[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5636300B2 - Pressure-sensitive conductive rubber member and pressure-sensitive sensor - Google Patents

Pressure-sensitive conductive rubber member and pressure-sensitive sensor Download PDF

Info

Publication number
JP5636300B2
JP5636300B2 JP2011018367A JP2011018367A JP5636300B2 JP 5636300 B2 JP5636300 B2 JP 5636300B2 JP 2011018367 A JP2011018367 A JP 2011018367A JP 2011018367 A JP2011018367 A JP 2011018367A JP 5636300 B2 JP5636300 B2 JP 5636300B2
Authority
JP
Japan
Prior art keywords
pressure
rubber member
resin coating
conductive rubber
sensitive conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011018367A
Other languages
Japanese (ja)
Other versions
JP2012159362A (en
Inventor
池田 寛
寛 池田
浦野 竜太
竜太 浦野
山田 晃久
晃久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2011018367A priority Critical patent/JP5636300B2/en
Publication of JP2012159362A publication Critical patent/JP2012159362A/en
Application granted granted Critical
Publication of JP5636300B2 publication Critical patent/JP5636300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、圧力の変化が抵抗値の変化となる特性を有する感圧導電ゴム部材、又は該感圧導電ゴム部材を用いた感圧センサに関する。   The present invention relates to a pressure-sensitive conductive rubber member having a characteristic that a change in pressure becomes a change in resistance value, or a pressure-sensitive sensor using the pressure-sensitive conductive rubber member.

従来、部材に作用する圧力の大きさ、分布状態を測定する手段として、チタン酸ジルコン酸鉛等の圧電セラミックスを用いた方式や、歪みゲージを用いる方式が使用されている。しかしながら、圧電セラミックスは一般に剛性の高い材料で形成されているため、形状の自由度に制限がある。また、歪みゲージも同様に、形状設計の自由度が低いという問題を有している。   Conventionally, a method using piezoelectric ceramics such as lead zirconate titanate or a method using a strain gauge has been used as means for measuring the magnitude and distribution of pressure acting on a member. However, since piezoelectric ceramics are generally formed of a highly rigid material, there is a limit to the degree of freedom of shape. Similarly, the strain gauge has a problem that the degree of freedom in shape design is low.

これらの問題に対して、ゴム、エラストマー、樹脂材料などの高分子材料を基材とし、基材中に導電性粒子を分散させた感圧部材を用いることで、形状の自由度が高い感圧センサが得られることが知られている。   In response to these problems, pressure-sensitive members with a high degree of freedom in shape can be obtained by using a pressure-sensitive member made of a polymer material such as rubber, elastomer, or resin material with conductive particles dispersed in the substrate. It is known that a sensor can be obtained.

この感圧センサに用いるものとして、非導電性エラストマー中に、粒子径が1〜20μmの微小球状炭素粒子と共に、粒子径が10〜150μmの中空状弾性マイクロスフェアーが分散された感圧導電性エラストマーが報告されている。この感圧導電性エラストマーは、中空状弾性マイクロスフェアーを用いることによりにより、優れた耐久性、衝撃吸収性を示すことになり、圧力−抵抗特性のヒステリシスが改善された感圧導電性エラストマーを得る事が可能となる(特許文献1)。   As a pressure-sensitive sensor used in this pressure-sensitive sensor, a pressure-sensitive conductive material in which hollow elastic microspheres having a particle size of 10 to 150 μm are dispersed together with fine spherical carbon particles having a particle size of 1 to 20 μm in a non-conductive elastomer. Elastomers have been reported. This pressure-sensitive conductive elastomer exhibits excellent durability and shock absorption by using hollow elastic microspheres, and is a pressure-sensitive conductive elastomer with improved hysteresis of pressure-resistance characteristics. It can be obtained (Patent Document 1).

また、平均表面粗さが0.1μm以上3μm以下であり、かつ表面凹凸周期のピークが10μm以上1,000μm以下であると共に、弾性率が800MPa以上8,000MPa以下である膜状感圧抵抗体が報告されている。この膜状感圧抵抗体は、充分な平均表面粗さ、表面凹凸周期のピークおよび弾性率を有するものであるため、接触初期の低荷重域における荷重変化に対しても接触面積が緩やかに変化するものとなる(特許文献2)。   A film-like pressure-sensitive resistor having an average surface roughness of 0.1 μm or more and 3 μm or less, a peak of the surface irregularity period of 10 μm or more and 1,000 μm or less, and an elastic modulus of 800 MPa or more and 8,000 MPa or less Has been reported. This film-like pressure-sensitive resistor has sufficient average surface roughness, peak surface irregularities and elastic modulus, so that the contact area changes gradually even when the load changes in the low load range at the initial stage of contact. (Patent Document 2).

特公平06−054603号公報Japanese Patent Publication No. 06-054603 特許第3980300号公報Japanese Patent No. 3980300

特許文献1に開示される感圧導電性エラストマーは次の点が問題となる。   The pressure-sensitive conductive elastomer disclosed in Patent Document 1 has the following problems.

(1)非導電性エラストマー中に分散された導電性粒子の粒子径が1〜20μmと極めて大きいため、加圧変形時の抵抗変化に個体間のばらつきが生じやすく、信頼性に欠けるものとなる。   (1) Since the particle size of the conductive particles dispersed in the non-conductive elastomer is as extremely large as 1 to 20 μm, the resistance change at the time of pressure deformation tends to vary among individuals, and the reliability is lacking. .

(2)導電性粒子として弾性に富んだ中空状弾性マイクロスフェアーを用いた場合であっても、感圧導電性エラストマーの粘着性等に起因して検知した抵抗値に強いヒステリシスロスが生じる場合がある。この結果、感圧特性の再現性等の信頼性に欠けるものとなる。   (2) Even if a hollow elastic microsphere rich in elasticity is used as the conductive particles, a strong hysteresis loss occurs in the detected resistance value due to the adhesiveness of the pressure-sensitive conductive elastomer. There is. As a result, the reliability such as the reproducibility of pressure-sensitive characteristics is lacking.

(3)感圧導電性エラストマーの弾性率の低さに由来して、一定の圧力がセンサに加えられている時に徐々にその変形量が増大し、抵抗値が経時的に極めて大きく変化する場合がある。   (3) Due to the low elastic modulus of the pressure-sensitive conductive elastomer, the amount of deformation gradually increases when a certain pressure is applied to the sensor, and the resistance value changes significantly over time. There is.

(4)感圧導電性エラストマー中の非導電性エラストマーの種類によっては、可塑剤や、架橋剤由来の残留する未分解物、残留する低分子量の揮発性成分の影響により電極等金属部品を汚染して電気接点障害が発生する場合がある。   (4) Depending on the type of non-conductive elastomer in the pressure-sensitive conductive elastomer, metal parts such as electrodes are contaminated due to the effects of plasticizers, residual undecomposed products derived from crosslinking agents, and residual low-molecular-weight volatile components. As a result, an electrical contact failure may occur.

特許文献2に開示される膜状感圧抵抗体は次の点が問題となる。   The film-shaped pressure sensitive resistor disclosed in Patent Document 2 has the following problems.

(1)膜状感圧抵抗体が充分な平均表面粗さ、表面凹凸周期のピークおよび弾性率を有するものであっても、基材が弾性体でないと、圧力の増減に追従して膜状感圧抵抗体が変形できない。この結果、検知した抵抗値に強いヒステリシスロスが生じる場合があり、感圧特性の再現性等の信頼性に欠けるものとなる。   (1) Even if the film-like pressure-sensitive resistor has a sufficient average surface roughness, a peak of the surface irregularity period, and an elastic modulus, if the substrate is not an elastic body, the film-like pressure-sensitive resistor follows the increase / decrease in pressure. The pressure sensitive resistor cannot be deformed. As a result, a strong hysteresis loss may occur in the detected resistance value, resulting in lack of reliability such as reproducibility of pressure-sensitive characteristics.

(2)膜状感圧抵抗体を弾性基材の表面に形成して感圧センサとした場合には、膜状感圧抵抗体が極めて硬いために、弾性基材の弾性変形に追従できない。このため、打鍵耐久性に劣り、ひび割れが生じ、圧力検出信頼性に欠けるものとなる。   (2) When a film-like pressure sensitive resistor is formed on the surface of an elastic substrate to form a pressure sensitive sensor, the film-like pressure sensitive resistor is extremely hard and cannot follow the elastic deformation of the elastic substrate. For this reason, the keystroke durability is inferior, cracking occurs, and pressure detection reliability is lacking.

(3)膜状感圧抵抗体を弾性基材の表面に形成し感圧センサとした場合には、弾性基材に含まれる可塑剤や、架橋剤由来の残留する未分解物、残留する低分子量の揮発性成分の染み出しを防止する事が出来ない。このため、弾性基材と対向する電極等の金属部品を汚染して電気接点障害の原因となる場合がある。   (3) When a film-like pressure sensitive resistor is formed on the surface of an elastic substrate to form a pressure sensitive sensor, the plasticizer contained in the elastic substrate, the remaining undecomposed material derived from the crosslinking agent, the remaining low Unable to prevent volatile components of molecular weight from oozing out. For this reason, metal parts such as electrodes facing the elastic substrate may be contaminated and cause electrical contact failure.

したがって、本発明の課題は、下記の特性を有する感圧導電ゴム部材を提供することにある。
・個体間の抵抗値のばらつきが小さい。
・ヒステリシスによる抵抗値のロスが小さい。
・一定の圧力が加えられている時の電気抵抗が、経時的にほとんど変化しない(ドリフト性が良好)。
・打鍵耐久性(多数回の負荷、除荷試験を行った後の、圧力−抵抗特性の再現性)に優れる。
・弾性基材からの成分の染み出しにより電極を汚染することがない。
・圧力−電気抵抗特性が長期に渡って優れた再現性を有する。
・信頼性が高い。
Accordingly, an object of the present invention is to provide a pressure-sensitive conductive rubber member having the following characteristics.
・ There is little variation in resistance between individuals.
・ Resistance loss due to hysteresis is small.
-The electrical resistance when a constant pressure is applied hardly changes over time (good drift performance).
・ Excellent keystroke durability (reproducibility of pressure-resistance characteristics after multiple loading and unloading tests).
-The electrode will not be contaminated by the exudation of components from the elastic substrate.
-Pressure-electric resistance characteristics have excellent reproducibility over a long period of time.
・ High reliability.

一実施形態は、付加される圧力の変化に応じて電気抵抗が変化する感圧導電ゴム部材であって、
ゴム製の弾性基材と、前記弾性基材の表面の少なくとも一部の上に設けられた樹脂塗膜と、を有し、
前記樹脂塗膜は、
下記式(1)で表されるラクトン変性アクリルポリオールを含むポリオールを、イソホロンジイソシアネート誘導体(IPDI)及びヘキサメチレンジイソシアネート誘導体(HDI)を含むイソシアネートにより架橋することによって形成したウレタン樹脂と、
導電剤としてカーボンブラックと、
を含有することを特徴とする感圧導電ゴム部材に関する。
One embodiment is a pressure-sensitive conductive rubber member whose electrical resistance changes according to a change in applied pressure,
A rubber-made elastic base material, and a resin coating film provided on at least a part of the surface of the elastic base material,
The resin coating is
A urethane resin formed by crosslinking a polyol containing a lactone-modified acrylic polyol represented by the following formula (1) with an isocyanate containing an isophorone diisocyanate derivative (IPDI) and a hexamethylene diisocyanate derivative (HDI);
Carbon black as a conductive agent,
The present invention relates to a pressure-sensitive conductive rubber member comprising:

(ただし、上記式(1)において、l、m、nは任意の正の整数を表す。)
イソホロンジイソシアネート誘導体(IPDI)としては、イソホロンジイソシアネートの単量体(モノマー)、多量体や、これらの末端がブロック剤によりブロックされたブロック体が挙げられる。
ヘキサメチレンジイソシアネート誘導体(HDI)としては、ヘキサメチレンジイソシアネートの単量体(モノマー)、多量体や、これらの末端がブロック剤によりブロックされたブロック体が挙げられる。
(However, in said formula (1), l, m, and n represent arbitrary positive integers.)
Examples of the isophorone diisocyanate derivative (IPDI) include a monomer of isophorone diisocyanate, a multimer, and a block body in which these terminals are blocked with a blocking agent.
Examples of the hexamethylene diisocyanate derivative (HDI) include a hexamethylene diisocyanate monomer, a multimer, and a block body in which these terminals are blocked with a blocking agent.

個体間の抵抗値のばらつきが小さく、ヒステリシスによる抵抗値のロスが小さく、一定の圧力がセンサに加えられている時の出力が、経時的に変化することがほとんどない、感圧導電ゴム部材を提供することができる。また、打鍵耐久性に優れ、弾性基材からの成分の染み出しにより電極を汚染することがなく、圧力−電気抵抗特性が長期に渡って優れた再現性を有し、信頼性の高い感圧導電ゴム部材を提供することができる。   A pressure-sensitive conductive rubber member with little variation in resistance value between individuals, little resistance loss due to hysteresis, and little change in output over time when a constant pressure is applied to the sensor. Can be provided. In addition, it has excellent keystroke durability, does not contaminate the electrode due to exudation of components from the elastic base material, has excellent reproducibility of pressure-electric resistance characteristics over a long period of time, and is highly reliable. A conductive rubber member can be provided.

本発明の感圧導電ゴム部材の複数の例を表す断面図であり、(a)は二層構成の感圧導電ゴム部材、(b)は三層構成の感圧導電ゴム部材、(c)は弾性基材の周囲を樹脂塗膜が被覆した感圧導電ゴム部材を表す。It is sectional drawing showing the some example of the pressure-sensitive conductive rubber member of this invention, (a) is a pressure-sensitive conductive rubber member of 2 layer structure, (b) is a pressure-sensitive conductive rubber member of 3 layer structure, (c) Represents a pressure-sensitive conductive rubber member in which an elastic base material is covered with a resin coating film. 本発明の感圧センサの電極の複数の例を表す図であり、(a)は櫛型電極、(b)は角板型電極を表す。It is a figure showing the some example of the electrode of the pressure sensor of this invention, (a) represents a comb-shaped electrode, (b) represents a square plate-type electrode. 本発明の感圧センサの複数の例を表す図であり、(a)は櫛型電極(2−a)を使用した感圧センサ、(b)は角板型電極(2−b)を使用した感圧センサを表す。It is a figure showing the some example of the pressure sensor of this invention, (a) uses the pressure sensor which used the comb-shaped electrode (2-a), (b) uses the square plate type electrode (2-b). Represents a pressure sensor. 圧力−電気抵抗特性を測定する負荷・除荷試験方法を説明する模式図である。It is a schematic diagram explaining the load and unloading test method which measures a pressure-electric resistance characteristic. 実施例1において負荷・除荷試験を行った場合の圧力と電気抵抗のLogRの関係を示すグラフ図である。It is a graph which shows the relationship between the pressure at the time of performing a load and unloading test in Example 1, and LogR of electrical resistance. 比較例1において負荷・除荷試験を行った場合の圧力と電気抵抗のLogRの関係を示すグラフ図である。It is a graph which shows the relationship between the pressure at the time of performing a load and an unloading test in the comparative example 1, and LogR of electrical resistance. 比較例4において負荷・除荷試験を行った場合の圧力と電気抵抗のLogRの関係を示すグラフ図である。It is a graph which shows the relationship between the pressure at the time of performing a load and unloading test in the comparative example 4, and LogR of electrical resistance.

(感圧導電ゴム部材)
本発明の感圧導電ゴム部材は、ゴム製の弾性基材と、該弾性基材の表面の少なくとも一部の上に形成された導電性の樹脂塗膜を有する。この樹脂塗膜は、ウレタン樹脂と、導電剤としてカーボンブラックとを含有する。ウレタン樹脂は、ラクトン変性アクリルポリオールを含むポリオールを、イソホロンジイソシアネート誘導体(IPDI)及びヘキサメチレンジイソシアネート誘導体(HDI)を含むイソシアネートにより架橋することによって形成する。感圧導電ゴム部材は、付加される圧力の変化に応じて電気抵抗が変化する。
(Pressure-sensitive conductive rubber member)
The pressure-sensitive conductive rubber member of the present invention has a rubber elastic substrate and a conductive resin coating film formed on at least a part of the surface of the elastic substrate. This resin coating film contains a urethane resin and carbon black as a conductive agent. The urethane resin is formed by crosslinking a polyol containing a lactone-modified acrylic polyol with an isocyanate containing an isophorone diisocyanate derivative (IPDI) and a hexamethylene diisocyanate derivative (HDI). The electric resistance of the pressure-sensitive conductive rubber member changes according to the change of the applied pressure.

ラクトン変性アクリルポリオールは、下記式(1)で表される。   The lactone-modified acrylic polyol is represented by the following formula (1).

(ただし、上記式(1)において、l、m、nは任意の正の整数を表す。)
イソホロンジイソシアネート誘導体(IPDI)としては、イソホロンジイソシアネートの単量体(モノマー)、多量体や、これらの末端がブロック剤によりブロックされたブロック体が挙げられる。
同様にして、ヘキサメチレンジイソシアネート誘導体(HDI)としては、ヘキサメチレンジイソシアネートの単量体(モノマー)、多量体や、これらの末端がブロック剤によりブロックされたブロック体が挙げられる。
(However, in said formula (1), l, m, and n represent arbitrary positive integers.)
Examples of the isophorone diisocyanate derivative (IPDI) include a monomer of isophorone diisocyanate, a multimer, and a block body in which these terminals are blocked with a blocking agent.
Similarly, examples of the hexamethylene diisocyanate derivative (HDI) include hexamethylene diisocyanate monomers, multimers, and block bodies in which these ends are blocked with a blocking agent.

イソホロンジイソシアネート(IPDI)の単量体(モノマー)は、下記式(4)で表される。   A monomer (monomer) of isophorone diisocyanate (IPDI) is represented by the following formula (4).

ヘキサメチレンジイソシアネート(HDI)の単量体(モノマー)は、下記式(5)で表される。   A monomer (monomer) of hexamethylene diisocyanate (HDI) is represented by the following formula (5).

図1(a)〜図1(c)は、本発明の感圧導電ゴム部材の例の断面図を示している。図1(a)は、ゴム製の弾性基材1a−1の片側一面に、導電性の樹脂塗膜1a−2が形成された、二層構成の感圧導電ゴム部材1aを表す。図1(b)は、ゴム製の弾性基材1b−1の両面に導電性の樹脂塗膜1b−2が形成された、三層構成の感圧導電ゴム部材1bを表す。また、図1(c)は、ゴム製の弾性基材1c−1の周囲に導電性の樹脂塗膜1c−2が形成された形態の感圧導電ゴム部材1cを表す。   Fig.1 (a)-FIG.1 (c) have shown sectional drawing of the example of the pressure-sensitive conductive rubber member of this invention. FIG. 1A shows a two-layer pressure-sensitive conductive rubber member 1a in which a conductive resin coating film 1a-2 is formed on one side of a rubber elastic substrate 1a-1. FIG. 1B shows a pressure-sensitive conductive rubber member 1b having a three-layer structure in which conductive resin coatings 1b-2 are formed on both surfaces of a rubber elastic substrate 1b-1. Moreover, FIG.1 (c) represents the pressure-sensitive conductive rubber member 1c of the form by which the electroconductive resin coating film 1c-2 was formed around the rubber-made elastic base materials 1c-1.

本発明の感圧導電ゴム部材は、弾性基材の表面の少なくとも一部に樹脂塗膜を形成した構成を有する。この構成により感圧導電ゴム部材に対して外部から付加された圧力を電気抵抗値として検出する素子として機能する。樹脂塗膜は、ウレタン樹脂と、導電剤としてカーボンブラックとを含有する。ウレタン樹脂は、ラクトン変性アクリルポリオールを含むポリオールを、イソホロンジイソシアネート誘導体とヘキサメチレンジイソシアネート誘導体を含むイソシアネートにより、架橋することにより形成されている。   The pressure-sensitive conductive rubber member of the present invention has a configuration in which a resin coating film is formed on at least a part of the surface of the elastic substrate. With this configuration, the pressure sensitive conductive rubber member functions as an element that detects a pressure applied from the outside as an electric resistance value. The resin coating film contains a urethane resin and carbon black as a conductive agent. The urethane resin is formed by crosslinking a polyol containing a lactone-modified acrylic polyol with an isocyanate containing an isophorone diisocyanate derivative and a hexamethylene diisocyanate derivative.

ラクトン変性アクリルポリオールは適度な硬度と非汚染性を有し、また、末端に水酸基を有する変性したラクトン基が多数の架橋点となりイソシアネートで密に架橋することが可能となる。このため、このラクトン変性アクリルポリオールを使用することにより、弾性基体からの染み出し物質のブロック性を有することができる。また、イソシアネートとして、イソホロンジイソシアネート誘導体(IPDI)とヘキサメチレンジイソシアネート誘導体(HDI)を使用することにより、樹脂塗膜は柔軟性を有することができる。この結果、弾性基材が外部からの圧力によって変形した場合であっても、樹脂塗膜は弾性基材の表面へ高い密着性で密着することができ、弾性基材の形状を長期間、維持しつつ電極が直接、弾性基材に接触することを防止できる。   The lactone-modified acrylic polyol has an appropriate hardness and non-contaminating property, and the modified lactone group having a hydroxyl group at the terminal becomes a large number of crosslinking points and can be closely crosslinked with isocyanate. For this reason, by using this lactone-modified acrylic polyol, it is possible to have a blocking property of the exuding substance from the elastic substrate. Moreover, a resin coating film can have a softness | flexibility by using an isophorone diisocyanate derivative (IPDI) and a hexamethylene diisocyanate derivative (HDI) as isocyanate. As a result, even when the elastic base material is deformed by external pressure, the resin coating can adhere to the surface of the elastic base material with high adhesion, and the shape of the elastic base material is maintained for a long period of time. However, the electrode can be prevented from coming into direct contact with the elastic substrate.

本発明の感圧導電ゴム部材は、樹脂塗膜を設けることによって、以下の作用効果を奏する。
・樹脂塗膜は、ラクトン変性アクリルポリオールを含むポリオールを、イソホロンジイソシアネート誘導体(IPDI)及びヘキサメチレンジイソシアネート誘導体(HDI)を含むイソシアネートにより架橋することによって形成されている。従って、樹脂塗膜は均一に形成されており、その内部には導電剤であるカーボンブラックが均一に分布している。この結果、個体間の感圧導電ゴム部材の抵抗値のばらつきが小さくなる。
・樹脂塗膜は強い粘着性を有さないため、樹脂塗膜の弾性基材への粘着に起因して発生する、ヒステリシスによる抵抗値のロスを抑制することができる。
・樹脂塗膜は、弾性基材の表面上に存在し、電極はこの樹脂塗膜上に設けられ、弾性基材には直接、接しない。従って、弾性基材の弾性の低さに由来して、一定の圧力が加えられている時に、弾性基材と電極との接触状態が徐々に変化して、経時的に弾性基材の電気的抵抗が極めて大きく変化することを防止することができる。すなわち、ドリフト性を良好にすることができる。
・樹脂塗膜は適度な弾性を有するため、感圧導電ゴム部材に衝撃が加わった場合であっても、弾性基材の弾性変形に追従することができ弾性基材の形状を維持することができる。この結果、弾性基材内に破断や裂け等が発生して、その圧力−電気抵抗特性が変化することを防止して、良好な打鍵耐久性を有する感圧導電ゴム部材を提供することができる。
・樹脂塗膜は、弾性基材の保護層としても機能し、弾性基材中に残存する未分解残渣等の成分に染み出しにより、弾性基材と対向接触する電極等の部材への汚染を防止する。
・樹脂塗膜は、弾性基材の表面上に存在するため、弾性基材の形状を維持したり、弾性基材の内容成分が外部に染み出してその分子構造が変化することを防止する。この結果、長期に渡って弾性基材は優れた圧力−抵抗特性の再現性を有することができる。
・本発明の感圧導電ゴム部材は上記のような優れた特性を有するため、信頼性の高いものとすることができる。
The pressure-sensitive conductive rubber member of the present invention has the following effects by providing a resin coating film.
The resin coating film is formed by crosslinking a polyol containing a lactone-modified acrylic polyol with an isocyanate containing an isophorone diisocyanate derivative (IPDI) and a hexamethylene diisocyanate derivative (HDI). Therefore, the resin coating film is uniformly formed, and carbon black as a conductive agent is uniformly distributed therein. As a result, variation in the resistance value of the pressure-sensitive conductive rubber member between individuals is reduced.
-Since a resin coating film does not have strong adhesiveness, the loss of the resistance value by hysteresis which generate | occur | produces due to the adhesion to the elastic base material of a resin coating film can be suppressed.
-Resin coating film exists on the surface of an elastic base material, an electrode is provided on this resin coating film, and does not touch an elastic base material directly. Therefore, due to the low elasticity of the elastic base material, when a certain pressure is applied, the contact state between the elastic base material and the electrode gradually changes, and the electrical power of the elastic base material changes over time. It is possible to prevent the resistance from changing significantly. That is, the drift property can be improved.
-Since the resin coating film has moderate elasticity, it can follow the elastic deformation of the elastic base material and maintain the shape of the elastic base material even when an impact is applied to the pressure-sensitive conductive rubber member. it can. As a result, it is possible to provide a pressure-sensitive conductive rubber member having good keystroke durability by preventing breakage or tearing in the elastic base material and changing its pressure-electric resistance characteristics. .
-The resin coating also functions as a protective layer for the elastic substrate, and it exudes to components such as undecomposed residues remaining in the elastic substrate, thereby contaminating members such as electrodes facing the elastic substrate. To prevent.
-Since the resin coating film exists on the surface of the elastic base material, it maintains the shape of the elastic base material and prevents the content component of the elastic base material from oozing out to change its molecular structure. As a result, the elastic substrate can have excellent reproducibility of pressure-resistance characteristics over a long period of time.
-Since the pressure-sensitive conductive rubber member of this invention has the above outstanding characteristics, it can be made highly reliable.

(感圧センサ)
本発明の感圧センサは、上記感圧導電ゴム部材と、感圧導電ゴム部材の樹脂塗膜に接するように設けられた電極を有する。感圧センサは、付加される圧力の変化に応じて感圧導電ゴム部材と電極との間の電気抵抗が変化することを検出することにより、付加された圧力を検知する。この電極としては例えば、図2に示すものを使用する。図2(a)は、櫛型電極の平面図であり、導電性金属からなる配線2a−1、絶縁性樹脂からなる基板2a−2から形成されている。図2(b)は、角板型電極の平面図であり、導電性金属からなる配線2b−1、絶縁性樹脂からなる基板2b−2から形成されている。このように一対の電極は、図2(a)に示すように一つの基板上に互いに離間するように設けても、図2(b)に示すように正極側と負極側をそれぞれ別の基板上に設けても良い。
(Pressure sensitive sensor)
The pressure-sensitive sensor of the present invention has the pressure-sensitive conductive rubber member and an electrode provided so as to be in contact with the resin coating film of the pressure-sensitive conductive rubber member. The pressure-sensitive sensor detects the applied pressure by detecting a change in electrical resistance between the pressure-sensitive conductive rubber member and the electrode in accordance with a change in the applied pressure. As this electrode, for example, the electrode shown in FIG. 2 is used. FIG. 2A is a plan view of the comb-shaped electrode, which is formed of a wiring 2a-1 made of a conductive metal and a substrate 2a-2 made of an insulating resin. FIG. 2B is a plan view of a square plate electrode, which is formed of a wiring 2b-1 made of a conductive metal and a substrate 2b-2 made of an insulating resin. In this way, even if the pair of electrodes are provided on one substrate so as to be separated from each other as shown in FIG. 2A, the positive electrode side and the negative electrode side are different substrates as shown in FIG. It may be provided above.

図3は、本発明の感圧導電ゴム部材を使用した感圧センサの例の断面図を示している。図3(a)は、櫛型電極の配線2a−1を設けた側に、感圧導電ゴム部材1aの樹脂塗膜1a−2を設けた面が接触するように配置した感圧センサ3aである。この感圧センサ3aに対して外部から圧力Pを付加すると、圧力Pの負荷・除荷に応じて感圧導電ゴム部材1aが弾性変形し、電気抵抗が変化する。図3(b)は、角板型電極の配線2b−1を設けた側が樹脂塗膜1b−2に直接、接し、角板型電極が対向するように感圧導電ゴム部材1bを挟む配置をした感圧センサ3bである。この感圧センサ3bに対して外部から圧力Pを付加すると、圧力Pの負荷・除荷に応じて感圧導電ゴム部材3bが弾性変形し電気抵抗が変化する。
以下では、感圧導電ゴム部材を構成する各部について詳細に説明する。
FIG. 3 shows a cross-sectional view of an example of a pressure-sensitive sensor using the pressure-sensitive conductive rubber member of the present invention. FIG. 3A shows a pressure-sensitive sensor 3a arranged so that the surface provided with the resin coating film 1a-2 of the pressure-sensitive conductive rubber member 1a is in contact with the side where the wiring 2a-1 of the comb-shaped electrode is provided. is there. When pressure P is applied to the pressure sensor 3a from the outside, the pressure-sensitive conductive rubber member 1a is elastically deformed according to the load / unloading of the pressure P, and the electric resistance changes. FIG. 3 (b) shows an arrangement in which the pressure-sensitive conductive rubber member 1b is sandwiched so that the side on which the wiring 2b-1 of the square plate electrode is provided is in direct contact with the resin coating 1b-2 and the square plate electrode is opposed. Pressure sensor 3b. When a pressure P is applied from the outside to the pressure sensor 3b, the pressure-sensitive conductive rubber member 3b is elastically deformed according to the load / unloading of the pressure P, and the electric resistance changes.
Below, each part which comprises a pressure-sensitive conductive rubber member is demonstrated in detail.

(弾性基材)
弾性基材はゴム組成物から構成され、圧縮に伴って弾性変形し電極との電気抵抗が有為に変化する作用を有する弾性体である。弾性基材を構成するゴム組成物のゴム成分として具体的には、天然ゴム(NR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、エチレンプロピレンゴム(EPM、EPDM)、クロロプレンゴム(CR)、イソプレンゴム(IR)、エピクロルヒドリンゴム(CO、ECO)、シリコーンゴム、及びウレタンゴム(U)等のゴムがあり、これらを単独で或いは2種以上を混合して用いることができる。
(Elastic base material)
The elastic base material is an elastic body made of a rubber composition and having an action of elastically deforming with compression and significantly changing electric resistance with the electrode. Specifically as a rubber component of the rubber composition constituting the elastic base material, natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), ethylene propylene rubber (EPM, EPDM), chloroprene rubber (CR), isoprene rubber (IR), epichlorohydrin rubber (CO, ECO), silicone rubber, and urethane rubber (U). These are used alone or in combination of two or more. Can be used.

ゴム組成物には通常、ゴム成分の他に各種配合剤を含有する。例えば、導電性付与剤、加硫剤、加硫促進剤、充填剤、老化防止剤、スコーチ防止剤、軟化剤、可塑剤、分散剤などの従来からゴムの配合剤として使用されているものを適宜、配合しても良い。   The rubber composition usually contains various compounding agents in addition to the rubber component. For example, those conventionally used as rubber compounding agents such as conductivity imparting agents, vulcanizing agents, vulcanization accelerators, fillers, anti-aging agents, anti-scorching agents, softeners, plasticizers, dispersants, etc. You may mix | blend suitably.

弾性基材となるゴム組成物の未加硫物の混合は、例えば、加圧式ニーダー、オープンロール等の混練機を用いて行うことができる。ゴム組成物の未加硫物を成形、架橋する方法としては、特に限定されるものではなく、成形方法としては、押出成形、プレス成形等を挙げることができる。押出成形は、未加硫物をスクリューで混練し、先端の押出金型(ダイ)を通過させ連続成形する方法である。プレス成形は、金型に上記未加硫物を充てんし、加圧成型する方法である。成形後の未加硫ゴム混合物の加硫方法としては、加熱、冷却等の温度制御により加硫を行う方法であれば、特に条件は問わない。   Mixing of the unvulcanized product of the rubber composition serving as the elastic substrate can be performed, for example, using a kneader such as a pressure kneader or an open roll. The method for molding and crosslinking the unvulcanized rubber composition is not particularly limited, and examples of the molding method include extrusion molding and press molding. Extrusion molding is a method in which an unvulcanized product is kneaded with a screw and passed through an extrusion die (die) at the tip to be continuously molded. Press molding is a method in which a mold is filled with the above-mentioned unvulcanized material and press-molded. The vulcanization method for the unvulcanized rubber mixture after molding is not particularly limited as long as the vulcanization is performed by temperature control such as heating and cooling.

弾性基材の弾性率は特に限定はされないが、0.5MPa以上30MPa以下である。上記範囲内であれば、圧縮に伴って弾性基材が弾性変形し、弾性基材と電極間の電気抵抗が有為に変化する作用を有することができる。   The elastic modulus of the elastic substrate is not particularly limited, but is 0.5 MPa or more and 30 MPa or less. If it is in the said range, an elastic base material will elastically deform with compression and it can have an effect | action which the electrical resistance between an elastic base material and an electrode changes significantly.

(樹脂塗膜)
樹脂塗膜には、ラクトン変性アクリルポリオールを含むポリオールを、イソホロンジイソシアネート誘導体とヘキサメチレンジイソシアネート誘導体を含むイソシアネートにより、架橋したウレタン樹脂を主成分として用いる。ラクトン変性アクリルポリオールは、分子鎖骨格がスチレンとアクリルの共重合体であり、適度な硬度と非汚染性を有する。また、末端に水酸基を有する変性したラクトン基が多数の架橋点となり、イソシアネートで密に架橋することが可能であり、弾性基材からの染み出し成分をブロックすることができる。このようなラクトン変性アクリルポリオールとしては、例えば、プラクセルDC2016(ダイセル化学工業(株)製)が挙げられる。
(Resin coating film)
For the resin coating film, a urethane resin obtained by crosslinking a polyol containing a lactone-modified acrylic polyol with an isocyanate containing an isophorone diisocyanate derivative and a hexamethylene diisocyanate derivative is used as a main component. The lactone-modified acrylic polyol is a copolymer of styrene and acrylic in the molecular chain skeleton, and has an appropriate hardness and non-contaminating property. In addition, a modified lactone group having a hydroxyl group at the terminal serves as a number of cross-linking points, and it can be cross-linked with isocyanates in a dense manner, and the component that exudes from the elastic substrate can be blocked. An example of such a lactone-modified acrylic polyol is Plaxel DC2016 (manufactured by Daicel Chemical Industries, Ltd.).

ラクトン変性アクリルポリオールのOH価は40〜120mgKOH/gであることが好ましく、60〜100mgKOH/gの範囲内にあることがより好ましい。ラクトン変性アクリルポリオールのOH価が40mgKOH/gよりも少ないと、イソシアネートで架橋されにくくなる。この結果、それによって樹脂が柔らかくなり過ぎ、塑性変形が起こり、樹脂塗膜の電気抵抗が変化し易くなる。より具体的には、一定の圧力が感圧センサに加えられている時の電気抵抗が経時的に変化する量が大きくなりやすい。また、樹脂塗膜が粘着性を有し、樹脂塗膜が弾性基材に粘着するために発生する、ヒステリシスによる電気抵抗値のロスが生じ易くなる。一方、OH基が120mgKOH/gよりも大きすぎると、架橋後の樹脂塗膜が硬くなり過ぎて、感圧導電ゴム部材に衝撃が加わった場合に弾性基材の弾性変形に追従できず、弾性基材の形状を維持することができないおそれがある。この結果、弾性基材内に破断や裂け等が発生して、その圧力−抵抗特性が変化して打鍵耐久性に劣る場合がある。   The OH value of the lactone-modified acrylic polyol is preferably 40 to 120 mgKOH / g, and more preferably in the range of 60 to 100 mgKOH / g. When the OH value of the lactone-modified acrylic polyol is less than 40 mgKOH / g, it is difficult to crosslink with isocyanate. As a result, the resin becomes too soft, plastic deformation occurs, and the electric resistance of the resin coating film easily changes. More specifically, the amount of change in electrical resistance over time when a constant pressure is applied to the pressure sensor tends to increase. In addition, the resin coating film has adhesiveness, and the loss of the electric resistance value due to hysteresis, which occurs because the resin coating film adheres to the elastic substrate, is likely to occur. On the other hand, if the OH group is larger than 120 mgKOH / g, the resin coating after crosslinking becomes too hard to follow the elastic deformation of the elastic base material when an impact is applied to the pressure-sensitive conductive rubber member, There is a possibility that the shape of the substrate cannot be maintained. As a result, the elastic base material may be broken or torn, and the pressure-resistance characteristics may change, resulting in poor keystroke durability.

また、特に限定されないが、ウレタン樹脂のガラス転移温度(Tg)は40℃≦Tg≦80℃の範囲にあることが好ましい。80<Tgの場合は、樹脂塗膜の可撓性がなくなり、樹脂塗膜が割れ易くなる場合がある。Tg<40℃の場合は、樹脂塗膜が塑性変形し易くなる場合がある。Tgは、架橋させるイソシアネートの比率又は量によって調節する。   Although not particularly limited, the glass transition temperature (Tg) of the urethane resin is preferably in the range of 40 ° C. ≦ Tg ≦ 80 ° C. In the case of 80 <Tg, the flexibility of the resin coating film is lost, and the resin coating film may be easily broken. When Tg <40 ° C., the resin coating film may be easily plastically deformed. Tg is adjusted by the ratio or amount of isocyanate to be crosslinked.

ウレタン樹脂中のイソホロンジイソシアネート誘導体中のNCO基数とヘキサメチレンジイソシアネート誘導体中のNCO基数の比であるIPDI/HDIは、0.2≦IPDI/HDI≦1.0の範囲になるように調整することが好ましい。IPDI/HDI<0.2の場合、苛酷な高温高湿環境や長期に渡る使用環境下では、樹脂塗膜が弾性基材中の可塑剤や架橋剤由来の残留する未分解物、残留する低分子量の揮発性成分の染み出しを充分に防止できない可能性がある。このような染み出し成分は、電極等の金属部品を汚染して電気接点障害の原因となる可能性がある。1.0<IPDI/HDIの場合、樹脂塗膜が硬くなり過ぎて、弾性基材の弾性変形に充分に追従できず打鍵耐久性に劣り、ひび割れが生じて圧力−抵抗特性の信頼性に欠ける場合がある。   IPDI / HDI, which is the ratio of the number of NCO groups in the isophorone diisocyanate derivative in the urethane resin to the number of NCO groups in the hexamethylene diisocyanate derivative, can be adjusted to be in the range of 0.2 ≦ IPDI / HDI ≦ 1.0. preferable. In the case of IPDI / HDI <0.2, under severe high temperature and high humidity environment or long-term use environment, the resin coating film remains undecomposed material remaining from the plasticizer or cross-linking agent in the elastic base material, and the remaining low There is a possibility that bleeding of volatile components of molecular weight cannot be sufficiently prevented. Such exuding components may contaminate metal parts such as electrodes and cause electrical contact failures. In the case of 1.0 <IPDI / HDI, the resin coating film becomes too hard to sufficiently follow the elastic deformation of the elastic base material, so that the keystroke durability is inferior, cracking occurs, and the pressure-resistance characteristics are not reliable. There is a case.

ラクトン変性アクリルポリオールとイソシアネートの配合比は、イソシアネート中のNCO基の数と、ラクトン変性アクリルポリオール中のOH基の数の比であるNCO基/OH基が、0.2≦NCO基/OH基≦2.0が好ましい。特に好ましくは、0.8≦NCO基数/OH基数≦1.5の範囲になるように調整するのが良い。NCO基数/OH基数<0.2の場合、ラクトン変性アクリルポリオールがイソシアネートによって架橋されにくくなり、樹脂塗膜が柔らかくなって塑性変形が起こり、電気抵抗が変化し易くなる。より具体的には、一定の圧力が感圧センサに加えられている時、検出される電気抵抗値が経時的に大きく変化しやすくなる。また、ヒステリシスによる検知した抵抗値のロスが生じ易くなる。2.0<NCO基数/OH基数の場合、樹脂塗膜が硬くなり過ぎて打鍵耐久性に劣る場合がある。   The compounding ratio of the lactone-modified acrylic polyol and the isocyanate is such that the ratio of the number of NCO groups in the isocyanate and the number of OH groups in the lactone-modified acrylic polyol is 0.2 ≦ NCO group / OH group. ≦ 2.0 is preferred. It is particularly preferable to adjust so that 0.8 ≦ NCO group number / OH group number ≦ 1.5. When the number of NCO groups / number of OH groups <0.2, the lactone-modified acrylic polyol is difficult to be cross-linked by the isocyanate, the resin coating becomes soft, plastic deformation occurs, and the electric resistance easily changes. More specifically, when a constant pressure is applied to the pressure sensor, the detected electrical resistance value is likely to change greatly with time. In addition, the loss of the detected resistance value due to hysteresis is likely to occur. In the case of 2.0 <NCO group number / OH group number, the resin coating film may become too hard and may have poor keystroke durability.

これらのポリオールとイソシアネートをブレンドし硬化させることにより、ラクトン変性アクリルポリオールに対して、イソホロンジイソシアネート誘導体とヘキサメチレンジイソシアネート誘導体がランダムに反応して架橋構造が形成される。ラクトン変性アクリルポリオールをこれらのイソシアネートで架橋することにより、樹脂塗膜が弾性基材からの低分子成分の染み出しを防止することができる。また、適度な柔軟性を有し、かつ粘着性のない樹脂塗膜を形成することができる。   By blending and curing these polyols and isocyanates, isophorone diisocyanate derivatives and hexamethylene diisocyanate derivatives react randomly with a lactone-modified acrylic polyol to form a crosslinked structure. By crosslinking the lactone-modified acrylic polyol with these isocyanates, it is possible to prevent the resin coating from bleeding out low molecular components from the elastic substrate. In addition, it is possible to form a resin coating film having appropriate flexibility and no tackiness.

樹脂塗膜の原料として用いるイソホロンジイソシアネート誘導体とヘキサメチレンジイソシアネート誘導体は、3つ以上の単量体からなる多量体とすることが好ましい。より好ましくは、イソホロンジイソシアネート誘導体とヘキサメチレンジイソシアネート誘導体を、イソシアヌレート型の3量体とするのが良い。イソホロンジイソシアネート誘導体のイソシアヌレート型の3量体を下記式(2)に示す。   The isophorone diisocyanate derivative and hexamethylene diisocyanate derivative used as the raw material for the resin coating film are preferably multimers composed of three or more monomers. More preferably, the isophorone diisocyanate derivative and the hexamethylene diisocyanate derivative are made into an isocyanurate type trimer. An isocyanurate type trimer of an isophorone diisocyanate derivative is represented by the following formula (2).

ヘキサメチレンジイソシアネート誘導体のイソシアヌレート型の3量体を下記式(3)に示す。     The isocyanurate type trimer of the hexamethylene diisocyanate derivative is shown in the following formula (3).

分子の剛直な3量体が架橋点となり、樹脂塗膜がより密に架橋することができ、弾性基材の内容成分が感圧導電ゴム部材の表面に染み出してくることをより一層効果的に防止することができる。   It is even more effective that the rigid trimer of the molecule becomes a cross-linking point, the resin coating film can be cross-linked more closely, and the contents of the elastic base material ooze out to the surface of the pressure-sensitive conductive rubber member. Can be prevented.

イソシアネートは、イソシアネート基がブロック剤によりブロックされたブロックイソシアネートとすることがより好ましい。この理由としては、イソシアネート基は反応し易く、樹脂塗膜用の組成物を常温に長時間、放置しておくと徐々に反応が進み、該組成物の特性が変化してしまう恐れがあるためである。このようにブロックイソシアネートは、活性なイソシアネート基がブロックされ、ブロック剤の解離温度までは反応しないため、樹脂塗膜用の組成物の取扱が容易になるという利点がある。ブロック剤としては、フェノール、クレゾール、エチルフェノール等のフェノール系、ε−カプロラクタム、δ−バレロラクタム、γ−ブチロラクタム等のラクタム系、マロン酸ジエステル、アセト酢酸エステル、アセチルアセトン等の活性メチレン系、及びホルムアミドオキシム、アセトアミドオキシム、アセトオキシム、メチルエチルケトオキシム、シクロヘキサノンオキシム等のオキシム類等が挙げられる。解離温度が高いブロック剤を使用すると、加熱硬化時の弾性基材の熱変形や加熱硬化後の弾性基材と樹脂塗膜の熱収縮の差に起因して、樹脂塗膜の表面平滑性が損なわれる場合がある。従って、解離温度が比較的、低温の活性メチレン系、オキシム系のブロック剤を使用することが好ましい。   The isocyanate is more preferably a blocked isocyanate in which an isocyanate group is blocked with a blocking agent. The reason for this is that isocyanate groups easily react, and if the composition for a resin coating film is allowed to stand at room temperature for a long time, the reaction gradually proceeds and the properties of the composition may change. It is. Thus, the blocked isocyanate has an advantage that the active isocyanate group is blocked and does not react up to the dissociation temperature of the blocking agent, so that it is easy to handle the composition for the resin coating film. Blocking agents include phenols such as phenol, cresol, and ethylphenol, lactams such as ε-caprolactam, δ-valerolactam, and γ-butyrolactam, active methylenes such as malonic acid diester, acetoacetate, and acetylacetone, and formamide Examples include oximes such as oxime, acetamide oxime, acetoxime, methyl ethyl ketoxime, and cyclohexanone oxime. If a blocking agent with a high dissociation temperature is used, the surface smoothness of the resin coating will be reduced due to the thermal deformation of the elastic substrate during heat curing and the difference in thermal shrinkage between the elastic substrate after heat curing and the resin coating. It may be damaged. Therefore, it is preferable to use an active methylene-based or oxime-based blocking agent having a relatively low dissociation temperature.

樹脂塗膜中には導電剤としてカーボンブラックを含有する。カーボンブラックは、ストラクチャが発達しており粒子径が小さいため、粗大なカーボンマイクロビーズや黒鉛粒子を使用した場合に較べて、樹脂塗膜の抵抗値均一性に優れたものとすることができる。また、比較的少量の配合量で所望の導電性が得られるため、樹脂塗膜の物性に対する影響を低くすることができる。   The resin coating film contains carbon black as a conductive agent. Since carbon black has a developed structure and a small particle size, it can be made excellent in the resistance uniformity of the resin coating film as compared with the case of using coarse carbon microbeads or graphite particles. Moreover, since desired electroconductivity is acquired with a comparatively small compounding quantity, the influence with respect to the physical property of a resin coating film can be made low.

導電剤として使用するカーボンブラックとしては、導電性を付与できるものであれば特に限定されないが、平均一次粒子径(D)は、好ましくは10nm≦D≦55nmである。上記カーボンブラックのDBP吸油量(DBPA)は、好ましくは100ml/100g≦DBPA≦1,000ml/100gである。上記カーボンブラックの配合量(phr)は、配合するウレタン樹脂の固形分100質量部に対して、好ましくは5質量部〜100質量部である。   The carbon black used as the conductive agent is not particularly limited as long as it can impart conductivity, but the average primary particle diameter (D) is preferably 10 nm ≦ D ≦ 55 nm. The carbon black has a DBP oil absorption (DBPA) of preferably 100 ml / 100 g ≦ DBPA ≦ 1,000 ml / 100 g. The blending amount (phr) of the carbon black is preferably 5 parts by mass to 100 parts by mass with respect to 100 parts by mass of the solid content of the urethane resin to be blended.

カーボンブラックの平均一次粒子径、DBP吸油量、配合量が上記範囲であれば、樹脂塗膜の抵抗値の均一性に優れ、樹脂塗膜の弾性率への影響を抑制し、感圧導電ゴム部材の樹脂塗膜として好適な特性を付与することができる。   If the average primary particle diameter, the DBP oil absorption amount, and the blending amount of carbon black are within the above ranges, the resistance value of the resin coating film is excellent in uniformity and the influence on the elastic modulus of the resin coating film is suppressed. The characteristic suitable as a resin coating film of a member can be provided.

樹脂塗膜用の組成物には、上記ポリオール、イソシアネート、カーボブラックの他に、その他の成分を配合することも可能であり、例えば、有機弾性フィラー、無機酸化物フィラー、分散剤などが挙げられる。また、樹脂塗膜用の組成物中には、ラクトン変性アクリルポリオール以外のポリオール、イソホロンジイソシアネート誘導体及びヘキサメチレンジイソシアネート誘導体以外のイソシアネートを配合しても良い。   In addition to the polyol, isocyanate, and carbo black, other components can be blended in the resin coating composition. Examples thereof include organic elastic fillers, inorganic oxide fillers, and dispersants. . Further, in the composition for the resin coating film, a polyol other than the lactone-modified acrylic polyol, an isocyanate other than the isophorone diisocyanate derivative and the hexamethylene diisocyanate derivative may be blended.

樹脂塗膜の形成方法についてはまず、樹脂塗膜を構成する材料を、サンドミル、ペイントシェイカー、ダイノミル、及びパールミル等のビーズを利用した分散装置を用いて分散調製する。得られた樹脂塗膜用の組成物を、ディッピング法やスプレーコート法により、弾性基材の表面に塗工する。組成物の利用効率を考慮すると、ディッピング法が好ましい。さらに熱風循環乾燥機や赤外線乾燥炉などを用いて焼付硬化して弾性基材の表面に樹脂塗膜を形成する。   Regarding the method of forming the resin coating film, first, the material constituting the resin coating film is dispersed and prepared using a dispersing device using beads such as a sand mill, a paint shaker, a dyno mill, and a pearl mill. The obtained composition for resin coating is applied to the surface of the elastic substrate by dipping or spray coating. In consideration of the utilization efficiency of the composition, the dipping method is preferable. Further, it is baked and cured using a hot air circulating dryer or an infrared drying oven to form a resin coating on the surface of the elastic substrate.

なお、樹脂塗膜は弾性基材の少なくとも一面に形成すればよく、感圧導電ゴム部材を感圧センサとして用いる場合は、一対の電極が形成された基板上に、電極に樹脂塗膜が接するように感圧導電ゴム部材を配置すればよい。樹脂塗膜の膜厚を調整するには、樹脂塗膜用の組成物中の固形分と塗工引き上げ速度を制御すれば良い。組成物中の固形分を大きくすると樹脂塗膜の膜厚が大きくなり、固形分を小さくすると樹脂塗膜の膜厚が小さくなる。樹脂塗膜用の組成物中の固形分を20質量%〜50質量%に調整することが好ましい。また、塗工引き上げ速度を大きくすると樹脂塗膜の膜厚が大きくなり、速度を小さくすると樹脂塗膜の膜厚が小さくなる。塗工引き上げ速度を1mm/sec〜300mm/secに調整することが好ましい。   The resin coating may be formed on at least one surface of the elastic base material. When the pressure-sensitive conductive rubber member is used as a pressure-sensitive sensor, the resin coating is in contact with the electrodes on the substrate on which the pair of electrodes is formed. A pressure-sensitive conductive rubber member may be arranged as described above. In order to adjust the film thickness of the resin coating film, the solid content in the composition for the resin coating film and the coating lifting speed may be controlled. When the solid content in the composition is increased, the film thickness of the resin coating film is increased, and when the solid content is decreased, the film thickness of the resin coating film is decreased. It is preferable to adjust the solid content in the resin coating composition to 20% by mass to 50% by mass. Further, when the coating pulling speed is increased, the film thickness of the resin coating film is increased, and when the speed is decreased, the film thickness of the resin coating film is decreased. It is preferable to adjust the coating lifting speed to 1 mm / sec to 300 mm / sec.

樹脂塗膜の膜厚dは、特に限定はされないが、5μm≦d≦100μmが好ましい。樹脂塗膜の膜厚が100μmよりも厚いと、感圧導電ゴム部材としての柔軟性を損ない、圧力の変化に応じた接触面積の変化が得られ難い場合がある。樹脂塗膜の膜厚が5μmよりも薄いと、弾性基材からの染み出し物質による汚染を抑制することができない場合がある。   The film thickness d of the resin coating film is not particularly limited, but 5 μm ≦ d ≦ 100 μm is preferable. When the thickness of the resin coating film is larger than 100 μm, the flexibility as the pressure-sensitive conductive rubber member is impaired, and it may be difficult to obtain a change in the contact area according to the change in pressure. When the film thickness of the resin coating film is thinner than 5 μm, it may be impossible to suppress contamination due to the exuding substance from the elastic base material.

樹脂塗膜が形成された面の感圧導電ゴム部材の弾性率は、特に限定はされないが、10MPa以上、700MPa以下が好ましい。弾性率が10MPaよりも小さいと、一定の力がセンサに加えられている時に、徐々に変形量が増大し、電気抵抗が経時的に大きく変化する場合がある。弾性率が700MPaよりも大きいと、硬いために弾性基材の弾性変形に追従できず、打鍵耐久性に劣り、ひび割れが生じ、圧力検出の信頼性に欠ける場合がある。   The elastic modulus of the pressure-sensitive conductive rubber member on the surface on which the resin coating film is formed is not particularly limited, but is preferably 10 MPa or more and 700 MPa or less. When the elastic modulus is smaller than 10 MPa, when a certain force is applied to the sensor, the amount of deformation gradually increases and the electrical resistance may change greatly with time. If the modulus of elasticity is greater than 700 MPa, it is hard and cannot follow the elastic deformation of the elastic substrate, resulting in poor keystroke durability, cracking, and lack of reliability in pressure detection.

以下に、実施例、比較例を挙げて、本発明についてより具体的に説明するが、本発明は、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.

(実施例1)
<弾性基材の作成>
2本ロールにて下記材料の混合物を20分間、混合し、未加硫ゴムコンパウンドを作製した。
エチレンプロピレンゴム(住友化学(株)製 商品名「エスプレン600F(油展量100phr)」) 200質量部
カーボンブラック(ライオン(株)製 商品名「ケッチェンブラックEC−600JD」) 10質量部
ジクミルパーオキサイド(日本油脂(株)製 商品名「パークミルD−40MB」)
7.5質量部
トリアリルイソシアヌレート(日本化成(株)製 商品名「TAIC−WH60」)
3質量部。
Example 1
<Creation of elastic substrate>
A mixture of the following materials was mixed for 20 minutes with two rolls to produce an unvulcanized rubber compound.
Ethylene propylene rubber (trade name “Esprene 600F (oil expansion amount 100 phr)” manufactured by Sumitomo Chemical Co., Ltd.) 200 mass parts carbon black (trade name “Ketjen Black EC-600JD” manufactured by Lion Corporation) 10 mass parts dicumyl Peroxide (trade name “Park Mill D-40MB” manufactured by NOF Corporation)
7.5 parts by mass of triallyl isocyanurate (trade name “TAIC-WH60” manufactured by Nippon Kasei Co., Ltd.)
3 parts by mass.

次に、上記未加硫ゴムコンパウンドを予め、170℃に加熱した150mm×150mm×2.0mmの金型内に充填し、170℃、100kgfにて15分間プレス加硫を行い、感圧導電ゴム部材の弾性基材を得た。   Next, the unvulcanized rubber compound is filled in a 150 mm × 150 mm × 2.0 mm mold heated to 170 ° C. in advance, and press vulcanized at 170 ° C. and 100 kgf for 15 minutes to obtain a pressure-sensitive conductive rubber. An elastic base material for the member was obtained.

<樹脂塗膜用の組成物の作成>
続いて下記材料を配合して、固形分30質量%の溶液を調整した。
ラクトン変性アクリルポリオール(ダイセル化学工業(株)製 商品名「プラクセルDC2016(固形分70質量%、水酸基価80mgKOH/g)」) 100質量部
イソホロンジイソシアネート誘導体のイソシアヌレート型3量体(IPDI)(デグサ・ヒュルス社製 商品名「ベスタナートB1370(固形分60質量%、NCO% 8.0%)」) 25質量部
ヘキサメチレンジイソシアネート誘導体のイソシアヌレート型3量体(HDI)(旭化成工業(株)製 商品名「デュラネートTPA−B80E(固形分80質量%、NCO% 12.5%)」) 32質量部(NCO基数比 IPDI/HDI=0.5)
カーボンブラック(三菱化学(株)製 商品名「#3230」) 55質量部
変性ジメチルシリコーンオイル(東レ・ダウコーニングシリコーン(株)製 商品名「SH−28PA」) 0.05質量部
MIBK(メチルイソブチルケトン) 340質量部。
<Creation of composition for resin coating film>
Subsequently, the following materials were blended to prepare a solution having a solid content of 30% by mass.
Lactone modified acrylic polyol (trade name “Placcel DC2016 (solid content: 70% by mass, hydroxyl value: 80 mgKOH / g)” manufactured by Daicel Chemical Industries, Ltd.) 100 parts by mass isocyanurate type trimer (IPDI) of isophorone diisocyanate derivative (Degusa)・ Product name “Vestanat B1370 (solid content 60% by mass, NCO% 8.0%)” manufactured by Huls Co., Ltd. 25 parts by mass of isocyanurate type trimer (HDI) of hexamethylene diisocyanate derivative (product of Asahi Kasei Kogyo Co., Ltd.) Name “Duranate TPA-B80E (solid content 80% by mass, NCO% 12.5%)”) 32 parts by mass (NCO number ratio IPDI / HDI = 0.5)
Carbon black (trade name “# 3230” manufactured by Mitsubishi Chemical Corporation) 55 parts by mass modified dimethyl silicone oil (trade name “SH-28PA” manufactured by Toray Dow Corning Silicone Co., Ltd.) 0.05 parts by mass MIBK (methyl isobutyl) Ketone) 340 parts by mass.

上記組成物200質量部に対して、直径0.8mmのガラスビーズ200質量部を加えて、450mlのマヨネーズビンに入れ、ペイントシェイカーを使用して6時間、分散した。最後に200メッシュの網で溶液をろ過して、樹脂塗膜用の組成物を作成した。   To 200 parts by mass of the composition, 200 parts by mass of glass beads having a diameter of 0.8 mm were added, placed in a 450 ml mayonnaise bin, and dispersed for 6 hours using a paint shaker. Finally, the solution was filtered through a 200 mesh screen to prepare a resin coating composition.

<感圧導電ゴム部材の作成>
上記のようにして得た樹脂塗膜用の組成物をディッピング法により、引き上げ速度10mm/secで弾性基材の表面に塗工し、30分間、風乾した。この後、オーブンを用いて160℃で1時間、加熱することによって硬化させ、膜厚15μmの樹脂塗膜を形成して感圧導電ゴム部材を得た。
<Creation of pressure-sensitive conductive rubber member>
The resin coating composition obtained as described above was applied to the surface of the elastic substrate by a dipping method at a lifting speed of 10 mm / sec and air-dried for 30 minutes. Then, it was cured by heating at 160 ° C. for 1 hour using an oven to form a resin coating film having a film thickness of 15 μm to obtain a pressure-sensitive conductive rubber member.

<感圧センサとしての荷重検知性能>
得られた感圧導電ゴム部材を10mm×10mmに裁断した角形シートを、23℃/60%RH(N/N)環境に24時間以上、放置した。この後、図4に示すように、上記感圧導電ゴム部材を櫛型電極(電極幅1mm、電極間隔0.5mm)上に配置して感圧センサとし、角形シート上面全体に荷重が加わるようにした。
<Load detection performance as a pressure sensor>
The obtained square sheet obtained by cutting the pressure-sensitive conductive rubber member into 10 mm × 10 mm was left in a 23 ° C./60% RH (N / N) environment for 24 hours or more. Thereafter, as shown in FIG. 4, the pressure-sensitive conductive rubber member is arranged on a comb-shaped electrode (electrode width: 1 mm, electrode interval: 0.5 mm) to form a pressure-sensitive sensor so that a load is applied to the entire top surface of the square sheet. I made it.

この状態で櫛型電極に直流電圧5Vを印加し、荷重測定器にて感圧センサの厚さ方向に5mm/minの速度で0〜50kPaの範囲で、負荷、除荷を行ない、櫛型電極に直列接続した1kΩの抵抗体にかかる電圧を測定した。各荷重における電圧値から、抵抗値を算出した。結果を図5に示す。   In this state, a DC voltage of 5 V is applied to the comb-shaped electrode, and a load measuring device is loaded and unloaded at a speed of 5 mm / min in the thickness direction of the pressure-sensitive sensor within a range of 0 to 50 kPa. The voltage applied to a 1 kΩ resistor connected in series to the was measured. The resistance value was calculated from the voltage value at each load. The results are shown in FIG.

1)個体間の抵抗値のばらつき
上記のようにして作成した感圧導電ゴム部材を100個、測定し、50kPaにおける抵抗値の標準偏差(3σ)を求め、下記の基準に従って個体間のばらつきを評価した。
◎:3σ≦0.1 最良
○:0.1<3σ≦0.3 良好
×:0.3<3σ 悪
この結果を表1に示す。
1) Variation in resistance value among individuals Measure 100 pressure-sensitive conductive rubber members prepared as described above, obtain a standard deviation (3σ) of resistance value at 50 kPa, and vary variation between individuals according to the following criteria. evaluated.
:: 3σ ≦ 0.1 Best ○: 0.1 <3σ ≦ 0.3 Good ×: 0.3 <3σ Poor The results are shown in Table 1.

2)ヒステリシスによる抵抗値のロス
各荷重における、負荷時の抵抗値(LogR負荷)と除荷時の抵抗値(LogR除荷)の差の絶対値を求め、これの最大値をヒステリシスによる抵抗値のロスの指標とし、下記の基準に従って評価した。
◎:|最大値Δ(LogR負荷−LogR除荷)|≦0.1 最良
○:0.1<|最大値Δ(LogR負荷−LogR除荷)|≦0.3 良好
×:0.3<|最大値Δ(LogR負荷−LogR除荷)| 悪
この結果を表1に示す。
2) Loss of resistance value due to hysteresis For each load, the absolute value of the difference between the resistance value during loading (LogR load ) and the resistance value during unloading (LogR unloading ) is obtained, and the maximum value is the resistance value due to hysteresis. The loss was evaluated according to the following criteria.
A: | Maximum value Δ (LogR load− LogR unloading ) | ≦ 0.1 Best ○: 0.1 <| Maximum value Δ (LogR load− LogR unloading ) | ≦ 0.3 Good ×: 0.3 < | Maximum value Δ (LogR load− LogR unloading ) |

3)ドリフト性
荷重測定器により感圧センサの厚さ方向に5mm/minの速度で15kPaまで負荷を行ない、この圧力を保持したまま、櫛型電極に直列接続した1kΩの抵抗体にかかる電圧を10時間、測定した。各時間における電圧値から、抵抗値を算出した。初期の抵抗値(LogRト゛リフト初期)と10時間後の抵抗値(LogRト゛リフト10時間後)の差の絶対値を求め、下記の基準に従って評価した。
◎:|Δ(LogRト゛リフト初期−LogRト゛リフト10時間後)|≦0.1 最良
○:0.1<|Δ(LogRト゛リフト初期−LogRト゛リフト10時間後)|≦0.3 良好
×:0.3<|Δ(LogRト゛リフト初期−LogRト゛リフト10時間後)| 悪
この結果を表1に示す。
3) Drifting performance A load is applied to the pressure sensor in the thickness direction at a speed of 5 mm / min up to 15 kPa, and the voltage applied to the 1 kΩ resistor connected in series to the comb-shaped electrode is maintained while maintaining this pressure. Measured for 10 hours. The resistance value was calculated from the voltage value at each time. The absolute value of the difference between the initial resistance value (LogR lift initial ) and the resistance value after 10 hours (LogR lift 10 hours ) was determined and evaluated according to the following criteria.
A: | Δ (LogR drift initial stage— after LogR drift 10 hours ) | ≦ 0.1 Best ○: 0.1 <| Δ (LogR drift initial stage— after LogR drift 10 hours ) | ≦ 0.3 Good x: 0. 3 <| Δ (LogR drift initial stage— 10 hours after LogR drift) | Evil This result is shown in Table 1.

4)打鍵耐久性
櫛型電極に直流電圧5Vを印加し、荷重測定器にて感圧センサの厚さ方向に5mm/minの速度で0〜50kPaの範囲で、負荷、除荷を行ない、櫛型電極に直列接続した1kΩの抵抗体にかかる電圧を測定した。50kPaにおける電圧値から、抵抗値(LogR打鍵前)を算出した。この後、感圧センサの厚さ方向にサイクルタイム5回/秒の速度、荷重0〜100kPaの範囲で、負荷、除荷を100万回行ない、打鍵耐久を行なった。打鍵耐久の後、櫛型電極に直流電圧5Vを印加し、荷重測定器にて感圧センサの厚さ方向に5mm/minの速度、0〜50kPaの範囲で、負荷、除荷を行ない、櫛型電極に直列接続した1kΩの抵抗体にかかる電圧を検出測定した。50kPaにおける電圧値から、抵抗値(LogR打鍵後)を算出した。打鍵耐久前の抵抗値(LogR打鍵前)と、打鍵耐久後の抵抗値(LogR打鍵後)の差の絶対値を求め、打鍵耐久性の指標とし、下記の基準に従って評価した。
◎:|Δ(LogR打鍵前−LogR打鍵後)|≦0.1 最良
○:0.1<|Δ(LogR打鍵前−LogR打鍵後)|≦0.3 良好
×:0.3<|Δ(LogR打鍵前−LogR打鍵後)| 悪
この結果を表1に示す。
4) Keystroke durability A DC voltage of 5 V is applied to the comb-shaped electrode, and a load measuring device is loaded and unloaded at a speed of 5 mm / min in the thickness direction of the pressure-sensitive sensor within a range of 0 to 50 kPa. The voltage applied to a 1 kΩ resistor connected in series to the mold electrode was measured. A resistance value ( before LogR keying ) was calculated from the voltage value at 50 kPa. Thereafter, loading and unloading were performed 1 million times in the thickness direction of the pressure sensor in the range of a cycle time of 5 times / second and a load of 0 to 100 kPa to perform keystroke durability. After the keying endurance, a DC voltage of 5V is applied to the comb-shaped electrode, and a load measuring device is loaded and unloaded at a speed of 5 mm / min in the thickness direction of the pressure sensor at a range of 0 to 50 kPa. The voltage applied to a 1 kΩ resistor connected in series to the mold electrode was detected and measured. The resistance value ( after LogR keying ) was calculated from the voltage value at 50 kPa. The absolute value of the difference between the resistance value before keystroke endurance ( before LogR keystroke ) and the resistance value after keystroke endurance ( after LogR keystroke ) was determined and evaluated according to the following criteria as an index of keystroke durability.
A: | Δ ( Before LogR key press- after LogR key press) | ≦ 0.1 Best ○: 0.1 <| Δ ( Before LogR key press- after LogR key press) | ≦ 0.3 Good ×: 0.3 <| Δ ( Before LogR key press- after LogR key press) | Evil This result is shown in Table 1.

5)長期保管性
櫛型電極に直流電圧5Vを印加し、荷重測定器にて感圧センサの厚さ方向に5mm/minの速度で0〜50kPaの範囲で、負荷、除荷を行ない、櫛型電極に直列接続した1kΩの抵抗体にかかる電圧を測定した。50kPaにおける電圧値から、抵抗値(LogR放置前)を算出した。この後、感圧導電ゴム部材を櫛型電極上に配置した感圧センサを40℃、95%RH環境に1ヶ月放置し、長期保管試験を行なった。
5) Long-term storage characteristics A DC voltage of 5 V is applied to the comb-shaped electrode, and the load is measured with a load measuring device in the thickness direction of the pressure sensor at a speed of 5 mm / min in the range of 0 to 50 kPa. The voltage applied to a 1 kΩ resistor connected in series to the mold electrode was measured. The resistance value ( before leaving LogR) was calculated from the voltage value at 50 kPa. Thereafter, a pressure-sensitive sensor having a pressure-sensitive conductive rubber member disposed on a comb-shaped electrode was left in a 40 ° C., 95% RH environment for one month, and a long-term storage test was conducted.

長期保管の後、櫛型電極に直流電圧5Vを印加し、荷重測定器にて感圧センサの厚さ方向に5mm/minの速度、0〜50kPaの範囲で、負荷、除荷を行ない、櫛型電極に直列接続した1kΩの抵抗体にかかる電圧を測定した。50kPaにおける電圧値から、抵抗値(LogR放置後)を算出した。長期保管前の抵抗値(LogR放置前)と、長期保管後の抵抗値(LogR放置後)の差の絶対値を求め、長期保管による出力の再現性の指標とし、下記の基準に従って評価した。
◎:|Δ(LogR放置前−LogR放置後)|≦0.02 最良
○:0.02<|Δ(LogR放置前−LogR放置後)|≦0.05 良好
×:0.05<|Δ(LogR放置前−LogR放置後)| 悪
この結果を表1に示す。
After long-term storage, apply a DC voltage of 5V to the comb-shaped electrode, and load and unload it at a speed of 5 mm / min in the thickness direction of the pressure sensor with a load measuring instrument in the range of 0 to 50 kPa. The voltage applied to a 1 kΩ resistor connected in series to the mold electrode was measured. The resistance value ( after leaving LogR) was calculated from the voltage value at 50 kPa. The absolute value of the difference between the resistance value before long-term storage ( before LogR was left ) and the resistance value after long-term storage ( after LogR was left ) was determined and evaluated according to the following criteria as an index of output reproducibility by long-term storage.
◎: | Δ ( before leaving LogR— after leaving LogR) | ≦ 0.02 Best ○: 0.02 <| Δ ( before leaving LogR— after leaving LogR) | ≦ 0.05 Good ×: 0.05 <| Δ (Before leaving LogR- after leaving LogR) | Evil This result is shown in Table 1.

(実施例2)
塗料組成物において、イソホロンジイソシアネート誘導体(IPDI)の配合量を12.5質量部、ヘキサメチレンジイソシアネート誘導体(HDI)の配合量を40質量部に変更(IPDI/HDI(NCO基数比)=0.2)した。これ以外は、実施例1と同様にして感圧導電ゴム部材を得た。実施例1と同様に、感圧センサとしての性能を評価した。結果を表1に示す。
(Example 2)
In the coating composition, the blending amount of isophorone diisocyanate derivative (IPDI) was changed to 12.5 parts by mass, and the blending amount of hexamethylene diisocyanate derivative (HDI) was changed to 40 parts by mass (IPDI / HDI (NCO base ratio) = 0.2). )did. Except for this, a pressure-sensitive conductive rubber member was obtained in the same manner as in Example 1. As in Example 1, the performance as a pressure sensitive sensor was evaluated. The results are shown in Table 1.

(実施例3)
塗料組成物の作成において、イソホロンジイソシアネート誘導体(IPDI)の配合量を37.4質量部、ヘキサメチレンジイソシアネート誘導体(HDI)の配合量を24質量部に変更(IPDI/HDI(NCO基数比)=1.0)した。これ以外は、実施例1と同様にして感圧導電ゴム部材を得た。実施例1と同様に、感圧センサとしての性能を評価した。結果を表1に示す。
Example 3
In preparing the coating composition, the blending amount of isophorone diisocyanate derivative (IPDI) was changed to 37.4 parts by mass, and the blending amount of hexamethylene diisocyanate derivative (HDI) was changed to 24 parts by mass (IPDI / HDI (NCO base ratio) = 1). 0.0). Except for this, a pressure-sensitive conductive rubber member was obtained in the same manner as in Example 1. As in Example 1, the performance as a pressure sensitive sensor was evaluated. The results are shown in Table 1.

(比較例1)
塗料組成物において、イソホロンジイソシアネート誘導体(IPDI)の配合量を0質量部、ヘキサメチレンジイソシアネート誘導体(HDI)の配合量を48質量部に変更(IPDI/HDI(NCO基数比)=0)した。これ以外は、実施例1と同様にして感圧導電ゴム部材を得た。実施例1と同様に、感圧センサとしての性能を評価した。これらの結果を表1に示す。
(Comparative Example 1)
In the coating composition, the blending amount of isophorone diisocyanate derivative (IPDI) was changed to 0 parts by mass and the blending amount of hexamethylene diisocyanate derivative (HDI) was changed to 48 parts by mass (IPDI / HDI (NCO group ratio) = 0). Except for this, a pressure-sensitive conductive rubber member was obtained in the same manner as in Example 1. As in Example 1, the performance as a pressure sensitive sensor was evaluated. These results are shown in Table 1.

(比較例2)
塗料組成物において、導電剤としてカーボンブラックの変わりに、炭化樹脂粒子(日本カーボン(株)製 商品名「カーボンマイクロビーズ(ニカビーズ)ICB0510」 平均粒子径5μm)を120質量部とした。これ以外は、実施例1と同様にして感圧導電ゴム部材を得た。実施例1と同様に、感圧センサとしての性能を評価した。これらの結果を表1に示す。
(Comparative Example 2)
In the coating composition, instead of carbon black as a conductive agent, carbonized resin particles (trade name “Carbon Microbeads (Nikabeads) ICB0510” average particle diameter 5 μm) manufactured by Nippon Carbon Co., Ltd.) were 120 parts by mass. Except for this, a pressure-sensitive conductive rubber member was obtained in the same manner as in Example 1. As in Example 1, the performance as a pressure sensitive sensor was evaluated. These results are shown in Table 1.

(比較例3)
弾性基材をポリエステルフィルム(東レフィルム加工(株)製 商品名「タフトップ#188 B2T0」)に変更した以外は、実施例1と同様にして感圧導電ゴム部材を得た。実施例1と同様に、感圧センサとしての性能を評価した。結果を表1に示す。
(Comparative Example 3)
A pressure-sensitive conductive rubber member was obtained in the same manner as in Example 1 except that the elastic base material was changed to a polyester film (trade name “Tough Top # 188 B2T0” manufactured by Toray Film Processing Co., Ltd.). As in Example 1, the performance as a pressure sensitive sensor was evaluated. The results are shown in Table 1.

表1の結果より、実施例1では、個体間の抵抗値のばらつき、ヒステリシスによる抵抗値のロス、ドリフト性、打鍵耐久性、長期保管性に優れていることが分かる。そして、本感圧導電ゴム部材を適用することにより、好適な感圧センサを提供できることが分かる。   From the results in Table 1, it can be seen that Example 1 is excellent in resistance value variation among individuals, resistance value loss due to hysteresis, driftability, keystroke durability, and long-term storage properties. And it turns out that a suitable pressure-sensitive sensor can be provided by applying this pressure-sensitive conductive rubber member.

実施例2では、感圧導電ゴム部材の表面の樹脂塗膜の組成がIPDI/HDI=0.2であるために、柔軟である。このため、実施例1と比べてヒステリシスによる抵抗値のロス、ドリフト性、長期保管性が若干、劣るが、感圧センサとしては良好であることが分かる。   In Example 2, since the composition of the resin coating on the surface of the pressure-sensitive conductive rubber member is IPDI / HDI = 0.2, it is flexible. For this reason, the loss of resistance value due to hysteresis, driftability, and long-term storage are slightly inferior to those of Example 1, but it is understood that the pressure-sensitive sensor is good.

実施例3では、感圧導電ゴム部材の表面の樹脂塗膜の組成がIPDI/HDI=1.0であるために、剛直である。このため、実施例1と比べて打鍵耐久性が若干、劣るが、感圧センサとしては良好であることが分かる。   In Example 3, since the composition of the resin coating on the surface of the pressure-sensitive conductive rubber member is IPDI / HDI = 1.0, it is rigid. For this reason, the keystroke durability is slightly inferior to that of Example 1, but it is understood that the pressure sensor is good.

比較例1では、感圧導電ゴム部材の表面の樹脂塗膜の組成がIPDI/HDI=0.0であるために、粘着性のためにヒステリシスによる抵抗値のロスが発生し、柔軟性のためにドリフト性が劣ることが分かる。また、樹脂塗膜は、IPDIの染み出しブロック効果がないため、長期保管性に劣り、感圧センサとしては適さないことが分かる。   In Comparative Example 1, since the composition of the resin coating on the surface of the pressure-sensitive conductive rubber member is IPDI / HDI = 0.0, resistance loss due to hysteresis occurs due to adhesiveness, and flexibility It can be seen that the drift property is inferior. Moreover, since the resin coating film has no IPDI seeping-out blocking effect, it is found that the resin coating film is inferior in long-term storage and is not suitable as a pressure sensor.

比較例2においては、感圧導電ゴム部材の表面の樹脂塗膜の配合においてカーボンブラックではなく粗大な炭化樹脂粒子を用いている。このため、個体間の抵抗値のばらつきが大きいことが分かる。また、導電性を発現するために粗大な炭化樹脂粒子を大量に配合しているため、樹脂塗膜が剛直で打鍵耐久性に劣り、感圧センサとしては適さないことが分かる。   In Comparative Example 2, coarse carbonized resin particles are used instead of carbon black in blending the resin coating on the surface of the pressure-sensitive conductive rubber member. For this reason, it turns out that the dispersion | variation in the resistance value between individuals is large. In addition, since a large amount of coarse carbonized resin particles are blended in order to develop conductivity, it can be seen that the resin coating is rigid and inferior in keystroke durability and is not suitable as a pressure-sensitive sensor.

比較例3においては、樹脂塗膜の基材として柔軟性の低い樹脂を用いているため、圧力に応じた抵抗値の変化が小さいことが分かる。また、感圧導電部材が負荷・除荷時に加圧部材に追従できず、ヒステリシスによる抵抗値のロスが大きく、感圧センサとしては適さないことが分かる。   In Comparative Example 3, since a resin with low flexibility is used as the substrate of the resin coating film, it can be seen that the change in resistance value according to the pressure is small. It can also be seen that the pressure-sensitive conductive member cannot follow the pressure member during loading / unloading, and the resistance value loss due to hysteresis is large, which is not suitable as a pressure-sensitive sensor.

感圧導電ゴム部材を例えば、所望の形状に成形し櫛形の電極に当接させ、部材に作用する加圧力の大きさ、分布状態を測定するセンサとして好適に使用することができる。   For example, the pressure-sensitive conductive rubber member can be suitably used as a sensor for measuring the magnitude and distribution state of the pressure applied to the member by forming the pressure-sensitive conductive rubber member into a desired shape and bringing it into contact with a comb-shaped electrode.

1a 感圧導電ゴム部材
1a−1 弾性基材
1a−2 樹脂塗膜
1b 感圧導電ゴム部材
1b−1 弾性基材
1b−2 樹脂塗膜
1c 感圧導電ゴム部材
1c−1 弾性基材
1c−2 樹脂塗膜
2a 櫛型電極
2a−1 配線
2a−2 基板
2b 角板型電極
2b−1 配線
2b−2 基板
3a 感圧センサ
3b 感圧センサ
4−1 櫛型電極
4−2 感圧導電ゴム部材
4−3 絶縁性シート
4−4 電圧測定器
4−5 1kΩ抵抗体
4−6 直流電圧発生器5V
4−7 荷重測定器
1a Pressure-sensitive conductive rubber member 1a-1 Elastic substrate 1a-2 Resin coating 1b Pressure-sensitive conductive rubber member 1b-1 Elastic substrate 1b-2 Resin coating 1c Pressure-sensitive conductive rubber member 1c-1 Elastic substrate 1c- 2 Resin coating 2a Comb electrode 2a-1 Wiring 2a-2 Substrate 2b Square plate electrode 2b-1 Wiring 2b-2 Substrate 3a Pressure sensor 3b Pressure sensor 4-1 Comb electrode 4-2 Pressure sensitive conductive rubber Member 4-3 Insulating sheet 4-4 Voltage measuring instrument 4-5 1 kΩ resistor 4-6 DC voltage generator 5V
4-7 Load measuring instrument

Claims (7)

付加される圧力の変化に応じて電気抵抗が変化する感圧導電ゴム部材であって、
ゴム製の弾性基材と、前記弾性基材の表面の少なくとも一部の上に設けられた樹脂塗膜と、を有し、
前記樹脂塗膜は、
下記式(1)で表されるラクトン変性アクリルポリオールを含むポリオールを、イソホロンジイソシアネート誘導体(IPDI)及びヘキサメチレンジイソシアネート誘導体(HDI)を含むイソシアネートにより架橋することによって形成したウレタン樹脂と、
導電剤としてカーボンブラックと、
を含有することを特徴とする感圧導電ゴム部材。
(ただし、上記式(1)において、l、m、nは任意の正の整数を表す。)
A pressure-sensitive conductive rubber member whose electrical resistance changes according to a change in applied pressure,
A rubber-made elastic base material, and a resin coating film provided on at least a part of the surface of the elastic base material,
The resin coating is
A urethane resin formed by crosslinking a polyol containing a lactone-modified acrylic polyol represented by the following formula (1) with an isocyanate containing an isophorone diisocyanate derivative (IPDI) and a hexamethylene diisocyanate derivative (HDI);
Carbon black as a conductive agent,
A pressure-sensitive conductive rubber member comprising:
(However, in said formula (1), l, m, and n represent arbitrary positive integers.)
前記イソホロンジイソシアネート誘導体(IPDI)及びヘキサメチレンジイソシアネート誘導体(HDI)は、3つ以上の単量体からなる多量体であり、
前記ウレタン樹脂中において、イソホロンジイソシアネート誘導体(IPDI)中のNCO基数とヘキサメチレンジイソシアネート誘導体(HDI)中のNCO基数の比であるIPDI/HDIが0.2≦IPDI/HDI≦1.0であることを特徴とする、請求項1に記載の感圧導電ゴム部材。
The isophorone diisocyanate derivative (IPDI) and the hexamethylene diisocyanate derivative (HDI) are multimers composed of three or more monomers,
In the urethane resin, IPDI / HDI, which is the ratio of the number of NCO groups in isophorone diisocyanate derivative (IPDI) to the number of NCO groups in hexamethylene diisocyanate derivative (HDI), is 0.2 ≦ IPDI / HDI ≦ 1.0. The pressure-sensitive conductive rubber member according to claim 1, wherein
前記イソホロンジイソシアネート誘導体(IPDI)は、下記式(2)で表されるイソシアヌレート型の3量体であり、
前記ヘキサメチレンジイソシアネート誘導体(HDI)は、下記式(3)で表されるイソシアヌレート型の3量体であり、
前記ウレタン樹脂中において、イソホロンジイソシアネート誘導体(IPDI)中のNCO基数とヘキサメチレンジイソシアネート誘導体(HDI)中のNCO基数の比であるIPDI/HDIが0.2≦IPDI/HDI≦1.0であることを特徴とする、請求項1又は2に記載の感圧導電ゴム部材。
The isophorone diisocyanate derivative (IPDI) is an isocyanurate type trimer represented by the following formula (2):
The hexamethylene diisocyanate derivative (HDI) is an isocyanurate type trimer represented by the following formula (3):
In the urethane resin, IPDI / HDI, which is the ratio of the number of NCO groups in isophorone diisocyanate derivative (IPDI) to the number of NCO groups in hexamethylene diisocyanate derivative (HDI), is 0.2 ≦ IPDI / HDI ≦ 1.0. The pressure-sensitive conductive rubber member according to claim 1 or 2, wherein
前記ラクトン変性アクリルポリオールのOH価は、40〜120mgKOH/gであることを特徴とする、請求項1〜3の何れか1項に記載の感圧導電ゴム部材。   The pressure-sensitive conductive rubber member according to any one of claims 1 to 3, wherein the lactone-modified acrylic polyol has an OH value of 40 to 120 mgKOH / g. 前記イソシアネート中のNCO基と、前記ポリオール中のOH基の数の比であるNCO基/OH基は、0.2≦NCO基/OH基≦2.0であることを特徴とする、請求項1〜4の何れか1項に記載の感圧導電ゴム部材。   The NCO group / OH group, which is the ratio of the number of NCO groups in the isocyanate and the number of OH groups in the polyol, is 0.2 ≦ NCO group / OH group ≦ 2.0, The pressure-sensitive conductive rubber member according to any one of 1 to 4. 前記樹脂塗膜は、下記(1)〜(4)のうち何れか一つの形態で、前記弾性基材の表面上に設けられることを特徴とする請求項1〜5の何れか1項に記載の感圧導電ゴム部材。
(1)前記樹脂塗膜は、前記弾性基材の一つの面上に設けられる、
(2)前記樹脂塗膜は、前記弾性基材の互いに対向する二つの面上に設けられる、
(3)前記樹脂塗膜は、前記弾性基材の少なくとも四つの面を覆うように設けられる、
(4)前記樹脂塗膜は、前記弾性基材の表面を覆うように設けられる。
The said resin coating film is provided on the surface of the said elastic base material in any one form among following (1)-(4), The any one of Claims 1-5 characterized by the above-mentioned. Pressure-sensitive conductive rubber member.
(1) The resin coating film is provided on one surface of the elastic substrate.
(2) The resin coating film is provided on two surfaces of the elastic base material facing each other.
(3) The resin coating film is provided so as to cover at least four surfaces of the elastic substrate.
(4) The resin coating film is provided so as to cover the surface of the elastic substrate.
請求項1〜6の何れか1項に記載の感圧導電ゴム部材と、
前記感圧導電ゴム部材の前記樹脂塗膜に接するように設けられた電極と、
を有し、
付加される圧力の変化に応じて前記感圧導電ゴム部材と電極との間の電気抵抗が変化することを検出することにより圧力を検知することを特徴とする感圧センサ。
The pressure-sensitive conductive rubber member according to any one of claims 1 to 6,
An electrode provided in contact with the resin coating film of the pressure-sensitive conductive rubber member;
Have
A pressure-sensitive sensor, wherein pressure is detected by detecting a change in electrical resistance between the pressure-sensitive conductive rubber member and an electrode in accordance with a change in applied pressure.
JP2011018367A 2011-01-31 2011-01-31 Pressure-sensitive conductive rubber member and pressure-sensitive sensor Active JP5636300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011018367A JP5636300B2 (en) 2011-01-31 2011-01-31 Pressure-sensitive conductive rubber member and pressure-sensitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011018367A JP5636300B2 (en) 2011-01-31 2011-01-31 Pressure-sensitive conductive rubber member and pressure-sensitive sensor

Publications (2)

Publication Number Publication Date
JP2012159362A JP2012159362A (en) 2012-08-23
JP5636300B2 true JP5636300B2 (en) 2014-12-03

Family

ID=46840031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011018367A Active JP5636300B2 (en) 2011-01-31 2011-01-31 Pressure-sensitive conductive rubber member and pressure-sensitive sensor

Country Status (1)

Country Link
JP (1) JP5636300B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5639707B1 (en) * 2013-12-27 2014-12-10 株式会社フジクラ Manufacturing method of input device
CN105136369B (en) * 2015-05-28 2017-11-28 合肥工业大学 A kind of Grazing condition resistance-type touch-pressure sensation detecting sensor and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212825A (en) * 1985-07-10 1987-01-21 Shinei Kk Power sensitive sensor and its measuring instrument
JPH0629801B2 (en) * 1985-11-15 1994-04-20 東芝シリコ−ン株式会社 Keystroke sensor-
JP4194263B2 (en) * 2001-09-28 2008-12-10 キヤノン株式会社 Charging member, image forming apparatus, charging method, and process cartridge
JP2005165213A (en) * 2003-12-05 2005-06-23 Canon Inc Charging member, image forming apparatus, charging method and process cartridge
US7509881B2 (en) * 2005-07-29 2009-03-31 3M Innovative Properties Company Interdigital force switches and sensors
JP5662637B2 (en) * 2008-08-27 2015-02-04 住友理工株式会社 Load sensor

Also Published As

Publication number Publication date
JP2012159362A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5636290B2 (en) Pressure sensor
JP5563234B2 (en) Transfer belt for image forming apparatus
JP4650538B2 (en) Capacitive sensor
JP6284758B2 (en) Polymer actuator
BRPI0616016A2 (en) interdigital electronic device
EP2404945B1 (en) Dielectric resin composition for film capacitor, process for producing same, and film capacitor
JP3345730B2 (en) Polyurethane elastomer actuator
KR102042873B1 (en) Pdms-urethane film for display and the manufacturing method thereby
JP5636300B2 (en) Pressure-sensitive conductive rubber member and pressure-sensitive sensor
JP2015059900A (en) Conductive member for pressure sensor and pressure sensor
JP5945469B2 (en) Pressure sensor
TWI730606B (en) Surface protective film and method for manufacturing organic light emitting electronic device
JP2008525579A (en) Adhesive film for force switches and sensors
JP5046386B2 (en) Roller manufacturing method
JP5937449B2 (en) Conductive member for pressure sensor, pressure sensor using the same
JP3026043B2 (en) Polyurethane elastomer actuator
CN113039489A (en) Conductive roller for electrophotographic apparatus
JP2012224832A (en) Thermally conductive film and method for producing the same
TWI728671B (en) Surface protective film and method for manufacturing organic light emitting electronic device
TWI732436B (en) Surface protective film and method for manufacturing organic light emitting electronic device
JP2016211875A (en) Pressure-sensitive sensor
JP2014100046A (en) Polymer actuator
JP5279366B2 (en) Developing roll and its production method
Beco Albuquerque Lifetime of dielectric elastomer actuators under DC electric fields
JP3100625B2 (en) Conductive roll and method of manufacturing the conductive roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5636300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250