JP5627493B2 - Submerged arc welding method - Google Patents
Submerged arc welding method Download PDFInfo
- Publication number
- JP5627493B2 JP5627493B2 JP2011025386A JP2011025386A JP5627493B2 JP 5627493 B2 JP5627493 B2 JP 5627493B2 JP 2011025386 A JP2011025386 A JP 2011025386A JP 2011025386 A JP2011025386 A JP 2011025386A JP 5627493 B2 JP5627493 B2 JP 5627493B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- weld metal
- flux
- toughness
- bead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003466 welding Methods 0.000 title claims description 116
- 238000000034 method Methods 0.000 title claims description 16
- 230000004907 flux Effects 0.000 claims description 60
- 239000007787 solid Substances 0.000 claims description 18
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 17
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 11
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 241001016380 Reseda luteola Species 0.000 description 81
- 239000002184 metal Substances 0.000 description 71
- 229910052751 metal Inorganic materials 0.000 description 71
- 239000011324 bead Substances 0.000 description 42
- 239000002893 slag Substances 0.000 description 34
- 238000012360 testing method Methods 0.000 description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 23
- 229910052760 oxygen Inorganic materials 0.000 description 23
- 239000001301 oxygen Substances 0.000 description 23
- 239000000203 mixture Substances 0.000 description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 239000000126 substance Substances 0.000 description 16
- 238000002844 melting Methods 0.000 description 14
- 230000008018 melting Effects 0.000 description 14
- 229910000831 Steel Inorganic materials 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- 229910052759 nickel Inorganic materials 0.000 description 10
- 230000007547 defect Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 229910052748 manganese Inorganic materials 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 238000009863 impact test Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000003496 welding fume Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Landscapes
- Arc Welding In General (AREA)
- Nonmetallic Welding Materials (AREA)
Description
本発明は、造船、鉄骨、造管、橋梁、車両などの一般構造物やLPG貯蔵タンク、低温用機器、寒冷地向け鋼構造物などの溶接に用いられるサブマージアーク溶接方法に関し、特に1m/min以上の高速度の溶接条件においても優れた機械性能の溶接金属、ビード形状および溶接作業性が得られるサブマージアーク溶接方法に関する。 The present invention relates to a submerged arc welding method used for welding general structures such as shipbuilding, steel frames, pipes, bridges, vehicles, LPG storage tanks, low-temperature equipment, steel structures for cold districts, etc., and particularly 1 m / min. The present invention relates to a submerged arc welding method capable of obtaining a weld metal, bead shape and welding workability with excellent mechanical performance even under the above high-speed welding conditions.
サブマージアーク溶接は、高能率で安定した溶接作業性および優れた機械性能を有する溶接金属が得られることから、造船、鉄骨、造管、橋梁、車両など幅広い分野で適用されている。 Submerged arc welding is applied in a wide range of fields such as shipbuilding, steel frames, pipes, bridges, and vehicles because it provides a weld metal with high efficiency and stable welding workability and excellent mechanical performance.
近年、エネルギー産業の発展に伴い鋼材の高強度化および高靭性化、また構造物の大型化に伴う板厚の極厚化などが検討され、高強度または極厚の鋼材へのサブマージアーク溶接の適用比率が年々増加している。そこで、サブマージアーク溶接においては、溶接施工における生産性の向上や安全性、耐久性の確保のため、更なる品質向上が求められており、その中でも特に溶接の高能率化と溶接金属の高靭性化の要望が極めて大きい。 In recent years, with the development of the energy industry, higher strength and toughness of steel materials have been studied, as well as the increase in sheet thickness due to the increase in size of structures, etc., and submerged arc welding of high strength or extremely thick steel materials has been studied. The application ratio is increasing year by year. Therefore, in submerged arc welding, further improvement in quality is required to improve the productivity and ensure safety and durability in welding work, and in particular, high efficiency of welding and high toughness of weld metal. There is a great demand for conversion.
従来、サブマージアーク溶接には、溶融型のフラックスおよび焼成型のフラックスが用いられ、フラックスの成分に合わせてソリッドワイヤが主に使用されている。溶融型フラックスは、各種鉱物原材料を1500℃以上の高温度で溶融し、冷却後粉末状に粉砕したものであり、吸湿が少なく、溶接金属の拡散性水素量を低くすることができ、取扱や保管が容易であるという特徴がある。一方、焼成型フラックスは、各種原材料に水ガラス等を添加して造粒し、500℃程度で焼成したものであり、溶接金属の化学成分を自由に調整できるという優れた特徴があるが、吸湿しやすいという欠点がある。 Conventionally, in submerged arc welding, a melt-type flux and a fired-type flux are used, and a solid wire is mainly used in accordance with the components of the flux. The melt-type flux is a material in which various mineral raw materials are melted at a high temperature of 1500 ° C. or higher and pulverized into a powder after cooling, has low moisture absorption, and can reduce the amount of diffusible hydrogen in the weld metal. It is characterized by easy storage. On the other hand, the calcining flux is granulated by adding water glass or the like to various raw materials and calcined at about 500 ° C., and has an excellent feature that the chemical components of the weld metal can be freely adjusted. There is a drawback that it is easy to do.
高強度および極厚鋼材のサブマージアーク溶接には、溶接金属の高靭性化、高速度化、安定した品質確保のため、特に溶融型フラックスを適用することが多い。しかし、溶融型フラックスは溶接金属の化学成分を自由に調整することができないため、溶接金属の高靭性化のためには塩基度を高め、溶接金属の酸素量を低くしなければならない。ただし、単に塩基度を高めるだけでは高靭性化の限界があり、また、正常なビード形状および良好な溶接作業性を得ることはできない。そこで、溶接金属の化学成分を調整し、高靭性化するためにはソリッドワイヤにSi、Mn等の合金成分を含有させる必要がある。また、溶接金属の適正な引張強度および靭性を得るためには、フラックスおよびソリッドワイヤそれぞれの化学成分を考慮し、最適な組合せを選定する必要がある。 For submerged arc welding of high-strength and extra-thick steel materials, in particular, a melt-type flux is often applied in order to increase the toughness, speed, and stable quality of the weld metal. However, since the molten flux cannot freely adjust the chemical composition of the weld metal, it is necessary to increase the basicity and reduce the oxygen content of the weld metal in order to increase the toughness of the weld metal. However, simply increasing the basicity has the limit of increasing toughness, and a normal bead shape and good welding workability cannot be obtained. Therefore, in order to adjust the chemical components of the weld metal and increase the toughness, it is necessary to include alloy components such as Si and Mn in the solid wire. Further, in order to obtain an appropriate tensile strength and toughness of the weld metal, it is necessary to select an optimal combination in consideration of chemical components of the flux and the solid wire.
これらの点を考慮し、良好な溶接金属機械性能および溶接作業性が得られるサブマージアーク溶接用溶融型フラックスおよびサブマージアーク溶接方法の開発が試みられている。 In consideration of these points, an attempt has been made to develop a melt-type flux for submerged arc welding and a submerged arc welding method capable of obtaining good weld metal mechanical performance and welding workability.
例えば特許文献1には、高速サブマージアーク溶接における溶接ビード形状の改善およびスラグ剥離性の向上を目的に、フラックス組成中のTiO2およびZrO2を限定し、溶接作業性の改善を図った技術の開示がある。一般的にTiO2およびZrO2はアーク安定剤として知られており、サブマージアーク溶接用溶融型フラックスにも適用されることが多いが、ZrO2は融点が高くフラックスの融点あるいは軟化溶融点を上げるので、高速溶接には不向きで良好な溶接作業性は得られない。 For example, Patent Literature 1 discloses a technique for improving welding workability by limiting TiO 2 and ZrO 2 in the flux composition for the purpose of improving the weld bead shape and improving the slag peelability in high-speed submerged arc welding. There is disclosure. TiO 2 and ZrO 2 are generally known as arc stabilizers and are often applied to melting fluxes for submerged arc welding, but ZrO 2 has a high melting point and raises the melting point or softening melting point of the flux. Therefore, it is not suitable for high-speed welding and good welding workability cannot be obtained.
特許文献2には、ニッケルスラグと溶融型フラックスを混合し、高速サブマージアーク溶接における溶接作業性の改善を図った技術の開示がある。ニッケルスラグは、ニッケルの精錬工程において、ニッケル鉱石からニッケルを溶解還元した後のスラグであり、組成はSiO2:50〜60質量%、MgO:30〜40質量%を主成分とする共晶組成で、安定した原料である。しかし、ニッケルスラグと溶融型フラックスを混合しただけでは、ニッケルスラグと溶融型フラックスの粒度構成および嵩比重が異なるため、均一に混合することができず、また搬送中および使用中にニッケルスラグと溶融型フラックスが分離して偏析するので安定した溶接作業性は得られない。 Patent Document 2 discloses a technique in which nickel slag and molten flux are mixed to improve welding workability in high-speed submerged arc welding. Nickel slag is the slag after dissolving and reducing nickel from nickel ore in the refining process of nickel, and the composition is a eutectic composition mainly composed of SiO 2 : 50-60 mass% and MgO: 30-40 mass%. It is a stable raw material. However, just mixing nickel slag and molten flux makes it impossible to mix evenly because nickel slag and molten flux have different particle size configurations and bulk specific gravity. Since the mold flux separates and segregates, stable welding workability cannot be obtained.
また、特許文献3に、フラックスの成分、融点および粘度を限定して高速サブマージアーク溶接における溶接作業性改善を図った技術が開示されている。フラックスの塩基度と溶接作業性の影響調査を行い、さらにフラックスの融点および粘度を指標化して高速溶接における作業性改善を図っているが、SiO2、CaO、CaF2の組成範囲が非常に広く、SiO2、CaO、CaF2は、それぞれ全く異なる作用効果を呈することから、これらの組成範囲では、安定した溶接作業性は得られない。 Patent Document 3 discloses a technique for improving welding workability in high-speed submerged arc welding by limiting the flux components, melting point, and viscosity. The influence of flux basicity and welding workability is investigated, and the melting point and viscosity of the flux are indexed to improve workability in high-speed welding, but the composition range of SiO 2 , CaO, and CaF 2 is very wide. Since SiO 2 , CaO, and CaF 2 exhibit completely different functions and effects, stable welding workability cannot be obtained in these composition ranges.
特許文献4には、高速のサブマージアーク溶接における溶接作業性と低温靭性の改善を図った溶融型フラックスが開示されている。しかし、SiO2が高いため溶接金属の酸素量が高くなり、高靭性化の要求に対しては不十分なものとなる。またMgOが高いためフラックスの軟化溶融点が高くなり、ビード表面に突起物の発生や波目が粗くなり、スラグ剥離性およびビード外観が不良となる。 Patent Document 4 discloses a melt-type flux that improves welding workability and low-temperature toughness in high-speed submerged arc welding. However, since SiO 2 is high, the amount of oxygen in the weld metal is high, which is insufficient for the demand for high toughness. In addition, since MgO is high, the softening and melting point of the flux is increased, the generation of protrusions and wavyness on the bead surface becomes rough, and the slag peelability and bead appearance are poor.
また、特許文献5に、フラックスの粒度調整による溶接作業性改善や溶接金属の酸素量低減による靭性向上を図った溶融型フラックスが開示されている。しかし、Al2O3が少量しか添加されておらず、良好なスラグ剥離性およびビード外観を得ることはできない。Al2O3は良好なスラグ剥離性およびビード外観を得るためには極めて重要な成分であり、またアーク安定性を良好にする効果もあるため、特許文献5に記載のAl2O3添加量ではその効果が得られない。 Patent Document 5 discloses a melt-type flux that improves welding workability by adjusting the particle size of the flux and improves toughness by reducing the oxygen content of the weld metal. However, only a small amount of Al 2 O 3 is added, and good slag peelability and bead appearance cannot be obtained. Al 2 O 3 is an extremely important component for obtaining good slag peelability and bead appearance, and also has an effect of improving arc stability. Therefore, the amount of Al 2 O 3 added described in Patent Document 5 Then the effect cannot be obtained.
さらに、サブマージアーク溶接用複合ワイヤ適用した技術が特許文献6に開示されている。溶接金属の高靭化と溶接作業性改善を図っているが、このフラックス入りワイヤでは、ワイヤ中の酸素量が高いため溶接金属中の酸素量が増加して良好な低温靭性が得られない。さらに、ワイヤ断面形状は継ぎ目を有すフラックス入りワイヤであるので、大気中の水分を吸湿する。したがって、フラックスの水分量を減少しただけでは不十分であり、溶接金属中の拡散性水素量が増加して溶接後に低温割れが発生し易くなるという問題もある。 Furthermore, Patent Document 6 discloses a technique using a composite wire for submerged arc welding. Although high toughness of the weld metal and improvement in welding workability are attempted, this flux-cored wire has a high oxygen content in the wire, so that the oxygen content in the weld metal increases and good low temperature toughness cannot be obtained. Furthermore, since the wire cross-sectional shape is a flux-cored wire having a seam, it absorbs moisture in the atmosphere. Therefore, it is not sufficient to reduce the moisture content of the flux, and there is a problem that the amount of diffusible hydrogen in the weld metal increases and low temperature cracks are likely to occur after welding.
本発明は、特に1m/min以上の高速度の溶接条件においても溶接作業性が良好で、優れた機械性能の溶接金属が得られるサブマージアーク溶接方法を提供することを目的とする。 An object of the present invention is to provide a submerged arc welding method capable of obtaining a weld metal having excellent welding workability and excellent mechanical performance especially under high-speed welding conditions of 1 m / min or more.
本発明者らは、前記課題を解決するために、溶融型フラックスの化学組成および組合せるソリッドワイヤの化学成分に着目し、これらについて鋭意研究を行った。その結果、溶融型フラックスの化学組成を限定し、組合せるソリッドワイヤの化学成分を限定することにより、高速度の溶接条件においても高靭性の溶接金属を得ることができ、良好な溶接作業性およびビード形状が得られ、溶接欠陥の無い高品質の溶接部を得ることを見出し、本発明を完成した。 In order to solve the above-mentioned problems, the present inventors paid attention to the chemical composition of the molten flux and the chemical components of the solid wire to be combined, and conducted intensive research on these. As a result, by limiting the chemical composition of the melt-type flux and limiting the chemical composition of the solid wire to be combined, a high-toughness weld metal can be obtained even under high-speed welding conditions, and good welding workability and The present inventors have found that a bead shape can be obtained and a high-quality weld with no weld defects can be obtained, and the present invention has been completed.
すなわち、本発明の要旨は、質量%で、SiO2:8〜25%、Al2O3:30.5〜50%、MgO:0.5〜8.0%、MnO:5.5〜11.0%、CaO:5〜20%、CaF2:25〜48%、K2O:0.10〜3.0%を含有し、その他は酸化鉄および不可避不純物の合計が2.16%以下である溶融型フラックスとC:0.03〜0.25%、Si:0.004〜1.20%、Mn:0.25〜2.80%を含有し、残部がFeおよび不可避不純物からなるソリッドワイヤとを組合せて溶接することを特徴とする。
また、ソリッドワイヤにTiを0.30%以下含有することも特徴とするサブマージアーク溶接方法にある。
That is, the gist of the present invention, in mass%, SiO 2: 8~25%, Al 2 O 3: 30.5 ~50%, MgO: 0.5~8.0%, MnO: 5.5~11 .0%, CaO: 5~20%, CaF 2: 25~48%, K 2 O: containing from 0.10 to 3.0%, others less total 2.16% iron oxide and unavoidable impurities The molten flux is C: 0.03 to 0.25%, Si: 0.004 to 1.20%, Mn: 0.25 to 2.80%, and the balance is Fe and inevitable impurities. It is characterized by welding in combination with a solid wire.
The submerged arc welding method is characterized in that the solid wire contains 0.30% or less of Ti.
本発明のサブマージアーク溶接方法によれば、溶接速度が1m/min以上の高速度の溶接条件においても高靭性の溶接金属を得ることができ、良好な溶接作業性およびビード形状が得られ、溶接欠陥の無い高品質の溶接部を得ることができる。 According to the submerged arc welding method of the present invention, a weld metal having high toughness can be obtained even under high-speed welding conditions with a welding speed of 1 m / min or more, and good welding workability and bead shape can be obtained. A high-quality weld without defects can be obtained.
本発明者らは、良好な溶接作業性を維持し、溶接金属の靭性を向上するために最適な溶融型フラックスの化学組成および組合せるソリッドワイヤの化学成分などについて検討を行った。 The inventors of the present invention have studied the optimum chemical composition of the melt-type flux and the chemical composition of the solid wire to be combined in order to maintain good welding workability and improve the toughness of the weld metal.
サブマージアーク溶接での溶接速度の高速度化および溶接金属の高靭性化は、フラックスの化学組成が重要であり、非常に大きな影響を及ぼす。そこでフラックスは溶融型フラックスを適用することによって高速度の溶接が可能となり、ビード形状もフラットで波目の細かい美しい外観が得られた。しかし、溶接金属の高靭性化のためにはフラックスの塩基度を高める必要があり、塩基性の鉱物原材料の添加量を増加した結果、溶接金属の靭性は向上したが、逆にスラグ剥離性、ビード外観、アーク安定性が劣化した。 The chemical composition of the flux is important for increasing the welding speed and the toughness of the weld metal in the submerged arc welding, and has a great influence. Therefore, the flux can be welded at high speed by applying a melt-type flux, and the bead shape is flat and a beautiful appearance with fine waves. However, in order to increase the toughness of the weld metal, it is necessary to increase the basicity of the flux, and as a result of increasing the addition amount of basic mineral raw materials, the toughness of the weld metal has improved, but conversely, the slag peelability, The bead appearance and arc stability deteriorated.
一般的にフラックスの塩基度を高めると溶接作業性が劣ることは公知であり、単に塩基度を上げるだけでは良好な溶接作業性と溶接金属機械的性能の両立は図れない。そこで、良好な溶接金属機械的性能を維持し、優れた溶接作業性を得るために新たに見出したのがAl2O3の添加増量である。Al2O3は良好なスラグ剥離性およびビード外観を得るための極めて重要な成分である。一般的なサブマージアーク溶接用溶融型フラックスにはAl2O3が含有されていることは公知であるが、多量に含有されたフラックスは今までに無い。また、Al2O3は一般的には塩基度を下げるといわれているが、中性酸化物であるため、多少添加量を増量させても溶接金属の酸素量は高くならないことが明らかとなった。 Generally, it is known that welding workability is inferior when the basicity of the flux is increased, and it is impossible to achieve both good welding workability and weld metal mechanical performance simply by increasing the basicity. Therefore, in order to maintain good weld metal mechanical performance and obtain excellent welding workability, a newly found addition amount of Al 2 O 3 has been found. Al 2 O 3 is a very important component for obtaining good slag peelability and bead appearance. It is publicly known that Al 2 O 3 is contained in a general melt flux for submerged arc welding, but there has never been a flux containing a large amount. In addition, Al 2 O 3 is generally said to lower the basicity, but since it is a neutral oxide, it becomes clear that the oxygen content of the weld metal does not increase even if the addition amount is slightly increased. It was.
Al2O3の添加増量により良好なスラグ剥離性およびビード外観を得ることが可能となったが、サブマージアーク溶接は1〜2電極を使用した多層盛溶接や3〜4電極を使用した多電極1パス溶接など様々な溶接施工法があり、特に多電極溶接では高速度の溶接になるので、Al2O3の添加増量だけでは安定したアーク状態を維持することが困難であった。そこで、安定したアーク状態を確保するために見出したのが、K2Oの少量添加である。K2Oはアーク安定剤として良く知られているが、多量に添加するとビード表面の光沢が失われ外観が劣化し、さらに溶接ヒュームの発生量が著しく増加する。よって、ビード外観を劣化させず、溶接ヒュームの発生量が増加しない少量でかつ最適なK2O添加量を限定することによって、高速度の溶接においても安定したアーク状態を得ることが可能となった。 Although it became possible to obtain good slag removability and bead appearance by increasing the amount of Al 2 O 3 added, submerged arc welding is a multi-layer welding using 1-2 electrodes or a multi-electrode using 3-4 electrodes There are various welding methods such as one-pass welding. Particularly, multi-electrode welding results in high-speed welding. Therefore, it is difficult to maintain a stable arc state only by increasing the amount of Al 2 O 3 added. Therefore, a small amount of K 2 O has been found to ensure a stable arc state. K 2 O is well known as an arc stabilizer, but if added in a large amount, the gloss of the bead surface is lost, the appearance is deteriorated, and the generation amount of welding fume is remarkably increased. Therefore, it is possible to obtain a stable arc state even in high-speed welding by limiting the optimum K 2 O addition amount in a small amount that does not deteriorate the bead appearance and does not increase the generation amount of welding fume. It was.
フラックスの化学組成の検討だけでは、溶接金属の靭性向上に限界があり、さらなる靭性向上のため、組合せるワイヤについても検討を行った。 Only by examining the chemical composition of the flux, there is a limit to improving the toughness of the weld metal. To further improve the toughness, the wires to be combined were also examined.
溶接金属の高靭性化については、溶接金属の酸素バランスおよび合金元素添加による結晶粒組織の適正化が最も重要である。そこでソリッドワイヤの合金成分について検討を行った。 In order to increase the toughness of the weld metal, it is most important to optimize the crystal grain structure by adding the oxygen balance and alloying elements of the weld metal. Therefore, the alloy composition of solid wire was examined.
まず、ワイヤ成分において強脱酸剤のMgやAlを適用し、溶接金属の酸素コントロールを行ったが、Mgはアーク雰囲気中で気化しやすく、ピットやブローホールなどの溶接欠陥が生じた。また、Alは溶接金属に粗大なAl酸化物を多量に生成させるため、アシキュラーフェライト主体の組織では、粗大な酸化物が破壊の起点となり、靭性を著しく低下させた。 First, Mg and Al, which are strong deoxidizers, were applied to the wire component, and oxygen control of the weld metal was performed. However, Mg was easily vaporized in an arc atmosphere, and welding defects such as pits and blowholes were generated. In addition, since Al produces a large amount of coarse Al oxide in the weld metal, in the structure mainly composed of acicular ferrite, the coarse oxide becomes a starting point of fracture, and the toughness is remarkably lowered.
次に溶接金属のフェライトマトリックス自体の靭性を向上させるためNiの添加や結晶粒組織の微細化のためにMoの添加を行った結果、溶接金属の靭性は向上し優れた性能が得られたが、ソリッドワイヤにNiおよびMoを添加した結果、ワイヤ自体が高強度となり、ワイヤ送給性の劣化や開先中心とワイヤ狙い位置のずれが起きやすく、良好なビードが得られず溶接性が低下する問題が発生した。またNiやMoを用いるとコスト高となる。 Next, Ni was added to improve the toughness of the ferrite matrix itself of the weld metal and Mo was added to refine the grain structure. As a result, the toughness of the weld metal was improved and excellent performance was obtained. As a result of adding Ni and Mo to the solid wire, the wire itself has high strength, the wire feedability is deteriorated, the gap between the groove center and the wire target position is likely to occur, and a good bead cannot be obtained and the weldability is reduced. A problem occurred. Further, if Ni or Mo is used, the cost becomes high.
そこで、MgおよびAlに代わる脱酸剤、NiおよびMoに代わる結晶粒組織の微細化のための添加元素として見出したのがC、Si、MnおよびTiの添加である。C、SiおよびMnは脱酸剤として良く知られているが、今回開発した溶融型フラックスに最適な組合せとなる添加量およびバランスを検討した結果、溶接金属の酸素量を低く安定的にコントロールすることが可能となり、さらにTiの適正量添加によって、溶接金属組織中にTi酸化物を生成させ、これを核として微細なアシキュラーフェライトを生成させることで溶接金属の靭性を向上させることができた。 Therefore, addition of C, Si, Mn and Ti has been found as a deoxidizer in place of Mg and Al and an additive element for refining the crystal grain structure in place of Ni and Mo. C, Si, and Mn are well known as deoxidizers, but as a result of studying the addition amount and balance that are the optimum combination for the newly developed melt-type flux, the oxygen content of the weld metal is stably controlled low. In addition, by adding an appropriate amount of Ti, it was possible to generate Ti oxide in the weld metal structure, and to generate fine acicular ferrite using this as a core, thereby improving the toughness of the weld metal. .
以上の結果から、溶融型フラックスの化学組成を限定し、組合せるソリッドワイヤの化学成分を限定することにより、高速度のサブマージアーク溶接において、高靭性の溶接金属を得ることができ、良好な溶接作業性およびビード形状が得られ、溶接欠陥のない高品質の溶接部を得ることができることを見出した。 From the above results, by limiting the chemical composition of the melt-type flux and limiting the chemical composition of the solid wire to be combined, a high-toughness weld metal can be obtained in high-speed submerged arc welding, and good welding is achieved. It has been found that workability and bead shape can be obtained, and a high-quality weld with no weld defects can be obtained.
まず、以下に本発明に用いるサブマージアーク溶接用溶融型フラックス成分組成の限定理由について説明する。なお、以下成分についての%は、質量%を示す。 First, the reasons for limitation of the melt flux component composition for submerged arc welding used in the present invention will be described below. In addition,% about the following component shows the mass%.
SiO2は、良好な溶接ビードを形成するための重要な成分であるが、過多になると溶接金属中の酸素量が増加して靭性が劣化する。SiO2が8%未満ではビード趾端部のなじみが悪くなり、スラグ剥離性が劣化し、また特に高速度の溶接においてはアンダーカットも生じる。一方、25%を超えると溶接金属の酸素量が増加して靭性が劣化する。したがって、SiO2は8〜25%とする。 SiO 2 is an important component for forming a good weld bead, but if it is excessive, the amount of oxygen in the weld metal increases and the toughness deteriorates. If the SiO 2 content is less than 8%, the fit of the bead heel end is deteriorated, the slag peelability is deteriorated, and undercutting occurs particularly in high-speed welding. On the other hand, if it exceeds 25%, the oxygen content of the weld metal increases and the toughness deteriorates. Thus, SiO 2 is set to 8-25%.
Al2O3は、高速度の溶接で良好なスラグ剥離性およびビード外観を得るためには極めて重要な成分である。また、アーク安定性を良好にする効果もある。Al2O3が30%未満ではその効果が得られない。一方、50%を超えると凸ビードとなりスラグ剥離性も不良になる。したがって、Al2O3は30〜50%とする。なお、本発明では実施例に基づいてAl 2 O 3 の下限は30.5%とする。
Al 2 O 3 is a very important component for obtaining good slag peelability and bead appearance in high-speed welding. It also has the effect of improving the arc stability. If Al 2 O 3 is less than 30%, the effect cannot be obtained. On the other hand, if it exceeds 50%, it becomes a convex bead and the slag removability becomes poor. Accordingly, Al 2 O 3 is 30 to 50%. In the present invention, the lower limit of Al 2 O 3 is set to 30.5% based on the examples .
MgOは、スラグの耐火性および塩基度を向上させる効果がある。MgOが0.5%未満ではフラックスの塩基度が低くなり、溶接金属中の酸素量が増加して靭性が劣化する。一方、8.0%を超えるとフラックスの軟化溶融点が高くなり、ビード表面に突起物の発生や波目が粗くなり、スラグ剥離性およびビード外観が不良となる。したがって、MgOは0.5〜8.0%とする。 MgO has the effect of improving the fire resistance and basicity of the slag. When MgO is less than 0.5%, the basicity of the flux is lowered, the amount of oxygen in the weld metal is increased, and the toughness is deteriorated. On the other hand, if it exceeds 8.0%, the softening and melting point of the flux becomes high, the occurrence of projections and roughening on the bead surface become rough, and the slag peelability and bead appearance become poor. Therefore, MgO is made 0.5 to 8.0%.
MnOは、スラグの粘性、流動性および融点の調整をするのに有効な成分である。MnOが5.5%未満ではスラグの粘度が低下して流動性が劣化し、特に高速度の溶接においてはビード蛇行およびアンダーカットが生じる。一方、11.0%を超えるとスラグの粘度が高くなりすぎてスラグ巻き込み、焼き付きが発生してスラグ剥離性が劣化する。したがって、MnOは5.5〜11.0%とする。 MnO is an effective component for adjusting the viscosity, fluidity and melting point of slag. If MnO is less than 5.5%, the viscosity of the slag is lowered and the fluidity is deteriorated, and bead meandering and undercut occur particularly in high-speed welding. On the other hand, if it exceeds 11.0%, the viscosity of the slag becomes too high and the slag is entrained and seizure occurs, and the slag peelability deteriorates. Therefore, MnO is set to 5.5 to 11.0%.
CaOは、スラグの融点および流動性を調整するために重要な成分である。CaOが5%未満ではビード趾端部のなじみが悪くビード外観が不良となり、高速度の溶接ではアンダーカットも生じる。一方、20%を超えるとスラグ流動性が不良となり、ビード高さが不均一でスラグ剥離性も不良になる。したがって、CaOは5〜20%とする。 CaO is an important component for adjusting the melting point and fluidity of the slag. If the CaO content is less than 5%, the bead collar will not fit well and the bead appearance will be poor, and undercut will also occur in high-speed welding. On the other hand, if it exceeds 20%, the slag fluidity becomes poor, the bead height is non-uniform, and the slag peelability becomes poor. Therefore, CaO is 5 to 20%.
CaF2は、靭性改善に効果があるが、融点が低いため過多になるとビードの平滑性が損なわれる。CaF2が25%未満では靭性改善の効果がなく、48%を超えるとビード外観が不良となる。したがって、CaF2は25〜48%とする。 CaF 2 is effective in improving toughness, but since the melting point is low, if it is excessive, the smoothness of the bead is impaired. If CaF 2 is less than 25%, there is no effect of improving toughness, and if it exceeds 48%, the bead appearance becomes poor. Therefore, CaF 2 is set to 25 to 48%.
K2Oは、高速度の溶接において安定したアーク状態を得るためには極めて重要な成分である。K2Oが0.10%未満ではその効果が得られない。一方、3.0%を超えるとビード表面の光沢が失われ外観が劣化し、さらに溶接ヒュームの発生量が著しく増加する。したがって、K2Oは0.10〜3.0%とする。 K 2 O is an extremely important component for obtaining a stable arc state in high-speed welding. If K 2 O is less than 0.10%, the effect cannot be obtained. On the other hand, if it exceeds 3.0%, the gloss of the bead surface is lost, the appearance is deteriorated, and the generation amount of welding fume is remarkably increased. Thus, K 2 O is set to 0.10 to 3.0%.
なお、フラックスの粒度構成は、溶融金属の大気とのシールド性およびガス抜けを考慮して1.4×0.21mmで、粒径が0.21mm未満のフラックスが12%以下であることが好ましい。 Note that the particle size composition of the flux is 1.4 × 0.21 mm in consideration of shielding properties of molten metal from the atmosphere and outgassing, and the flux having a particle size of less than 0.21 mm is preferably 12% or less. .
溶融型フラックスの化学組成のその他は、酸化鉄(FeO等)およびP、S等の不可避不純物の合計が2.16%以下であり、PおよびSは共に低融点の化合物を生成して靭性を低下させるので、できるだけ低いことが好ましい。
In addition to the chemical composition of the molten flux, the total of inevitable impurities such as iron oxide (FeO, etc.) and P, S is 2.16% or less. Both P and S produce low melting point compounds to improve toughness. Since it reduces, it is preferable that it is as low as possible.
次に、溶融型フラックスと組合せるソリッドワイヤの成分組成について述べる。 Next, the component composition of the solid wire combined with the molten flux will be described.
Cは、固溶強化により溶接金属の強度を確保する重要な元素であると共に、アーク中の酸素と反応しアーク雰囲気および溶接金属の酸素量を低減する効果がある。Cが0.03%未満では前記脱酸および強度確保の効果が不十分であり、靭性も低下する。一方、0.25%を超えると溶接金属のCが高くなるためマルテンサイト主体の組織となり、強度が高く靭性が低下する。したがって、Cは0.03〜0.25%とする。 C is an important element that ensures the strength of the weld metal by solid solution strengthening, and has an effect of reacting with oxygen in the arc to reduce the arc atmosphere and the amount of oxygen in the weld metal. If C is less than 0.03%, the effects of deoxidation and securing the strength are insufficient, and the toughness is also lowered. On the other hand, if it exceeds 0.25%, C of the weld metal becomes high, so that it becomes a structure mainly composed of martensite, and the strength is high and the toughness is lowered. Therefore, C is 0.03 to 0.25%.
Siは、溶接金属の強度および靭性向上に重要な元素であり、溶接中に酸素と結合しスラグ成分となるため、溶接金属の酸素量を低減する効果がある。ワイヤ成分のSiの添加量は少なくても他の脱酸剤元素であるCおよびMn、Tiが添加されているため溶接金属の酸素量は低く、良好な溶接金属靭性は得られるが、より良好な溶接金属靭性を得るためにSiは0.004%以上とする。一方、1.20%を超えると溶接金属のマトリックスを固溶強化するが、フェライト結晶粒を粗大化させるため著しく靭性が低下する。したがって、Siは0.004〜1.20%とする。 Si is an important element for improving the strength and toughness of the weld metal, and is combined with oxygen during welding to become a slag component, and thus has an effect of reducing the oxygen content of the weld metal. Even if the amount of Si added as a wire component is small, other deoxidizer elements such as C, Mn, and Ti are added, so the amount of oxygen in the weld metal is low and good weld metal toughness is obtained, but better In order to obtain good weld metal toughness, Si is made 0.004% or more. On the other hand, if it exceeds 1.20%, the weld metal matrix is strengthened by solid solution, but the ferrite crystal grains are coarsened, so that the toughness is remarkably lowered. Therefore, Si is 0.004 to 1.20%.
Mnは、焼入れ性を向上させて強度を高めるのに有効な成分である。ワイヤ成分のMnが0.25%未満では、焼入れ性が不足して強度が低くなる。一方、2.80%を超えると焼入れ性が過多となり、溶接金属の強度が高くなり靭性が低下する。したがって、Mnは0.25〜2.80%とする。 Mn is an effective component for improving the hardenability and increasing the strength. If the Mn of the wire component is less than 0.25%, the hardenability is insufficient and the strength is lowered. On the other hand, if it exceeds 2.80%, the hardenability becomes excessive, the strength of the weld metal increases, and the toughness decreases. Therefore, Mn is set to 0.25 to 2.80%.
Tiは、溶接金属組織中にTi酸化物を生成させ、これを核として微細なアシキュラーフェライトを生成させる結晶粒組織を微細化する。しかし、Tiが添加されていなくても、C、SiおよびMnの添加により溶接金属の酸素量は低く、良好な溶接金属靭性は得られるが、多電極を用いた入熱の高い1パス溶接を行う場合、冷却速度の低下により結晶粒組織が粗大化する傾向にあるため、結晶粒組織の粗大化防止の観点から、その含有量を0.005%以上添加することが望ましい。一方、0.30%を超えると焼入れ性が過多となり、溶接金属の強度が高くなり靭性が低下する。したがって、Tiは0.30%以下とする。 Ti produces | generates Ti oxide in a weld metal structure, and refines | miniaturizes the crystal grain structure | tissue which produces | generates a fine acicular ferrite by using this as a nucleus. However, even if Ti is not added, the oxygen content of the weld metal is low due to the addition of C, Si and Mn, and good weld metal toughness can be obtained, but one-pass welding with high heat input using multiple electrodes is possible. When it is performed, the crystal grain structure tends to become coarse due to a decrease in the cooling rate. Therefore, it is desirable to add the content of 0.005% or more from the viewpoint of preventing the coarsening of the crystal grain structure. On the other hand, if it exceeds 0.30%, the hardenability becomes excessive, the strength of the weld metal increases, and the toughness decreases. Therefore, Ti is set to 0.30% or less.
ソリッドワイヤの成分組成のその他は、Feおよび不可避不純物であり、代表的不可避不純物としてのPおよびSは共に低融点の化合物を生成して、靭性を低下させるため、できるだけ低いことが好ましい。 The other components of the solid wire are Fe and inevitable impurities, and P and S as typical inevitable impurities both generate a low melting point compound and reduce toughness.
本発明の高能率サブマージアーク溶接方法は、安定したアーク、ワイヤ送給性、溶着効率向上を可能とした溶接をするために、組合せるワイヤ径は2.0〜4.8mmとすることが好ましい。 In the high-efficiency submerged arc welding method of the present invention, the wire diameter to be combined is preferably 2.0 to 4.8 mm in order to perform welding that enables stable arc, wire feedability, and welding efficiency improvement. .
以下、実施例により本発明の効果をさらに詳細に説明する。 Hereinafter, the effect of the present invention will be described in more detail with reference to examples.
表1に示す各種成分の溶融型フラックスと表2に示す各種ソリッドワイヤを試作し、これらを組合せてシングル多層盛溶接の溶接金属機械性能評価および溶接作業性評価として、表3に示す板厚25mmの鋼板を、図1に示すように、開先角度1を30°、ルート間隔2を13mmの開先形状に鋼板3を加工し、表4に示す溶接条件で溶接試験を実施した。 Trial fusion fluxes of various components shown in Table 1 and various solid wires shown in Table 2 were combined, and these were combined to evaluate the weld metal machine performance and welding workability of single multi-layer welding, with a plate thickness of 25 mm shown in Table 3. As shown in FIG. 1, the steel plate 3 was processed into a groove shape with a groove angle 1 of 30 ° and a root interval 2 of 13 mm, and a welding test was performed under the welding conditions shown in Table 4.
また、高速度の溶接条件における溶接金属機械性能評価および溶接作業性評価をするため、X開先両面多電極1パス溶接試験を表3に示す板厚25mmの鋼板を用いて、図2に示すように、表側Aの開先角度1を60°、開先深さ4を10mm、裏側の開先角度1を60°、開先深さ4を9mm、ルートフェイス5を6mmの開先形状に鋼板3を加工し、表5に示す溶接条件で溶接試験を実施した。 Further, in order to perform weld metal mechanical performance evaluation and welding workability evaluation under high-speed welding conditions, an X groove double-sided multi-electrode 1-pass welding test is shown in FIG. Thus, the groove angle 1 on the front side A is 60 °, the groove depth 4 is 10 mm, the groove angle 1 on the back side is 60 °, the groove depth 4 is 9 mm, and the root face 5 is 6 mm. The steel plate 3 was processed and a welding test was performed under the welding conditions shown in Table 5.
なお、表1に示す溶融型フラックスは、各種鉱物原材料を1500℃以上の高温度で溶融し、冷却後粉末状に粉砕して1.4×0.21mm(12×70mesh)の粒度に整粒したものを用いた。 The melt type flux shown in Table 1 is prepared by melting various mineral raw materials at a high temperature of 1500 ° C. or higher, pulverizing them into powder after cooling, and adjusting the particle size to 1.4 × 0.21 mm (12 × 70 mesh). What was done was used.
また、表2に示すソリッドワイヤは各種化学成分に調整した原線を縮径、焼鈍、酸洗、メッキして素線とした。さらに、それらの素線を4.0mmおよび4.8mm径まで伸線して用いた。 Moreover, the solid wire shown in Table 2 was made into a strand by reducing the diameter, annealing, pickling, and plating the original wire adjusted to various chemical components. Furthermore, those strands were drawn to 4.0 mm and 4.8 mm diameters.
表6に各種試作溶融型フラックスと各種試作ソリッドワイヤの組合せを示す。各試験の評価は、シングル多層盛溶接およびX開先両面多電極1パス溶接時のアーク安定性、溶接後のビード外観・形状、スラグ剥離性、アンダーカットの有無およびX線透過試験による溶接欠陥の有無を調査し、さらに溶接金属の引張強度、靭性および溶接金属酸素量を調査した。 Table 6 shows combinations of various prototype melt fluxes and various prototype solid wires. Each test was evaluated for arc stability during single multi-layer welding and one-pass welding on both sides of the X groove, bead appearance and shape after welding, slag peelability, presence of undercut, and welding defects by X-ray transmission test. The weld metal was examined for tensile strength, toughness and weld metal oxygen content.
溶接金属の機械性能評価は、シングル多層盛溶接試験体およびX開先両面多電極1パス溶接試験体の鋼板板厚の中央を中心にシャルピー衝撃試験片(JIS Z2202 4号)を採取した。また、引張試験片をシングル多層盛溶接試験体は鋼板板厚の中央を中心に(JIS Z 2201 A1号)採取し、X開先両面多電極1パス溶接試験体は表側ビードから鋼板表面下5mmを中心に(JIS Z 2201 A2号)を採取して、機械試験を実施した。靭性の評価は、シングル多層盛溶接試験体については−60℃におけるシャルピー衝撃試験により行い、各々繰返し数3本の平均により評価した。また、X開先両面多電極1パス溶接試験体については−40℃におけるシャルピー衝撃試験により行い、各々繰返し数3本の平均により評価した。なお、シャルピー衝撃試験の吸収エネルギーはそれぞれ100J以上を良好とした。引張強度の評価はそれぞれ490MPa以上を良好とした。これらの調査結果を表6にまとめて示す。 For evaluating the mechanical performance of the weld metal, Charpy impact test pieces (JIS Z22024) were collected centering on the center of the steel plate thickness of the single multilayer primed weld specimen and the X groove double-sided multi-electrode 1-pass weld specimen. In addition, a single multi-layer welded test specimen was collected around the center of the steel plate thickness (JIS Z 2201 A1), and an X groove double-sided multi-electrode 1-pass welding test specimen was 5 mm below the steel sheet surface from the front bead. (JIS Z 2201 A2) were collected centering on and mechanical tests were carried out. The toughness was evaluated by a Charpy impact test at −60 ° C. for a single multi-layer welded test specimen, and evaluated by an average of 3 repetitions. Further, the X-groove double-sided multi-electrode 1-pass weld specimen was subjected to a Charpy impact test at −40 ° C. and evaluated by averaging three repetitions each. The absorbed energy in the Charpy impact test was 100 J or more, respectively. The tensile strength was evaluated as good at 490 MPa or more. The results of these surveys are summarized in Table 6.
表6中試験記号T1〜T9が本発明例、試験記号T11〜T20は比較例である。本発明例である試験記号T1〜T10は、フラックス記号MF1〜MF10および組合せたワイヤ記号W1〜W5が本発明の構成要件を満足しているので、シングル多層盛溶接およびX開先両面多電極1パス溶接ともに溶接作業性が良好で、溶接部に欠陥が無く、溶接金属の機械性能も優れており、極めて満足な結果であった。 In Table 6, test symbols T1 to T9 are examples of the present invention, and test symbols T11 to T20 are comparative examples. The test symbols T1 to T10, which are examples of the present invention, have the flux symbols MF1 to MF10 and the combined wire symbols W1 to W5 satisfy the constituent requirements of the present invention. Both the pass welding and the welding workability were good, there were no defects in the welded part, and the mechanical performance of the weld metal was excellent.
比較例中の試験記号T11は、フラックス記号MF11のSiO2が高いので、シングル多層盛溶接およびX開先両面多電極1パス溶接ともに溶接金属の酸素量が多く吸収エネルギーが低値であった。また、Al2O3が低いのでスラグ剥離性およびビード外観が不良となり、さらにアーク状態も不安定であった。 Since the test symbol T11 in the comparative example has high SiO 2 of the flux symbol MF11, the amount of oxygen of the weld metal is large and the absorbed energy is low in both the single multilayer prime welding and the X-groove double-sided multi-electrode one-pass welding. Moreover, because of the low Al 2 O 3 becomes slag removability and the bead appearance defect was further arc condition is also unstable.
試験記号T12は、フラックス記号MF12のSiO2が低いので、シングル多層盛溶接およびX開先両面多電極1パス溶接ともにビード外観およびスラグ剥離性が不良でアンダーカットも発生した。また、組合せたワイヤ記号W7のCが高いので溶接金属の引張強度が高く、吸収エネルギーが低値であった。 In test symbol T12, the flux symbol MF12 had a low SiO 2 , so that the bead appearance and slag peelability were poor and undercut occurred in both single multi-layer prime welding and X groove double-sided multi-electrode one-pass welding. Further, since C of the combined wire symbol W7 was high, the tensile strength of the weld metal was high, and the absorbed energy was low.
試験記号T13は、フラックス記号MF13のAl2O3が高いので、シングル多層盛溶接およびX開先両面多電極1パス溶接ともにビード形状およびスラグ剥離性が不良であった。また、MgOが低いので溶接金属の酸素量が多く吸収エネルギーが低値であった。 Since the test symbol T13 is high in Al 2 O 3 of the flux symbol MF13, the bead shape and the slag peelability were poor in both the single multilayer prime welding and the X groove double-sided multi-electrode one-pass welding. Further, since MgO is low, the amount of oxygen in the weld metal is large and the absorbed energy is low.
試験記号T14は、フラックス記号MF14のMgOが高いので、シングル多層盛溶接およびX開先両面多電極1パス溶接ともにビード外観およびスラグ剥離性が不良であった。また、CaF2が低いので溶接金属の吸収エネルギーが低値であった。 Since the test symbol T14 has high MgO of the flux symbol MF14, the bead appearance and slag peelability were poor in both the single multi-layer prime welding and the X groove double-sided multi-electrode one-pass welding. Further, since CaF 2 is low absorbed energy of the weld metal was low.
試験記号T15は、フラックス記号MF15のMnOが高いので、シングル多層盛溶接およびX開先両面多電極1パス溶接ともにスラグ剥離性が不良で、スラグ巻き込み欠陥が生じた。また、K2Oが高いのでビード表面の光沢が失われ外観が劣化し、また溶接ヒュームの発生量が多かった。さらに組合せたワイヤ記号W6のSiが高いのでフェライト結晶粒が粗大化し、溶接金属の吸収エネルギーが低値であった。 Since the test symbol T15 has a high MnO of the flux symbol MF15, the slag removability was poor in both the single multilayer prime welding and the X-groove double-sided multi-electrode one-pass welding, and a slag entrainment defect occurred. Further, K 2 O is degraded high gloss of the bead surface is lost because the appearance and amount of generated weld fume were many. Further, since the Si of the combined wire symbol W6 is high, the ferrite crystal grains are coarsened, and the absorbed energy of the weld metal is low.
試験記号T16は、フラックス記号MF16のMnOが低いので、シングル多層盛溶接およびX開先両面多電極1パス溶接ともにビードが蛇行してアンダーカットも生じた。また、組合せたワイヤ記号W8のCが低いので溶接金属の引張強度が低く、酸素量が多くなって吸収エネルギーが低値であった。 In the test symbol T16, since the MnO of the flux symbol MF16 is low, the bead meandered and undercut occurred in both the single multilayer prime welding and the X groove double-sided multi-electrode one-pass welding. Further, since C of the combined wire symbol W8 is low, the tensile strength of the weld metal is low, the amount of oxygen is increased, and the absorbed energy is low.
試験記号T17は、フラックス記号MF17のCaOが低いので、シングル多層盛溶接およびX開先両面多電極1パス溶接ともにビード外観が不良でアンダーカットも生じた。また、組合せたワイヤ記号W11のTiが高いので焼入れ性が過多となり、溶接金属の強度が高くなり吸収エネルギーが低値であった。 In test symbol T17, since CaO of flux symbol MF17 is low, bead appearance was poor and undercut occurred in both single multi-layer prime welding and X-groove double-sided multi-electrode one-pass welding. Further, since the Ti of the combined wire symbol W11 is high, the hardenability is excessive, the strength of the weld metal is increased, and the absorbed energy is low.
試験記号T18は、フラックス記号MF18のCaOが高いので、シングル多層盛溶接およびX開先両面多電極1パス溶接ともにビード外観およびスラグ剥離性が不良であった。また、組合せたワイヤ記号W9のMnが低いので溶接金属の引張強度が低く、酸素量が多く吸収エネルギーが低値であった。 In test symbol T18, since CaO of flux symbol MF18 is high, the bead appearance and slag peelability were poor in both single multi-layer prime welding and X-groove double-sided multi-electrode one-pass welding. Further, since the Mn of the combined wire symbol W9 was low, the tensile strength of the weld metal was low, the amount of oxygen was large, and the absorbed energy was low.
試験記号T19は、フラックス記号MF19のCaF2が高いので、シングル多層盛溶接およびX開先両面多電極1パス溶接ともにビード形状が不良であった。また、組合せたワイヤ記号W10のMnが高いので溶接金属の引張強度が高く吸収エネルギーが低値であった。 In the test code T19, since high CaF 2 in the flux code MF19, bead shape was poor in one-pass welding both single multipass welding and X groove sided multi-electrode. Further, since the Mn of the combined wire symbol W10 was high, the tensile strength of the weld metal was high and the absorbed energy was low.
試験記号T20は、フラックス記号MF20のK2Oが低いので、シングル多層盛溶接およびX開先両面多電極1パス溶接ともにアーク状態が不安定となり、ビード形状が劣化した。 In test symbol T20, since K 2 O of flux symbol MF20 is low, the arc state becomes unstable and the bead shape is deteriorated in both single multilayer prime welding and X-groove double-sided multi-electrode one-pass welding.
1 開先角度
2 ルート間隙
3 鋼板
4 開先深さ
5 ルートフェイス
A 表側
B 裏側
1 groove angle 2 root gap 3 steel plate 4 groove depth 5 root face A front side B back side
Claims (2)
SiO2:8〜25%、
Al2O3:30.5〜50%、
MgO:0.5〜8.0%、
MnO:5.5〜11.0%、
CaO:5〜20%、
CaF2:25〜48%、
K2O:0.10〜3.0%
を含有し、その他は酸化鉄および不可避不純物の合計が2.16%以下である溶融型フラックスと、
C:0.03〜0.25%、
Si:0.004〜1.20%、
Mn:0.25〜2.80%
を含有し、残部がFeおよび不可避不純物からなるソリッドワイヤとを組合せて溶接することを特徴とするサブマージアーク溶接方法。 % By mass
SiO 2: 8~25%,
Al 2 O 3: 30.5 ~50% ,
MgO: 0.5 to 8.0%,
MnO: 5.5 to 11.0%,
CaO: 5 to 20%,
CaF 2: 25~48%,
K 2 O: 0.10~3.0%
And the other is a molten flux in which the total of iron oxide and inevitable impurities is 2.16% or less ,
C: 0.03-0.25%,
Si: 0.004 to 1.20%,
Mn: 0.25 to 2.80%
A submerged arc welding method comprising welding in combination with a solid wire containing Fe and the balance of Fe and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011025386A JP5627493B2 (en) | 2011-02-08 | 2011-02-08 | Submerged arc welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011025386A JP5627493B2 (en) | 2011-02-08 | 2011-02-08 | Submerged arc welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012161827A JP2012161827A (en) | 2012-08-30 |
JP5627493B2 true JP5627493B2 (en) | 2014-11-19 |
Family
ID=46841777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011025386A Expired - Fee Related JP5627493B2 (en) | 2011-02-08 | 2011-02-08 | Submerged arc welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5627493B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106041371A (en) * | 2016-07-04 | 2016-10-26 | 常州大学 | Smelting flux for submerged-arc welding and preparation method and application of smelting flux |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014198344A (en) * | 2013-03-29 | 2014-10-23 | 日鐵住金溶接工業株式会社 | Submerged arc welding method for high strength steel |
CN103252561B (en) * | 2013-05-10 | 2015-02-04 | 山东大学 | Non-arclight quickly welding method for stainless steel sheets |
CN108602152B (en) * | 2016-01-29 | 2020-11-10 | 杰富意钢铁株式会社 | Welded joint and method of making the same |
JP6715622B2 (en) * | 2016-03-14 | 2020-07-01 | 株式会社神戸製鋼所 | Solid wire |
JP6928641B2 (en) * | 2016-03-14 | 2021-09-01 | 株式会社神戸製鋼所 | Solid wire |
JP6997025B2 (en) * | 2018-03-28 | 2022-02-03 | 株式会社神戸製鋼所 | Flux for submerged arc welding |
JP7448433B2 (en) * | 2019-09-12 | 2024-03-12 | 株式会社神戸製鋼所 | Flux for submerged arc welding, submerged arc welding method, and method for producing flux for submerged arc welding |
WO2021049440A1 (en) * | 2019-09-12 | 2021-03-18 | 株式会社神戸製鋼所 | Submerged arc welding flux, submerged arc welding method, and submerged arc welding flux production method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4951136A (en) * | 1972-09-19 | 1974-05-17 | ||
JPS5852476B2 (en) * | 1979-12-27 | 1983-11-22 | 新日本製鐵株式会社 | Melt flux for horizontal submerged arc welding |
JPS6224894A (en) * | 1985-03-08 | 1987-02-02 | Sumitomo Metal Ind Ltd | Melting type flux for submerged mark welding |
JP4903912B2 (en) * | 2009-04-10 | 2012-03-28 | 新日本製鐵株式会社 | Molten high basic flux for submerged arc welding |
-
2011
- 2011-02-08 JP JP2011025386A patent/JP5627493B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106041371A (en) * | 2016-07-04 | 2016-10-26 | 常州大学 | Smelting flux for submerged-arc welding and preparation method and application of smelting flux |
CN106041371B (en) * | 2016-07-04 | 2018-10-19 | 常州大学 | A kind of smelting type welding flux used for submerged arc welding and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
JP2012161827A (en) | 2012-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5627493B2 (en) | Submerged arc welding method | |
JP5339871B2 (en) | Flux-cored wire for submerged arc welding of low temperature steel and welding method. | |
JP4558780B2 (en) | Flux-cored wire for submerged arc welding of low-temperature steel | |
JP2009061474A (en) | Flux-cored wire for gas-shielded arc welding | |
JP4209913B2 (en) | Flux-cored wire for gas shielded arc welding | |
CN104400250A (en) | Low-temperature steel flux-cored wire | |
JP5726708B2 (en) | Submerged arc welding method for low temperature steel | |
JP2011212691A (en) | Flux-cored welding wire for small diameter multi-electrode submerged arc welding | |
JP5459083B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel | |
JP4537310B2 (en) | Low temperature steel single-sided submerged arc welding method and weld metal | |
JP2014198344A (en) | Submerged arc welding method for high strength steel | |
JP2006289404A (en) | Flux cored wire for gas shielded arc welding | |
JP5558406B2 (en) | Flux-cored wire for carbon dioxide shielded arc welding | |
JP5340014B2 (en) | Submerged arc welding method for low temperature steel | |
JP5064928B2 (en) | Flux-cored wire for submerged arc welding for high-strength steel. | |
JP2020131221A (en) | Baked flux for submerged arc welding for high-strength steel | |
JP5726017B2 (en) | Bond flux and welding method for submerged arc welding | |
JP2723335B2 (en) | Flux-cored wire for gas shielded arc welding | |
JP6084948B2 (en) | Flux-cored wire for gas shielded arc welding | |
CN112108791B (en) | Alkaline seamless flux-cored wire for improving low-temperature toughness of low-alloy high-strength steel welding joint | |
JP4372604B2 (en) | Flux-cored wire for electrogas arc welding | |
JP2002018591A (en) | Solid wire for circumferential weld of carbon steel pipe and welding method using the same | |
JP2015205304A (en) | Flux-cored wire for gas shield arc welding | |
JP2003001486A (en) | Flux for submerged arc welding and method for producing submerged arc welded joint | |
JP2015182094A (en) | Gas shielded arc welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130516 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140610 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140930 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140930 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5627493 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |