JP5633876B2 - Coherent optical time division multiplexed signal demodulation method - Google Patents
Coherent optical time division multiplexed signal demodulation method Download PDFInfo
- Publication number
- JP5633876B2 JP5633876B2 JP2010247011A JP2010247011A JP5633876B2 JP 5633876 B2 JP5633876 B2 JP 5633876B2 JP 2010247011 A JP2010247011 A JP 2010247011A JP 2010247011 A JP2010247011 A JP 2010247011A JP 5633876 B2 JP5633876 B2 JP 5633876B2
- Authority
- JP
- Japan
- Prior art keywords
- optical
- light
- signal
- coherent
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims description 105
- 230000001427 coherent effect Effects 0.000 title claims description 51
- 238000000034 method Methods 0.000 title claims description 16
- 230000005540 biological transmission Effects 0.000 claims description 32
- 238000001514 detection method Methods 0.000 claims description 23
- 239000006185 dispersion Substances 0.000 claims description 8
- 230000010355 oscillation Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 23
- 238000001228 spectrum Methods 0.000 description 17
- 239000002609 medium Substances 0.000 description 11
- 238000012545 processing Methods 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Optical Communication System (AREA)
Description
本発明は光パルスの振幅及び位相に同時に情報を乗せ時分割多重により高速伝送を行なう超高速コヒーレント光時分割多重伝送において、受信した光パルスから高いS/Nの多値信号を検出するための復調方式に関するものである。 The present invention is for detecting a multi-level signal of high S / N from a received optical pulse in ultra-high speed coherent optical time division multiplexing transmission in which information is simultaneously put on the amplitude and phase of an optical pulse and high-speed transmission is performed by time division multiplexing. The present invention relates to a demodulation method.
最近の光通信では、光の振幅のみならず位相をも情報伝送に用いるコヒーレント多値伝送方式に高い関心が寄せられている。この伝送方式においては、1つのシンボルで2ビット以上の情報を伝送できるため、低いシンボルレートで高速伝送が可能となる。その結果周波数利用効率の拡大、波長分散や偏波分散に対する耐力の向上、ならびに省電力化などの特徴を実現することが出来る。 In recent optical communications, there is a great interest in a coherent multilevel transmission system that uses not only the amplitude but also the phase of light for information transmission. In this transmission method, since information of 2 bits or more can be transmitted with one symbol, high-speed transmission is possible at a low symbol rate. As a result, it is possible to realize characteristics such as expansion of frequency utilization efficiency, improvement of resistance to chromatic dispersion and polarization dispersion, and power saving.
その一方で、コヒーレント光信号の変復調に用いられるディジタル信号処理装置の処理限界、特にA/D、D/A変換の速度限界により、コヒーレント光伝送システムのシンボルレートは現状では10Gsymbol/s程度が上限である。これを克服するために、従来用いられてきたコヒーレントCW光のかわりに、コヒーレントRZ(Return-to-Zero)光パルスの振幅と位相を多値変調し、これを光領域で時間多重することにより、電子デバイスの処理限界を超えるコヒーレント光伝送を実現する方法が提案されている(非特許文献1〜3)。 On the other hand, due to the processing limit of the digital signal processor used for modulation / demodulation of coherent optical signals, especially the speed limit of A / D and D / A conversion, the symbol rate of the coherent optical transmission system is currently limited to about 10 Gsymbol / s. It is. In order to overcome this, instead of the conventionally used coherent CW light, the amplitude and phase of a coherent RZ (Return-to-Zero) light pulse are subjected to multilevel modulation, and this is time-multiplexed in the optical domain. A method for realizing coherent light transmission exceeding the processing limit of an electronic device has been proposed (Non-Patent Documents 1 to 3).
従来用いられてきたコヒーレント光時分割多重伝送系の概略構成の一例を図1に示す。送信側ではコヒーレントRZ光パルスの振幅と位相をシンボルレートRで多値変調し、光時分割多重によりシンボルレートをN倍に拡大している。ここで多値変調の多値度が2Mであれば、伝送速度はN×M×Rとなる。偏波多重を組み合わせるとさらに2倍の伝送速度を達成することが出来る。 An example of a schematic configuration of a conventionally used coherent optical time division multiplexing transmission system is shown in FIG. On the transmission side, the amplitude and phase of the coherent RZ optical pulse are subjected to multilevel modulation at the symbol rate R, and the symbol rate is increased N times by optical time division multiplexing. Here, if the multi-level degree of multi-level modulation is 2 M , the transmission rate is N × M × R. When the polarization multiplexing is combined, the transmission speed can be doubled.
受信側では、伝送後のコヒーレント光信号に対し局発信号を用いてコヒーレント検波を行なう。コヒーレント検波には、位相が同期した局発光と伝送信号とのホモダインもしくはヘテロダイン検波を行なう方法と、非同期局発光を用いる方法とがある。前者の方法では図1に示すようにパイロットトーンと呼ばれる基準光信号を介して送信信号と局発信号の間の位相を同期させるために光位相同期回路が用いられる。後者の方法では、電気信号に変換後、ディジタル信号処理によって位相誤差の推定を行なう。 On the receiving side, coherent detection is performed on the coherent optical signal after transmission using a local signal. Coherent detection includes a method of performing homodyne or heterodyne detection of a local light and a transmission signal whose phases are synchronized, and a method using asynchronous local light. In the former method, as shown in FIG. 1, an optical phase synchronization circuit is used to synchronize the phase between the transmission signal and the local oscillation signal via a reference optical signal called a pilot tone. In the latter method, the phase error is estimated by digital signal processing after conversion into an electrical signal.
これまでに実現されているコヒーレント光時分割多重伝送においては、局発光として繰り返しがRの光パルス列を用いている。本局発パルス光の繰り返しはクロック抽出回路により伝送後の信号から抽出したクロック信号と同期している。この局発パルス光とシンボルレートN×Rの信号光パルスをコヒーレント検波することにより、コヒーレント信号の復調・検出のみならず、シンボルレートN×RからRへの多重分離を同時に実現することが出来る。従来のOOK(On-Off Keying),DPSK(Differential Phase Shift Keying),DQPSK(Differential Qudrature Phase Shift Keying)信号などに対する直接検波もしくは遅延検波においては、信号を受信する前にあらかじめ光多重分離回路によりシンボルレートを1/Nに低速化しておく必要があるのに対し、本伝送においてはコヒーレント検波回路が多重分離の機能をも有することから光多重分離回路を必要としない利点があった。 In the coherent light time division multiplex transmission realized so far, an optical pulse train of repetition R is used as local light. The repetition of the local pulse light is synchronized with the clock signal extracted from the signal after transmission by the clock extraction circuit. By coherently detecting the local pulse light and the signal light pulse having the symbol rate N × R, not only the demodulation / detection of the coherent signal but also the demultiplexing from the symbol rate N × R to R can be realized simultaneously. . In direct detection or delay detection for conventional OOK (On-Off Keying), DPSK (Differential Phase Shift Keying), DQPSK (Differential Quadrature Phase Shift Keying) signals, etc., the symbol is preliminarily processed by an optical demultiplexing circuit before receiving the signal. While it is necessary to reduce the rate to 1 / N, this transmission has the advantage that the optical demultiplexing circuit is not required because the coherent detection circuit also has a demultiplexing function.
しかしながら現状の問題点として、復調回路における電子デバイスの帯域によりデータ信号の復調帯域は数十GHzに制限される。その結果電子デバイスによる復調帯域の制限はS/N(信号電力対雑音電力比)の劣化ならびに波形歪を引き起こし、多値度の高いコヒーレントRZ光信号の高精度な復調を困難とする欠点があった。特にRZパルス信号では帯域が広いためこの劣化が著しい。 However, as a current problem, the demodulation band of the data signal is limited to several tens of GHz due to the band of the electronic device in the demodulation circuit. As a result, the limitation of the demodulation band by the electronic device causes deterioration of S / N (signal power to noise power ratio) and waveform distortion, which makes it difficult to accurately demodulate highly coherent RZ optical signals. It was. In particular, the RZ pulse signal has a wide band and this deterioration is remarkable.
さらに、ヘテロダインもしくはホモダイン検波器に入力可能な光パワーには上限がある。したがって、コヒーレント検波回路に入力するパワーを一定とした場合、多重度Nの増加に伴い、局発光パルス1つあたりの光パワーは減少してしまい、高いS/Nでのコヒーレント検波が困難となる。その結果、多重度の拡大が制限され高速化の障害となってしまうという問題があった。 Furthermore, there is an upper limit to the optical power that can be input to the heterodyne or homodyne detector. Therefore, if the power input to the coherent detection circuit is constant, the optical power per local light emission pulse decreases as the multiplicity N increases, and it becomes difficult to perform coherent detection at a high S / N. . As a result, there has been a problem that the increase in multiplicity is restricted and becomes an obstacle to speeding up.
本発明はこれらの問題点を解決するためのものであり、高いS/Nで超高速コヒーレント光パルス信号の検出が可能な復調回路を新たに提供することにある。 The present invention is to solve these problems, and it is an object of the present invention to newly provide a demodulation circuit capable of detecting an ultrafast coherent optical pulse signal with high S / N.
かかる目的を達成するために、本発明によるコヒーレント時分割多重信号の復調方式では、従来のコヒーレント検波系において、高速光パルスを1/N倍に多重分離する光多重分離回路を新たに備え、且つ局発光としてCW光を用いることを特徴とする。 In order to achieve such an object, the coherent time division multiplexed signal demodulation method according to the present invention newly includes an optical demultiplexing circuit for demultiplexing a high-speed optical pulse by 1 / N times in the conventional coherent detection system, and CW light is used as local light.
さらに、該光多重分離回路により多重分離された光パルスをCW光に変換し、該CW信号光とCW局発光とのコヒーレント検波を行なう。この光パルスからCW光への変換は、光パルスを分散性媒質により分散させた後、光位相変調器により光パルスに適切な逆周波数チャープを与えることにより実現することが出来る。その際特に光位相変調器のチャープ率Kが分散性媒質の分散量Dに対してD=1/Kの関係を満たすよう設定することにより、パルス波形を逆フーリエ変換の関係で周波数スペクトルに変換することが出来る。即ち、線スペクトル的な成分に変換することができる。このチャープ率Kを十分大きくとると、変換後のスペクトル幅を狭くすることが出来、即ちCWへの理想的な変換が可能となる。これらによりS/Nの高い復調が可能となる。 Further, the optical pulse demultiplexed by the optical demultiplexing circuit is converted into CW light, and coherent detection of the CW signal light and CW local light is performed. This conversion from optical pulse to CW light can be realized by dispersing an optical pulse with a dispersive medium and then applying an appropriate inverse frequency chirp to the optical pulse by an optical phase modulator. At that time, by setting the chirp rate K of the optical phase modulator to satisfy the relationship of D = 1 / K with respect to the dispersion amount D of the dispersive medium, the pulse waveform is converted into a frequency spectrum by the inverse Fourier transform. I can do it. That is, it can be converted into a line spectral component. If this chirp rate K is sufficiently large, the spectrum width after conversion can be narrowed, that is, ideal conversion to CW becomes possible. As a result, demodulation with high S / N becomes possible.
CW局発光とCWに変換されたコヒーレント光信号とのコヒーレント検波を行なうことにより、従来の局発パルス光を用いた方式と比較して高いS/Nで多値信号を復調することが可能となる。その結果、S/Nを犠牲にすることなく多重度Nを拡大することが出来、コヒーレント光時分割多重伝送の高速化を図ることが可能となる。 By performing coherent detection of the CW local light and the coherent optical signal converted into CW, it is possible to demodulate the multilevel signal with a higher S / N compared to the conventional method using the local pulse light. Become. As a result, the multiplicity N can be increased without sacrificing S / N, and the speed of coherent light time division multiplex transmission can be increased.
本発明の実施形態の一例を図2に示す。伝送後のコヒーレント光時分割多重パルス信号(シンボルレートN×R)は、まず該光パルス信号に同期したクロック信号(周波数R)を用いて光多重分離回路16によって1/N倍のシンボルレートに多重分離される。光多重分離回路には例えば電界吸収型(EA:Electro-Absorption)光変調器等を用いることが出来る。シンボルレートN×Rの光信号から周波数Rのクロック信号を抽出するには、電圧制御オシレータ(VCO:Voltage-Controlled Oscillator)ならびにVCOの周波数と信号のタイミングを比較するための位相比較器で構成されるPLL回路等が用いられる。 An example of an embodiment of the present invention is shown in FIG. The coherent optical time division multiplexed pulse signal (symbol rate N × R) after transmission is first converted to a symbol rate of 1 / N times by the optical demultiplexing circuit 16 using a clock signal (frequency R) synchronized with the optical pulse signal. Demultiplexed. As the optical demultiplexing circuit, for example, an electro-absorption (EA) light modulator or the like can be used. In order to extract a clock signal having a frequency R from an optical signal having a symbol rate N × R, it is composed of a voltage-controlled oscillator (VCO) and a phase comparator for comparing the VCO frequency and signal timing. A PLL circuit or the like is used.
多重分離された光パルスはパルス→CW変換回路17を用いてCW光に変換される。パルスからCWへの変換には前記光多重分離に用いたものと同じクロック信号を使用する。パルス→CW変換回路としては、後で詳述するように、分散媒質と光位相変調器の組み合わせが用いられる。 The demultiplexed optical pulse is converted into CW light by using a pulse → CW conversion circuit 17. For the conversion from pulse to CW, the same clock signal as that used for the optical demultiplexing is used. As the pulse → CW conversion circuit, a combination of a dispersion medium and an optical phase modulator is used as will be described in detail later.
これと並行して、前記光パルス信号と同時に光ファイバ伝送路を伝送した基準光信号(パイロットトーン)を用いて、局発CW光源の位相を光位相同期回路9を介して該基準光信号の位相と同期させる。光位相同期回路は、局発光の位相と基準光信号の位相を比較する位相比較器ならびにその誤差信号を局発光源の周波数可変機構にフィードバックするための負帰還回路により構成される。位相同期を用いずに非同期のまま信号処理で位相補償を行っても良い。 In parallel, the reference optical signal (pilot tone) transmitted through the optical fiber transmission line simultaneously with the optical pulse signal is used to adjust the phase of the local CW light source via the optical phase synchronization circuit 9. Synchronize with phase. The optical phase synchronization circuit includes a phase comparator that compares the phase of the local light and the phase of the reference optical signal, and a negative feedback circuit that feeds back the error signal to the frequency variable mechanism of the local light source. The phase compensation may be performed by signal processing without using the phase synchronization.
CW光に変換されたコヒーレント光信号は該信号に位相同期した局発CW光とともにヘテロダインもしくはホモダイン検波回路14に入力され、コヒーレント検波により中間周波数(IF:Intermediate Frequency)に変換された多値信号が出力される。コヒーレント検波回路には例えば90度光ハイブリッド回路ならびに平衡光検出器が用いられる。IF信号は最後にデコーダ15によって復調される。デコーダではA/D変換器によってIF信号をディジタル信号に変換し、FPGA(Field Programmable Gate Array)もしくはソフトウェアを用いたディジタル信号処理により復調を行なう。 The coherent optical signal converted into CW light is input to the heterodyne or homodyne detection circuit 14 together with the local CW light phase-synchronized with the signal, and a multilevel signal converted into an intermediate frequency (IF) by coherent detection is obtained. Is output. For the coherent detection circuit, for example, a 90-degree optical hybrid circuit and a balanced photodetector are used. The IF signal is finally demodulated by the decoder 15. In the decoder, the IF signal is converted into a digital signal by an A / D converter, and demodulated by digital signal processing using an FPGA (Field Programmable Gate Array) or software.
ここで本復調方式に用いられるパルス→CW変換回路の構成と動作原理について詳細に述べる。パルス→CW変換回路の構成の一例を図3に示す。光パルスはまず分散性媒質17aにより群速度分散を与えられ、その後光位相変調器17bによりクロック周波数Rで光位相変調(周波数チャープ)が印加される。分散性媒質としてはシングルモードファイバ、回折格子、あるいはファイバブラッググレーティングなどが用いられる。また光位相変調器にはLiNbO3もしくはInP半導体変調器などを用いることが出来る。 Here, the configuration and operation principle of the pulse-to-CW conversion circuit used in this demodulation method will be described in detail. An example of the configuration of the pulse → CW conversion circuit is shown in FIG. The optical pulse is first given group velocity dispersion by the dispersive medium 17a, and then optical phase modulation (frequency chirp) is applied at the clock frequency R by the optical phase modulator 17b. As the dispersive medium, a single mode fiber, a diffraction grating, a fiber Bragg grating, or the like is used. In addition, LiNbO 3 or an InP semiconductor modulator can be used as the optical phase modulator.
ここで信号光がパルス、局発光もパルスの場合のIF帯データスペクトル(図4(a))と信号光をパルス→CW変換を用い、かつ局発光もCWを用いた場合のIF帯データスペクトル(図4(b))を示す。(a)と(b)を比較すると復調帯域内での信号成分は(b)の方が大きく、S/Nの高い復調が可能であることが判る。(a)では信号光が高周波まで広がっているためS/Nが悪い。 Here, the IF band data spectrum (FIG. 4A) when the signal light is a pulse and the local light is also a pulse and the IF band data spectrum when the signal light is pulse-to-CW conversion and the local light is also a CW. (FIG. 4B) is shown. Comparing (a) and (b), it can be seen that the signal component in the demodulation band is larger in (b) and demodulation with a high S / N is possible. In (a), since the signal light spreads to a high frequency, the S / N is bad.
パルス→CW変換回路の動作原理は数式を用いて以下のように説明することが出来る。本回路に入力される光パルスの時間波形をuin(t)、その周波数スペクトルをUin(ω)とおく。uin(t)とUin(ω)はフーリエ変換
具体例として、ガウス型の光パルス
例えばパルス幅Δτ=10psのガウス型パルス(T0=Δt/(2√(ln2))=6ps)を考えると、そのスペクトル幅はΔν=73.5GHzである。例えば光位相変調器を用いてチャープ率K=2ps−2のチャープを印加するとそのスペクトル幅は36.75GHzまで狭窄化される。1台の光位相変調器を一方向で用いる通常の位相変調器構成でこのような強いチャープの実現が困難であれば、図5に示すような光位相変調器の折り返し構成、もしくは図6に示すような折り返し構成の光位相変調器を複数台縦続接続する構成を用いればよい(特許文献1)。 For example, considering a Gaussian pulse (T 0 = Δt / (2√ (ln2)) = 6 ps) with a pulse width Δτ = 10 ps, the spectrum width is Δν = 73.5 GHz. For example, when a chirp with a chirp rate of K = 2 ps -2 is applied using an optical phase modulator, the spectrum width is narrowed to 36.75 GHz. If it is difficult to realize such a strong chirp with a normal phase modulator configuration using one optical phase modulator in one direction, the folded configuration of the optical phase modulator as shown in FIG. A configuration in which a plurality of optical phase modulators having a folded configuration as shown in the figure are cascade-connected may be used (Patent Document 1).
次にパルス→CW変換実験の一例を示す。図7は実験系の構成を示すブロック図である。コヒーレントCW光源1より出力されるCW信号光は、クロック周波数Rで駆動される光位相変調器17bと分散性媒質25によりパルス信号に整形される。次に本パルス信号は分散性媒質25とは符号が反転した分散特性を有する。分散性媒質17aとクロック周波数Rで駆動される光位相変調器17bによりCW信号変換される。ここで両光位相変調器を駆動するクロック信号間にはπの位相差が付加されている。図8、9は変換前後の光信号のスペクトル波形と時間波形である。本変換回路によって光スペクトルは狭窄化され、パルス波形はCW信号に変換されていることがわかる。
Next, an example of a pulse → CW conversion experiment is shown. FIG. 7 is a block diagram showing the configuration of the experimental system. The CW signal light output from the coherent CW light source 1 is shaped into a pulse signal by the optical phase modulator 17b driven by the clock frequency R and the
以上詳細に説明したように、コヒーレント光時分割多重パルス伝送において、コヒーレント光信号を光多重分離した後CW光に変換し、さらに局発光としてCW光を用いてコヒーレント検波を行なうことにより、従来の局発パルス光を用いた方式と比較して高いS/Nで多値信号を復調することが可能となる。その結果、S/Nを犠牲にすることなく多重度を拡大することが出来るため、超高速コヒーレント光時分割多重伝送を実現することが出来る。 As described above in detail, in coherent optical time division multiplex pulse transmission, a coherent optical signal is optically demultiplexed and then converted to CW light, and further, coherent detection is performed using CW light as local light, It becomes possible to demodulate a multilevel signal with a high S / N compared to a system using local pulsed light. As a result, the multiplicity can be increased without sacrificing the S / N, so that ultrafast coherent optical time division multiplexing transmission can be realized.
1 コヒーレントCW光源
2 光パルス生成回路
2a 光コム発生器
2b 光フィルタ
3 変調器
4 光時分割多重回路
5 偏波多重回路
6 パイロットトーン生成回路
7 光ファイバ伝送路
8 パイロットトーン抽出用光フィルタ
9 光位相同期回路
10 偏波多重分離回路
11 クロック抽出回路
12 光パルス生成回路
13 局発CW光源
14 ヘテロダイン/ホモダイン検波回路
15 デコーダ
16 光多重分離回路
17 パルス→CW変換回路
17a 分散性媒質
17b 光位相変調器
18 光サーキュレータ
19 光位相変調器
20 位相シフタ
21 電気増幅器
22 アイソレータ
23 光遅延回路
24 反射ミラー
25 分散性媒質
DESCRIPTION OF SYMBOLS 1 Coherent CW light source 2 Optical pulse generation circuit 2a Optical comb generator 2b Optical filter 3 Modulator 4 Optical time
Claims (5)
受信部は、局部発振器としての局発CW光源と、伝送後の光パルス信号と前記局発CW光源からの局発CW光との位相を同期させる光位相同期回路と、前記伝送後の光パルス信号を1/N倍に多重分離する光多重分離回路と、コヒーレント光信号を復調・検波するためのホモダインもしくはヘテロダイン検波回路とを備え、前記光多重分離回路によって多重分離された光パルス信号を、前記光位相同期回路によって前記伝送後の光パルス信号に位相同期された前記局発CW光とともに、前記ホモダインもしくはヘテロダイン検波回路に入力して、コヒーレント検波を行うよう構成されていることを
特徴とするコヒーレント光時分割多重信号の復調方式。 In a coherent optical time division multiplex pulse transmission system that transmits an optical pulse whose amplitude and phase are multi-value modulated at an N-times symbol rate by optical time division multiplexing.
Receiver, a local oscillator CW light source as a local oscillator, an optical phase locked loop circuit for synchronizing the phases of the local oscillator CW light from the local oscillation CW light source and the optical pulse signal after transmission, the optical pulse after the transmission an optical demultiplexer for demultiplexing the signal into 1 / N times, a homodyne or heterodyne detection circuit for demodulating and detection of the coherent light signal, an optical pulse signal demultiplexed by said optical demultiplexing circuit, The coherent detection is performed by inputting to the homodyne or heterodyne detection circuit together with the local CW light phase-synchronized with the optical pulse signal after transmission by the optical phase synchronization circuit. Coherent optical time division multiplexed signal demodulation method.
5. The coherent optical time division multiplexed signal demodulation method according to claim 4, wherein a dispersion amount D of the dispersive medium and a chirp rate K of the optical phase modulator have a relationship of D = 1 / K.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010247011A JP5633876B2 (en) | 2010-11-04 | 2010-11-04 | Coherent optical time division multiplexed signal demodulation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010247011A JP5633876B2 (en) | 2010-11-04 | 2010-11-04 | Coherent optical time division multiplexed signal demodulation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012100128A JP2012100128A (en) | 2012-05-24 |
JP5633876B2 true JP5633876B2 (en) | 2014-12-03 |
Family
ID=46391544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010247011A Active JP5633876B2 (en) | 2010-11-04 | 2010-11-04 | Coherent optical time division multiplexed signal demodulation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5633876B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6108555B2 (en) * | 2014-06-18 | 2017-04-05 | 国立大学法人東北大学 | OTDM demultiplexing method and OTDM demultiplexing apparatus |
JP2020017782A (en) * | 2016-11-25 | 2020-01-30 | 国立大学法人東北大学 | Optical transmission method and optical transmission device |
CN114061913B (en) * | 2021-11-18 | 2022-10-25 | 上海交通大学 | Quantum characteristic detection device and method for optical frequency comb above optical parametric oscillation threshold |
CN117176254B (en) * | 2023-11-02 | 2024-01-30 | 众瑞速联(武汉)科技有限公司 | Optical communication method and device for bidirectional transmission coherent detection |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5888635B2 (en) * | 2010-08-05 | 2016-03-22 | 国立大学法人東北大学 | Coherent optical time division multiplexing transmission equipment |
-
2010
- 2010-11-04 JP JP2010247011A patent/JP5633876B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012100128A (en) | 2012-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8155529B2 (en) | Forward discrete/inverse-discrete Fourier transform device and method for optical OFDM communication and transmitting and receiving apparatus comprising the device | |
US20090067833A1 (en) | Method and arrangement for transmitting an optical ofdm-signal | |
US20040218932A1 (en) | Multi-detector detection of optical signals | |
US9154256B2 (en) | Clock phase detection in the frequency domain | |
US7555061B2 (en) | Optical communication device | |
EP0924552A2 (en) | Opto-electronic frequency divider circuit and method of operating same | |
US11342995B2 (en) | Communication system for radio transmission | |
US8373921B2 (en) | Methods and systems for modulating and demodulating millimeter-wave signals | |
JP5068240B2 (en) | Optical transmission system, transmitter and receiver | |
CN104205719A (en) | Clock recovery method for ultra dense WDM systems | |
JP5633876B2 (en) | Coherent optical time division multiplexed signal demodulation method | |
WO2018096866A1 (en) | Optical transmission method and optical transmission device | |
EP2338241B1 (en) | Method and apparatus for transmission of two modulated signals via an optical channel | |
EP3497825B1 (en) | Encoding for optical transmission | |
JP5888635B2 (en) | Coherent optical time division multiplexing transmission equipment | |
JP5233115B2 (en) | Optical receiver using DQPSK demodulation method and DQPSK demodulation method | |
JP4802270B2 (en) | Optical phase synchronization method and optical phase synchronization apparatus in optical phase modulation system | |
JP5534707B2 (en) | Phase synchronization circuit and phase synchronization method | |
JP6468629B2 (en) | WDM coherent transmission system | |
JP2007318483A (en) | Optical phase modulation demodulation circuit and optical phase modulation demodulation method | |
JPH0522354A (en) | Optical communication system | |
Kikuchi et al. | Demodulation of 320-Gbit/s optical quadrature phase-shift keying signal with digital coherent receiver having time-division demultiplexing function | |
JPH0285830A (en) | Coherent optical reception method | |
Misra et al. | Reconfigurable and Real-Time Nyquist OTDM Demultiplexing in Silicon Photonics | |
JP5378279B2 (en) | Optical receiver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130812 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140722 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20140722 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140723 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140819 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141006 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5633876 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |