ぜしグラウトモルタルを作製し、J14漏斗値、長さ変化率、圧縮強度、ひび割れ確認試験を行った。
さらに促進貯蔵試験したグラウト用セメント組成物についても同様な実験を行った。
なお、比較として炭酸ガス処理をせずクリンカを粉砕しただけの膨張材(実験No.1-8〜10)、炭酸ガス処理をせずクリンカを粉砕しただけの膨張材に炭酸カルシウム粉末を混合した膨張材(実験No.1-11)についても同様の実験を行った。
"Experiment 1"
The CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, CaSO 4 raw material are blended so as to have the mineral ratio shown in Table 1, mixed and pulverized, and then heat treated at 1350 ° C. to synthesize clinker. Then, it was pulverized to 3000 cm 2 / g with a Blaine specific surface area using a ball mill. 25 g of this pulverized product is put in an alumina crucible and set in an electric furnace, and the flow rate of carbon dioxide gas is reacted at 0.05 L / min per 1 L of electric furnace volume, at a firing temperature of 600 ° C. for 1 hr, to produce generated calcium carbonate The amount was quantified to obtain an expansion material.
Using this expandable material, in 100 parts of binder made of cement and expandable material, 5 parts of expandable material, 1.5 parts of water reducing agent and 150 parts of fine aggregate for 100 parts of bond material, V-type blender And mixed uniformly. In a room at the grout cement composition 20 ° C., to produce the grout mortar Shi kneading using a high-speed hand mixer by adding Mixing water 40 parts per binder 100 parts, J 14 funnel value, the length Degree of change, compressive strength, and crack confirmation test were conducted.
Furthermore, the same experiment was conducted on the cement composition for grout subjected to the accelerated storage test.
In addition, as a comparison, calcium carbonate powder was mixed with an expansion material (experiment No. 1-8 to 10) in which clinker was not pulverized without carbon dioxide treatment, and expansion material in which clinker was pulverized without carbon dioxide treatment. A similar experiment was conducted for the expansion material (Experiment No. 1-11).
(使用材料)
CaO原料:石灰石
Al2O3原料:ボーキサイト
Fe2O3原料:酸化鉄
SiO2原料:珪石
CaSO4原料:二水石膏
炭酸ガス:市販品
セメント:普通ポルトランドセメント、市販品
細骨材:石灰石砕砂F.M=2.5
炭酸カルシウム粉末:市販品、200メッシュ通過品
減水剤A:ナフタレンスルホン酸系、市販品、粉末状
(Materials used)
CaO raw material: Limestone Al 2 O 3 raw material: Bauxite Fe 2 O 3 raw material: Iron oxide SiO 2 raw material: Silica CaSO 4 raw material: Dihydrate gypsum Carbonate gas: Commercial cement: Normal Portland cement, Commercial fine aggregate: Limestone crushed sand F. M = 2.5
Calcium carbonate powder: Commercial product, 200-mesh water reducing agent A: Naphthalenesulfonic acid, commercial product, powder
(試験方法)
鉱物組成:化学組成と粉末X線回折の同定結果に基づいて計算により求めた。
炭酸カルシウムの生成量:示差熱天秤(TG−DTA)の500〜750℃の脱炭酸に伴う重量変化より定量した。
膨張材粒子内の鉱物分布:シリコン製の容器に膨張材を入れ、エポキシ樹脂を流しこみ硬化させ、硬化物をイオンビーム加工機(SM−09010、日本電子製)にて断面加工し、SEM−EDS分析装置にて確認した。
J14漏斗値:土木学会標準示方書(JSCE−F541)のJ14漏斗によるコンシステンシーの測定に準じて流下値を測定。
長さ変化率:JIS A 6202 付属書1 膨張材のモルタルによる膨張性試験方法に準じ材齢7日までの長さ変化率を測定した。
圧縮強度:土木学会標準示方書(JSCE−G541)「充てんモルタルの圧縮強度試験方法」に準じて、グラウトモルタルを、20℃、80%RHの恒温恒湿室で型枠に打設し、1日後からの養生を20℃水中養生として、材齢7日の圧縮強度を測定した。
促進貯蔵試験:グラウト用セメント組成物25kgを3重クラフト紙の内装に20μm厚の高密度ポリエチレンシートを貼り付けた梱包材内に25kg梱包、シールして35℃、90%RH室内で1ヶ月間存置した。
ひび割れ確認試験:上面をチッピングした既設コンクリート上に、長さ100cm×幅10cm×高さ10cmの型枠を組み付け、練混ぜたグラウトモルタルを流し込み、材齢1日で脱型した後、材齢28日における、ひび割れの有無について確認した。
ひび割れ抵抗性:直径10cm×高さ20cmの円柱鋼製型枠に外径6cmの鋼製円筒管(鋼管4mm肉厚)を中心にセットし、円柱鋼製型枠と鋼製円筒管の間隙に調整したグラウトモルタル(モルタル肉厚2cm)を流し込み、翌日に脱型後、20℃、60%RHで材齢28日におけるひび割れ発生の観察を行った。
(Test method)
Mineral composition: Obtained by calculation based on the chemical composition and the identification result of powder X-ray diffraction.
Amount of calcium carbonate produced: Quantified from the change in weight associated with decarboxylation at 500 to 750 ° C. on a differential thermal balance (TG-DTA).
Mineral distribution in the expanded material particles: The expanded material is put into a silicon container, the epoxy resin is poured and cured, and the cured product is cross-sectional processed with an ion beam processing machine (SM-09010, manufactured by JEOL), and SEM It confirmed with the EDS analyzer.
J 14 funnel value: measuring the flow-down value in accordance with the measurement of consistency by J 14 funnel of the Japan Society of Civil Engineers standard How to Display the document (JSCE-F541).
Length change rate: JIS A 6202 Annex 1 The length change rate up to 7 days of age was measured in accordance with the expansibility test method using mortar of the expansive material.
Compressive strength: In accordance with the Japan Society of Civil Engineers Standard Specification (JSCE-G541) "Testing method for compressive strength of filling mortar", grout mortar was placed in a mold in a constant temperature and humidity chamber at 20 ° C and 80% RH. The curing after 20 days was taken as 20 ° C. water curing, and the compressive strength at 7 days of age was measured.
Accelerated storage test: 25kg of grout cement composition is packed in 25kg in a packing material in which a high-density polyethylene sheet with a thickness of 20μm is attached to the interior of a triple kraft paper, and sealed for 1 month in a 35 ° C, 90% RH room Remained.
Crack confirmation test: A mold of 100 cm length x 10 cm width x 10 cm height was assembled on the existing concrete chipped on the upper surface, and the mixed grout mortar was poured. After demolding in one day, age 28 The presence or absence of cracks in the day was confirmed.
Crack resistance: Set in a cylindrical steel mold with a diameter of 10 cm and a height of 20 cm, centered on a steel cylindrical tube (steel pipe 4 mm thick) with an outer diameter of 6 cm, and in the gap between the cylindrical steel mold and the steel cylindrical tube The adjusted grout mortar (mortar thickness 2 cm) was poured, and after demolding the next day, the occurrence of cracks at the age of 28 days was observed at 20 ° C. and 60% RH.
実験No.1-4と実験No.1-11を比較すると、鉱物含有量は同様であるが、炭酸カルシウムを混合したものは促進貯蔵後の膨張率は極端に低下している。これは炭酸カルシウムの粒子が存在するのみでは、貯蔵安定性の向上には効果がないことを意味し、クリンカを炭酸ガス処理することによって、クリンカ表面に炭酸カルシウムの皮膜層が生成され、膨張に寄与する鉱物の貯蔵劣化を抑制しているものと推察できる。 Comparing Experiment No.1-4 and Experiment No.1-11, the mineral content is the same, but the mixture with calcium carbonate has an extremely low expansion rate after accelerated storage. This means that the presence of calcium carbonate particles alone has no effect on the improvement of storage stability, and by treating the clinker with carbon dioxide gas, a calcium carbonate film layer is formed on the clinker surface, which causes expansion. It can be inferred that the storage deterioration of the contributing minerals is suppressed.
「実験例2」
実験No.1-4で使用した膨張材二を用い添加率を表2のように変化させたこと以外は実験例1と同様に行った。結果を表2に示す。
"Experimental example 2"
The experiment was performed in the same manner as in Experimental Example 1 except that the expansion ratio 2 used in Experiment No. 1-4 was used and the addition rate was changed as shown in Table 2. The results are shown in Table 2.
「実験例3」
市販の膨張材を処理したこと以外は実験例1と同様に行った。結果を表3に示す。
"Experiment 3"
It carried out similarly to Experimental example 1 except having processed the commercially available expansion | swelling material. The results are shown in Table 3.
(使用材料)
市販膨張材A:遊離石灰50部、アウイン12部、カルシウムアルミノフェライト(4CaO・Al2O3・Fe2O3)5部、カルシウムシリケート(2CaO・SiO2)3部、無水石膏30部。
市販膨張材B:遊離石灰52部、カルシウムアルミノフェライト(4CaO・Al2O3・Fe2O3)4部、カルシウムシリケート(2CaO・SiO2)10部、カルシウムシリケート(3CaO・SiO2)12部、無水石膏20部。
(Materials used)
Commercial expansion material A: 50 parts of free lime, 12 parts of Auin, 5 parts of calcium aluminoferrite (4CaO.Al 2 O 3 .Fe 2 O 3 ), 3 parts of calcium silicate (2CaO.SiO 2 ), 30 parts of anhydrous gypsum.
Commercially available expandable material B: free lime 52 parts, calcium alumino ferrite (4CaO · Al 2 O 3 · Fe 2 O 3) 4 parts of calcium silicate (2CaO · SiO 2) 10 parts of calcium silicate (3CaO · SiO 2) 12 parts 20 parts anhydrous gypsum.
「実験例4」
実験No.1-4で使用した膨張材二を表4に調整し、さらに練混ぜ水、減水剤、細骨材を用い、JA漏斗値、ブリーディング率を測定したこと以外は、実験例1と同様に行なった。結果を表4に併記する。
JA漏斗値:土木学会標準示方書(JSCE−F531)「PCグラウトの流動性試験方法」に準じてJA漏斗値を測定
ブリーディング率:土木学会標準示方書(JSCE−F542)「充てんモルタルのブリーディング率および膨張率試験方法」に準じてブリーディング率を測定
"Experimental example 4"
Except that the expansion material 2 used in Experiment No.1-4 was adjusted to Table 4, and further the JA funnel value and bleeding rate were measured using mixing water, water reducing agent and fine aggregate. The same was done. The results are also shown in Table 4.
JA funnel value: JA Society Standards Specification (JSCE-F531) JA funnel value measured according to “PC grout fluidity test method” Bleeding rate: Japan Society of Civil Engineers Standard Specification (JSCE-F542) “Bleeding rate of filling mortar Bleeding rate is measured according to
(使用材料)
減水剤B:ポリカルボン酸系、市販品、粉末状
(Materials used)
Water reducing agent B: Polycarboxylic acid, commercially available, powder
「実験例5」
実験No.1-4で使用した粉末度3000cm2/gの膨張材二と実験No.3-1で使用した市販膨張材Aの炭酸ガス処理品を結合材100部中5部使用し表5に示す収縮低減剤を使用したこと以外は実験例1と同様に行い、乾燥収縮量と暴露試験を行った。結果を表5に示す。比較として未処理の市販膨張材Aについて同様な試験をした。
“Experimental Example 5”
Using 5 parts of 100 parts of binder of carbon dioxide treated product of expandable material 2 with a fineness of 3000 cm 2 / g used in Experiment No. 1-4 and commercially available expandable material A used in Experiment No. 3-1, Table 5 Except that the shrinkage reducing agent shown in Fig. 1 was used, it was carried out in the same manner as in Experimental Example 1, and a dry shrinkage amount and an exposure test were conducted. The results are shown in Table 5. As a comparison, a similar test was performed on an untreated commercial expansion material A.
(使用材料)
収縮低減剤:ポリオキシアルキレン誘導体、市販品
(試験方法)
乾燥収縮量:JIS A 6202 付属書1 膨張材のモルタルによる膨張性試験方法に準じ材齢7日まで水中、以降材齢28日まで20℃、60%RHで養生し、長さ変化率を測定して乾燥収縮量とした。
暴露試験:上面をチッピングした既設コンクリート上に、長さ300cm×幅30cm×厚み5cmの型枠を組み付け、練混ぜたグラウトモルタルを流し込み、打設後に材齢91日におけるひび割れの状態について確認した。
(Materials used)
Shrinkage reducing agent: polyoxyalkylene derivative, commercially available product (test method)
Drying shrinkage: JIS A 6202 Annex 1 In accordance with the expansibility test method using mortar of expansive material, it is cured at 20 ° C and 60% RH until the material age is 7 days in water, and then until the material age is 28 days, and the length change rate is measured. Thus, the amount of drying shrinkage was obtained.
Exposure test: A mold having a length of 300 cm, a width of 30 cm and a thickness of 5 cm was assembled on the existing concrete chipped on the upper surface, and the mixed grout mortar was poured. After the casting, the state of cracking at the age of 91 days was confirmed.
本発明のグラウト用セメント組成物を採用することにより長期間保管しても、製造直後とほぼ同等なモルタル物性を示し、製品価値を損なうことが無い等の優れた効果を奏し、土木・建築分野で幅広く使用することができる。 Even if it is stored for a long time by adopting the cement composition for grout of the present invention, it exhibits almost the same mortar physical properties as those immediately after production, and has excellent effects such as not damaging the product value. Can be used widely.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010274943A JP5744499B2 (en) | 2010-12-09 | 2010-12-09 | Grout cement composition and grout material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010274943A JP5744499B2 (en) | 2010-12-09 | 2010-12-09 | Grout cement composition and grout material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012121775A JP2012121775A (en) | 2012-06-28 |
JP5744499B2 true JP5744499B2 (en) | 2015-07-08 |
Family
ID=46503648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010274943A Active JP5744499B2 (en) | 2010-12-09 | 2010-12-09 | Grout cement composition and grout material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5744499B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6338819B2 (en) * | 2013-02-28 | 2018-06-06 | デンカ株式会社 | Concrete composition and method for producing the same |
JP6186170B2 (en) * | 2013-05-10 | 2017-08-23 | デンカ株式会社 | Cement quick setting material and cement composition using the same |
JP6158585B2 (en) * | 2013-05-10 | 2017-07-05 | デンカ株式会社 | CaO-Al2O3-based clinker, cement admixture using the same, cement composition, and method for producing the same |
JP6401951B2 (en) * | 2014-07-11 | 2018-10-10 | デンカ株式会社 | Cement composition and method for producing the same |
CN104671688B (en) * | 2015-02-05 | 2017-01-18 | 江苏苏博特新材料股份有限公司 | Modified calcium oxide expanding clinker as well as preparation method and application thereof |
JPWO2020049819A1 (en) * | 2018-09-06 | 2021-08-12 | デンカ株式会社 | Slurry expansion material composition |
JP7260998B2 (en) * | 2018-11-14 | 2023-04-19 | デンカ株式会社 | Expansive composition, cement composition and cement-concrete |
JP7293019B2 (en) * | 2019-07-18 | 2023-06-19 | デンカ株式会社 | EXPANDING COMPOSITION FOR CEMENT, CEMENT COMPOSITION, AND METHOD FOR PRODUCING THE EXPANSION COMPOSITION FOR CEMENT |
US20230023151A1 (en) * | 2021-07-01 | 2023-01-26 | Solidia Technologies, Inc. | Production of supplementary cementitious materials through semi-wet carbonation, cyclic carbonation, non-slurry carbonation, high temperature carbonation and granulation carbonation |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2004529B (en) * | 1977-09-19 | 1982-04-21 | Raychem Corp | Expansive cement compositions |
JP2003277121A (en) * | 2002-03-26 | 2003-10-02 | Denki Kagaku Kogyo Kk | Cement composition and high fluidity self-packing concrete obtained by using the same |
EP2441738B1 (en) * | 2009-06-12 | 2018-07-04 | Denka Company Limited | Expansive admixture and method for producing same |
-
2010
- 2010-12-09 JP JP2010274943A patent/JP5744499B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012121775A (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5744499B2 (en) | Grout cement composition and grout material | |
KR101719832B1 (en) | Expansive admixture and method for producing same | |
WO2008059605A1 (en) | Cement mortar composition for grout and grout mortar obtained from the same | |
KR101343803B1 (en) | Concrete composition using the blast-furnace slag and method for the preparation thereof | |
TWI701228B (en) | Concrete composition and method for producing the same | |
JP5923104B2 (en) | Early mold release material and method for producing concrete product | |
JP6137770B2 (en) | Repair mortar composition | |
TWI815994B (en) | Cement admixtures, expanding materials and cement compositions | |
KR20180002288A (en) | Grout material composition and high fluidity-grout material using the same | |
JP7351660B2 (en) | High strength concrete for spraying | |
JP7037879B2 (en) | Early-strength admixture for secondary products and early-strength concrete for secondary products | |
JP6386902B2 (en) | Shotcrete and manufacturing method thereof | |
JP2022176037A (en) | Grout material, grout mortar composition, and cured body | |
JP6333101B2 (en) | Concrete binder for blast furnace cement concrete. | |
JP3747988B2 (en) | Expandable material composition and expanded cement composition | |
JP7542130B2 (en) | Cement admixture, cement composition, and method for producing concrete product | |
JP4744678B2 (en) | Cement admixture and cement composition | |
JP2005119885A (en) | High strength mortar composition | |
JP5110774B2 (en) | High fluidity admixture | |
JP6826456B2 (en) | Expansion material for inseparable concrete in water, inseparable concrete composition in water and its cured product | |
JP6837856B2 (en) | Expandable admixture for exposed concrete and exposed concrete containing it | |
JP4459380B2 (en) | Cement admixture and cement composition | |
JP6797028B2 (en) | Hexavalent chromium elution reducing agent and a method for reducing hexavalent chromium elution using it. | |
JP2010235400A (en) | Spray material and spraying construction method using it | |
JP2005194168A (en) | Cement admixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150428 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150430 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5744499 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |