[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5740925B2 - Conductive coating composition and laminate - Google Patents

Conductive coating composition and laminate Download PDF

Info

Publication number
JP5740925B2
JP5740925B2 JP2010254419A JP2010254419A JP5740925B2 JP 5740925 B2 JP5740925 B2 JP 5740925B2 JP 2010254419 A JP2010254419 A JP 2010254419A JP 2010254419 A JP2010254419 A JP 2010254419A JP 5740925 B2 JP5740925 B2 JP 5740925B2
Authority
JP
Japan
Prior art keywords
coating composition
conductive
conductive polymer
film
conductive coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010254419A
Other languages
Japanese (ja)
Other versions
JP2012102304A (en
Inventor
千種 康男
康男 千種
正人 山西
正人 山西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Chemtex Corp
Original Assignee
Nagase Chemtex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Chemtex Corp filed Critical Nagase Chemtex Corp
Priority to JP2010254419A priority Critical patent/JP5740925B2/en
Priority to TW100138442A priority patent/TWI541304B/en
Priority to KR1020110116978A priority patent/KR20120052164A/en
Priority to CN201110358012.8A priority patent/CN102559043B/en
Publication of JP2012102304A publication Critical patent/JP2012102304A/en
Application granted granted Critical
Publication of JP5740925B2 publication Critical patent/JP5740925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/16Anti-static materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Description

本発明は、導電膜、帯電防止膜等を形成することができる導電性コーティング組成物、及びこれを使用してなる積層体に関する。   The present invention relates to a conductive coating composition capable of forming a conductive film, an antistatic film, and the like, and a laminate formed using the same.

液晶ディスプレイ等のディスプレイの光学フィルム表面に、静電気により塵埃が付着するとディスプレイの視認性が低下することになる。これを防止する手法として、光学フィルム表面に帯電防止膜を設けることが知られている。   If dust adheres to the surface of an optical film of a display such as a liquid crystal display due to static electricity, the visibility of the display is lowered. As a technique for preventing this, it is known to provide an antistatic film on the optical film surface.

そのような帯電防止膜に配合する導電材としては、従来、アンチモンドープ酸化錫(ATO)、スズドープ酸化インジウム(ITO)等の、導電性を示す無機微粒子が使用されている。このような無機微粒子は透明性や膜強度に優れるという利点があった。   As a conductive material to be blended in such an antistatic film, inorganic fine particles exhibiting conductivity such as antimony-doped tin oxide (ATO) and tin-doped indium oxide (ITO) have been conventionally used. Such inorganic fine particles have the advantage of being excellent in transparency and film strength.

しかしながら、無機微粒子を含む帯電防止膜は通常、スパッタリングや真空蒸着等により形成されるものであり、その形成プロセスに高価な設備と、例えば500〜600℃といった高温の設定が必要になるという欠点があった。   However, the antistatic film containing inorganic fine particles is usually formed by sputtering, vacuum deposition or the like, and there is a disadvantage that expensive equipment and a high temperature setting of, for example, 500 to 600 ° C. are required for the formation process. there were.

また、無機微粒子を含む帯電防止膜をガラス基板上に成膜すると、反射率が高くなる結果、ガラスとの屈折率差が大きくなり、ひいてはディスプレイの視認性が低下するという問題もあった。さらに、インジウムは希少金属であり、供給源が限られており、供給量の変動等があるため、使用を回避することが望ましい。   In addition, when an antistatic film containing inorganic fine particles is formed on a glass substrate, the reflectance increases, resulting in a problem that the difference in refractive index from the glass increases and the visibility of the display decreases. Furthermore, since indium is a rare metal, its supply source is limited, and there are fluctuations in the supply amount, it is desirable to avoid use.

上述の無機微粒子に代わる導電材として、例えばポリチオフェン等の、導電性の有機高分子材料を液晶ディスプレイの帯電防止膜に使用することが提案されている(例えば、特許文献1及び2を参照)。また、例えば基材への密着性や膜硬度向上を目的として、導電性の有機高分子材料と各種アルコキシシラン類を併用して帯電防止膜を形成することも提案されている(例えば、特許文献3、4及び5を参照)。   It has been proposed to use a conductive organic polymer material such as polythiophene for the antistatic film of a liquid crystal display as a conductive material in place of the above-mentioned inorganic fine particles (see, for example, Patent Documents 1 and 2). In addition, for example, for the purpose of improving adhesion to a substrate and film hardness, it has also been proposed to form an antistatic film using a combination of a conductive organic polymer material and various alkoxysilanes (for example, Patent Documents). 3, 4, and 5).

有機系の導電性材料によると、スパッタリングや真空蒸着によることなく、一般的な塗工手段により帯電防止膜を形成することができるので、簡易かつ低温のプロセスにより成膜できるという利点がある。しかも、得られる帯電防止膜は、導電性及び透過性が高く、基材との密着性にも優れているという利点があった。   According to the organic conductive material, since the antistatic film can be formed by a general coating means without using sputtering or vacuum deposition, there is an advantage that the film can be formed by a simple and low-temperature process. Moreover, the resulting antistatic film has the advantages of high conductivity and permeability and excellent adhesion to the substrate.

しかしながら、従来知られている有機系の帯電防止膜は、膜硬度が十分ではなく、表面に傷がつきやすいという欠点があった。さらには、耐薬品性が十分ではないという問題もあった。例えば液晶ディスプレイにおける帯電防止膜として使用する場合には、帯電防止膜形成後、その表面に偏光板を設置する前に、アセトン等の有機溶剤を用いた洗浄や、アルカリ洗浄を行なう必要があるが、これらの洗浄により帯電防止膜が変質しやすく、改善が求められている。   However, conventionally known organic antistatic films have the disadvantage that the film hardness is not sufficient and the surface is easily scratched. Furthermore, there was a problem that the chemical resistance was not sufficient. For example, when it is used as an antistatic film in a liquid crystal display, it is necessary to perform washing with an organic solvent such as acetone or alkali washing after forming the antistatic film and before setting a polarizing plate on the surface. Therefore, the antistatic film is easily changed by these washings, and improvement is demanded.

特開平10−96953号公報JP-A-10-96953 特開2004−246080号公報JP 2004-246080 A 特開2005−82768号公報JP 2005-82768 A 特開2006−294532号公報JP 2006-294532 A 特表2010−528123号公報Special table 2010-528123

本発明は、上記現状に鑑み、導電性及び透過性が高く、基材との密着性に優れていることに加え、硬度が高く、しかも耐薬品性に優れた帯電防止膜を形成することができる導電性コーティング組成物を提供することを課題とする。   In view of the present situation, the present invention can form an antistatic film having high hardness and high chemical resistance in addition to high conductivity and permeability and excellent adhesion to a substrate. It is an object of the present invention to provide a conductive coating composition that can be formed.

本発明者らが鋭意検討したところ、導電性ポリマーを粒径の小さな粒子状のものとし、これを、特定の加水分解性シラン化合物と組み合わせて使用することで前記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors, it was found that the above-mentioned problems can be solved by using a conductive polymer in the form of particles having a small particle size and using this in combination with a specific hydrolyzable silane compound. The invention has been completed.

すなわち本発明は、粒径(D50)が200nm以下の導電性ポリマー粒子、及び下記一般式により表されるアルコキシシランオリゴマーを含むバインダー成分、を含む、導電性コーティング組成物に関する。   That is, the present invention relates to a conductive coating composition comprising conductive polymer particles having a particle size (D50) of 200 nm or less and a binder component containing an alkoxysilane oligomer represented by the following general formula.

式中、R及びRは、同一又は異なって、炭素数1〜4のアルキル基を表す。R及びRは、同一又は異なって、H(水素原子)、水酸基、又は、炭素数1〜4のアルコキシ基を表す。ただし、複数のR及びRのうち少なくとも1個はアルコキシ基である。nは、2〜20の整数を表す。 In the formula, R 1 and R 2 are the same or different and each represents an alkyl group having 1 to 4 carbon atoms. R 3 and R 4 are the same or different and represent H (hydrogen atom), a hydroxyl group, or an alkoxy group having 1 to 4 carbon atoms. However, at least one of the plurality of R 3 and R 4 is an alkoxy group. n represents an integer of 2 to 20.

また本発明は、基材と、当該基材上に設けられた導電膜とを含む積層体であって、前記導電膜は、前記導電性コーティング組成物から形成されたものである、積層体にも関する。   Further, the present invention provides a laminate including a base material and a conductive film provided on the base material, wherein the conductive film is formed from the conductive coating composition. Also related.

本発明の導電性コーティング組成物によれば、一般的な塗工手法により低温で基材に塗布することで帯電防止膜を形成することができ、塗布から成膜に至るまでのプロセスを簡易かつ安価に実施することができる。   According to the conductive coating composition of the present invention, an antistatic film can be formed by applying to a substrate at a low temperature by a general coating method, and the process from application to film formation can be simplified and simplified. It can be implemented at low cost.

本発明の導電性コーティング組成物から得られる導電膜は、導電性が高い(すなわち表面抵抗率が1.0E+10Ω/□以下と低い)と共に、透過性が高く、基材との密着性にも優れている。さらに、鉛筆硬度がB以上と膜硬度が高い。   The conductive film obtained from the conductive coating composition of the present invention has high conductivity (that is, low surface resistivity of 1.0E + 10Ω / □ or less), high permeability, and excellent adhesion to a substrate. ing. Furthermore, the pencil hardness is B or higher and the film hardness is high.

本発明の導電性コーティング組成物をガラス基材に塗布した場合には、鉛筆硬度がH以上と膜硬度がさらに高くなると共に、優れた耐薬品性(耐有機溶剤性、耐アルカリ性)も発揮することができる。また、形成される導電膜の透過性が極めて高い。さらに、ガラスとの屈折率差が小さいため、ガラス表面にある欠陥(孔又はディンプル)が見えにくくなる効果を期待できる。   When the conductive coating composition of the present invention is applied to a glass substrate, the pencil hardness is H or higher and the film hardness is further increased, and excellent chemical resistance (organic solvent resistance, alkali resistance) is exhibited. be able to. In addition, the formed conductive film has extremely high transparency. Furthermore, since the difference in refractive index with glass is small, an effect of making it difficult to see defects (holes or dimples) on the glass surface can be expected.

一般的な液晶表示措置の積層構造を示す模式図Schematic diagram showing the laminated structure of general liquid crystal display measures

以下、本発明の詳細を説明する。   Details of the present invention will be described below.

本発明の導電性コーティング組成物は、導電性ポリマー粒子とバインダー成分とを含有する。   The conductive coating composition of the present invention contains conductive polymer particles and a binder component.

(導電性ポリマー粒子)
本発明で用いられる導電性ポリマーは、導電性を示す高分子材料である。具体的には、ポリチオフェン、ポリアニリン、ポリピロール、ポリパラフェニレン、ポリパラフェニレンビニレン、これらの誘導体などのπ共役系導電性ポリマーが挙げられる。
なかでも、ポリチオフェンとドーパントとの複合体からなるポリチオフェン系導電性ポリマーが高導電性と化学安定性の観点から好適に用いられる。ポリチオフェン系導電性ポリマーは、より詳しくは、ポリ(3,4−二置換チオフェン)とドーパントからなる複合体である。
(Conductive polymer particles)
The conductive polymer used in the present invention is a polymer material exhibiting conductivity. Specific examples include π-conjugated conductive polymers such as polythiophene, polyaniline, polypyrrole, polyparaphenylene, polyparaphenylene vinylene, and derivatives thereof.
Among these, a polythiophene conductive polymer composed of a composite of polythiophene and a dopant is preferably used from the viewpoints of high conductivity and chemical stability. More specifically, the polythiophene conductive polymer is a composite composed of poly (3,4-disubstituted thiophene) and a dopant.

ポリチオフェン系導電性ポリマーを構成するポリ(3,4−二置換チオフェン)は、以下の式(1):


The poly (3,4-disubstituted thiophene) constituting the polythiophene conductive polymer has the following formula (1):


で示される反復構造単位からなる陽イオン形態のポリチオフェンであることが好ましい。当該陽イオン形態のポリチオフェンとは、ドーパントであるポリ陰イオンとの複合体になるために、ポリチオフェンの一部から電子が引き抜かれることによって一部が陽イオン形態になっているポリチオフェンのことをいう。 It is preferable that it is a polythiophene of the cationic form which consists of a repeating structural unit shown by these. The cationic polythiophene refers to a polythiophene that is partly in a cationic form by extracting electrons from a part of the polythiophene in order to form a complex with a polyanion that is a dopant. .

式(1)中、R及びRは、相互に独立して、水素原子又はC1−4のアルキル基を表すか、あるいは、RとRが結合して環状構造を形成する、置換又は無置換のC1−4のアルキレン基を表す。上記C1−4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基などが挙げられる。RとRが結合して環状構造を形成する、置換又は無置換のC1−4のアルキレン基としては、例えば、メチレン基、1,2−エチレン基、1,3−プロピレン基、1,4−ブチレン基、1−メチル−1,2−エチレン基、1−エチル−1,2−エチレン基、1−メチル−1,3−プロピレン基、2−メチル−1,3−プロピレン基などが挙げられる。C1−4のアルキレン基が有することができる置換基としては、ハロゲン基や、フェニル基などが挙げられる。好適なC1−4のアルキレン基としては、メチレン基、1,2−エチレン基、1,3−プロピレン基が挙げられ、1,2−エチレン基が特に好適である。上記のアルキレン基を持つポリチオフェンとして、ポリ(3,4−エチレンジオキシチオフェン)が特に好ましい。 In formula (1), R 4 and R 5 each independently represent a hydrogen atom or a C 1-4 alkyl group, or R 4 and R 5 are bonded to form a cyclic structure. A substituted or unsubstituted C1-4 alkylene group is represented. Examples of the C 1-4 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group. Examples of the substituted or unsubstituted C 1-4 alkylene group in which R 4 and R 5 are bonded to form a cyclic structure include, for example, a methylene group, 1,2-ethylene group, 1,3-propylene group, 1 , 4-butylene group, 1-methyl-1,2-ethylene group, 1-ethyl-1,2-ethylene group, 1-methyl-1,3-propylene group, 2-methyl-1,3-propylene group, etc. Is mentioned. Examples of the substituent that the C 1-4 alkylene group may have include a halogen group and a phenyl group. Suitable C 1-4 alkylene groups include methylene, 1,2-ethylene, and 1,3-propylene, with 1,2-ethylene being particularly preferred. Poly (3,4-ethylenedioxythiophene) is particularly preferable as the polythiophene having the above alkylene group.

ポリチオフェン系導電性ポリマーを構成するドーパントは、上述のポリチオフェンとイオン対をなすことにより複合体を形成し、ポリチオフェンを水中に安定に分散させることができる陰イオン形態のポリマー、すなわちポリ陰イオンであることが好ましい。このようなドーパントとしては、例えば、カルボン酸ポリマー類(例えば、ポリアクリル酸、ポリマレイン酸、ポリメタクリル酸など)、スルホン酸ポリマー類(例えば、ポリスチレンスルホン酸、ポリビニルスルホン酸など)などが挙げられる。これらのカルボン酸ポリマー類およびスルホン酸ポリマー類は、ビニルカルボン酸類およびビニルスルホン酸類と他の重合可能なモノマー類(例えば、アクリレート類、スチレンなど)との共重合体であってもよい。なかでも、ポリスチレンスルホン酸が特に好ましい。   The dopant constituting the polythiophene-based conductive polymer is an anionic polymer that forms a complex by forming an ion pair with the polythiophene described above, and can stably disperse the polythiophene in water, that is, a polyanion. It is preferable. Examples of such dopants include carboxylic acid polymers (eg, polyacrylic acid, polymaleic acid, polymethacrylic acid, etc.), sulfonic acid polymers (eg, polystyrene sulfonic acid, polyvinyl sulfonic acid, etc.), and the like. These carboxylic acid polymers and sulfonic acid polymers may be copolymers of vinyl carboxylic acids and vinyl sulfonic acids with other polymerizable monomers (eg, acrylates, styrene, etc.). Of these, polystyrene sulfonic acid is particularly preferable.

上記のポリスチレンスルホン酸は、重量平均分子量が20000より大きく、500000以下であることが好ましい。より好ましくは40000〜200000である。分子量がこの範囲外のポリスチレンスルホン酸を使用すると、ポリチオフェン系導電性ポリマーの水に対する分散安定性が低下する場合がある。尚、上記ポリマーの重量平均分子量はゲル透過クロマトグラフィー(GPC)にて測定した値である。測定にはウォーターズ社製ultrahydrogel500カラムを使用する。   The polystyrene sulfonic acid preferably has a weight average molecular weight of more than 20000 and 500,000 or less. More preferably, it is 40000-200000. If polystyrene sulfonic acid having a molecular weight outside this range is used, the dispersion stability of the polythiophene conductive polymer in water may be lowered. The weight average molecular weight of the polymer is a value measured by gel permeation chromatography (GPC). For the measurement, an ultrahydrogel 500 column manufactured by Waters is used.

ポリチオフェン系導電性ポリマーは酸化剤を用いた水中での酸化重合によって得ることができる。当該酸化重合では2種類の酸化剤(第一酸化剤及び第二酸化剤)が使用される。好適な第一酸化剤としては、例えば、ペルオキソ二硫酸、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸アンモニウム、過酸化水素、過マンガン酸カリウム、二クロム酸カリウム、過ホウ酸アルカリ塩、銅塩等が挙げられる。これらの第一酸化剤の中で、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸アンモニウム、及び、ペルオキソ二硫酸が最も好適である。上記第一酸化剤の使用量は、使用するチオフェン類モノマーに対して、1.5〜3.0mol当量が好ましく、2.0〜2.6mol当量がさらに好ましい。   The polythiophene conductive polymer can be obtained by oxidative polymerization in water using an oxidizing agent. In the oxidative polymerization, two kinds of oxidizing agents (first oxidizing agent and second oxidizing agent) are used. Suitable first oxidizing agents include, for example, peroxodisulfuric acid, sodium peroxodisulfate, potassium peroxodisulfate, ammonium peroxodisulfate, hydrogen peroxide, potassium permanganate, potassium dichromate, alkali perborate, copper Examples include salts. Of these primary oxidants, sodium peroxodisulfate, potassium peroxodisulfate, ammonium peroxodisulfate, and peroxodisulfate are most preferred. The amount of the first oxidizing agent used is preferably 1.5 to 3.0 mol equivalent, more preferably 2.0 to 2.6 mol equivalent, relative to the thiophene monomer used.

好適な第二酸化剤としては、金属イオン(例えば、鉄、コバルト、ニッケル、モリブデン、バナジウムのイオン)を触媒量で添加することが好ましい。なかでも、鉄イオンが最も有効である。金属イオンの添加量は、使用するチオフェン類モノマーに対して、0.005〜0.1mol当量が好ましく、0.01〜0.05mol当量がさらに好ましい。   As a suitable second dioxide agent, it is preferable to add a metal ion (for example, iron, cobalt, nickel, molybdenum, vanadium ion) in a catalytic amount. Of these, iron ions are the most effective. The amount of metal ion added is preferably 0.005 to 0.1 mol equivalent, more preferably 0.01 to 0.05 mol equivalent, relative to the thiophene monomer used.

本酸化重合では水を反応溶媒として用いる。水に加えて、メタノール、エタノール、2−プロパノール、1−プロパノールなどのアルコールや、アセトン、アセトニトリルなどの水溶性溶媒を添加することもできる。   In this oxidative polymerization, water is used as a reaction solvent. In addition to water, alcohols such as methanol, ethanol, 2-propanol, and 1-propanol, and water-soluble solvents such as acetone and acetonitrile can be added.

以上の酸化重合によって導電性ポリマーの水分散体が得られる。 本発明の導電性コーティング組成物は、粒子状の導電性ポリマーを含有する。このような導電性ポリマー粒子は、導電性ポリマーの水分散体に含まれる導電性ポリマー粒子であってもよい。当該水分散体は、上述した酸化重合により製造することができる。また、有機溶媒(特にエタノール等のアルコール)分散体に含まれる導電性ポリマー粒子であってもよい。このような導電性ポリマーの有機溶媒分散体は、例えば特許第4163867号公報に記載の方法に準じて製造することができる。   An aqueous dispersion of a conductive polymer is obtained by the above oxidative polymerization. The conductive coating composition of the present invention contains a particulate conductive polymer. Such conductive polymer particles may be conductive polymer particles contained in an aqueous dispersion of a conductive polymer. The aqueous dispersion can be produced by the oxidation polymerization described above. Moreover, the conductive polymer particle contained in the organic solvent (especially alcohol, such as ethanol) dispersion may be sufficient. Such an organic solvent dispersion of a conductive polymer can be produced, for example, according to the method described in Japanese Patent No. 4163867.

本発明で使用する導電性ポリマー粒子の粒径は200nm以下であることが必須である。200nm以下と粒径が小さい粒子を用いることで、導電性ポリマーとアルコキシシランオリゴマーとが複合して形成される導電性膜の緻密性が向上し、膜硬度が向上する。具体的には、アルコキシシランオリゴマーが形成する緻密な構造の内部に導電性ポリマー粒子が分散性良く入り込むことが可能となるため、膜硬度が向上すると共に、高い導電性を発揮することができる。また、同様の理由により、本発明の導電性コーティング組成物をガラス基材上に塗布した場合には、膜硬度がH以上と膜硬度がさらに高くなると共に、耐薬品性(耐有機溶剤性、耐アルカリ性)が改善される。粒径が200nmを超える粒子を使用する場合には、導電性が低いことに加えて、膜硬度及び耐薬品性の改善を達成することができない。粒径が小さいほど上記効果の改善度合いが大きくなるため、導電性ポリマー粒子の粒径は60nm以下が好ましく、30nm以下がより好ましい。粒径の下限は特に限定されないが、例えば、1nm以上であり、好ましくは3nm以上である。より好ましく5nm以上、又は、10nm以上である。本発明では、導電性ポリマー粒子の粒径は、導電性粒子の個数基準の積算(累積)分布を測定し、当該積算分布における積算値50%の粒径として算出する。   The particle size of the conductive polymer particles used in the present invention is essential to be 200 nm or less. By using particles having a small particle diameter of 200 nm or less, the denseness of the conductive film formed by combining the conductive polymer and the alkoxysilane oligomer is improved, and the film hardness is improved. Specifically, since the conductive polymer particles can enter the dense structure formed by the alkoxysilane oligomer with good dispersibility, the film hardness can be improved and high conductivity can be exhibited. For the same reason, when the conductive coating composition of the present invention is applied on a glass substrate, the film hardness is further increased to H or higher, and the chemical resistance (organic solvent resistance, Alkali resistance) is improved. In the case of using particles having a particle size exceeding 200 nm, in addition to low conductivity, improvement in film hardness and chemical resistance cannot be achieved. Since the degree of improvement in the above effect increases as the particle size decreases, the particle size of the conductive polymer particles is preferably 60 nm or less, and more preferably 30 nm or less. Although the minimum of a particle size is not specifically limited, For example, it is 1 nm or more, Preferably it is 3 nm or more. More preferably, it is 5 nm or more, or 10 nm or more. In the present invention, the particle size of the conductive polymer particles is calculated as a particle size having an integrated value of 50% in the integrated distribution by measuring the number-based integrated (cumulative) distribution of the conductive particles.

導電性ポリマー粒子の粒径は、上述した導電性ポリマーの分散体を製造する際に分散条件を適宜選択することで、容易に調整することが可能である(例えば、特許第3966252号公報の段落[0042]を参照)。具体的には、ホモジナイザー等の分散攪拌機を使用することができる。(例えば、特開2010−24304号公報の段落[0019]を参照)。   The particle diameter of the conductive polymer particles can be easily adjusted by appropriately selecting the dispersion conditions when producing the above-described conductive polymer dispersion (for example, paragraph of Japanese Patent No. 3966252). [0042]). Specifically, a dispersion stirrer such as a homogenizer can be used. (For example, see paragraph [0019] of JP 2010-24304 A).

(バインダー成分)
本発明の導電性コーティング組成物は、導電性ポリマー粒子と共に、バインダー成分を含有する。バインダー成分は導電性コーティング組成物が基材上で膜を形成するために必要な成分である。本発明ではバインダー成分は1種類のみからなるものでもよいし、2種類以上を併用するものであってもよい。しかし、本発明では、バインダー成分として、少なくともアルコキシシランオリゴマーを含有することを必須とする。
(Binder component)
The conductive coating composition of the present invention contains a binder component together with conductive polymer particles. The binder component is a component necessary for the conductive coating composition to form a film on the substrate. In the present invention, the binder component may be composed of only one type, or two or more types may be used in combination. However, in the present invention, it is essential to contain at least an alkoxysilane oligomer as a binder component.

バインダー成分の総配合量は、前記導電性ポリマー粒子100重量部に対して150〜10000重量部であることが好ましい。150重量部以上であると、バインダー成分の使用割合が十分となり、形成される導電膜で良好な硬度及び耐薬品性を得ることができる。10000重量部以下であると、導電性ポリマーが十分量含まれることになるため、高い導電性と良好な耐薬品性を持つ導電膜を形成することが可能になる。より好ましくは300〜7000重量部である。   The total amount of the binder component is preferably 150 to 10,000 parts by weight with respect to 100 parts by weight of the conductive polymer particles. When it is 150 parts by weight or more, the use ratio of the binder component becomes sufficient, and good hardness and chemical resistance can be obtained with the formed conductive film. When the amount is 10,000 parts by weight or less, a sufficient amount of the conductive polymer is contained, so that a conductive film having high conductivity and good chemical resistance can be formed. More preferably, it is 300 to 7000 parts by weight.

(アルコキシシランオリゴマー)
本発明のコーティング組成物には、アルコキシシランオリゴマーが含まれる。当該アルコキシシランオリゴマーが塗膜において緻密な構造を形成するため、本発明では硬度の高い導電膜が得られるものと考えられる。さらに、小粒径の導電性ポリマー粒子がその緻密構造の内部に分散性良く入り込むために、硬度及び耐薬品性が優れると共に、高い導電性を有する導電膜を得ることができる。
(Alkoxysilane oligomer)
The coating composition of the present invention includes an alkoxysilane oligomer. Since the alkoxysilane oligomer forms a dense structure in the coating film, it is considered that a conductive film having high hardness can be obtained in the present invention. Furthermore, since the conductive polymer particles having a small particle diameter enter the dense structure with good dispersibility, a conductive film having excellent hardness and chemical resistance and high conductivity can be obtained.

アルコキシシランオリゴマーとは、アルコキシシランのモノマー同士が縮合することで形成される高分子量化されたアルコキシシランであり、シロキサン結合(Si−O−Si)結合を1分子内に1個以上有するオリゴマーのことをいう。重量平均分子量は特に限定されないが、152より大きく、4000以下であることが好ましい。より好ましくは、500〜1500程度が好ましい。尚、上記オリゴマーの重量平均分子量はゲル透過クロマトグラフィー(GPC)にて測定した値である。測定にはウォーターズ社製ultrahydrogel500カラムを使用する。   An alkoxysilane oligomer is a high molecular weight alkoxysilane formed by condensation of monomers of alkoxysilane, and is an oligomer having one or more siloxane bonds (Si—O—Si) bonds in one molecule. That means. The weight average molecular weight is not particularly limited, but is preferably larger than 152 and not larger than 4000. More preferably, about 500-1500 is preferable. The weight average molecular weight of the oligomer is a value measured by gel permeation chromatography (GPC). For the measurement, an ultrahydrogel 500 column manufactured by Waters is used.

本発明で使用するアルコキシシランオリゴマーは下記一般式により表される。当該式より明らかなとおり、本発明のアルコキシシランオリゴマーは、従来使用されているアルコキシシランのモノマー(1分子あたりケイ素原子を1個含む化合物)や、エポキシ基を有するアルコキシシラン化合物、ポリエーテル又はポリエステル等で変性されているアルコキシシラン化合物とは異なる化合物である。   The alkoxysilane oligomer used in the present invention is represented by the following general formula. As is apparent from the formula, the alkoxysilane oligomer of the present invention is a conventionally used alkoxysilane monomer (compound containing one silicon atom per molecule), an alkoxysilane compound having an epoxy group, polyether or polyester. It is a compound different from the alkoxysilane compound modified by the like.

式中、R及びRは、同一又は異なって、炭素数1〜4のアルキル基を表す。R及びRは、同一又は異なって、H(水素原子)、水酸基、又は、炭素数1〜4のアルコキシ基を表す。ただし、複数のR及びRのうち少なくとも1個はアルコキシ基である。nは、2〜20の整数を表し、より好ましくは2〜14の整数を表す。炭素数1〜4のアルキル基としては、例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、t−ブチル等が挙げられる。炭素数1〜4のアルコキシ基としては、例えば、メトキシ、エトキシ、n−プロポキシ、イソプロポキシ、n−ブトキシ、イソブトキシ、t−ブトキシ等が挙げられる。本発明で使用するアルコキシシランオリゴマーは、下記一般式により表される化合物1種類のみからなるものでもよいし、複種類の混合物であってもよい。 In the formula, R 1 and R 2 are the same or different and each represents an alkyl group having 1 to 4 carbon atoms. R 3 and R 4 are the same or different and represent H (hydrogen atom), a hydroxyl group, or an alkoxy group having 1 to 4 carbon atoms. However, at least one of the plurality of R 3 and R 4 is an alkoxy group. n represents an integer of 2 to 20, more preferably an integer of 2 to 14. Examples of the alkyl group having 1 to 4 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl and the like. Examples of the alkoxy group having 1 to 4 carbon atoms include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, t-butoxy and the like. The alkoxysilane oligomer used in the present invention may be composed of only one type of compound represented by the following general formula, or may be a mixture of multiple types.

本発明では、バインダー成分として、分子内にあらかじめシロキサン結合を持つアルコキシシランオリゴマーを使用することで、シロキサン結合を持たないアルコキシシランモノマーやエポキシシラン等と比較して、導電性膜内に、より緻密な構造を形成しやすくなり、その結果、本発明の優れた効果を達成できると推定される。この効果は、成膜温度がより低温になるほど顕著である。また、バインダー成分として、アルコキシシランポリマー(アルコキシシランオリゴマーよりも縮合数nが大きいもの)を使用した場合には、立体反発が大きくなるため、反応性が悪くなり緻密な構造を形成しにくくなることで、その結果、膜硬度が弱くなると推定される。この傾向は分子量が大きくなるほど顕著である。   In the present invention, by using an alkoxysilane oligomer having a siloxane bond in the molecule in advance as a binder component, the conductive film is more dense than an alkoxysilane monomer or epoxysilane having no siloxane bond. As a result, it is presumed that the excellent effect of the present invention can be achieved. This effect becomes more prominent as the film forming temperature becomes lower. In addition, when an alkoxysilane polymer (with a condensation number n larger than that of an alkoxysilane oligomer) is used as a binder component, the steric repulsion increases, and the reactivity becomes poor and it is difficult to form a dense structure. As a result, it is estimated that the film hardness becomes weak. This tendency becomes more prominent as the molecular weight increases.

導電性コーティング組成物に含まれる全てのバインダー成分に対するアルコキシシランオリゴマーの配合量は97〜100重量%であることが好ましい。97重量%以上であると、アルコキシシランオリゴマーの配合による膜の緻密性が十分なレベルに達し、高い膜硬度及び優れた耐薬品性を示す導電膜の形成が可能となる。より好ましくは98.5重量%以上である。   It is preferable that the compounding quantity of the alkoxysilane oligomer with respect to all the binder components contained in an electroconductive coating composition is 97 to 100 weight%. When it is 97% by weight or more, the denseness of the film due to the incorporation of the alkoxysilane oligomer reaches a sufficient level, and it becomes possible to form a conductive film exhibiting high film hardness and excellent chemical resistance. More preferably, it is 98.5 weight% or more.

(アルコキシシランオリゴマー以外のバインダー成分)
本発明の導電性コーティング組成物は、上述のとおり、アルコキシシランオリゴマー以外のバインダー成分を含有してもよい。前述したアルコキシシランオリゴマーを含有する限りその他のバインダー成分については限定されないが、具体的には、3−グリシドキシプロピルトリメトキシシラン、ポリエーテル変性ポリジメチルシロキサン、ポリエーテル変性シロキサン等のシランカップリング剤をバインダー成分として使用できる。また、樹脂バインダーを使用することもでき、具体的には、ポリエステル、ポリアクリレート、ポリメタクリレート、ポリウレタン、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアミド、ポリイミド等のホモポリマー;スチレン、塩化ビニリデン、塩化ビニル、アルキルアクリレート、アルキルメタクリレート等のモノマーを共重合して得られるコポリマー等が挙げられる。これらのバインダーは、単独で用いてもよく、2種以上を併用してもよい。
(Binder components other than alkoxysilane oligomers)
As described above, the conductive coating composition of the present invention may contain a binder component other than the alkoxysilane oligomer. Other binder components are not limited as long as they contain the alkoxysilane oligomer described above. Specifically, silane couplings such as 3-glycidoxypropyltrimethoxysilane, polyether-modified polydimethylsiloxane, and polyether-modified siloxane An agent can be used as a binder component. Resin binders can also be used, specifically, homopolymers such as polyester, polyacrylate, polymethacrylate, polyurethane, polyvinyl acetate, polyvinylidene chloride, polyamide, polyimide; styrene, vinylidene chloride, vinyl chloride, Examples thereof include copolymers obtained by copolymerizing monomers such as alkyl acrylate and alkyl methacrylate. These binders may be used independently and may use 2 or more types together.

(溶媒又は分散媒)
本発明の導電性コーティング組成物は導電性ポリマー粒子及びアルコキシシランオリゴマーのみからなるものであってもよいが、取扱を容易にするため、通常、溶媒及び/又は分散媒をさらに含有することが好ましい。溶媒又は分散媒としては、導電性ポリマー及びアルコキシシランオリゴマーを溶解又は分散できるものであれば特に限定はない。導電性コーティング組成物が水系の場合は、水と、水と水に混和する溶媒の混合溶媒とを使用できる。水に混和する溶剤としては特に制限はないが、例えば、メタノール、エタノール、2−プロパノール、1−プロパノールなどのアルコール類、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテルなどのグリコールエーテル類、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどのグリコールエーテルアセテート類、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコールなどのプロピレングリコール類、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテルなどのプロピレングリコールエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテートなどのプロピレングリコールエーテルアセテート類、ジメチルアセトアミド、アセトン、アセトニトリルおよびそれらの混和物などが挙げられる。導電性コーティング組成物が有機溶剤系の場合は、上記水と混和する溶剤として挙げた溶剤およびトルエン、キシレン、ベンゼン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、ジエチルエーテル、ジイソプロピルエーテル、メチル−t−ブチルエーテル、ヘキサン、ヘプタン等が使用できる。上記の溶媒又は分散媒の中でもメタノール、エタノール、2−プロパノールが特に好ましい。なお、導電性コーティング用組成物の各成分が完全に溶解している場合は「溶媒」、何れかの成分が溶解せずに分散している場合は「分散媒」と言うこととする。
(Solvent or dispersion medium)
The conductive coating composition of the present invention may be composed of only conductive polymer particles and an alkoxysilane oligomer, but it is usually preferable to further contain a solvent and / or a dispersion medium in order to facilitate handling. . The solvent or dispersion medium is not particularly limited as long as it can dissolve or disperse the conductive polymer and the alkoxysilane oligomer. When the conductive coating composition is aqueous, water and a mixed solvent of water and a solvent miscible with water can be used. The solvent miscible with water is not particularly limited. For example, alcohols such as methanol, ethanol, 2-propanol and 1-propanol, glycols such as ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, ethylene glycol diethyl ether and diethylene glycol dimethyl ether Ethers, glycol ether acetates such as ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, propylene glycols such as propylene glycol, dipropylene glycol, tripropylene glycol, propylene glycol monomethyl ether, propylene glycol Monoethyl ether , Propylene glycol ethers such as dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, propylene glycol diethyl ether, dipropylene glycol diethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl Examples include ether acetate, propylene glycol ether acetates such as dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dimethylacetamide, acetone, acetonitrile, and mixtures thereof. When the conductive coating composition is an organic solvent-based solvent, the solvents listed above as solvents miscible with water and toluene, xylene, benzene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, diethyl ether, diisopropyl ether, methyl- t-Butyl ether, hexane, heptane and the like can be used. Of the above solvents or dispersion media, methanol, ethanol, and 2-propanol are particularly preferable. In addition, when each component of the composition for conductive coating is completely dissolved, it is referred to as a “solvent”, and when any component is dispersed without being dissolved, it is referred to as a “dispersion medium”.

導電性コーティング組成物の固形分濃度は均一な水分散液であれば特に限定されないが、塗布時に約0.01〜50重量%程度が好ましい。より好ましくは1〜20重量%である。この範囲では塗布を容易に実施することができる。しかし、コーティング組成物の販売や運搬時にはより高濃度であってもよく、その場合、使用時に溶剤及び/又は分散媒を添加して適宜希釈すればよい。   The solid content concentration of the conductive coating composition is not particularly limited as long as it is a uniform aqueous dispersion, but is preferably about 0.01 to 50% by weight at the time of coating. More preferably, it is 1 to 20% by weight. Application | coating can be easily implemented in this range. However, the concentration may be higher when the coating composition is sold or transported. In that case, a solvent and / or a dispersion medium may be added and diluted as appropriate at the time of use.

(導電性向上剤)
導電性をさらに改善するために、本発明のコーティング組成物にはさらに導電性向上剤を配合してもよい。前記導電性向上剤としては特に限定されず、目的に応じて適宜選択することができる。具体的には、ジメチルスルホキシド、N−メチルピロリドン、N−メチルホルムアミド、N−ジメチルホルムアミド、イソホロン、プロピレンカーボネート、シクロヘキサノン、γ−ブチロラクトン、ジエチレングリコールモノエチルエーテルなどが挙げられ、これらの中でも、N−メチルホルムアミド、N−メチルピロリドンが好ましい。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。導電性コーティング組成物中における導電性向上剤の含量は特に限定されないが、導電性ポリマー粒子100重量部に対して、430〜13000重量部程度が好ましく、430〜4330重量部程度がより好ましい。
(Conductivity improver)
In order to further improve the conductivity, the coating composition of the present invention may further contain a conductivity improver. It does not specifically limit as said electroconductivity improver, According to the objective, it can select suitably. Specific examples include dimethyl sulfoxide, N-methylpyrrolidone, N-methylformamide, N-dimethylformamide, isophorone, propylene carbonate, cyclohexanone, γ-butyrolactone, and diethylene glycol monoethyl ether. Among these, N-methyl Formamide and N-methylpyrrolidone are preferred. These may be used individually by 1 type and may use 2 or more types together. The content of the conductivity improver in the conductive coating composition is not particularly limited, but is preferably about 430 to 13000 parts by weight and more preferably about 430 to 4330 parts by weight with respect to 100 parts by weight of the conductive polymer particles.

(任意成分)
本発明の導電性コーティング組成物には、さらに、界面活性剤(表面調整剤)、消泡剤、レオロジーコントロール剤、密着性付与剤、酸化防止剤、酸性触媒、粒子等を適宜添加することが可能である。
(Optional component)
In the conductive coating composition of the present invention, a surfactant (surface conditioner), an antifoaming agent, a rheology control agent, an adhesion imparting agent, an antioxidant, an acidic catalyst, particles and the like may be added as appropriate. Is possible.

前記界面活性剤は、レベリング性を向上し、均一な塗布膜を得ることができるものなら特に限定されない。このような界面活性剤として、次の化合物が挙げられる:ポリエーテル変性ポリジメチルシロキサン、ポリエーテル変性シロキサン、ポリエーテルエステル変性水酸基含有ポリジメチルシロキサン、ポリエーテル変性アクリル基含有ポリジメチルシロキサン、ポリエステル変性アクリル基含有ポリジメチルシロキサン、パーフルオロポリジメチルシロキサン、パーフルオロポリエーテル変性ポリジメチルシロキサン、パーフルオロポリエステル変性ポリジメチルシロキサンなどのシロキサン化合物;パーフルオロアルキルカルボン酸、パーフルオロアルキルポリオキシエチレンエタノールなどのフッ素含有有機化合物;ポリオキシエチレンアルキルフェニルエーテル、プロピレンオキシド重合体、エチレンオキシド重合体などのポリエーテル系化合物;ヤシ油脂肪酸アミン塩、ガムロジンなどのカルボン酸;ヒマシ油硫酸エステル類、リン酸エステル、アルキルエーテル硫酸塩、ソルビタン脂肪酸エステル、スルホン酸エステル、リン酸エステル、コハク酸エステルなどのエステル系化合物;アルキルアリールスルホン酸アミン塩、スルホコハク酸ジオクチルナトリウムなどのスルホン酸塩化合物;ラウリルリン酸ナトリウムなどのリン酸塩化合物;ヤシ油脂肪酸エタノールアマイドなどのアミド化合物;さらにはアクリル系の共重合物などがある。これらの中でも、レベリング性の点からはシロキサン系化合物およびフッ素含有化合物が好ましく、ポリエーテル変性ポリジメチルシロキサンが特に好ましい。   The surfactant is not particularly limited as long as it can improve leveling properties and obtain a uniform coating film. Examples of such surfactants include the following compounds: polyether-modified polydimethylsiloxane, polyether-modified siloxane, polyetherester-modified hydroxyl group-containing polydimethylsiloxane, polyether-modified acrylic group-containing polydimethylsiloxane, polyester-modified acrylic. Group-containing polydimethylsiloxane, perfluoropolydimethylsiloxane, perfluoropolyether-modified polydimethylsiloxane, siloxane compounds such as perfluoropolyester-modified polydimethylsiloxane; fluorine-containing perfluoroalkylcarboxylic acid, perfluoroalkylpolyoxyethyleneethanol, etc. Organic compounds; Polyethers such as polyoxyethylene alkylphenyl ether, propylene oxide polymer, ethylene oxide polymer Compound; Carboxylic acid such as coconut oil fatty acid amine salt, gum rosin; Ester compound such as castor oil sulfate, phosphate ester, alkyl ether sulfate, sorbitan fatty acid ester, sulfonate ester, phosphate ester, succinate ester; Sulfonate compounds such as alkylaryl sulfonic acid amine salts and dioctyl sodium sulfosuccinate; Phosphate compounds such as sodium lauryl phosphate; Amide compounds such as coconut oil fatty acid ethanolamide; and acrylic copolymers . Among these, siloxane compounds and fluorine-containing compounds are preferable from the viewpoint of leveling properties, and polyether-modified polydimethylsiloxane is particularly preferable.

粘度を向上させる目的で増粘剤を添加してもよい。このような増粘剤としては、アルギナン酸誘導体、キサンタンガム誘導体、カラギーナンやセルロースなどの糖類化合物などの水溶性高分子などが挙げられる。   A thickener may be added for the purpose of improving the viscosity. Examples of such thickeners include alginic acid derivatives, xanthan gum derivatives, water-soluble polymers such as saccharide compounds such as carrageenan and cellulose.

前記酸化防止剤としては特に限定されず、還元性または非還元性の水溶性酸化防止剤が挙げられる。還元性を有する水溶性酸化防止剤としては、例えば、L−アスコルビン酸、L−アスコルビン酸ナトリウム、L−アスコルビン酸カリウム、エリソルビン酸、エリソルビン酸ナトリウム、エリソルビン酸カリウムなどの2個の水酸基で置換されたラクトン環を有する化合物;マルトース、ラクトース、セロビオース、キシロース、アラビノース、グルコース、フルクトース、ガラクトース、マンノースなどの単糖類および二糖類;カテキン、ルチン、ミリセチン、クエルセチン、ケンフェロールなどのフラボノイド;クルクミン、ロズマリン酸、クロロゲン酸、ヒドロキノン、3,4,5−トリヒドロキシ安息香酸などのフェノール性水酸基を2個以上有する化合物;システイン、グルタチオン、ペンタエリスリトールテトラキス(3−メルカプトブチレート)などのチオール基を有する化合物などが挙げられる。非還元性の水溶性酸化防止剤としては、例えば、フェニルイミダゾールスルホン酸、フェニルトリアゾールスルホン酸、2−ヒドロキシピリミジン、サリチル酸フェニル、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸ナトリウムなどの酸化劣化の原因となる紫外線を吸収する化合物が挙げられる。これらは、単独で使用してもよく、2種以上を併用してもよい。   The antioxidant is not particularly limited, and examples thereof include reducing or non-reducing water-soluble antioxidants. Examples of the water-soluble antioxidant having reducibility include substitution with two hydroxyl groups such as L-ascorbic acid, sodium L-ascorbate, potassium L-ascorbate, erythorbic acid, sodium erythorbate, and potassium erythorbate. Compounds having a lactone ring; monosaccharides and disaccharides such as maltose, lactose, cellobiose, xylose, arabinose, glucose, fructose, galactose, mannose; flavonoids such as catechin, rutin, myricetin, quercetin, kaempferol; curcumin, rosmarinic acid , Compounds having two or more phenolic hydroxyl groups such as chlorogenic acid, hydroquinone, 3,4,5-trihydroxybenzoic acid; cysteine, glutathione, pentaerythritol tetrakis (3-mer) Putobuchireto) include compounds having a thiol group such as. Non-reducing water-soluble antioxidants include, for example, oxidative degradation such as phenylimidazolesulfonic acid, phenyltriazolesulfonic acid, 2-hydroxypyrimidine, phenyl salicylate, sodium 2-hydroxy-4-methoxybenzophenone-5-sulfonate. The compound which absorbs the ultraviolet-ray which causes this is mentioned. These may be used alone or in combination of two or more.

また、本発明の導電性コーティング組成物は耐擦傷性や摺動性を付与する粒子を含むことができる。粒子としては、無機粒子が挙げられ、無機粒子として、シリカ、酸化アルミニウム、酸化亜鉛、酸化カリウム、酸化カルシウム、酸化クロム、酸化ストロンチウム、酸化タングステン、酸化マグネシウム、酸化チタン、酸化ビスマス、酸化セリウム、酸化コバルト、酸化鉄、酸化ホルニウム、酸化マンガン、酸化錫、酸化イットリウム、酸化ジルコニウム、酸化アンチモン、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、珪酸カルシウム、チタン酸カルシウム、硫酸カルシウム、硫酸バリウム等の金属酸化物や硫化モリブデン、硫化アンチモン、硫化タングステン、窒化硼素、沃化ニッケル等の一種、又は複数の合成物、並びにその含水物やカオリン、クレー、タルク、マイカ、ベントナイト、ハイドロタルサイト、ゼオライト、パイロフィライト、カーボンブラック、黒鉛等の天然若しくは合成鉱物粒子が挙げられる。   In addition, the conductive coating composition of the present invention may contain particles that impart scratch resistance and slidability. Examples of particles include inorganic particles. Examples of inorganic particles include silica, aluminum oxide, zinc oxide, potassium oxide, calcium oxide, chromium oxide, strontium oxide, tungsten oxide, magnesium oxide, titanium oxide, bismuth oxide, cerium oxide, and oxide. Metal oxides such as cobalt, iron oxide, fornium oxide, manganese oxide, tin oxide, yttrium oxide, zirconium oxide, antimony oxide, calcium carbonate, magnesium carbonate, barium carbonate, calcium silicate, calcium titanate, calcium sulfate, barium sulfate, etc. One or more compounds such as molybdenum sulfide, antimony sulfide, tungsten sulfide, boron nitride, nickel iodide, and their hydrates, kaolin, clay, talc, mica, bentonite, hydrotalcite, zeolite, pie Fillite, carbon black, and natural or synthetic mineral particles, such as graphite.

(コーティング組成物の製造方法)
本発明の導電性コーティング組成物を製造する方法は特に制限されないが、上記各々の組成物をメカニカルスターラーやマグネティックスターラーなどの撹拌機で撹拌しながら混合して、約1〜60分間撹拌混合すればよい。具体的には、まず、導電性ポリマー粒子が所定の粒径を持つよう導電性ポリマーの分散体を製造し、次いで、各成分を混合、撹拌すればよい。
(Manufacturing method of coating composition)
Although the method for producing the conductive coating composition of the present invention is not particularly limited, the above compositions are mixed while stirring with a stirrer such as a mechanical stirrer or a magnetic stirrer, and stirred and mixed for about 1 to 60 minutes. Good. Specifically, first, a conductive polymer dispersion may be produced so that the conductive polymer particles have a predetermined particle size, and then each component may be mixed and stirred.

(積層体)
本発明の導電性コーティング組成物は、被塗布基材に塗布した後、乾燥させることで、導電性の塗膜を形成することができる。導電性コーティング組成物を塗布する被塗布基材を構成する材料としては特に限定はされないが、例えば、ポリエチレン、ポリプロピレン、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸エステル共重合体、アイオノマー共重合体、シクロオレフィン系樹脂等のポリオレフィン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリオキシエチレン、変性ポリフェニレン、ポリフェニレンスルフィド等のポリエステル樹脂、ナイロン6、ナイロン6,6、ナイロン9、半芳香族ポリアミド6T6、半芳香族ポリアミド6T66、半芳香族ポリアミド9T等のポリアミド樹脂、その他アクリル樹脂、ポリスチレン、アクリルニトリルスチレン、アクリルニトリルブタジエンスチレン、塩化ビニル樹脂等の有機材料;ガラス等の無機材料を挙げることができる。特に本発明の導電性コーティング組成物はガラス基板に塗布することで、膜硬度が鉛筆硬度でH以上と極めて高くなると共に、優れた耐薬品性(耐有機溶剤性、耐アルカリ性)を発揮することが可能となるので特に好ましい。
(Laminate)
The conductive coating composition of the present invention can form a conductive coating film by applying to a substrate to be coated and then drying. The material constituting the substrate to be coated on which the conductive coating composition is applied is not particularly limited. For example, polyethylene, polypropylene, ethylene / vinyl acetate copolymer, ethylene / acrylic acid ester copolymer, ionomer copolymer Polymer, polyolefin resin such as cycloolefin resin, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyoxyethylene, modified polyphenylene, polyphenylene sulfide and other polyester resins, nylon 6, nylon 6,6, nylon 9, semi-aromatic polyamide 6T6 Polyamide resins such as semi-aromatic polyamide 6T66 and semi-aromatic polyamide 9T, other acrylic resins, polystyrene, acrylonitrile styrene, acrylonitrile butadiene styrene, vinyl chloride resin Organic material such as; may be mentioned inorganic materials such as glass. In particular, when the conductive coating composition of the present invention is applied to a glass substrate, the film hardness becomes extremely high as H or more in pencil hardness and exhibits excellent chemical resistance (organic solvent resistance, alkali resistance). Is particularly preferable.

導電性コーティング組成物の塗布法としては、特に制限はなく、公知の方法の中から適宜選択することができる。例えば、スピンコーティング、グラビアコーティング、バーコーティング、ディップコート法、カーテンコーティング、ダイコーティング、スプレーコーティング等が挙げられる。また、スクリーン印刷、スプレー印刷、インクジェットプリンチング、凸版印刷、凹版印刷、平版印刷等の印刷法も適用できる。
上記導電性コーティング組成物の塗膜の乾燥には、通常の通風乾燥機、熱風乾燥機、赤外線乾燥機などの乾燥機などが用いられる。これらのうち加熱手段を有する乾燥機(熱風乾燥機、赤外線乾燥機など)を用いると、乾燥および加熱を同時に行うことが可能である。加熱手段としては、上記乾燥機の他、加熱機能を具備する加熱・加圧ロール、プレス機などが用いられ得る。
There is no restriction | limiting in particular as an application | coating method of an electroconductive coating composition, It can select suitably from well-known methods. Examples thereof include spin coating, gravure coating, bar coating, dip coating, curtain coating, die coating, and spray coating. In addition, printing methods such as screen printing, spray printing, ink jet printing, relief printing, intaglio printing, and lithographic printing can also be applied.
For drying the coating film of the conductive coating composition, a normal ventilation dryer, a hot air dryer, an infrared dryer or the like is used. Of these, drying and heating can be performed simultaneously by using a dryer having a heating means (hot air dryer, infrared dryer, etc.). As the heating means, in addition to the dryer, a heating / pressurizing roll having a heating function, a press machine, or the like can be used.

塗膜の乾燥条件は特に限定されないが、例えば、25℃〜200℃で10秒〜2時間程度であり、好ましくは、80℃〜150℃で5〜30分程度である。 本発明の導電性コーティング組成物から形成される塗膜の乾燥膜厚は、目的に応じて適宜選択することができる。しかし、導電性及び硬度、耐薬品性向上のため、25〜380nmが好ましい。より好ましくは30〜350nmである。
導電性コーティング組成物を基材表面に塗布、乾燥させることで、基材表面に形成された導電膜を含む積層体を製造することができる。前記積層体は後述するように種々の用途に適用され得るものであるが、特に、基材がガラス基板である場合には、液晶表示装置に含まれる積層体として好適に使用することができる。
Although the drying conditions of a coating film are not specifically limited, For example, it is about 10 second-about 2 hours at 25 to 200 degreeC, Preferably, it is about 5 to 30 minutes at 80 to 150 degreeC. The dry film thickness of the coating film formed from the conductive coating composition of the present invention can be appropriately selected depending on the purpose. However, 25-380 nm is preferable for improving conductivity, hardness, and chemical resistance. More preferably, it is 30-350 nm.
By applying and drying the conductive coating composition on the substrate surface, a laminate including the conductive film formed on the substrate surface can be produced. As described later, the laminate can be applied to various uses, but in particular, when the substrate is a glass substrate, it can be suitably used as a laminate contained in a liquid crystal display device.

図1は、一般的な液晶表示装置の積層構造を示す模式図である。符号1は液晶表示装置におけるカラーフィルタであり、カラーフィルタ1表面にはガラス基板2が積層される。さらに、帯電防止膜(導電膜)3、及び、偏光板4がこの順序で積層される。本発明の積層体はガラス基板2と帯電防止膜3とのみからなるものであってもよいし、前述した液晶表示装置の積層構造中に含まれるものであってもよい。また、液晶表示装置を完成する前の、カラーフィルタ1とガラス基板2と帯電防止膜3とからなる積層体に含まれるものであってもよい。   FIG. 1 is a schematic diagram showing a laminated structure of a general liquid crystal display device. Reference numeral 1 denotes a color filter in the liquid crystal display device, and a glass substrate 2 is laminated on the surface of the color filter 1. Furthermore, the antistatic film (conductive film) 3 and the polarizing plate 4 are laminated in this order. The laminate of the present invention may be composed of only the glass substrate 2 and the antistatic film 3 or may be included in the above-described laminated structure of the liquid crystal display device. Further, it may be included in a laminate composed of the color filter 1, the glass substrate 2, and the antistatic film 3 before the liquid crystal display device is completed.

液晶表示装置の駆動方式としては、TN(Twisted Nematic)方式、VA(Vertical alignment)方式、横電界駆動方式の3種類が現在広く行なわれている。本発明の積層体はいずれの方式の液晶表示層にも適用することが可能である。中でも、横電界駆動方式では塵埃付着防止に加え、液晶駆動性向上のため、帯電防止膜を設けることが必須であるが、本発明の積層体はこの横電界駆動方式の液晶表示装置においても好適に適用することができる。この場合、帯電防止膜は、静電気による液晶乱れを改善する効果を達成すると共に、高透明性やガラスとの屈折率差に起因してディスプレイの視認性を向上する効果も有する。   Currently, three types of driving methods for liquid crystal display devices are widely used: a TN (twisted nematic) method, a VA (vertical alignment) method, and a horizontal electric field driving method. The laminate of the present invention can be applied to any type of liquid crystal display layer. In particular, in the horizontal electric field drive method, it is essential to provide an antistatic film in order to improve liquid crystal driveability in addition to prevention of dust adhesion, but the laminate of the present invention is also suitable for this horizontal electric field drive type liquid crystal display device. Can be applied to. In this case, the antistatic film achieves an effect of improving liquid crystal disturbance due to static electricity, and also has an effect of improving the visibility of the display due to high transparency and a difference in refractive index from glass.

以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。以下、「部」は特記ない限り、「重量部」を意味する。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Hereinafter, “parts” means “parts by weight” unless otherwise specified.

粒径(D50)は、各水分散液について個数基準の積算(累積)分布を測定し、当該積算分布における積算値50%の粒径として算出した。具体的には、各水分散液を純水で希釈して0.1%水溶液に調整したサンプルを使用し、シスメックス社製粒度分布計ZETASIZER Nano−ZSを使用して、ゼータ電位による粒径測定を行った。   The particle size (D50) was calculated as a particle size with an integrated value of 50% in each integrated distribution by measuring the number-based integrated (cumulative) distribution for each aqueous dispersion. Specifically, using a sample prepared by diluting each aqueous dispersion with pure water to prepare a 0.1% aqueous solution, using a particle size distribution analyzer ZETASIZER Nano-ZS manufactured by Sysmex Corporation, particle size measurement by zeta potential Went.

(実施例1)
粒径(D50)が20nmである導電性ポリマー(ポリ3,4エチレンジオキシチオフェン/ポリスチレンスルホン酸)を含む水分散液Baytron PH500(H.C.スタルク社製)を100部(この中に前記導電性ポリマーを1.1部、イオン交換水を98.9部含む。前記導電性ポリマーを100部とした場合、イオン交換水は8991部)、バインダーであるアルコキシシランオリゴマーMS−51(三菱化学社製)24部(前記導電性ポリマーを100部とした場合は、2165部)、導電性向上剤であるN−メチルホルムアミド(ナカライテスク社製、試薬)19部(導電性ポリマーを100部とした場合は1730部)、エタノール(ナカライテスク社製、試薬)514部(導電性ポリマーを100部とした場合は、46727部)、イオン交換水48部(導電性ポリマーを100部とした場合は、4364部)を用いて均一な水分散液を調製した。
Example 1
100 parts of an aqueous dispersion Baytron PH500 (manufactured by HC Starck) containing a conductive polymer (poly3,4 ethylenedioxythiophene / polystyrenesulfonic acid) having a particle size (D50) of 20 nm 1.1 parts of conductive polymer and 98.9 parts of ion-exchanged water (when the conductive polymer is 100 parts, ion-exchanged water is 8991 parts), alkoxysilane oligomer MS-51 as a binder (Mitsubishi Chemical) 24 parts (2165 parts when the conductive polymer is 100 parts), 19 parts of N-methylformamide (manufactured by Nacalai Tesque, reagent) as a conductivity improver (100 parts of conductive polymer) 1730 parts), ethanol (manufactured by Nacalai Tesque, reagent) 514 parts (when the conductive polymer is 100 parts, 46 parts 727 parts) and 48 parts of ion-exchanged water (4364 parts when the conductive polymer is 100 parts) were used to prepare a uniform aqueous dispersion.

次いで、無アルカリガラス板に上記分散液を塗布し、オーブンにて130℃、30分間加熱して成膜を行い、帯電防止膜を表面に有する試験片を得た。なお、試験片における乾燥膜厚は水分散液の塗布量から計算して調整した。
MS−51:アルコキシシランオリゴマーを表す前記一般式において、R=R=メチル基、R=R=メトキシ基、重量平均分子量500〜700(カタログ値)、n=4〜7(重量平均分子量から計算)
Next, the dispersion was applied to a non-alkali glass plate, and the film was formed by heating in an oven at 130 ° C. for 30 minutes to obtain a test piece having an antistatic film on the surface. In addition, the dry film thickness in a test piece was calculated and adjusted from the application amount of the aqueous dispersion.
MS-51: In the above general formula representing an alkoxysilane oligomer, R 1 = R 2 = methyl group, R 3 = R 4 = methoxy group, weight average molecular weight 500-700 (catalog value), n = 4-7 (weight) Calculated from average molecular weight)

(実施例2)
実施例1のBaytron PH500(H.C.スタルク社製)の代わりに、Baytron PH1000(H.C.スタルク社製、D50が52nm、前記導電性ポリマーを1.1部含む)を使用して、実施例1と同様に試験片を得た。
(Example 2)
Instead of Baytron PH500 (manufactured by HC Starck) of Example 1, Baytron PH1000 (manufactured by HC Starck, D50 is 52 nm, containing 1.1 parts of the conductive polymer), A test piece was obtained in the same manner as in Example 1.

(実施例3)
実施例1のBaytron PH500(H.C.スタルク社製)の代わりに、Baytron P(H.C.スタルク社製、D50が140nm、前記導電性ポリマーを1.1部含む)を使用して、実施例1と同様に試験片を得た。
(Example 3)
Instead of Baytron PH500 (manufactured by HC Starck Co., Ltd.) of Example 1, Baytron P (manufactured by HC Starck Co., D50 of 140 nm, containing 1.1 parts of the conductive polymer) was used. A test piece was obtained in the same manner as in Example 1.

(比較例1)
実施例1のBaytron PH500(H.C.スタルク社製)の代わりに、Baytron HC V4(H.C.スタルク社製、D50が570nm、前記導電性ポリマーを1.1部含む)を使用して、実施例1と同様に試験片を得た。
(Comparative Example 1)
Instead of Baytron PH500 (manufactured by HC Starck) of Example 1, Baytron HC V4 (manufactured by HC Starck, D50 of 570 nm, containing 1.1 parts of the conductive polymer) was used. A test piece was obtained in the same manner as in Example 1.

(実施例4〜7)
バインダーであるアルコキシシランオリゴマーMS−51の使用量を表2に記載のとおり変更したこと以外は、実施例1と同様に試験片を得た。
(Examples 4 to 7)
A test piece was obtained in the same manner as in Example 1 except that the amount of the alkoxysilane oligomer MS-51 as a binder was changed as shown in Table 2.

(実施例8及び9)
実施例1の各成分に加えて、さらに、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランであるZ−6043(東レ・ダウコーニング社製)を表3に記載の量使用して、実施例1と同様に試験片を得た。
(Examples 8 and 9)
In addition to each component of Example 1, Z-6043 (manufactured by Toray Dow Corning Co.), which is 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, was used in an amount shown in Table 3, A test piece was obtained in the same manner as in Example 1.

(実施例10)
実施例1の各成分に加えて、さらに、3−グリシドキシプロピルトリメトキシシランであるZ−6040(東レ・ダウコーニング社製)を表4に記載の量使用して、実施例1と同様に試験片を得た。
(Example 10)
In addition to each component of Example 1, Z-6040 (manufactured by Toray Dow Corning), which is 3-glycidoxypropyltrimethoxysilane, was further used in the same manner as in Example 1 using the amounts shown in Table 4. A test piece was obtained.

(実施例11)
実施例1の各成分に加えて、さらに、ポリエーテル変性ポリジメチルシロキサンであるBYK−301(ビックケミー社製)を表4に記載の量使用して、実施例1と同様に試験片を得た。
(Example 11)
In addition to the components of Example 1, a test piece was obtained in the same manner as in Example 1 using BYK-301 (manufactured by Big Chemie), which is a polyether-modified polydimethylsiloxane, in the amounts shown in Table 4. .

(実施例12)
実施例1のアルコキシシランオリゴマーMS−51(三菱化学社製)24部の代わりに、MS−56(三菱化学社製)24部を用いたこと以外は、実施例1と同様に試験片を得た。
MS−56:アルコキシシランオリゴマーを表す前記一般式において、R=R=メチル基、R=R=メトキシ基、重量平均分子量1100〜1300(カタログ値)、n=10〜12(重量平均分子量から計算)
(Example 12)
A test piece was obtained in the same manner as in Example 1 except that 24 parts of MS-56 (manufactured by Mitsubishi Chemical Corporation) was used instead of 24 parts of alkoxysilane oligomer MS-51 (manufactured by Mitsubishi Chemical Corporation) of Example 1. It was.
MS-56: In the above general formula representing an alkoxysilane oligomer, R 1 = R 2 = methyl group, R 3 = R 4 = methoxy group, weight average molecular weight 1100-1300 (catalog value), n = 10-12 (weight) Calculated from average molecular weight)

(比較例2〜4)
実施例1のアルコキシシランオリゴマーMS−51(三菱化学社製)24部の代わりに、下記のバインダーそれぞれ24部を用いたこと以外は、実施例1と同様に試験片を得た。
(Comparative Examples 2 to 4)
A test piece was obtained in the same manner as in Example 1 except that 24 parts of each of the following binders were used instead of 24 parts of the alkoxysilane oligomer MS-51 (manufactured by Mitsubishi Chemical Corporation) of Example 1.

比較例2:モノマー(アルコキシシランのモノマー(シロキサン結合を含まない)、メチルトリメトキシシラン):Z−6366(東レ・ダウコーニング社製)
比較例3:ポリエステル樹脂:プラスコートRZ−105(互応化学社製)
比較例4:エポキシ系シラン化合物:Z−6040(東レ・ダウコーニング社製)
Comparative Example 2: Monomer (Alkoxysilane monomer (excluding siloxane bond), methyltrimethoxysilane): Z-6366 (Toray Dow Corning)
Comparative Example 3: Polyester resin: Plus Coat RZ-105 (manufactured by Kyogo Chemical Co., Ltd.)
Comparative Example 4: Epoxy silane compound: Z-6040 (manufactured by Dow Corning Toray)

(実施例13)
実施例1のN−メチルホルムアミド(ナカライテスク社製、試薬)19部の代わりに、N−メチルピロリドン(ナカライテスク社製、試薬)19部を用いたこと以外は、実施例1と同様に試験片を得た。
(Example 13)
A test was conducted in the same manner as in Example 1 except that 19 parts of N-methylpyrrolidone (manufactured by Nacalai Tesque, reagent) was used instead of 19 parts of N-methylformamide (manufactured by Nacalai Tesque, Inc.). I got a piece.

(実施例14〜17)
実施例1の水分散液の塗布量を調整することで乾燥膜厚を表7に記載のとおり変更したこと以外は、実施例1と同様に試験片を得た。
(Examples 14 to 17)
A test piece was obtained in the same manner as in Example 1 except that the dry film thickness was changed as described in Table 7 by adjusting the coating amount of the aqueous dispersion of Example 1.

(実施例18)
実施例1の水分散液を、ガラス板の代わりにPETフィルム(ルミナーT−60、東レ社製)に塗布し、オーブンにて130℃、30分間加熱して成膜を行い、帯電防止膜を表面に有する試験片を得た。
(Example 18)
The aqueous dispersion of Example 1 was applied to a PET film (Luminer T-60, manufactured by Toray Industries, Inc.) instead of a glass plate, and heated in an oven at 130 ° C. for 30 minutes to form a film. The test piece which has on the surface was obtained.

(比較例5)
本比較例では、特許文献1(特開平10−96953号)の第1実施形態の検証を行なった。すなわち、[0051]の記載に従って、無アルカリガラス上に、3,4−エチレンジオキシチオフェン1gとp−トルエンスルホン酸第2鉄5gのエタノ一ル溶液を塗布し、オーブンで加熱乾燥させ、有機導電膜を形成して試験片を作製した。
(Comparative Example 5)
In this comparative example, the first embodiment of Patent Document 1 (Japanese Patent Laid-Open No. 10-96953) was verified. That is, according to the description of [0051], an ethanol solution of 1 g of 3,4-ethylenedioxythiophene and 5 g of ferric p-toluenesulfonic acid was applied on an alkali-free glass, dried by heating in an oven, and organic A conductive film was formed to prepare a test piece.

(比較例6)
本比較例では、特許文献1(特開平10−96953号)の第5実施形態の検証を行なった。すなわち、[0070]の記載に従って、無アルカリガラス上に、3,4−エチレンジオキシチオフェンlg、p−トルエンスルホン酸第2鉄2g、ポリ酢酸ビニル5gをイソプロパノール−アセトン(1:1)混合物に溶解した溶液を塗布した後、塗布した基板を加熱乾燥した。さらに、流水で洗浄し、乾燥して試験片を作製した。
(Comparative Example 6)
In this comparative example, the fifth embodiment of Patent Document 1 (Japanese Patent Laid-Open No. 10-96953) was verified. That is, according to the description of [0070], on an alkali-free glass, 3,4-ethylenedioxythiophene lg, p-toluenesulfonic acid ferric iron 2 g, and polyvinyl acetate 5 g in an isopropanol-acetone (1: 1) mixture. After applying the dissolved solution, the applied substrate was dried by heating. Furthermore, it wash | cleaned with running water and dried and produced the test piece.

(比較例7)
本比較例では、無機物ITOを利用した従来の帯電防止膜の検証を行なった。すなわち、スパッタリング法によりガラス基板にITO膜を成膜して試験片を作製した。
(Comparative Example 7)
In this comparative example, a conventional antistatic film using an inorganic ITO was verified. That is, an ITO film was formed on a glass substrate by a sputtering method to produce a test piece.

以上の実施例及び比較例により得られた試験片の物性を以下の方法により評価した。   The physical properties of the test pieces obtained in the above examples and comparative examples were evaluated by the following methods.

(1)膜強度
各試験片の帯電防止膜の膜強度(鉛筆硬度)は、JIS−K5600−5−4の試験法に準じて、安田精機製作所社製鉛筆引っかき硬度試験機を用いて測定した。
(1) Film strength The film strength (pencil hardness) of the antistatic film of each test piece was measured using a pencil scratch hardness tester manufactured by Yasuda Seiki Seisakusho Co., Ltd. according to the test method of JIS-K5600-5-4. .

(2)密着性
各試験片の帯電防止膜の基材への密着性は、JIS K5400の碁盤目剥離試験に従って評価した。評価は次の3段階で行った。
(2) Adhesiveness The adhesiveness of each test piece to the base material of the antistatic film was evaluated according to a cross-cut peel test of JIS K5400. Evaluation was performed in the following three stages.

◎:10点、○:8点、×:6点以下
(3)全光線透過率(%)、ヘイズ(%)
各試験片の全光線透過率及びヘイズは、JIS K7150に従い、スガ試験機社製ヘイズコンピュータHGM−2B(商品名)を用いて測定した。
◎: 10 points, ○: 8 points, ×: 6 points or less (3) Total light transmittance (%), haze (%)
The total light transmittance and haze of each test piece were measured according to JIS K7150 using a haze computer HGM-2B (trade name) manufactured by Suga Test Instruments Co., Ltd.

(4)表面抵抗率(Ω/□)
各試験片の帯電防止膜の表面抵抗率は、JIS K7194に従い、三菱化学社製ハイレスタUP(MCP−HT−450、商品名)を用いて、プローブUA、印加電圧10V〜500Vで測定した。
(4) Surface resistivity (Ω / □)
The surface resistivity of the antistatic film of each test piece was measured according to JIS K7194 using a Hiresta UP (MCP-HT-450, trade name) manufactured by Mitsubishi Chemical Corporation with a probe UA and an applied voltage of 10V to 500V.

(5)屈折率
各試験片の屈折率は、池尻光学工業所社製エリプソメータDHA−XA2/S6(商品名)にて波長632.8nmで測定した。
(5) Refractive index The refractive index of each test piece was measured with an ellipsometer DHA-XA2 / S6 (trade name) manufactured by Ikejiri Optical Co., Ltd. at a wavelength of 632.8 nm.

(6)耐薬品性
各試験片を溶剤(水酸化ナトリウム水溶液、又は、アセトン溶液)に浸漬した後、表面抵抗率及び膜強度を上記のとおり測定し、その結果を下記基準に基づき3段階で評価した。水酸化ナトリウム水溶液への浸漬条件は、室温で2分間浸漬とした。アセトンへの浸漬条件は、室温で1時間浸漬とした。
○:表面抵抗率が10乗以下、かつ膜強度が鉛筆硬度B以上
△:表面抵抗率が10乗以下、もしくは膜強度が鉛筆硬度B以上
×:表面抵抗率が10乗以上、かつ膜強度が鉛筆硬度B以下
以上で得られた結果を以下の表1〜表8で示す。
(6) Chemical resistance After immersing each test piece in a solvent (sodium hydroxide aqueous solution or acetone solution), the surface resistivity and film strength were measured as described above, and the results were measured in three stages based on the following criteria. evaluated. The immersion condition in the aqueous sodium hydroxide solution was immersion for 2 minutes at room temperature. The immersion condition in acetone was immersion for 1 hour at room temperature.
○: Surface resistivity is 10th power or less and film strength is pencil hardness B or more Δ: Surface resistivity is 10th power or less, or film strength is pencil hardness B or more ×: Surface resistivity is 10th power or more and film strength is Pencil hardness B or less The results obtained above are shown in Tables 1 to 8 below.


なお、表8中の比較例5及び6では、成膜された帯電防止膜の塗膜表面が粗いために、屈折率を測定することができなかった。

In Comparative Examples 5 and 6 in Table 8, the refractive index could not be measured because the surface of the antistatic film formed was rough.

表1の実施例1〜3と比較例1より、導電性ポリマー粒子の粒径は200nm以下であることが必須であり、粒径が200nmを超えると、表面抵抗率が上昇し(すなわち導電性が低く)、耐薬品性に劣ることが分かる。   From Examples 1 to 3 and Comparative Example 1 in Table 1, it is essential that the conductive polymer particles have a particle size of 200 nm or less. If the particle size exceeds 200 nm, the surface resistivity increases (that is, the conductivity). Is low) and it is found that the chemical resistance is poor.

表5の実施例1、12及び比較例2〜4より、バインダー成分としてアルコキシシランのオリゴマーを使用すると、耐薬品性に優れ、かつ膜硬度が高いが、アルコキシシランのモノマーを使用すると耐薬品性が大きく低下し、ポリエステル系のシラン化合物やエポキシ系のシラン化合物を使用すると、耐薬品性に加え膜硬度も低下することが分かる。   From Examples 1 and 12 and Comparative Examples 2 to 4 in Table 5, when an alkoxysilane oligomer is used as a binder component, the chemical resistance is excellent and the film hardness is high, but when an alkoxysilane monomer is used, the chemical resistance is high. When the polyester silane compound or the epoxy silane compound is used, the film hardness is lowered in addition to the chemical resistance.

表2の実施例1及び4〜7より、導電性ポリマー粒子100重量部に対してアルコキシシランオリゴマーの使用量が150〜10000重量部の範囲にあると、本発明の優れた効果を達成することが分かる。   From Examples 1 and 4 to 7 in Table 2, when the use amount of the alkoxysilane oligomer is in the range of 150 to 10,000 parts by weight with respect to 100 parts by weight of the conductive polymer particles, the excellent effect of the present invention is achieved. I understand.

表3の実施例1、8及び9並びに表4の実施例10及び11より、本発明の組成物は、アルコキシシランオリゴマー以外のバインダー成分を含有する場合であっても、バインダー成分中のアルコキシシランオリゴマーの割合が97〜100重量%の範囲にあると、本発明の優れた効果を達成することが分かる。   From Examples 1, 8 and 9 in Table 3 and Examples 10 and 11 in Table 4, the composition of the present invention contains an alkoxysilane in the binder component even when it contains a binder component other than the alkoxysilane oligomer. It turns out that the outstanding effect of this invention is achieved when the ratio of an oligomer exists in the range of 97 to 100 weight%.

表7の実施例1及び実施例14〜17より、帯電防止膜の乾燥膜厚が25〜380nmの範囲の範囲にあると、本発明の優れた効果を達成することが分かる。   From Example 1 and Examples 14 to 17 in Table 7, it can be seen that the excellent effect of the present invention is achieved when the dry film thickness of the antistatic film is in the range of 25 to 380 nm.

表8の実施例18より、無アルカリガラス以外のPET基材に塗布しても、本発明の優れた効果を達成することが分かる。   From Example 18 of Table 8, it can be seen that the excellent effect of the present invention can be achieved even when applied to a PET substrate other than alkali-free glass.

本発明による導電性コーティング組成物は、液晶ディスプレイ(LCD)、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ、エレクトロクロミックディスプレイ、太陽電池、電池、コンデンサー、化学センサー、表示素子、半導体材料、電磁波シールド材等において基材をコーティングすることで当該基材上に導電膜又は帯電防止膜を形成するために用いることができる。また、眼鏡や、自動車等のガラスに塗布するための導電性塗料、又は防錆塗料としても使用することができる。   The conductive coating composition according to the present invention is used as a base material in liquid crystal displays (LCDs), electroluminescent displays, plasma displays, electrochromic displays, solar cells, batteries, capacitors, chemical sensors, display elements, semiconductor materials, electromagnetic shielding materials, etc. Can be used to form a conductive film or an antistatic film on the substrate. Moreover, it can be used also as a conductive paint for applying to glasses, glasses, etc., or a rust preventive paint.

1 カラーフィルタ
2 ガラス基板
3 帯電防止層
4 偏光板
1 Color filter 2 Glass substrate 3 Antistatic layer 4 Polarizing plate

Claims (11)

粒径(D50)が200nm以下の導電性ポリマー粒子、及び
下記一般式により表されるアルコキシシランオリゴマーを含むバインダー成分、
を含み、
前記バインダー成分の総配合量は、前記導電性ポリマー粒子100重量部に対して150〜10000重量部であり、
前記バインダー成分中の前記アルコキシシランオリゴマーの配合量が97〜100重量%である、導電性コーティング組成物。

式中、R及びRは、同一又は異なって、炭素数1〜4のアルキル基を表す。R及びRは、同一又は異なって、H(水素原子)、水酸基、又は、炭素数1〜4のアルコキシ基を表す。ただし、複数のR及びRのうち少なくとも1個はアルコキシ基である。nは、2〜20の整数を表す。
Conductive polymer particles having a particle size (D50) of 200 nm or less, and a binder component containing an alkoxysilane oligomer represented by the following general formula:
Only including,
The total amount of the binder component is 150 to 10,000 parts by weight with respect to 100 parts by weight of the conductive polymer particles,
The electroconductive coating composition whose compounding quantity of the said alkoxysilane oligomer in the said binder component is 97-100 weight% .

In the formula, R 1 and R 2 are the same or different and each represents an alkyl group having 1 to 4 carbon atoms. R 3 and R 4 are the same or different and represent H (hydrogen atom), a hydroxyl group, or an alkoxy group having 1 to 4 carbon atoms. However, at least one of the plurality of R 3 and R 4 is an alkoxy group. n represents an integer of 2 to 20.
前記導電性ポリマー粒子の粒径が60nm以下である、請求項1記載の導電性コーティング組成物。   The conductive coating composition according to claim 1, wherein the conductive polymer particles have a particle size of 60 nm or less. 前記導電性ポリマー粒子の粒径が30nm以下である、請求項1記載の導電性コーティング組成物。   The conductive coating composition according to claim 1, wherein the conductive polymer particles have a particle size of 30 nm or less. 前記導電性ポリマーが、ポリ(3,4−二置換チオフェン)とポリ陰イオンとの複合体である、請求項1〜のいずれかに記載の導電性コーティング組成物。 It said conductive polymer is poly (3,4-disubstituted thiophene) and a complex of the polyanion, conductive coating composition according to any one of claims 1-3. 導電性向上剤をさらに含む、請求項1〜のいずれかに記載の導電性コーティング組成物。 Further comprising a conductivity enhancing agent, conductive coating composition according to any one of claims 1-4. 前記導電性向上剤が、N−メチルホルムアミド、及びN−メチルピロリドンからなる群より選択される少なくとも1種である、請求項記載の導電性コーティング組成物。 The conductive coating composition according to claim 5 , wherein the conductivity improver is at least one selected from the group consisting of N-methylformamide and N-methylpyrrolidone. 液晶表示装置に含まれる帯電防止層を形成するのに使用される、請求項1〜のいずれかに記載の導電性コーティング組成物。 It is used to form an antistatic layer included in the liquid crystal display device, the conductive coating composition according to any one of claims 1-6. 基材と、当該基材上に設けられた導電膜とを含む積層体であって、
前記導電膜は、請求項1〜のいずれかに記載の導電性コーティング組成物から形成されたものである、積層体。
A laminate including a base material and a conductive film provided on the base material,
The conductive layer is one formed from a conductive coating composition according to any one of claims 1 to 7 laminate.
前記導電膜の乾燥膜厚が25〜380nmである、請求項記載の積層体。 The laminated body of Claim 8 whose dry film thickness of the said electrically conductive film is 25-380 nm. 前記基材がガラス基板である、請求項又は記載の積層体。 The laminate according to claim 8 or 9 , wherein the base material is a glass substrate. 液晶表示装置に含まれる、請求項10記載の積層体。 The laminated body of Claim 10 contained in a liquid crystal display device.
JP2010254419A 2010-11-15 2010-11-15 Conductive coating composition and laminate Active JP5740925B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010254419A JP5740925B2 (en) 2010-11-15 2010-11-15 Conductive coating composition and laminate
TW100138442A TWI541304B (en) 2010-11-15 2011-10-24 Conductive coating composition and laminate
KR1020110116978A KR20120052164A (en) 2010-11-15 2011-11-10 Conductive coating composition and laminate
CN201110358012.8A CN102559043B (en) 2010-11-15 2011-11-14 conductive coating composition and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010254419A JP5740925B2 (en) 2010-11-15 2010-11-15 Conductive coating composition and laminate

Publications (2)

Publication Number Publication Date
JP2012102304A JP2012102304A (en) 2012-05-31
JP5740925B2 true JP5740925B2 (en) 2015-07-01

Family

ID=46268971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010254419A Active JP5740925B2 (en) 2010-11-15 2010-11-15 Conductive coating composition and laminate

Country Status (4)

Country Link
JP (1) JP5740925B2 (en)
KR (1) KR20120052164A (en)
CN (1) CN102559043B (en)
TW (1) TWI541304B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919095B2 (en) * 2012-05-31 2016-05-18 信越ポリマー株式会社 Conductive polymer paint and conductive coating film
JP2014037522A (en) 2012-07-17 2014-02-27 Tech Taiyo Kogyo Co Ltd Rust-preventive coating material composition precursor
KR102026446B1 (en) * 2012-07-20 2019-09-27 주식회사 동진쎄미켐 Organic conductive composition
JP5874561B2 (en) * 2012-07-25 2016-03-02 デクセリアルズ株式会社 Antistatic release film
KR101467062B1 (en) * 2012-12-11 2014-12-01 현대제철 주식회사 Method for manufacturing non-oriented electrical steel sheet with high efficiency using aluminium foil
JP6426331B2 (en) * 2013-03-13 2018-11-21 マクセルホールディングス株式会社 Transparent conductive coating composition and transparent conductive film
JP2014201595A (en) * 2013-04-01 2014-10-27 スリーボンドファインケミカル株式会社 Conductive coating material and adherend using the same
JP2015078338A (en) * 2013-09-11 2015-04-23 ナガセケムテックス株式会社 Composition for formation of functional film and functional film laminate
JP2015187979A (en) * 2014-03-13 2015-10-29 ナガセケムテックス株式会社 Method for repairing and regenerating transparent conductive film, and transparent conductive laminate
CN104131467B (en) * 2014-07-09 2016-03-30 常熟市翔鹰特纤有限公司 A kind of preparation method of acrylic fibers electrically conductive filament
JP5812311B1 (en) * 2014-08-08 2015-11-11 ナガセケムテックス株式会社 Transparent conductor, liquid crystal display device, and method of manufacturing transparent conductor
JP6617949B2 (en) * 2015-06-01 2019-12-11 ナガセケムテックス株式会社 Conductive laminate
KR102505753B1 (en) * 2015-12-25 2023-03-06 가부시키가이샤 노리타케 캄파니 리미티드 Silver powder and silver paste and use thereof
CN105824142A (en) * 2016-03-08 2016-08-03 展群科技(深圳)有限公司 Novel construction method for preventing liquid crystal panel from electromagnetic interference
JP6745153B2 (en) * 2016-07-11 2020-08-26 信越ポリマー株式会社 Paint for forming conductive release layer and method for producing the same, and conductive release film and method for producing the same
CN106182025A (en) * 2016-07-21 2016-12-07 王可欣 A kind of electrochromism stealth robot
EP3318589A1 (en) * 2016-11-02 2018-05-09 Heraeus Deutschland GmbH & Co. KG Pedot/pss with coarse particle size and high pedot-content
CN107204153B (en) * 2017-05-31 2019-10-11 杭州光谷高新集团有限公司 A kind of advertisement distributing system based on application of solar energy
CN107086656A (en) * 2017-05-31 2017-08-22 深圳众厉电力科技有限公司 A kind of unmanned plane charging device
JP6910854B2 (en) * 2017-06-02 2021-07-28 信越ポリマー株式会社 Conductive polymer dispersion, conductive substrate and its manufacturing method
CN108178945B (en) * 2017-12-28 2021-02-09 郑州拓洋生物工程有限公司 Application of D-erythorbic acid and/or salt thereof in coating, antioxidant coating and preparation method thereof
JP2019218510A (en) * 2018-06-21 2019-12-26 信越ポリマー株式会社 Conductive polymer dispersion, and method for producing conductive laminate
JP7129287B2 (en) * 2018-09-10 2022-09-01 信越ポリマー株式会社 Conductive polymer dispersion and method for producing conductive laminate
CN109537304A (en) * 2018-11-21 2019-03-29 无锡高强特种纺织有限公司 A kind of interior decoration antistatic PPS base fabric coating and preparation method thereof
JP7097832B2 (en) * 2019-01-29 2022-07-08 信越ポリマー株式会社 Manufacturing method of conductive laminate
JP7340955B2 (en) * 2019-05-09 2023-09-08 信越ポリマー株式会社 Conductive polymer-containing liquid and method for producing the same, and method for producing conductive film
JP7288133B1 (en) 2021-12-06 2023-06-06 Dowaエレクトロニクス株式会社 Silver powder, method for producing silver powder, and conductive paste

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19633311A1 (en) * 1996-08-19 1998-02-26 Bayer Ag Scratch-resistant conductive coatings
JP2978867B2 (en) * 1996-12-13 1999-11-15 三星電管株式會社 Transparent conductive composition, transparent conductive film formed therefrom and method for producing the same
DE102004037542A1 (en) * 2004-08-03 2006-02-23 Chemetall Gmbh Method, useful to protect metallic surface with corrosion inhibitor composition coating comprises applying coating on metallic surface, where the components comprising: deposit substance; and further components and/or matrix substance
JP2006199781A (en) * 2005-01-19 2006-08-03 Dainippon Printing Co Ltd Electroconductive coating composition and formed product
JP4621950B2 (en) * 2005-05-13 2011-02-02 ナガセケムテックス株式会社 Antistatic coating composition
JP2008257934A (en) * 2007-04-03 2008-10-23 Konica Minolta Holdings Inc Conductive polymer composition, and its manufacturing method
JP5441891B2 (en) * 2007-05-18 2014-03-12 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Curable coating composition providing articles coated with antistatic and abrasion resistance
JP5243067B2 (en) * 2008-03-10 2013-07-24 日機装株式会社 Method for improving conductivity of conductive polymer

Also Published As

Publication number Publication date
TW201224086A (en) 2012-06-16
CN102559043A (en) 2012-07-11
KR20120052164A (en) 2012-05-23
TWI541304B (en) 2016-07-11
CN102559043B (en) 2016-03-16
JP2012102304A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5740925B2 (en) Conductive coating composition and laminate
JP6569931B2 (en) Conductive resin composition and transparent conductive laminate
TWI679655B (en) Method for repairing and regenerating transparent conductive film and transparent conductive laminated body
US9944812B2 (en) Composition for ink and transparent electrode
KR101921346B1 (en) Composition for heat-curable conductive coatings, optical film and protective film
WO2012073474A1 (en) Electroconductive coating agent for forming transparent surface heating element, and transparent surface heating element
JP5509462B2 (en) Composition for conductive coating
JP2015078338A (en) Composition for formation of functional film and functional film laminate
JP5480295B2 (en) Polymer film using conductive polymer solution composition and its structure
JP6575893B2 (en) Conductive resin composition and transparent conductive laminate
JP2011132527A (en) Conductive polymer composition and conductive film using the same
TW201522545A (en) Composition for forming transparent conductive film, transparent conductor, and production method for transparent conductor
CN106575053A (en) Transparent conductor, liquid crystal display device and method for producing transparent conductor
JP5984054B2 (en) Organic conductive film
JP6292443B2 (en) Repair composition for transparent conductive film and transparent conductive film
JP5554578B2 (en) Conductive film
JP2012243460A (en) Conductive film
US20130308180A1 (en) Infrared reflective substrate
JP2014148674A (en) Conductive coating composition
TW201945312A (en) Optical laminate with transparent conductive film, and coating composition wherein the optical laminate is excellent in productivity and weather resistance while achieving both noise cutting performance and high-frequency signal transmittance
JP2024136903A (en) Conductive composition
KR20140001078A (en) Composition for forming conductive film and preparation method therof
KR20140001079A (en) Composition for forming conductive film and preparation method therof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5740925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250