[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5638289B2 - Measuring device for earth capacitance in power system - Google Patents

Measuring device for earth capacitance in power system Download PDF

Info

Publication number
JP5638289B2
JP5638289B2 JP2010135251A JP2010135251A JP5638289B2 JP 5638289 B2 JP5638289 B2 JP 5638289B2 JP 2010135251 A JP2010135251 A JP 2010135251A JP 2010135251 A JP2010135251 A JP 2010135251A JP 5638289 B2 JP5638289 B2 JP 5638289B2
Authority
JP
Japan
Prior art keywords
ground
switch
phase
capacitance
grounding transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010135251A
Other languages
Japanese (ja)
Other versions
JP2012002538A (en
Inventor
健司 有松
健司 有松
敬 大日向
大日向  敬
邦夫 坂本
邦夫 坂本
猪股 弘
弘 猪股
寿 田口
寿 田口
哲也 村岡
哲也 村岡
基材 南方
基材 南方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Tohoku Electric Manufacturing Co Ltd
Hasegawa Electric Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Tohoku Electric Manufacturing Co Ltd
Hasegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Tohoku Electric Manufacturing Co Ltd, Hasegawa Electric Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2010135251A priority Critical patent/JP5638289B2/en
Publication of JP2012002538A publication Critical patent/JP2012002538A/en
Application granted granted Critical
Publication of JP5638289B2 publication Critical patent/JP5638289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、電力系統における非接地系電路に発生した地絡事故を検出するためにその非接地系電路に設けられた地絡継電器の動作点を決定するのに必要とする対地静電容量を算出する電力系統における対地静電容量の測定装置に関する。   The present invention provides a ground capacitance required to determine the operating point of a ground fault relay provided in a non-grounded circuit in order to detect a ground fault occurring in the non-grounded circuit in the power system. The present invention relates to a device for measuring ground capacitance in a power system to be calculated.

電力系統における非接地系電路の地絡事故は、その地絡事故により発生した零相電圧が、非接地系電路に設けられた地絡継電器の所定の動作点を超えることにより検出される。この零相電圧は、非接地系電路の対地静電容量によって大きく変化し、その対地静電容量は、非接地系電路の切り換えや増設などによって変化するので、その都度、地絡継電器の動作点を再設定する必要がある。   The ground fault of the non-grounded electric circuit in the power system is detected when the zero-phase voltage generated by the ground fault exceeds the predetermined operating point of the ground fault relay provided in the non-grounded electric circuit. This zero-phase voltage changes greatly depending on the ground capacitance of the non-grounded circuit, and the ground capacitance changes due to switching or expansion of the non-grounded circuit, so each time the operating point of the ground fault relay Need to be reset.

この地絡継電器の動作点設定は、人工地絡試験を実施することにより行っていた。この人工地絡試験では、所定の地絡抵抗で一線地絡を起こさせ、この時の地絡継電器用の接地変圧器の三次側零相電圧を測定し、これを地絡継電器の動作点として設定するようにしている。   The operating point of this ground fault relay was set by performing an artificial ground fault test. In this artificial ground fault test, a one-line ground fault is caused by a predetermined ground fault resistance, and the third-side zero-phase voltage of the grounding transformer for the ground fault relay at this time is measured, and this is used as the operating point of the ground fault relay. I am trying to set it.

この人工地絡試験は、地絡継電器をロックし、地絡事故の検出信号が出力されないようにしているため、試験中に本当の地絡事故が発生しても、これを検出することができず系統が保護されないことから、頻繁に行うことが好ましくない。また、人工地絡試験は、活線状態の高圧線に試験装置を直接に接続するため危険を伴い、地絡電流発生用の高圧トランスを持ち運び数人で行う大掛かりな作業である。このような事情から、地絡継電器の動作点の再設定は、定期的(長期間ごと)に行うのが通常であった。   This artificial ground fault test locks the ground fault relay so that the detection signal of the ground fault is not output, so even if a real ground fault occurs during the test, it can be detected. Since the system is not protected, it is not preferable to perform it frequently. The artificial ground fault test is a large-scale operation that involves carrying a high-voltage transformer for generating a ground fault current and carrying it by several people because it is dangerous because the test apparatus is directly connected to a high-voltage line in a live state. For these reasons, it has been usual to reset the operating point of the ground fault relay periodically (every long period).

しかしながら、非接地系電路の対地静電容量は、例えば負荷機器の接続状態などによって日々刻々と変動するものであることから、地絡事故を適切に検出するためには、地絡継電器の動作点の再設定は、短期間ごとあるいは一定時間ごとに行うことが好ましい。   However, since the ground capacitance of the ungrounded circuit varies from day to day depending on, for example, the connection state of the load equipment, the operating point of the ground fault relay is necessary to properly detect ground faults. The resetting is preferably performed every short period or every predetermined time.

そこで、本出願人は、危険で大掛かりな作業となり定期的(長期間ごと)に行わざるを得ない人工地絡試験を実施することなく、地絡継電器の動作点を決定するのに必要とする対地静電容量を簡単に算出することができる対地静電容量の測定装置を先に提案している(例えば、特許文献1参照)。   Therefore, the present applicant is required to determine the operating point of the ground fault relay without carrying out an artificial ground fault test which is a dangerous and large-scale work and must be performed regularly (every long period). A ground capacitance measuring device that can easily calculate the ground capacitance has been proposed (see, for example, Patent Document 1).

この特許文献1に開示された対地静電容量の測定装置1は、図5に示すように、スイッチSWおよび測定抵抗R2で構成され、非接地系電路2に接続された接地変圧器3の三次側に接続される。この測定装置1では、スイッチSWの投入前後で接地変圧器3の三次側零相電圧を測定し、そのスイッチSWの投入前後での三次側零相電圧の位相角の差を演算処理することにより、非接地系電路2における三相一括の対地静電容量Cを算出するようにしている。なお、図中の符号4は、非接地系電路2における電源側変圧器の二次回路、CA,CB,CCは各相の対地静電容量、R1は共振防止・高調波抑制のために接地変圧器3の三次側に常時接続された制限抵抗である。 As shown in FIG. 5, the ground capacitance measuring device 1 disclosed in Patent Document 1 includes a switch SW and a measuring resistor R 2 , and includes a grounding transformer 3 connected to an ungrounded circuit 2. Connected to the tertiary side. This measuring device 1 measures the tertiary zero-phase voltage of the grounding transformer 3 before and after the switch SW is turned on, and calculates the difference in the phase angle of the tertiary zero-phase voltage before and after the switch SW is turned on. The ground capacitance C of the three-phase package in the non-grounded electric circuit 2 is calculated. Reference numeral 4 in the drawing, the secondary circuit of the power supply-side transformer in ungrounded system path 2, C A, C B, C C each phase of the capacitance to ground, R 1 is the resonance prevention and harmonic suppression Therefore, the limiting resistor is always connected to the tertiary side of the grounding transformer 3.

特公平6−92997号公報Japanese Patent Publication No. 6-92997

ところで、非接地系電路2に接続された接地変圧器3は、変電所内の電気室に設置されるものである。この接地変圧器3の三次側に測定装置1を接続するに際しては、スペースの制約を受ける場合によっては、その測定装置1を接地変圧器3から遠方に離隔した場所に設置しなければならず、そのため、接地変圧器3に測定装置1を接続するためのケーブル5が20〜50m程度と長くなってしまうというのが現状であった。   By the way, the grounding transformer 3 connected to the non-grounded electric circuit 2 is installed in the electrical room in the substation. When connecting the measuring device 1 to the tertiary side of the grounding transformer 3, the measuring device 1 must be installed far away from the grounding transformer 3, depending on space constraints. Therefore, the current situation is that the cable 5 for connecting the measuring device 1 to the grounding transformer 3 becomes as long as about 20 to 50 m.

このように、接地変圧器3に測定装置1を接続するためのケーブル5が20〜50m程度と長くなると、そのケーブル5の線路インピーダンス、スイッチSWの接点での接触抵抗などからなる接地変圧器3の三次側回路インピーダンスが、対地静電容量Cの測定に大きく影響することになる。しかしながら、前述した特許文献1に開示された測定装置1では、接地変圧器3の三次側回路インピーダンスを考慮していなかったことから、その三次側回路インピーダンスにより、地絡継電器の動作点を決定するための対地静電容量Cを算出する上で誤差が生じる可能性があった。   Thus, when the cable 5 for connecting the measuring device 1 to the grounding transformer 3 becomes as long as about 20 to 50 m, the grounding transformer 3 composed of the line impedance of the cable 5, the contact resistance at the contact point of the switch SW, and the like. The third-side circuit impedance greatly affects the measurement of the ground capacitance C. However, since the measuring device 1 disclosed in Patent Document 1 does not consider the tertiary circuit impedance of the grounding transformer 3, the operating point of the ground fault relay is determined based on the tertiary circuit impedance. Therefore, there is a possibility that an error occurs in calculating the ground capacitance C.

そこで、本発明は前述の改善点に鑑みて提案されたもので、その目的とするところは、地絡継電器の動作点を決定するための対地静電容量を高精度に算出し得る電力系統における対地静電容量の測定装置を提供することにある。   Therefore, the present invention has been proposed in view of the above-described improvements, and the object of the present invention is in a power system that can calculate the ground capacitance for determining the operating point of the ground fault relay with high accuracy. An object of the present invention is to provide an apparatus for measuring ground capacitance.

前述の目的を達成するための技術的手段として、本発明は、非接地系電路に接続された接地変圧器の三次側に制限抵抗を常時接続すると共に、接地変圧器の三次側にケーブルを介して接続され、非接地系電路の対地静電容量を測定するためのスイッチおよび測定抵抗を具備した電力系統における対地静電容量の測定装置であって、スイッチ投入前における三相一括の対地アドミタンスY00と、スイッチ投入後における三相一括の対地アドミタンスY02とに基づく位相角の演算処理により、ケーブルの線路インピーダンス、スイッチの接点での接触抵抗を含む接地変圧器の三次側回路インピーダンスを加味して対地静電容量を算出し、スイッチ投入前における三相一括の対地アドミタンスY 00 は、三相一括の対地静電容量C、接地変圧器の内部インピーダンスのリアクタンスLおよび抵抗R 0 、制限抵抗R 1 を用い、かつ、スイッチ投入後における三相一括の対地アドミタンスY 02 は、三相一括の対地静電容量C、接地変圧器の内部インピーダンスのリアクタンスLおよび抵抗R 0 、制限抵抗R 1 、測定抵抗R 2 、接地変圧器の三次側回路インピーダンスのリアクタンスL 3 および抵抗R 3 を用いて、

Figure 0005638289
としたことを特徴とする。 As a technical means for achieving the above-mentioned object, the present invention always connects a limiting resistor to the tertiary side of the grounding transformer connected to the non-grounded circuit, and connects a cable to the tertiary side of the grounding transformer. A ground capacitance measurement device in an electric power system having a switch and a measurement resistor for measuring a ground capacitance of a non-grounded electric circuit connected to each other, wherein the ground admittance Y of the three-phase package before the switch is turned on 00, the calculation of the phase angle based on the three-phase of the ground admittance Y 02 after switching on, taking into account the tertiary side circuit impedance of the grounding transformer including line impedance of the cable, the contact resistance at the contacts of the switch and calculating a ground electrostatic capacitance, ground admittance Y of the three-phase before the switch is turned 00, the capacitance to ground of the three-phase C, inside the ground transformer Reactance L and resistance R 0 of the impedance, using a limiting resistor R 1, and ground admittance Y 02 of three-phase after the switch is turned on, the capacitance to ground of the three-phase C, the reactance of the internal impedance of the grounding transformer L and resistance R 0 , limiting resistance R 1 , measurement resistance R 2 , reactance L 3 of the third circuit impedance of the grounding transformer and resistance R 3 ,
Figure 0005638289
And said that the content was.

本発明では、スイッチ投入前における三相一括の対地アドミタンスY00と、スイッチ投入後における三相一括の対地アドミタンスY02とに基づく位相角の演算処理により、ケーブルの線路インピーダンス、スイッチの接点での接触抵抗を含む接地変圧器の三次側回路インピーダンスを加味して対地静電容量を算出することにより、ケーブルが20〜50m程度と長くなっても、その接地変圧器の三次側回路インピーダンスを考慮することで、地絡継電器の動作点を決定するための対地静電容量を高精度に算出することができる。 In the present invention, the phase impedance of the cable and the contact point of the switch are calculated by the phase angle calculation process based on the ground admittance Y 00 of the three-phase package before the switch is turned on and the ground admittance Y 02 of the three-phase package after the switch is turned on. by calculating the earth capacitance in consideration of the tertiary side circuit impedance of the grounding transformer includes a contact resistance, even cable is long as about 20 to 50 m, taking into account the tertiary circuit impedance of the grounding transformer By doing so, the ground capacitance for determining the operating point of the ground fault relay can be calculated with high accuracy.

なお、本発明におけるスイッチは、電気的および機械的寿命がない半導体リレーであることが望ましい。このように半導体リレーを使用すれば、一般的な電磁リレーと比較して、金属接触部での摩耗がなくて耐久性の向上が図れ、安定した動作を確保することができ、短期間ごとあるいは一定時間ごとに地絡継電器の動作点を再設定する上で有効である。   The switch in the present invention is preferably a semiconductor relay having no electrical and mechanical life. If a semiconductor relay is used in this way, compared to a general electromagnetic relay, there is no wear at the metal contact portion, durability can be improved, stable operation can be ensured, every short period or This is effective for resetting the operating point of the ground fault relay at regular intervals.

本発明によれば、スイッチ投入前における三相一括の対地アドミタンスY00と、スイッチ投入後における三相一括の対地アドミタンスY02とに基づく位相角の演算処理により、ケーブルの線路インピーダンス、スイッチの接点での接触抵抗を含む接地変圧器の三次側回路インピーダンスを加味して対地静電容量を算出することにより、ケーブルが20〜50m程度と長くなっても、その接地変圧器の三次側回路インピーダンスを考慮することで、地絡継電器の動作点を決定するための対地静電容量を高精度に算出することができる。その結果、高精度で信頼性の高い対地静電容量の測定装置を提供できる。 According to the present invention, a ground admittance Y 00 of three-phase before the switch is turned on, the calculation of the phase angle based on the ground admittance Y 02 of three-phase after switch-on, the line impedance of the cable, the contact of the switch taking into account the tertiary side circuit impedance of the grounding transformer includes a contact resistance at by calculating the earth capacity, even if the cable is long as about 20 to 50 m, the tertiary circuit impedance of the grounding transformer Therefore, the ground capacitance for determining the operating point of the ground fault relay can be calculated with high accuracy. As a result, a highly accurate and reliable ground capacitance measuring device can be provided.

本発明の実施形態で、電力系統の非接地系電路に接続された接地変圧器、およびその接地変圧器の三次側に接続された測定装置を示す概略構成図である。In embodiment of this invention, it is a schematic block diagram which shows the measuring apparatus connected to the grounding transformer connected to the non-ground system circuit of the electric power system, and the tertiary side of the grounding transformer. 本発明の実施形態で、接地変圧器の内部インピーダンスと三次側回路インピーダンスを説明するための零相等価回路を示す回路図である。In embodiment of this invention, it is a circuit diagram which shows the zero phase equivalent circuit for demonstrating the internal impedance and tertiary side circuit impedance of a grounding transformer. 本発明の実施形態で、対地アドミタンスY00,Y02に基づく位相角の計算を説明するための零相等価回路を示す回路図である。In the embodiment of the present invention, it is a circuit diagram showing a zero phase equivalent circuit for explaining the calculation of the phase angle based on the ground admittance Y 00 , Y 02 . スイッチ投入前における対地アドミタンスY00およびスイッチ投入後における対地アドミタンスY02のベクトル図である。It is a vector diagram of the ground admittance Y 00 before the switch is turned on and the ground admittance Y 02 after the switch is turned on. 従来において、電力系統の非接地系電路に接続された接地変圧器、およびその接地変圧器の三次側に接続された測定装置を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing a grounding transformer connected to a non-grounded electrical circuit of a power system and a measuring device connected to the tertiary side of the grounding transformer in the related art.

本発明に係る電力系統における対地静電容量の測定装置の実施形態を以下に詳述する。   An embodiment of a ground capacitance measuring device in a power system according to the present invention will be described in detail below.

図1は、対地静電容量の測定対象となる電力系統を示す。この電力系統では、電源側変圧器の二次回路14から延びる非接地系電路12に接地変圧器13(GPT)を接続している。この非接地系電路12は、接地変圧器13の一次側に非接地系電路12の各相の対地静電容量CA,CB,CCを持つ。一方、接地変圧器13の三次側には、共振防止・高調波抑制のための制限抵抗R1が常時接続されている。また、対地静電容量の測定時、この接地変圧器13の三次側には、地絡継電器の動作点を決定するのに必要とする対地静電容量を算出するための測定装置11が接続される。この測定装置11は、スイッチSWおよび測定抵抗R2で構成されている。このスイッチSWとしては、例えば、MOSリレー等の半導体リレーを使用する。 FIG. 1 shows a power system to be measured for ground capacitance. In this electric power system, a grounding transformer 13 (GPT) is connected to an ungrounded electric circuit 12 extending from the secondary circuit 14 of the power supply side transformer. The non-grounded electric circuit 12 has ground capacitances C A , C B , and C C of each phase of the non-grounded electric circuit 12 on the primary side of the grounding transformer 13. On the other hand, a limiting resistor R 1 for preventing resonance and suppressing harmonics is always connected to the tertiary side of the grounding transformer 13. Further, when measuring the ground capacitance, a measuring device 11 for calculating the ground capacitance required to determine the operating point of the ground fault relay is connected to the tertiary side of the grounding transformer 13. The The measuring device 11 is composed of the switch SW and the measuring resistor R 2. As the switch SW, for example, a semiconductor relay such as a MOS relay is used.

なお、測定装置11のスイッチSWに一般的な電磁リレーを使用した場合、長期的な使用で摩耗などにより大きくなる接触抵抗が無視できなくなるために使用可能な期間が短くなるが、この実施形態のように、測定装置11のスイッチSWに、電気的および機械的寿命がないMOSリレー等の半導体リレーを使用すれば、一般的な電磁リレーと比較して、金属接触部での摩耗がなくて耐久性の向上が図れ、安定した動作を確保することができ、短期間ごとあるいは一定時間ごとに地絡継電器の動作点を再設定する上で有効である。   Note that when a general electromagnetic relay is used for the switch SW of the measuring device 11, the usable period is shortened because contact resistance that increases due to wear or the like cannot be ignored due to long-term use. As described above, if a semiconductor relay such as a MOS relay having no electrical and mechanical life is used for the switch SW of the measuring device 11, the metal contact portion is not worn and durable as compared with a general electromagnetic relay. It is effective in reconfiguring the operating point of the ground fault relay every short period or every fixed time.

ここで、変電所内の電気室に設置された接地変圧器13に対して、測定装置11を接続するに際しては、スペースの制約を受ける場合によっては、その測定装置11を接地変圧器13から遠方に離隔した場所に設置しなければならず、そのため、接地変圧器13に測定装置11を接続するためのケーブル15が20〜50m程度と長くなってしまう。このように、ケーブル15が20〜50m程度と長くなると、そのケーブル15の線路インピーダンス、スイッチSWの接点での接触抵抗などからなる接地変圧器13の三次側回路インピーダンスが、対地静電容量の測定に大きく影響することから、この実施形態の測定装置11では、接地変圧器13の三次側回路インピーダンスを考慮することにより、地絡継電器の動作点を決定するための対地静電容量を高精度に算出する。   Here, when connecting the measuring device 11 to the grounding transformer 13 installed in the electrical room in the substation, the measuring device 11 may be moved away from the grounding transformer 13 depending on the space. Therefore, the cable 15 for connecting the measuring device 11 to the grounding transformer 13 becomes as long as about 20 to 50 m. As described above, when the cable 15 becomes as long as about 20 to 50 m, the circuit impedance of the ground transformer 13 including the line impedance of the cable 15 and the contact resistance at the contact of the switch SW is measured with respect to the ground capacitance. Therefore, in the measurement apparatus 11 of this embodiment, the ground capacitance for determining the operating point of the ground fault relay is determined with high accuracy by considering the tertiary circuit impedance of the grounding transformer 13. calculate.

図2および図3は、図1の零相等価回路を示す。図2に示す零相等価回路において、Cは三相一括の対地静電容量、LおよびR0は接地変圧器13の内部インピーダンス、R1は接地変圧器13の三次側に常時接続された前述の制限抵抗、L3およびR3は接地変圧器13の三次側に測定装置11をケーブル15を介して接続した時の接地変圧器13の三次側回路インピーダンスを示す。また、図3に示す零相等価回路において、Y00はスイッチSWの投入前における三相一括の対地アドミタンス、Y02はスイッチSWの投入後における三相一括の対地アドミタンスを示す。 2 and 3 show the zero-phase equivalent circuit of FIG. In the zero-phase equivalent circuit shown in FIG. 2, C is a three-phase collective capacitance, L and R 0 are internal impedances of the grounding transformer 13, and R 1 is always connected to the tertiary side of the grounding transformer 13. The limiting resistors L 3 and R 3 indicate the tertiary circuit impedance of the grounding transformer 13 when the measuring device 11 is connected to the tertiary side of the grounding transformer 13 via the cable 15. Further, the zero-phase equivalent circuit shown in FIG. 3, Y 00 is ground admittance of the three-phase before introduction of the switch SW, Y 02 denotes a ground admittance of three-phase after on of the switch SW.

図3に示すように、前述の測定装置11におけるスイッチSWの投入前後で接地変圧器13の三次側に現出する零相電圧V00,V01の位相角φ00,φ01が変動する。そこで、この測定装置11では、スイッチSWの投入前において制限抵抗R1の両端に現出する接地変圧器13の三次側零相電圧V00の位相角φ00と、スイッチSWの投入後において制限抵抗R1の両端に現出する接地変圧器13の三次側零相電圧V01の位相角φ01とを実測する。 As shown in FIG. 3, the phase angles φ 00 and φ 01 of the zero-phase voltages V 00 and V 01 appearing on the tertiary side of the grounding transformer 13 fluctuate before and after the switch SW is turned on in the measurement apparatus 11 described above. Therefore, in the measuring device 11, a phase angle phi 00 tertiary side zero-phase voltage V 00 of the ground transformer 13 which emerges at both ends of the limiting resistor R 1 before insertion of the switch SW, limits after on of the switch SW The phase angle φ 01 of the tertiary zero-phase voltage V 01 of the grounding transformer 13 appearing at both ends of the resistor R 1 is measured.

一方、この測定装置では、スイッチSWの投入前後での接地変圧器13の三次側零相電圧V00,V01の位相角φ00,φ01の実測値に基づいて、そのスイッチSWの投入前後での対地アドミタンスY00,Y02の位相角φn0,φn1の差を演算処理することにより、非接地系電路2における三相一括の対地静電容量Cを算出する。 On the other hand, in this measuring apparatus, before and after the switch SW is turned on based on the measured values of the phase angles φ 00 and φ 01 of the tertiary zero-phase voltages V 00 and V 01 of the grounding transformer 13 before and after the switch SW is turned on. By calculating the difference between the phase angles φ n0 and φ n1 of the ground admittances Y 00 and Y 02 , the ground capacitance C of the three-phase package in the ungrounded circuit 2 is calculated.

ここで、スイッチSWの投入前後での対地アドミタンスY00,Y02の位相角φn0,φn1に基づく演算処理は、接地変圧器13の内部インピーダンスのリアクタンスLを含めた回路全体について行うため、接地変圧器13の内部インピーダンスのリアクタンスLによる位相ずれを補正する必要がある。 Here, the arithmetic processing based on the phase angles φ n0 and φ n1 of the ground admittances Y 00 and Y 02 before and after the switch SW is turned on is performed for the entire circuit including the reactance L of the internal impedance of the grounding transformer 13. It is necessary to correct the phase shift due to the reactance L of the internal impedance of the grounding transformer 13.

このことから、所定の演算式を用いることにより、接地変圧器13の三次側零相電圧V00,V01の位相角φ00,φ01を接地変圧器13の一次側零相電圧Vn0,Vn1の位相角φn0,φn1に換算した上で、スイッチSWの投入前後での対地アドミタンスY00,Y02の位相角φn0,φn1の差を演算処理することにより、対地静電容量Cを算出することができる。 Therefore, by using a predetermined arithmetic expression, the phase angles φ 00 and φ 01 of the tertiary zero-phase voltages V 00 and V 01 of the grounding transformer 13 are changed to the primary zero-phase voltage V n0 , By converting the phase angle φ n0 , φ n1 of the ground SW before and after the switch SW is turned on and calculating the difference between the phase angles φ n0 , φ n1 of the ground admittance Y 00 , Y 02 after the conversion to the phase angle φ n0 , φ n1 of V n1 The capacity C can be calculated.

スイッチSWの投入前における対地アドミタンスY00は、三相一括の対地静電容量C、接地変圧器13の内部インピーダンスのリアクタンスLおよび抵抗R0、制限抵抗R1を用い、また、スイッチSWの投入後における対地アドミタンスY02は、三相一括の対地静電容量C、接地変圧器13の内部インピーダンスのリアクタンスLおよび抵抗R0、制限抵抗R1、測定装置11の測定抵抗R2、接地変圧器13の三次側回路インピーダンスのリアクタンスL3および抵抗R3を用いると、以下の(1)(2)式のように表される。このように、スイッチSWの投入後における対地アドミタンスY02に、接地変圧器13の三次側回路インピーダンスのリアクタンスL3および抵抗R 3 加味することで対地静電容量Cを高精度に算出することができる。 The ground admittance Y 00 before the switch SW is turned on uses the ground capacitance C of the three-phase package, the reactance L of the internal impedance of the grounding transformer 13, the resistance R 0 , and the limiting resistance R 1 , and the switch SW is turned on. ground admittance Y 02 is three-phase of the earth capacitance C, reactance L and resistance R 0 of the internal impedance of the grounding transformer 13, a limiting resistor R 1, the measured resistance R 2 of the measuring device 11, a ground transformer after When the reactance L 3 and the resistance R 3 of 13 tertiary circuit impedances are used, the following equations (1) and (2) are used. Thus, the ground capacitance C can be calculated with high accuracy by adding the reactance L 3 and the resistance R 3 of the tertiary circuit impedance of the grounding transformer 13 to the ground admittance Y 02 after the switch SW is turned on. Can do.

この(1)(2)式の分母を有理化し、実数と虚数に分けて整理すると、以下の(3)(4)式のようになる。

Figure 0005638289
If the denominators of equations (1) and (2) are rationalized and divided into real numbers and imaginary numbers, the following equations (3) and (4) are obtained.
Figure 0005638289

ここで、式の簡略化のため、前述の(3)(4)式において置換したα、β、γ、δは、以下の(5)〜(8)式のようになる。

Figure 0005638289
Here, in order to simplify the formula, α, β, γ, and δ substituted in the above-described formulas (3) and (4) are represented by the following formulas (5) to (8).
Figure 0005638289

さらに、式の簡略化のため、この(5)〜(8)式において置換したRA,RB,RC,RD,REは、以下の(9)〜(13)式のようになる。

Figure 0005638289
Further, for simplification of the formula, R A , R B , R C , R D , and R E substituted in the formulas (5) to (8) are as shown in the following formulas (9) to (13). Become.
Figure 0005638289

次に、スイッチSWの投入前における対地アドミタンスY00の位相角をφn0、スイッチSWの投入後における対地アドミタンスY02の位相角をφn1とすると、それら対地アドミタンスY00,Y02のベクトル図は、図4のようになる。この対地アドミタンスY00の位相角φn0と対地アドミタンスY02の位相角φn1の差となる位相角をφn2とすると、以下の(14)式で表される。

Figure 0005638289
Next, assuming that the phase angle of the ground admittance Y 00 before turning on the switch SW is φ n0 and the phase angle of the ground admittance Y 02 after turning on the switch SW is φ n1 , a vector diagram of the ground admittances Y 00 and Y 02 Is as shown in FIG. When the phase angle that is the difference between the phase angle φ n0 of the ground admittance Y 00 and the phase angle φ n1 of the ground admittance Y 02 is φ n2 , the following equation (14) is expressed.
Figure 0005638289

対地アドミタンスY00の位相角φn0および対地アドミタンスY02の位相角φn1のtan値は、前記の(3)(4)式から、以下の(15)(16)式のようになる(図4参照)。

Figure 0005638289
The tan values of the phase angle φ n0 of the ground admittance Y 00 and the phase angle φ n1 of the ground admittance Y 02 are expressed by the following equations (15) and (16) from the above equations (3) and (4) (FIG. 4).
Figure 0005638289

また、対地アドミタンスY00の位相角φn0と対地アドミタンスY02の位相角φn1の差となる位相角φn2のtan値は、前記の(14)式から、以下の(17)(18)式のようになる。

Figure 0005638289
Further, the tan value of the phase angle φ n2 , which is the difference between the phase angle φ n0 of the ground admittance Y 00 and the phase angle φ n1 of the ground admittance Y 02 , can be expressed by the following (17) (18) It becomes like the formula.
Figure 0005638289

さらに、この(18)式に前記の(15)(16)式を代入して整理すると、以下の(19)式のようになる。

Figure 0005638289
Further, when the above formulas (15) and (16) are substituted into the formula (18) and rearranged, the following formula (19) is obtained.
Figure 0005638289

次に、前記の(19)式に基づいて対地静電容量C(アドミタンスωC)を算出する。この(19)式をアドミタンスωCの二次関数(二次方程式)として表すと、以下の(20)式のようになる。

Figure 0005638289
Next, the ground capacitance C (admittance ωC) is calculated based on the equation (19). When this equation (19) is expressed as a quadratic function (secondary equation) of admittance ωC, the following equation (20) is obtained.
Figure 0005638289

ここで、各係数a,b,cは、以下の(21)〜(23)式のようになる。

Figure 0005638289
Here, each coefficient a, b, c is expressed by the following equations (21) to (23).
Figure 0005638289

前記の(20)式の二次方程式の根(正の値)として、対地静電容量C(アドミタンスωC)が、以下の(24)式に基づいて求められる。この(24)式における各係数a,b,cは、(21)〜(23)式のように置換されており、これら(21)〜(23)式におけるα、β、γ、δは、(5)〜(8)式のように置換され、さらに(5)〜(8)式におけるRA,RB,RC,RD,REは、(9)〜(13)式のように置換されていることから、R0,R1,R2,R3,ωL,ωL3からなる既知の値と、実測した位相角φ00,φ01より求めたtanφn2とから、対地静電容量C(アドミタンスωC)を求めることができる。

Figure 0005638289
As the root (positive value) of the quadratic equation of the above equation (20), the ground capacitance C (admittance ωC) is obtained based on the following equation (24). The coefficients a, b, and c in the equation (24) are replaced as in the equations (21) to (23), and α, β, γ, and δ in the equations (21) to (23) are It is substituted as in the formulas (5) to (8), and R A , R B , R C , R D and R E in the formulas (5) to (8) are as in the formulas (9) to (13). From the known value composed of R 0 , R 1 , R 2 , R 3 , ωL, and ωL 3 and the tan φ n2 obtained from the actually measured phase angles φ 00 and φ 01 , The electric capacity C (admittance ωC) can be obtained.
Figure 0005638289

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

11 測定装置
12 非接地系電路
13 接地変圧器
15 ケーブル
SW スイッチ
C 三相一括の対地静電容量
L 接地変圧器の内部インピーダンスのリアクタンス
3 接地変圧器の三次側回路インピーダンスのリアクタンス
0 接地変圧器の内部インピーダンスの抵抗
1 制限抵抗
2 測定抵抗
3 接地変圧器の三次側回路インピーダンスの抵抗
00 スイッチ投入前における三相一括の対地アドミタンス
02 スイッチ投入後における三相一括の対地アドミタンス
11 measuring device 12 ungrounded system path 13 ground transformer 15 Cable SW switch C three-phase of the earth capacitance L grounding transformer reactance R 0 grounding transformer tertiary circuit impedance of the reactance L 3 grounding transformer internal impedance Resistance of internal impedance of transformer R 1 Limit resistance R 2 Measurement resistance R 3 Resistance of tertiary circuit impedance of earthing transformer Y 00 Three-phase collective ground admittance before switch on Y 02 Three-phase collective ground admittance after switch on

Claims (2)

非接地系電路に接続された接地変圧器の三次側に制限抵抗を常時接続すると共に、前記接地変圧器の三次側にケーブルを介して接続され、前記非接地系電路の対地静電容量を測定するためのスイッチおよび測定抵抗を具備した電力系統における対地静電容量の測定装置であって、
前記スイッチ投入前における三相一括の対地アドミタンスY00と、前記スイッチ投入後における三相一括の対地アドミタンスY02とに基づく位相角の演算処理により、前記ケーブルの線路インピーダンス、前記スイッチの接点での接触抵抗を含む接地変圧器の三次側回路インピーダンスを加味して対地静電容量を算出し、前記スイッチ投入前における三相一括の対地アドミタンスY 00 は、三相一括の対地静電容量C、前記接地変圧器の内部インピーダンスのリアクタンスLおよび抵抗R 0 、前記制限抵抗R 1 を用い、かつ、前記スイッチ投入後における三相一括の対地アドミタンスY 02 は、三相一括の対地静電容量C、前記接地変圧器の内部インピーダンスのリアクタンスLおよび抵抗R 0 、前記制限抵抗R 1 、前記測定抵抗R 2 、前記接地変圧器の三次側回路インピーダンスのリアクタンスL 3 および抵抗R 3 を用いて、
Figure 0005638289
としたことを特徴とする電力系統における対地静電容量の測定装置。
A limit resistor is always connected to the tertiary side of the grounding transformer connected to the non-grounding circuit, and the grounding capacitance of the non-grounding circuit is measured via a cable connected to the tertiary side of the grounding transformer. A device for measuring a ground capacitance in a power system having a switch and a measuring resistor
By calculating the phase angle based on the three-phase collective ground admittance Y 00 before the switch is turned on and the three-phase collective ground admittance Y 02 after the switch is turned on, the line impedance of the cable and the contact of the switch calculating the earth capacitance in consideration of the tertiary side circuit impedance of the grounding transformer includes a contact resistance, the ground admittance of the three-phase before the switch-on Y 00 is a three-phase earth capacity C, Using the reactance L of the internal impedance of the grounding transformer and the resistor R 0 , the limiting resistor R 1 , and the three-phase collective ground admittance Y 02 after the switch is turned on, the three-phase collective ground capacitance C, the ground transformer internal impedance of the reactance L and resistance R 0, the limiting resistor R 1, the measuring resistor R 2, the ground Using reactance L 3 and the resistor R 3 of the tertiary circuit impedance of the voltage divider,
Figure 0005638289
Measuring device earth capacitance in the power system, characterized in that the the.
前記スイッチは、半導体リレーである請求項に記載の電力系統における対地静電容量の測定装置。 The said switch is a semiconductor relay, The measuring apparatus of the electrostatic capacitance in the electric power system of Claim 1 characterized by the above-mentioned.
JP2010135251A 2010-06-14 2010-06-14 Measuring device for earth capacitance in power system Active JP5638289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135251A JP5638289B2 (en) 2010-06-14 2010-06-14 Measuring device for earth capacitance in power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135251A JP5638289B2 (en) 2010-06-14 2010-06-14 Measuring device for earth capacitance in power system

Publications (2)

Publication Number Publication Date
JP2012002538A JP2012002538A (en) 2012-01-05
JP5638289B2 true JP5638289B2 (en) 2014-12-10

Family

ID=45534718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135251A Active JP5638289B2 (en) 2010-06-14 2010-06-14 Measuring device for earth capacitance in power system

Country Status (1)

Country Link
JP (1) JP5638289B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469102B1 (en) * 2013-09-30 2014-12-04 한국전력공사 Apparatus and method for measuring capacitance of transformer
JP6995904B2 (en) * 2020-03-03 2022-01-17 関西電力株式会社 Ground capacitance measurement method
CN112467880B (en) * 2020-11-19 2023-01-31 西安热工研究院有限公司 A device and method for limiting the maximum boost voltage at the head end of a black start sending line
CN112816840B (en) * 2021-01-29 2023-07-21 国网陕西省电力公司电力科学研究院 Method and system for AC withstand voltage test of cable line based on three-phase shunt reactor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692997B2 (en) * 1992-09-28 1994-11-16 東北電力株式会社 Measuring device for ground capacitance of power system
JP2943133B2 (en) * 1994-04-30 1999-08-30 キヤノン株式会社 Insulation state measuring method, insulation state determination device, and distributed power generation device using the same
JPH0875689A (en) * 1994-09-05 1996-03-22 Daiden Co Ltd Deterioration detector
JP3025837B2 (en) * 1995-11-22 2000-03-27 日本航空電子工業株式会社 Capacitance measuring device
JP2001052941A (en) * 1999-08-06 2001-02-23 Toshiba Corp Transducer with voltage correcting function
JP3754862B2 (en) * 2000-03-24 2006-03-15 東海旅客鉄道株式会社 Departure control device with simulated phase
JP4707893B2 (en) * 2001-08-24 2011-06-22 東亜ディーケーケー株式会社 Conductivity meter
JP2005114575A (en) * 2003-10-08 2005-04-28 Asahi Breweries Ltd Calibration method for conductivity meter
JP4493564B2 (en) * 2005-07-28 2010-06-30 ティーオーエー株式会社 Speaker line inspection device and terminal device for speaker line inspection device
JP2008099398A (en) * 2006-10-10 2008-04-24 Toshiba Mitsubishi-Electric Industrial System Corp Neutral point grounding device

Also Published As

Publication number Publication date
JP2012002538A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
RU2416804C2 (en) Device and method for definition of ground short circuit
CN1786726B (en) System and method of locating ground fault in electrical power distribution system
EP2686691B1 (en) A method for detecting earth faults
JP7006237B2 (en) A system with a protective device for the power supply system
US20130088240A1 (en) Method and apparatus for determining an insulation resistance in grounded it systems
EP2730023A1 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
WO2008061321A1 (en) Power supply monitoring system
CN107735690A (en) The method of the earth-fault protection of three-phase electrical network
JP5418219B2 (en) High voltage insulation monitoring device
JP5638289B2 (en) Measuring device for earth capacitance in power system
KR101986221B1 (en) 3-phase 4-wire electrical installation hot-line insulation resistance measurement method and device
CN104380124A (en) Apparatus and method of fault detection and location determination
CN101295004A (en) The method of judging the position of single-phase grounding fault point of generator stator winding
JP4599120B2 (en) Electrical installation insulation monitoring device and method
RU2550751C2 (en) Method and device for detection of ground short-circuit
RU2537744C1 (en) Method of diagnostics of induction motor stator windings insulation
JP5444122B2 (en) Non-grounded circuit ground fault detection device, ground fault protection relay using the same, and ground fault detection method
JP2011179988A (en) Digital test plug, and method for measuring electric power and phase using the same
CN105403808B (en) A kind of localization method and device of DC line earth fault
Chaouche et al. Finite element method to construct a lumped parameter ladder network of the transformer winding
KR101909379B1 (en) Leakage current measuring method and leakage current measuring apparatus
Radhakrishnan et al. Protection functionalities in smart meters to enhance distribution system protection
JP6897933B2 (en) High-voltage insulation monitoring device and high-voltage insulation monitoring method
RU2484570C2 (en) Method for determination of damaged feeder on bus section of three-phase grid with insulated neutral in case of single phase earth faults
JP4892914B2 (en) Charging current measuring method and charging current measuring program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141022

R150 Certificate of patent or registration of utility model

Ref document number: 5638289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250