[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5627635B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5627635B2
JP5627635B2 JP2012100934A JP2012100934A JP5627635B2 JP 5627635 B2 JP5627635 B2 JP 5627635B2 JP 2012100934 A JP2012100934 A JP 2012100934A JP 2012100934 A JP2012100934 A JP 2012100934A JP 5627635 B2 JP5627635 B2 JP 5627635B2
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
indoor
refrigerant
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012100934A
Other languages
Japanese (ja)
Other versions
JP2013228154A (en
Inventor
相武 李
相武 李
石橋 晃
晃 石橋
拓也 松田
拓也 松田
岡崎 多佳志
多佳志 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012100934A priority Critical patent/JP5627635B2/en
Publication of JP2013228154A publication Critical patent/JP2013228154A/en
Application granted granted Critical
Publication of JP5627635B2 publication Critical patent/JP5627635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、伝熱管を有する熱交換器を用いた空気調和機に関する。   The present invention relates to an air conditioner using a heat exchanger having a heat transfer tube.

従来、一定間隔で配置されてその間を気体(空気)が流れるフィンと、管内面に溝を有し各フィンへ直角に挿入されて内部に冷媒が流れる伝熱管と、から構成されるフィンチューブ型の熱交換器を用いたヒートポンプ式の空気調和機が知られている。   Conventionally, a fin tube type that is composed of fins that are arranged at regular intervals and through which gas (air) flows and heat transfer tubes that have grooves on the inner surface of the tubes and that are inserted at right angles to the fins and into which refrigerant flows. 2. Description of the Related Art A heat pump type air conditioner using such a heat exchanger is known.

空気調和機は、一般に、冷媒を蒸発させ、その際の気化熱により空気及び水等を冷却する蒸発器と、蒸発器から排出された冷媒を圧縮し、高温にして凝縮器に供給する圧縮機と、冷媒の熱により空気及び水等を加熱する凝縮器と、凝縮器から排出された冷媒を膨張させ、低温にして蒸発器に供給する膨張弁と、冷凍サイクル内の冷媒の流れる方向を切り替えることで、暖房運転、冷房運転の切り替えを行う四方弁とを備えている。そして、伝熱管は、凝縮器や蒸発器に組み込まれ、その内部に冷凍機油を含有する冷媒が流されるようになっている。   In general, an air conditioner is an evaporator that evaporates refrigerant and cools air, water, and the like by heat of vaporization at that time, and a compressor that compresses refrigerant discharged from the evaporator and supplies the refrigerant to a condenser at a high temperature And a condenser that heats air and water by the heat of the refrigerant, an expansion valve that expands the refrigerant discharged from the condenser and supplies the refrigerant to the evaporator at a low temperature, and switches the flow direction of the refrigerant in the refrigeration cycle Thus, a four-way valve that switches between heating operation and cooling operation is provided. And a heat exchanger tube is built in a condenser and an evaporator, and the refrigerant containing refrigerating machine oil is poured in the inside.

近年、熱交換器の高性能化のため、室内熱交換器には断面が扁平な扁平管を用い、室外熱交換器には円管内面にらせん溝形状を用いた伝熱管を使用するものが提案されている(特許文献1参照)。また、室内熱交換器には円管内面に平行でないクロス溝形状を用い、室外熱交換器には円管内面にらせん溝形状を用いた伝熱管を使用するものが提案されている(特許文献2参照)。このような室内機に搭載される熱交換器と室外機に搭載される熱交換器とに異なる種類の内面溝形状を有する伝熱管を用いると空気調和機の性能を向上することができる。   In recent years, to improve the performance of heat exchangers, indoor heat exchangers use flat tubes with a flat cross section, and outdoor heat exchangers use heat transfer tubes with a spiral groove shape on the inner surface of a circular tube. It has been proposed (see Patent Document 1). In addition, an indoor heat exchanger that uses a cross groove shape that is not parallel to the inner surface of the circular tube and an outdoor heat exchanger that uses a heat transfer tube that uses a spiral groove shape on the inner surface of the circular tube has been proposed (Patent Literature). 2). The performance of the air conditioner can be improved by using heat transfer tubes having different types of inner surface groove shapes for the heat exchanger mounted on the indoor unit and the heat exchanger mounted on the outdoor unit.

特開平8−247576号公報(図2)JP-A-8-247576 (FIG. 2) 特開平11−264630号公報(図1)Japanese Patent Laid-Open No. 11-264630 (FIG. 1)

ところで、前述のような空気調和機では、室外側熱交換器のパス数を室内側熱交換器のパス数より大きくすることで、暖房運転時における室外側熱交換器の管内圧力損失を低減するようにしている。また、熱交換器の高性能化を目的として、伝熱管を細径化することが考えられる。
しかしながら、伝熱管を細径化することにより、管内熱伝達率が増大するのに対して圧力損失が増大するため、これらを最適化することが必要になる。また、細径伝熱管は、伝熱性能的には有利であるが、伝熱管の製作費用が増大するという問題点があった。そして近年は、期間エネルギー消費効率(APF)に大きく寄与する暖房運転時の効率の向上が望まれている。また、寒冷地での暖房低温性能の向上も望まれている。
By the way, in the air conditioner as described above, the pressure loss in the pipe of the outdoor heat exchanger during the heating operation is reduced by making the number of passes of the outdoor heat exchanger larger than the number of passes of the indoor heat exchanger. I am doing so. Further, it is conceivable to reduce the diameter of the heat transfer tube for the purpose of improving the performance of the heat exchanger.
However, by reducing the diameter of the heat transfer tube, the heat transfer coefficient in the tube increases, but the pressure loss increases. Therefore, it is necessary to optimize them. In addition, the small-diameter heat transfer tube is advantageous in terms of heat transfer performance, but has a problem that the manufacturing cost of the heat transfer tube increases. In recent years, improvement in efficiency during heating operation that greatly contributes to period energy consumption efficiency (APF) has been desired. In addition, it is desired to improve the low temperature heating performance in cold regions.

本発明は以上の点に鑑み、室外側熱交換器の管内圧力損失を増加させずに、室内側熱交換器の熱交換能力を増大させることのできる空気調和機を得るものである。   In view of the above points, the present invention provides an air conditioner that can increase the heat exchange capacity of an indoor heat exchanger without increasing the pressure loss in the pipe of the outdoor heat exchanger.

本発明に係る空気調和機は、圧縮機と、室外機に搭載された室外側熱交換器と、膨張手段と、室内機に搭載された室内側熱交換器と、を順次配管で接続し冷媒を循環させる冷媒回路を備え、前記室外側熱交換器及び前記室内側熱交換器は、所定の間隔で配置されその間を気流が流れる複数のフィンと、前記フィンに挿通され内部を冷媒が流れる伝熱管と、を有し、前記室外側熱交換器の伝熱管は、断面が扁平形状を有し、扁平形状の長尺の向きが気流の流通方向を向くように配置された扁平管であり、前記扁平形状の長尺の長さが14mm以上22mm以下に構成され、前記室内側熱交換器の伝熱管を流れる冷媒の流速と、前記室外側熱交換器の伝熱管を流れる冷媒の流速との比が、2.3より大きく、11.6より小さくなるように構成されたものである。 An air conditioner according to the present invention is a refrigerant in which a compressor, an outdoor heat exchanger mounted on an outdoor unit, an expansion unit, and an indoor heat exchanger mounted on the indoor unit are sequentially connected by piping. The outdoor heat exchanger and the indoor heat exchanger are arranged at a predetermined interval and a plurality of fins through which airflow flows, and the refrigerant is passed through the fins and flows through the inside. A heat pipe, and the heat exchanger tube of the outdoor heat exchanger is a flat tube that has a flat cross section and is arranged so that the long direction of the flat shape faces the flow direction of the airflow, The flat long length is configured to be 14 mm or more and 22 mm or less, and the flow rate of the refrigerant flowing through the heat transfer tube of the indoor heat exchanger and the flow rate of the refrigerant flowing through the heat transfer tube of the outdoor heat exchanger ratio is greater than 2.3, it is configured to be less than 11.6 It has been.

本発明は、室外側熱交換器の管内圧力損失を増加させずに、低圧側の圧力を増大させることができ、空気調和機の効率を向上することができる。   The present invention can increase the pressure on the low pressure side without increasing the pressure loss in the pipe of the outdoor heat exchanger, and can improve the efficiency of the air conditioner.

本発明の実施の形態1に係る空気調和機の構成を示す図である。It is a figure which shows the structure of the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室外側熱交換器を示す図である。It is a figure which shows the outdoor side heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室外側熱交換器の扁平管の長尺の影響を示す図である。It is a figure which shows the influence of the elongate flat tube of the outdoor heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る室内側熱交換器の冷媒流速と室外側熱交換器の冷媒流速との比を示す図である。It is a figure which shows ratio of the refrigerant | coolant flow rate of the indoor side heat exchanger which concerns on Embodiment 1 of this invention, and the refrigerant | coolant flow rate of an outdoor side heat exchanger. 本発明の実施の形態2に係る空気調和機の構成を示す図である。It is a figure which shows the structure of the air conditioner which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る室内側熱交換器を示す図である。It is a figure which shows the indoor side heat exchanger which concerns on Embodiment 3 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る空気調和機の構成を示す図である。
図1に示すように、空気調和機は、圧縮機5と、四方弁8と、室外機に搭載された室外側熱交換器3と、膨張手段である膨張弁7と、室内機に搭載された室内側熱交換器2とが順次冷媒配管で接続され、冷媒を循環させる冷凍サイクル(冷媒回路)を備えている。
四方弁8は、冷凍サイクル内の冷媒の流れる方向を切り替えることで、暖房運転、冷房運転の切り替えを行う。なお、冷房専用または暖房専用の空気調和機とする場合には四方弁8を省略しても良い。室外側熱交換器3は、冷房運転時には、冷媒の熱により空気等を加熱する凝縮器として機能し、暖房運転時には、冷媒を蒸発させその際の気化熱により空気等を冷却する蒸発器として機能する。室内側熱交換器2は、冷房運転時には冷媒の蒸発器として機能し、暖房運転時には冷媒の凝縮器として機能する。圧縮機5は、蒸発器から排出された冷媒を圧縮し、高温にして凝縮器に供給する。膨張弁7は、凝縮器から排出された冷媒を膨張させ、低温にして蒸発器に供給する。冷媒としては、HC単一冷媒、又はHCを含む混合冷媒、R32、R410A、R407C、二酸化炭素のいずれかが用いられる。室内側熱交換器2や室外側熱交換器3の伝熱管を細径化すると、伝熱管の管内圧力損失が増加してしまう。管内圧力損失が小さいHC単一冷媒、又はHCを含む混合冷媒、R32、R410A、R407C、二酸化炭素のいずれかを用いると圧力損失を増加させずに、蒸発の管内伝熱性能を高めることができ、そのため、高効率の熱交換器を提供できる。
Embodiment 1 FIG.
1 is a diagram showing a configuration of an air conditioner according to Embodiment 1 of the present invention.
As shown in FIG. 1, an air conditioner is mounted on a compressor 5, a four-way valve 8, an outdoor heat exchanger 3 mounted on an outdoor unit, an expansion valve 7 that is an expansion means, and an indoor unit. The indoor-side heat exchanger 2 is connected with a refrigerant pipe in order, and has a refrigeration cycle (refrigerant circuit) for circulating the refrigerant.
The four-way valve 8 switches between the heating operation and the cooling operation by switching the direction in which the refrigerant flows in the refrigeration cycle. In addition, when it is set as the air conditioner only for cooling or heating, the four-way valve 8 may be omitted. The outdoor heat exchanger 3 functions as a condenser that heats the air or the like with the heat of the refrigerant during the cooling operation, and functions as an evaporator that evaporates the refrigerant and cools the air or the like with the heat of vaporization during the heating operation. To do. The indoor heat exchanger 2 functions as a refrigerant evaporator during the cooling operation, and functions as a refrigerant condenser during the heating operation. The compressor 5 compresses the refrigerant discharged from the evaporator and supplies it to the condenser at a high temperature. The expansion valve 7 expands the refrigerant discharged from the condenser, and supplies it to the evaporator at a low temperature. As the refrigerant, any one of HC single refrigerant, a mixed refrigerant containing HC, R32, R410A, R407C, and carbon dioxide is used. If the heat transfer tubes of the indoor heat exchanger 2 and the outdoor heat exchanger 3 are made thinner, the pressure loss inside the heat transfer tubes will increase. Using either HC single refrigerant with low pressure loss in the pipe, or mixed refrigerant containing HC, R32, R410A, R407C, or carbon dioxide can increase the heat transfer performance of the evaporation pipe without increasing the pressure loss. Therefore, a highly efficient heat exchanger can be provided.

室外側熱交換器3及び室内側熱交換器2は、冷凍装置、空気調和装置等の蒸発器、凝縮器として広く利用されているフィンチューブ式の熱交換器である。室外側熱交換器3及び室内側熱交換器2は、複数のフィンと伝熱管とで構成している。所定の間隔で複数並べたフィンに対して、各フィンに設けた貫通穴を貫通するように、伝熱管が設けられている。伝熱管は冷凍サイクルにおける冷媒回路の一部となり、管内部を冷媒が流れる。伝熱管内部を流れる冷媒と外部を流れる空気との熱をフィンを介して伝えることで空気との接触面となる伝熱面積が拡がり、冷媒と空気との間の熱交換を効率よく行える。   The outdoor heat exchanger 3 and the indoor heat exchanger 2 are fin-tube heat exchangers widely used as evaporators and condensers such as refrigeration apparatuses and air conditioners. The outdoor heat exchanger 3 and the indoor heat exchanger 2 are composed of a plurality of fins and heat transfer tubes. Heat transfer tubes are provided so as to penetrate through holes provided in each fin with respect to a plurality of fins arranged at predetermined intervals. The heat transfer tube becomes a part of the refrigerant circuit in the refrigeration cycle, and the refrigerant flows inside the tube. By transferring the heat of the refrigerant flowing inside the heat transfer tube and the air flowing outside through the fins, the heat transfer area serving as a contact surface with the air is expanded, and heat exchange between the refrigerant and the air can be performed efficiently.

次に、室外側熱交換器3の構成の詳細を図2により説明する。
図2は、本発明の実施の形態1に係る室外側熱交換器を示す図である。なお、図2は室外側熱交換器3を側面側からみた断面の一部を示している。
図2において、フィン10は、例えば板状形状を有し、所定の間隔で複数積層されて、その間を流体が流通する。
室外側熱交換器3の伝熱管は、断面が扁平形状を有し、扁平形状の長尺の長さL_outが、14mm以上22mm以下の扁平管20を用いている。
扁平管20は、扁平形状の長軸の向きが流体の流通方向(紙面左右方向)を向き、扁平形状の短軸の方向(紙面上下方向)に間隔を空けて複数配置されている。この扁平管20の両端部にはヘッダがそれぞれ接続され、複数の扁平管20に冷媒がそれぞれ分配される。また、扁平管20の内部には、複数の冷媒流路21が形成されている。
なお、図2に示す例では、扁平管20を2列設けた場合を示すが、本発明はこれに限らず、1列でも良いし、3列以上設けても良い。
Next, details of the configuration of the outdoor heat exchanger 3 will be described with reference to FIG.
FIG. 2 is a diagram showing an outdoor heat exchanger according to Embodiment 1 of the present invention. In addition, FIG. 2 has shown a part of cross section which looked at the outdoor side heat exchanger 3 from the side surface side.
In FIG. 2, the fins 10 have, for example, a plate shape, and a plurality of fins 10 are stacked at a predetermined interval, and fluid flows between them.
The heat transfer tube of the outdoor heat exchanger 3 uses a flat tube 20 having a flat cross section and a flat long length L_out of 14 mm or more and 22 mm or less.
The flat tubes 20 are arranged in a plurality with a flat major axis direction in the fluid flow direction (left-right direction on the paper surface) and with a gap in the flat minor axis direction (up-down direction on the paper surface). Headers are respectively connected to both ends of the flat tube 20, and the refrigerant is distributed to the plurality of flat tubes 20. A plurality of refrigerant channels 21 are formed inside the flat tube 20.
In addition, although the example shown in FIG. 2 shows the case where two rows of flat tubes 20 are provided, the present invention is not limited to this, and one row may be provided, or three or more rows may be provided.

ここで、室外側熱交換器3の着霜耐力と曲げ耐力について説明する。
図3は、本発明の実施の形態1に係る室外側熱交換器の扁平管の長尺の影響を示す図である。図3において、実線は熱交換器の曲げ耐力を示し、点線は熱交換器の着霜耐力を示す。
室外側熱交換器3が蒸発器として機能する場合、扁平管20内には低温の冷媒(例えば0℃以下)が流通する。このとき、フィン10の間及び扁平管20の周囲を通過する空気中の水分(水蒸気)が凝縮して霜として付着(着霜)する。低温の冷媒が流れる扁平管20の周囲には霜が着霜しやすく、着霜量が多くなるとフィン10間を通過する空気の流れが妨げられて通風抵抗が増加し、着霜耐力が低下する。
図3に示すように、室外側熱交換器3の扁平管20の長尺の長さを短くすると、着霜耐力が低下する。これは、扁平管20の長尺の長さが短いと着霜する範囲も狭くなり、着霜に伴う通風抵抗が増加するためである。また、扁平管20の長尺の長さが短いとフィン10の幅(流体の流通方向の長さ)も短くなるため、着霜する範囲も狭くなり、着霜に伴う通風抵抗が増加するためである。
Here, the frosting strength and the bending strength of the outdoor heat exchanger 3 will be described.
FIG. 3 is a diagram showing the influence of the length of the flat tube of the outdoor heat exchanger according to Embodiment 1 of the present invention. In FIG. 3, the solid line indicates the bending strength of the heat exchanger, and the dotted line indicates the frosting strength of the heat exchanger.
When the outdoor heat exchanger 3 functions as an evaporator, a low-temperature refrigerant (for example, 0 ° C. or less) flows through the flat tube 20. At this time, moisture (water vapor) in the air passing between the fins 10 and around the flat tube 20 is condensed and attached (frosted) as frost. Frost is likely to form around the flat tube 20 through which a low-temperature refrigerant flows, and when the amount of frost increases, the flow of air passing between the fins 10 is hindered, increasing the ventilation resistance and reducing the frost resistance. .
As shown in FIG. 3, when the length of the flat tube 20 of the outdoor heat exchanger 3 is shortened, the frosting resistance is reduced. This is because, when the long length of the flat tube 20 is short, the frosting range is also narrowed, and the ventilation resistance accompanying the frosting is increased. Moreover, since the width | variety (length of the distribution direction of a fluid) of the fin 10 will also become short if the elongate length of the flat tube 20 is short, since the range which forms frost becomes narrow and the ventilation resistance accompanying frost formation increases. It is.

一方、室外側熱交換器3の扁平管20の長尺の長さを長くすると、着霜耐力は上昇するが、熱交換器の曲げ耐力が低下する。これは、扁平管20の長尺の長さが長いと、扁平管20とフィン10との接触面積が増え、曲げ加工等によりフィン剥がれが生じ易くなるためである。また、扁平管20の長尺の長さが長いとフィン10の幅(流体の流通方向の長さ)も長くなるため、フィン10に変形が生じ易くなるためである。   On the other hand, when the long length of the flat tube 20 of the outdoor heat exchanger 3 is increased, the frosting resistance increases, but the bending resistance of the heat exchanger decreases. This is because if the length of the flat tube 20 is long, the contact area between the flat tube 20 and the fins 10 increases, and the fins are likely to be peeled off by bending or the like. Further, when the long length of the flat tube 20 is long, the width of the fin 10 (the length in the fluid flow direction) is also long, so that the fin 10 is likely to be deformed.

以上のようなことから、室外側熱交換器3の着霜耐力及び曲げ耐力の低下が顕著とならない範囲として、本実施の形態における扁平管20の長尺を、14mm以上22mm以下としている。つまり、扁平管20の長尺を、14mm以上22mm以下とするのは、室外側熱交換器3の扁平管20の長尺の長さを14mm以下にすると、着霜耐力が低下し、空気調和機の効率の低下が顕著になるからである。また、室外側熱交換器3の扁平管20の長尺の長さを22mm以上にすると、熱交換器の曲げ耐力の低下が顕著になるからである。   From the above, the length of the flat tube 20 in the present embodiment is set to 14 mm or more and 22 mm or less as a range in which the frost proof strength and bending strength of the outdoor heat exchanger 3 are not significantly lowered. That is, the length of the flat tube 20 is set to 14 mm or more and 22 mm or less. When the length of the flat tube 20 of the outdoor heat exchanger 3 is set to 14 mm or less, the frosting resistance is reduced and the air conditioning is reduced. This is because the decrease in efficiency of the machine becomes remarkable. Further, when the long length of the flat tube 20 of the outdoor heat exchanger 3 is set to 22 mm or more, the bending strength of the heat exchanger is significantly lowered.

以上のように室外側熱交換器3の扁平管20の長尺の長さを設定することにより、室外側熱交換器3の着霜耐力と曲げ耐力をより向上させることができ、高効率の室外側熱交換器3を得ることができる。   By setting the long length of the flat tube 20 of the outdoor heat exchanger 3 as described above, the frosting resistance and bending resistance of the outdoor heat exchanger 3 can be further improved, and high efficiency. The outdoor heat exchanger 3 can be obtained.

次に、室内側熱交換器2の伝熱管を流れる冷媒の流速(冷媒流速;Gr_indoor)と、室外側熱交換器3の伝熱管を流れる冷媒の流速(冷媒流速;Gr_outdoor)との比(Gr_indoor/Gr_outdoor)について説明する。
図4は、本発明の実施の形態1に係る室内側熱交換器の冷媒流速と室外側熱交換器の冷媒流速との比を示す図である。
図4に示すように、室内側熱交換器2の冷媒流速と室外側熱交換器3の冷媒流速との比が大きくなると、室外性能と室内性能が低下し、空気調和機の効率の低下が顕著になる。一方、室内側熱交換器2の冷媒流速と室外側熱交換器3の冷媒流速との比が小さくなると、室外熱交換器の管内圧力損失が大きくなり、空気調和機の効率の低下が顕著になる。
Next, the ratio (Gr_indoor) between the flow rate of refrigerant flowing through the heat transfer tube of the indoor heat exchanger 2 (refrigerant flow rate; Gr_indoor) and the flow rate of refrigerant flowing through the heat transfer tube of the outdoor heat exchanger 3 (refrigerant flow rate; Gr_outdoor). / Gr_outdoor) will be described.
FIG. 4 is a diagram showing a ratio between the refrigerant flow rate of the indoor heat exchanger and the refrigerant flow rate of the outdoor heat exchanger according to Embodiment 1 of the present invention.
As shown in FIG. 4, when the ratio between the refrigerant flow rate of the indoor heat exchanger 2 and the refrigerant flow rate of the outdoor heat exchanger 3 increases, the outdoor performance and the indoor performance deteriorate, and the efficiency of the air conditioner decreases. Become prominent. On the other hand, when the ratio of the refrigerant flow rate of the indoor heat exchanger 2 and the refrigerant flow rate of the outdoor heat exchanger 3 is reduced, the pressure loss in the pipe of the outdoor heat exchanger is increased and the efficiency of the air conditioner is significantly reduced. Become.

以上のようなことから、本実施の形態においては、室内側熱交換器2の冷媒流速と室外側熱交換器3の冷媒流速との比(Gr_indoor/Gr_outdoor)が、2.3より大きく、11.6より小さくなるように、室外側熱交換器3及び室内側熱交換器2の伝熱管の断面積及びパス数を設定している。
これは、室内側熱交換器2の冷媒流速と室外側熱交換器3の冷媒流速との比(Gr_indoor/Gr_outdoor)を2.3以下にすると、室外性能と室内性能が低下し、空気調和機の効率の低下が顕著になるからである。また、室内側熱交換器2の冷媒流速と室外側熱交換器3の冷媒流速との比(Gr_indoor/Gr_outdoor)を11.6以上にすると、室外熱交換器の管内圧力損失が大きくなり、空気調和機の効率の低下が顕著になるからである。
As described above, in the present embodiment, the ratio (Gr_indoor / Gr_outdoor) between the refrigerant flow rate of the indoor heat exchanger 2 and the refrigerant flow rate of the outdoor heat exchanger 3 is larger than 2.3. The cross-sectional area and the number of passes of the heat transfer tubes of the outdoor heat exchanger 3 and the indoor heat exchanger 2 are set so as to be smaller than .6.
This is because when the ratio of the refrigerant flow rate of the indoor heat exchanger 2 to the refrigerant flow rate of the outdoor heat exchanger 3 (Gr_indoor / Gr_outdoor) is 2.3 or less, the outdoor performance and the indoor performance are reduced, and the air conditioner This is because the reduction in efficiency of the above becomes remarkable. Moreover, if the ratio (Gr_indoor / Gr_outdoor) of the refrigerant flow rate of the indoor heat exchanger 2 and the refrigerant flow rate of the outdoor heat exchanger 3 is 11.6 or more, the pressure loss in the pipe of the outdoor heat exchanger increases, This is because the reduction in the efficiency of the harmony machine becomes significant.

以上のように室内側熱交換器2の冷媒流速と室外側熱交換器3の冷媒流速との比(Gr_indoor/Gr_outdoor)を設定することにより、室外側熱交換器3の管内圧力損失を増加させずに、室内側熱交換器2の熱交換能力を増大させることができ、高効率の室外側熱交換器3を得ることができる。   By setting the ratio (Gr_indoor / Gr_outdoor) between the refrigerant flow rate of the indoor heat exchanger 2 and the refrigerant flow rate of the outdoor heat exchanger 3 as described above, the pressure loss in the pipe of the outdoor heat exchanger 3 is increased. Therefore, the heat exchange capability of the indoor heat exchanger 2 can be increased, and a highly efficient outdoor heat exchanger 3 can be obtained.

これにより、冷房および暖房の何れの運転においても、高効率の空気調和機を得ることができる。
そして、本実施の形態の熱交換器は、圧縮機、凝縮器、絞り装置、蒸発器を順次配管で接続し、作動流体として冷媒を用いる冷凍サイクルにおいて、蒸発器または凝縮器として使用され、成績係数(COP)の向上に寄与する。また、冷媒と空気との熱交換効率が向上する。したがって、期間エネルギー消費効率(APF)の改善が期待できる。
Thereby, a high-efficiency air conditioner can be obtained in any operation of cooling and heating.
The heat exchanger of the present embodiment is used as an evaporator or a condenser in a refrigeration cycle in which a compressor, a condenser, a throttle device, and an evaporator are sequentially connected by piping and a refrigerant is used as a working fluid. This contributes to improvement of the coefficient (COP). In addition, the efficiency of heat exchange between the refrigerant and air is improved. Therefore, improvement of period energy consumption efficiency (APF) can be expected.

なお、熱交換器の圧力損失を低減させるには、パス数を増加させることも考えられる。しかし、パス数の増加では熱交換器の製造コストが増加する。そのため、室外側熱交換器3の扁平管20として長尺の長さが14mm以上22mm以下の扁平管を用いることによる効果のほうがより大きい効果が期待できる。   In order to reduce the pressure loss of the heat exchanger, it is conceivable to increase the number of passes. However, an increase in the number of passes increases the manufacturing cost of the heat exchanger. Therefore, a greater effect can be expected when using a flat tube having a long length of 14 mm or more and 22 mm or less as the flat tube 20 of the outdoor heat exchanger 3.

実施の形態2.
図5は、本発明の実施の形態2に係る空気調和機の構成を示す図である。
図5に示すように、本実施の形態2においては、室内側熱交換器2を複数備えている。ここでは、3台の室内側熱交換器2−1〜2−3を備える例について説明する。
なお、その他の構成は、上記実施の形態1と同様であり、同一部分には同一の符号を付する。
Embodiment 2. FIG.
FIG. 5 is a diagram showing a configuration of an air conditioner according to Embodiment 2 of the present invention.
As shown in FIG. 5, the second embodiment includes a plurality of indoor heat exchangers 2. Here, an example provided with three indoor side heat exchangers 2-1 to 2-3 will be described.
Other configurations are the same as those of the first embodiment, and the same reference numerals are given to the same portions.

本実施の形態においては、複数の室内側熱交換器2−1〜2−3の冷媒流速をそれぞれ合算した値(Gr0_indoor)と、室外側熱交換器3の冷媒流速(Gr_outdoor)との比(Gr0_indoor/Gr_outdoor)が、2.3より大きく、11.6より小さくなるように、室外側熱交換器3及び室内側熱交換器2の伝熱管の断面積及びパス数を設定している。 In the present embodiment, the ratio (Gr0_indoor) of the sum of refrigerant flow rates of the plurality of indoor heat exchangers 2-1 to 2-3 to the refrigerant flow rate (Gr_outdoor) of the outdoor heat exchanger 3 ( The cross-sectional area and the number of passes of the heat transfer tubes of the outdoor side heat exchanger 3 and the indoor side heat exchanger 2 are set so that Gr0_indoor / Gr_outdoor) is larger than 2.3 and smaller than 11.6.

ここで複数の室内側熱交換器2−1〜2−3の冷媒流速をそれぞれ合算した値(Gr0_indoor)は、以下のようになる。
Gr0_indoor=Σ(Grn_indoor) (n=1、2、…台数)
なお、Grn_indoorは、n台目の室内側熱交換器2の冷媒流速である。
また、複数の室内側熱交換器2の冷媒流速が同じ場合には、Gr0_indoor=Gr_indoor × 室内側熱交換器2の台数、となる。
Here, a value (Gr0_indoor) obtained by adding the refrigerant flow rates of the plurality of indoor heat exchangers 2-1 to 2-3 is as follows.
Gr0_indoor = Σ (Grn_indoor) (n = 1, 2,... Number)
Grn_indoor is the refrigerant flow rate of the nth indoor heat exchanger 2.
Further, when the refrigerant flow speeds of the plurality of indoor heat exchangers 2 are the same, Gr0_indoor = Gr_indoor × the number of indoor heat exchangers 2 is obtained.

以上のように複数の室内側熱交換器2を設ける場合においても、上記実施の形態1と同様に、室外側熱交換器3の管内圧力損失を増加させずに、室内側熱交換器2の熱交換能力を増大させることができ、高効率の室外側熱交換器3を得ることができる。   Even when a plurality of indoor heat exchangers 2 are provided as described above, as in the first embodiment, the pressure loss in the indoor heat exchanger 2 is increased without increasing the pressure loss in the outdoor heat exchanger 3. The heat exchange capability can be increased, and a highly efficient outdoor heat exchanger 3 can be obtained.

なお、室外側熱交換器3を複数備える構成としても良い。この場合は、複数の室内側熱交換器2の冷媒流速をそれぞれ合算した値(Gr0_indoor)と、複数の室外側熱交換器3の冷媒流速(Gr0_outdoor)との比(Gr0_indoor/Gr0_outdoor)が、2.3より大きく、11.6より小さくなるように、室外側熱交換器3及び室内側熱交換器2の伝熱管の断面積及びパス数を設定する。このような構成によっても、同様の効果を奏することができる。 In addition, it is good also as a structure provided with two or more outdoor heat exchangers 3. FIG. In this case, the ratio (Gr0_indoor / Gr0_outdoor) of the value (Gr0_indoor) obtained by adding the refrigerant flow rates of the plurality of indoor heat exchangers 2 to the refrigerant flow rate (Gr0_outdoor) of the plurality of outdoor heat exchangers 3 is 2 The cross-sectional area and the number of passes of the heat transfer tubes of the outdoor heat exchanger 3 and the indoor heat exchanger 2 are set so as to be larger than .3 and smaller than 11.6. The same effect can be obtained by such a configuration.

実施の形態3.
図6は、本発明の実施の形態3に係る室内側熱交換器を示す図である。なお、図6は室内側熱交換器2を側面側からみた断面の一部を示している。
図6において、フィン10は、例えば板状形状を有し、所定の間隔で複数積層されて、その間を流体が流通する。
室内側熱交換器2の伝熱管は、断面が円形形状を有する円管30を用いている。
円管30は、気流の流れ方向と直交する向き(紙面上下方向)に間隔を空けて複数配置されている。この円管30の両端部にはヘッダがそれぞれ接続され、複数の円管30に冷媒がそれぞれ分配される。なお、図6に示す例では、円管30を3列設けた場合を示すが、本発明はこれに限らず、任意の列を設けるようにしても良い。
なお、その他の構成は、上記実施の形態1または2と同様であり、室外側熱交換器3の伝熱管は扁平管20を用いている。
Embodiment 3 FIG.
FIG. 6 is a diagram showing an indoor heat exchanger according to Embodiment 3 of the present invention. In addition, FIG. 6 has shown a part of cross section which looked at the indoor side heat exchanger 2 from the side surface side.
In FIG. 6, the fins 10 have, for example, a plate shape, a plurality of fins 10 are stacked at a predetermined interval, and a fluid flows between them.
The heat transfer tube of the indoor side heat exchanger 2 uses a circular tube 30 having a circular cross section.
A plurality of circular tubes 30 are arranged at intervals in a direction (vertical direction in the drawing) perpendicular to the airflow direction. Headers are connected to both ends of the circular pipe 30, and the refrigerant is distributed to the plurality of circular pipes 30. In addition, although the example shown in FIG. 6 shows the case where the circular tubes 30 are provided in three rows, the present invention is not limited to this, and an arbitrary row may be provided.
Other configurations are the same as those in the first or second embodiment, and the flat tube 20 is used as the heat transfer tube of the outdoor heat exchanger 3.

室内側熱交換器2の円管30の直径D_in(内径)は、4mm以上6.35mm以下である。
これは、室内側熱交換器2の円管30の直径を4mm以下にすると、室内側の管内圧力損失が大きくなり、空気調和機の効率の低下が顕著になるからである。また、室内側熱交換器2の円管30の直径を6.35mm以上にすると、室内側の管内冷媒流速が遅くなり、空気調和機の効率の低下が顕著になるからである。
The diameter D_in (inner diameter) of the circular tube 30 of the indoor heat exchanger 2 is 4 mm or more and 6.35 mm or less.
This is because if the diameter of the circular tube 30 of the indoor heat exchanger 2 is 4 mm or less, the pressure loss in the indoor tube increases and the efficiency of the air conditioner decreases significantly. Further, if the diameter of the circular tube 30 of the indoor heat exchanger 2 is set to 6.35 mm or more, the refrigerant flow rate in the indoor tube becomes slow, and the efficiency of the air conditioner decreases significantly.

以上のように室内側熱交換器2の円管30の直径を設定することにより、室内側熱交換器2の伝熱性能をより向上させることができ、高効率の室外側熱交換器3を得ることができる。   By setting the diameter of the circular tube 30 of the indoor heat exchanger 2 as described above, the heat transfer performance of the indoor heat exchanger 2 can be further improved, and the highly efficient outdoor heat exchanger 3 can be obtained. Can be obtained.

また、室外側熱交換器3の扁平管20の水力直径は、2mm以上4mm以下である。
これは、室外側熱交換器3の扁平管20の水力直径を2mm以下にすると、室外側の管内圧力損失が大きくなり、空気調和機の効率の低下が顕著になるからである。また、室外側熱交換器3の扁平管20の水力直径を4mm以上にすると、室外側の管内冷媒流速が遅くなり、空気調和機の効率の低下が顕著になるからである。
なお、扁平管20の水力直径とは、扁平管20の複数の冷媒流路21の断面と等価な円管の直径である。
Moreover, the hydraulic diameter of the flat tube 20 of the outdoor heat exchanger 3 is 2 mm or more and 4 mm or less.
This is because when the hydraulic diameter of the flat tube 20 of the outdoor heat exchanger 3 is 2 mm or less, the pressure loss inside the outdoor tube increases and the efficiency of the air conditioner decreases significantly. Further, when the hydraulic diameter of the flat tube 20 of the outdoor heat exchanger 3 is 4 mm or more, the refrigerant flow rate in the outdoor tube becomes slow, and the efficiency of the air conditioner is significantly reduced.
The hydraulic diameter of the flat tube 20 is the diameter of a circular tube equivalent to the cross section of the plurality of refrigerant channels 21 of the flat tube 20.

以上のように室外側熱交換器3の扁平管20の水力直径を設定することにより、室内側熱交換器2の伝熱性能をより向上させることができ、高効率の室外側熱交換器3を得ることができる。   By setting the hydraulic diameter of the flat tube 20 of the outdoor heat exchanger 3 as described above, the heat transfer performance of the indoor heat exchanger 2 can be further improved, and the highly efficient outdoor heat exchanger 3 can be improved. Can be obtained.

実施の形態4.
本実施の形態4における室内側熱交換器2の伝熱管は、断面が扁平形状を有する扁平管20を用いている。
なお、その他の構成は、上記実施の形態1または2と同様であり、室外側熱交換器3の伝熱管も扁平管20を用いている。
Embodiment 4 FIG.
The heat transfer tube of the indoor side heat exchanger 2 in the fourth embodiment uses a flat tube 20 having a flat cross section.
Other configurations are the same as those in the first or second embodiment, and the flat tube 20 is used as the heat transfer tube of the outdoor heat exchanger 3.

室内側熱交換器2の扁平管20の水力直径は、0.5mm以上2mm未満であり、室外側熱交換器3の扁平管20の水力直径は、2mm以上4mm以下である。
これは、室内側熱交換器2の扁平管20の水力直径を0.5mm以下にすると、室内側熱交換器2の管内圧力損失が大きくなり、空気調和機の効率の低下が顕著になるからである。また、室内側熱交換器2の扁平管20の水力直径を2mm以上にすると、室内側熱交換器2の管内冷媒流速が遅くなり、空気調和機の効率の低下が顕著になるからである。
The hydraulic diameter of the flat tube 20 of the indoor heat exchanger 2 is 0.5 mm or more and less than 2 mm, and the hydraulic diameter of the flat tube 20 of the outdoor heat exchanger 3 is 2 mm or more and 4 mm or less.
This is because if the hydraulic diameter of the flat tube 20 of the indoor heat exchanger 2 is 0.5 mm or less, the pressure loss in the pipe of the indoor heat exchanger 2 increases, and the efficiency of the air conditioner decreases significantly. It is. In addition, if the hydraulic diameter of the flat tube 20 of the indoor heat exchanger 2 is 2 mm or more, the refrigerant flow rate in the pipe of the indoor heat exchanger 2 is slowed down, and the efficiency of the air conditioner is significantly reduced.

以上のように室内側熱交換器2の扁平管20の水力直径を設定することにより、室内側熱交換器2の伝熱性能をより向上させることができ、高効率の室外側熱交換器3を得ることができる。   By setting the hydraulic diameter of the flat tube 20 of the indoor heat exchanger 2 as described above, the heat transfer performance of the indoor heat exchanger 2 can be further improved, and the highly efficient outdoor heat exchanger 3 can be improved. Can be obtained.

本発明は、空気調和機に限定することなく、例えば、冷凍装置、ヒートポンプ装置等、冷媒回路を構成し、蒸発器、凝縮器となる熱交換器を有する他の冷凍サイクル装置にも適用することができる。   The present invention is not limited to an air conditioner, and may be applied to other refrigeration cycle apparatuses having a heat exchanger that constitutes a refrigerant circuit, such as a refrigeration apparatus and a heat pump apparatus, and has an evaporator and a condenser. Can do.

2 室内側熱交換器、3 室外側熱交換器、5 圧縮機、7 膨張弁、8 四方弁、10 フィン、20 扁平管、21 冷媒流路、30 円管。   2 indoor side heat exchanger, 3 outdoor side heat exchanger, 5 compressor, 7 expansion valve, 8 four-way valve, 10 fin, 20 flat tube, 21 refrigerant flow path, 30 circular tube.

Claims (8)

圧縮機と、室外機に搭載された室外側熱交換器と、膨張手段と、室内機に搭載された室内側熱交換器と、を順次配管で接続し冷媒を循環させる冷媒回路を備え、
前記室外側熱交換器及び前記室内側熱交換器は、
所定の間隔で配置されその間を気流が流れる複数のフィンと、
前記フィンに挿通され内部を冷媒が流れる伝熱管と、を有し、
前記室外側熱交換器の伝熱管は、断面が扁平形状を有し、扁平形状の長尺の向きが気流の流通方向を向くように配置された扁平管であり、前記扁平形状の長尺の長さが14mm以上22mm以下に構成され、
前記室内側熱交換器の伝熱管を流れる冷媒の流速と、前記室外側熱交換器の伝熱管を流れる冷媒の流速との比が、2.3より大きく、11.6より小さくなるように構成された
ことを特徴とする空気調和機。
A refrigerant circuit that sequentially connects a compressor, an outdoor heat exchanger mounted on the outdoor unit, an expansion means, and an indoor heat exchanger mounted on the indoor unit with a pipe to circulate the refrigerant;
The outdoor heat exchanger and the indoor heat exchanger are:
A plurality of fins arranged at predetermined intervals and airflow between them;
A heat transfer tube that is inserted through the fin and through which the refrigerant flows,
The heat exchanger tube of the outdoor heat exchanger is a flat tube having a flat cross section, and is arranged so that the long direction of the flat shape faces the flow direction of the airflow, the long tube of the flat shape The length is configured to be 14 mm or more and 22 mm or less,
The ratio between the flow rate of the refrigerant flowing through the heat transfer tube of the indoor heat exchanger and the flow rate of the refrigerant flowing through the heat transfer tube of the outdoor heat exchanger is configured to be larger than 2.3 and smaller than 11.6. An air conditioner characterized by being made.
前記室内側熱交換器の伝熱管を流れる冷媒の流速と、前記室外側熱交換器の伝熱管を流れる冷媒の流速との比が、2.3より大きく、11.6より小さくなるように、前記室外側熱交換器及び前記室内側熱交換器の伝熱管の断面積及びパス数を設定した
ことを特徴とする請求項1記載の空気調和機。
The ratio of the flow rate of the refrigerant flowing through the heat transfer tube of the indoor heat exchanger and the flow rate of the refrigerant flowing through the heat transfer tube of the outdoor heat exchanger is larger than 2.3 and smaller than 11.6. The air conditioner according to claim 1, wherein the cross-sectional area and the number of passes of the heat transfer tubes of the outdoor heat exchanger and the indoor heat exchanger are set.
前記室内側熱交換器を複数備え、
前記各室内側熱交換器の伝熱管を流れる冷媒の流速をそれぞれ合算した値と、前記室外側熱交換器の伝熱管を流れる冷媒の流速との比が、2.3より大きく、11.6より小さくなるように構成された
ことを特徴とする請求項1または2記載の空気調和機。
A plurality of indoor heat exchangers;
The ratio of the sum of the flow rates of the refrigerant flowing through the heat transfer tubes of the indoor heat exchangers to the flow rate of the refrigerant flowing through the heat transfer tubes of the outdoor heat exchanger is greater than 2.3. 3. The air conditioner according to claim 1, wherein the air conditioner is configured to be smaller .
前記室内側熱交換器の伝熱管は、断面が円形形状を有する円管である
ことを特徴とする請求項1〜3の何れか一項に記載の空気調和機。
The air conditioner according to any one of claims 1 to 3, wherein the heat transfer tube of the indoor heat exchanger is a circular tube having a circular cross section.
前記室内側熱交換器の前記円管は、直径が4mm以上6.35mm以下であり、
前記室外側熱交換器の前記扁平管は、水力直径が2mm以上4mm以下である
ことを特徴とする請求項4記載の空気調和機。
The circular tube of the indoor heat exchanger has a diameter of 4 mm to 6.35 mm,
The air conditioner according to claim 4, wherein the flat tube of the outdoor heat exchanger has a hydraulic diameter of 2 mm or more and 4 mm or less.
前記室内側熱交換器の伝熱管は、断面が扁平形状を有する扁平管である
ことを特徴とする請求項1〜3の何れか一項に記載の空気調和機。
The air conditioner according to any one of claims 1 to 3, wherein the heat transfer tube of the indoor heat exchanger is a flat tube having a flat cross section.
前記室内側熱交換器の前記扁平管は、水力直径が0.5mm以上2mm未満であり、
前記室外側熱交換器の前記扁平管は、水力直径が2mm以上4mm以下である
ことを特徴とする請求項6に記載の空気調和機。
The flat tube of the indoor heat exchanger has a hydraulic diameter of 0.5 mm or more and less than 2 mm,
The air conditioner according to claim 6, wherein the flat tube of the outdoor heat exchanger has a hydraulic diameter of 2 mm or more and 4 mm or less.
冷媒として、HC単一冷媒、またはHCを含む混合冷媒、R32、R410A、R407C、二酸化炭素のいずれかを用いた
ことを特徴とする請求項1〜7の何れか一項に記載の空気調和機。
The air conditioner according to any one of claims 1 to 7, wherein any one of HC single refrigerant, a mixed refrigerant containing HC, R32, R410A, R407C, and carbon dioxide is used as the refrigerant. .
JP2012100934A 2012-04-26 2012-04-26 Air conditioner Active JP5627635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100934A JP5627635B2 (en) 2012-04-26 2012-04-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100934A JP5627635B2 (en) 2012-04-26 2012-04-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2013228154A JP2013228154A (en) 2013-11-07
JP5627635B2 true JP5627635B2 (en) 2014-11-19

Family

ID=49675949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100934A Active JP5627635B2 (en) 2012-04-26 2012-04-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP5627635B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531063B2 (en) * 2016-04-26 2019-06-12 日立ジョンソンコントロールズ空調株式会社 Heat exchanger and air conditioner
WO2018066067A1 (en) * 2016-10-04 2018-04-12 三菱電機株式会社 Vortex generation device and refrigeration cycle apparatus
JP6704361B2 (en) * 2017-01-13 2020-06-03 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP6865809B2 (en) * 2019-12-24 2021-04-28 三菱電機株式会社 Air conditioner
JP7550573B2 (en) 2020-09-02 2024-09-13 株式会社Uacj Air conditioners

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253171A (en) * 1997-03-11 1998-09-25 Matsushita Electric Ind Co Ltd Air conditioner
JPH11108576A (en) * 1997-10-02 1999-04-23 Nippon Light Metal Co Ltd Heat exchanger
JP2011002217A (en) * 2009-05-18 2011-01-06 Panasonic Corp Refrigerating device and air conditioning apparatus
JP5409544B2 (en) * 2010-08-04 2014-02-05 三菱電機株式会社 Air conditioner indoor unit and air conditioner

Also Published As

Publication number Publication date
JP2013228154A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
CN204063687U (en) Heat exchanger and freezing cycle device
EP3156752B1 (en) Heat exchanger
WO2015004720A1 (en) Heat exchanger, and air conditioner
JP5627635B2 (en) Air conditioner
US20140352352A1 (en) Outdoor heat exchanger and air conditioner
JP6253814B2 (en) Heat exchanger and refrigeration cycle apparatus
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP5951475B2 (en) Air conditioner and outdoor heat exchanger used therefor
EP2578966B1 (en) Refrigeration device and cooling and heating device
JP6053693B2 (en) Air conditioner
JP5646257B2 (en) Refrigeration cycle equipment
JP6198976B2 (en) Heat exchanger and refrigeration cycle apparatus
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
WO2019130394A1 (en) Heat exchanger and refrigeration cycle device
JP2015014397A (en) Heat exchanger
CN113646597B (en) Refrigeration cycle device
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
WO2021131038A1 (en) Heat exchanger and refrigeration cycle device
JP5709618B2 (en) Heat exchanger, refrigeration cycle apparatus, refrigerator, and air conditioner
WO2011111602A1 (en) Air conditioner
JP7112168B2 (en) Heat exchanger and refrigeration cycle equipment
JP5237244B2 (en) Distributor and air conditioner including the same
KR20130086454A (en) Heat pump

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R150 Certificate of patent or registration of utility model

Ref document number: 5627635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250