[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5625143B2 - Cancer therapeutic agent containing mortalin siRNA - Google Patents

Cancer therapeutic agent containing mortalin siRNA Download PDF

Info

Publication number
JP5625143B2
JP5625143B2 JP2009520437A JP2009520437A JP5625143B2 JP 5625143 B2 JP5625143 B2 JP 5625143B2 JP 2009520437 A JP2009520437 A JP 2009520437A JP 2009520437 A JP2009520437 A JP 2009520437A JP 5625143 B2 JP5625143 B2 JP 5625143B2
Authority
JP
Japan
Prior art keywords
seq
mortalin
base sequence
sirna
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009520437A
Other languages
Japanese (ja)
Other versions
JPWO2008156012A1 (en
Inventor
ワダワ レヌー
レヌー ワダワ
スニル カウル
スニル カウル
チャエオク ユン
チャエオク ユン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009520437A priority Critical patent/JP5625143B2/en
Publication of JPWO2008156012A1 publication Critical patent/JPWO2008156012A1/en
Application granted granted Critical
Publication of JP5625143B2 publication Critical patent/JP5625143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/111Antisense spanning the whole gene, or a large part of it
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Plant Pathology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

本発明は、モータリン siRNAを含む癌治療剤に関する。なお、関連出願の相互参照として、本出願は、2007年6月20日出願の日本特願2007−162029号の優先権を主張し、その全記載は、ここに特に開示として援用される。   The present invention relates to a cancer therapeutic agent containing mortalin siRNA. As a cross-reference of related applications, this application claims the priority of Japanese Patent Application No. 2007-162029 filed on June 20, 2007, the entire description of which is specifically incorporated herein by reference.

モータリンは当初、CD1 ICRマウス由来の正常線維芽細胞の細胞質画分に存在し、不死化線維芽細胞のそれでは検出されないhsp70ファミリーの1つとしてクローニングされた(非特許文献1及び2)。現在では、モータリンは動的なタンパク質であることが判明し、すなわち、その細胞内局在が正常細胞と不死化細胞でことなることや、様々な細胞内小器官への分布、種々のタンパク質と結合能、強力ながん抑制因子であるp53の抑制、タンパク質分解、細胞内分子輸送、ミトコンドリア膜インポート、そしてエネルギー産生に機能する(非特許文献3〜7)。モータリン遺伝子mot-2(マウス)またはhmot-2(ヒト)の大量発現によって正常ヒト線維芽細胞の分裂寿命延長(非特許文献5及び8)、線虫の寿命延長(非特許文献9)、マウス不死化細胞の悪性腫瘍化(非特許文献10)が引き起こされる。マウスのmot-1タンパク質は、C末端側にある2つのアミノ酸がmot-2と異なり、分子シャペロン能の欠落と不死化細胞に対する細胞老化様表現型の誘導という機能の差が生じる(非特許文献2及び11)。ヒトのモータリンはマウスと違ってたった1つで、活性がマウスmot-2に近いためhmot-2と呼ばれている (非特許文献10)。ストレス応答、細胞内分子輸送、抗原提示、細胞分裂制御、腎毒性、分化、がん化という幅広い多機能性から(非特許文献6及び15)、PBP74(非特許文献12), mtHSP70(非特許文献13), GRP75(非特許文献14)という呼び名でも報告されている。最近の研究で、Mot-2はがん抑制タンパク質p53と結合し、その転写活性を抑制することが示されている(非特許文献16〜20)。Mot-2によるp53の抑制はNIH3T3の悪性腫瘍化(非特許文献10)やヒト正常線維芽細胞の分裂寿命延長(非特許文献5)という現象を引きおこすため、モータリンはそれらの一因になると考えられている(非特許文献10)。また、Mot-2はテロメラーゼと協同で作用してヒト包皮線維芽細胞を不死化させる(非特許文献8)。そして、アンチセンスやリボザイムでモータリンをノックダウンすると、ヒトがん細胞に対してすみやかに増殖阻害を引き起こすことも明らかになった(非特許文献21〜24)。
Wadhwa, R., Kaul, S. C., Ikawa, Y., and Sugimoto, Y. (1993) J Biol Chem 268, 6615-6621 Wadhwa, R., Kaul, S. C., Sugimoto, Y., and Mitsui, Y. (1993) J Biol Chem 268, 22239-22242 Wadhwa, R., Kaul, S. C., Mitsui, Y., and Sugimoto, Y. (1993) Exp Cell Res 207, 442-448 Ran, Q., Wadhwa, R., Kawai, R., Kaul, S. C., Sifers, R. N., Bick, R. J., Smith, J. R., and Pereira-Smith, O. M. (2000) Biochem Biophys Res Commun 275, 174-179 Kaul, S. C., Reddelb, R. R., Sugiharac, T., Mitsuia, Y., and Wadhwac, R. (2000) FEBS Lett 474, 159-164 Wadhwa, R., Taira, K., and Kaul, S. C. (2002) Cell Stress Chaperones 7, 309-316 Liu, Y., Liu, W., Song, X. D., and Zuo, J. (2005) Mol Cell Biochem 268, 45-51 Kaul, S. C., Yaguchi, T., Taira, K., Reddel, R. R., and Wadhwa, R. (2003) Exp Cell Res 286, 96-101 Yokoyama, K., Fukumoto, K., Murakami, T., Harada, S., Hosono, R., Wadhwa, R., Mitsui, Y., and Ohkuma, S. (2002) FEBS Lett 516, 53-57 Kaul, S. C., Duncan, E. L., Englezou, A., Takano, S., Reddel, R. R., Mitsui, Y., and Wadhwa, R. (1998) Oncogene 17, 907-911 Kaul, S. C., Aida, S., Yaguchi, T., Kaur, K., and Wadhwa, R. (2005) J Biol Chem 280, 39373-39379 Domanico, S. Z., DeNagel, D. C., Dahlseid, J. N., Green, J. M., and Pierce, S. K. (1993) Mol Cell Biol 13, 3598-3610 Webster, T. J., Naylor, D. J., Hartman, D. J., Hoj, P. B., and Hoogenraad, N. J. (1994) DNA Cell Biol 13, 1213-1220 Merrick, B. A., Walker, V. R., He, C., Patterson, R. M., and Selkirk, J. K. (1997) Cancer Lett 119, 185-190 Wadhwa, R., Taira, K., and Kaul, S. C. (2002) Histol Histopathol 17, 1173-1177 Wadhwa, R., Takano, S., Robert, M., Yoshida, A., Nomura, H., Reddel, R. R., Mitsui, Y., and Kaul, S. C. (1998) J Biol Chem 273, 29586-29591 Kaul, S. C., Reddel, R. R., Mitsui, Y., and Wadhwa, R. (2001) Neoplasia 3, 110-114 Wadhwa, R., Yaguchi, T., Hasan, M. K., Mitsui, Y., Reddel, R. R., and Kaul, S. C. (2002) Exp Cell Res 274, 246-253 Ma, Z., Izumi, H., Kanai, M., Kabuyama, Y., Ahn, N. G., and Fukasawa, K. (2006) Oncogene Walker, C., Bottger, S., and Low, B. (2006) Am J Pathol 168, 1526-1530 Wadhwa, R., Takano, S., Taira, K., and Kaul, S. C. (2004) J Gene Med 6, 439-444 Wadhwa, R., Ando, H., Kawasaki, H., Taira, K., and Kaul, S. C. (2003) EMBO Rep 4, 595-601 Pizzatti, L., Sa, L. A., de Souza, J. M., Bisch, P. M., and Abdelhay, E. (2006) Biochim Biophys Acta Shin, B. K., Wang, H., Yim, A. M., Le Naour, F., Brichory, F., Jang, J. H., Zhao, R., Puravs, E., Tra, J., Michael, C. W., Misek, D. E., and Hanash, S. M. (2003) J Biol Chem 278, 7607-7616
Mortalin was originally present in the cytoplasmic fraction of normal fibroblasts derived from CD1 ICR mice and was cloned as one of the hsp70 family of immortalized fibroblasts (Non-Patent Documents 1 and 2). At present, mortalin has been found to be a dynamic protein, that is, its intracellular localization is different between normal cells and immortalized cells, distribution to various organelles, various proteins and It functions in binding ability, suppression of p53, which is a powerful tumor suppressor, proteolysis, intracellular molecular transport, mitochondrial membrane import, and energy production (Non-Patent Documents 3 to 7). Increased mitotic life of normal human fibroblasts (Non-patent Documents 5 and 8), extension of nematode life (Non-patent Document 9), mouse by mass expression of mortalin gene mot-2 (mouse) or hmot-2 (human) Malignant tumor formation of immortalized cells (Non-patent Document 10) is caused. The mouse mot-1 protein differs from mot-2 in the two amino acids on the C-terminal side, resulting in functional differences between lack of molecular chaperone ability and induction of cell senescence-like phenotypes on immortalized cells (Non-Patent Documents). 2 and 11). Human mortalin is only one, unlike mouse, and is called hmot-2 because its activity is close to mouse mot-2 (Non-patent Document 10). PBP74 (Non-patent Document 12), mtHSP70 (Non-patent Document) Due to the wide variety of functions such as stress response, intracellular molecular transport, antigen presentation, cell division control, nephrotoxicity, differentiation, and carcinogenesis Document 13) and GRP75 (Non-patent Document 14) have also been reported. Recent studies have shown that Mot-2 binds to the tumor suppressor protein p53 and suppresses its transcriptional activity (Non-Patent Documents 16 to 20). Inhibition of p53 by Mot-2 causes the phenomenon of malignant tumor formation of NIH3T3 (Non-patent Document 10) and prolongation of the mitotic life of normal human fibroblasts (Non-patent Document 5). (Non-Patent Document 10). Mot-2 acts in cooperation with telomerase to immortalize human foreskin fibroblasts (Non-patent Document 8). It has also been clarified that knocking down mortalin with antisense or ribozyme promptly inhibits proliferation of human cancer cells (Non-Patent Documents 21 to 24).
Wadhwa, R., Kaul, SC, Ikawa, Y., and Sugimoto, Y. (1993) J Biol Chem 268, 6615-6621 Wadhwa, R., Kaul, SC, Sugimoto, Y., and Mitsui, Y. (1993) J Biol Chem 268, 22239-22242 Wadhwa, R., Kaul, SC, Mitsui, Y., and Sugimoto, Y. (1993) Exp Cell Res 207, 442-448 Ran, Q., Wadhwa, R., Kawai, R., Kaul, SC, Sifers, RN, Bick, RJ, Smith, JR, and Pereira-Smith, OM (2000) Biochem Biophys Res Commun 275, 174-179 Kaul, SC, Reddelb, RR, Sugiharac, T., Mitsuia, Y., and Wadhwac, R. (2000) FEBS Lett 474, 159-164 Wadhwa, R., Taira, K., and Kaul, SC (2002) Cell Stress Chaperones 7, 309-316 Liu, Y., Liu, W., Song, XD, and Zuo, J. (2005) Mol Cell Biochem 268, 45-51 Kaul, SC, Yaguchi, T., Taira, K., Reddel, RR, and Wadhwa, R. (2003) Exp Cell Res 286, 96-101 Yokoyama, K., Fukumoto, K., Murakami, T., Harada, S., Hosono, R., Wadhwa, R., Mitsui, Y., and Ohkuma, S. (2002) FEBS Lett 516, 53-57 Kaul, SC, Duncan, EL, Englezou, A., Takano, S., Reddel, RR, Mitsui, Y., and Wadhwa, R. (1998) Oncogene 17, 907-911 Kaul, SC, Aida, S., Yaguchi, T., Kaur, K., and Wadhwa, R. (2005) J Biol Chem 280, 39373-39379 Domanico, SZ, DeNagel, DC, Dahlseid, JN, Green, JM, and Pierce, SK (1993) Mol Cell Biol 13, 3598-3610 Webster, TJ, Naylor, DJ, Hartman, DJ, Hoj, PB, and Hoogenraad, NJ (1994) DNA Cell Biol 13, 1213-1220 Merrick, BA, Walker, VR, He, C., Patterson, RM, and Selkirk, JK (1997) Cancer Lett 119, 185-190 Wadhwa, R., Taira, K., and Kaul, SC (2002) Histol Histopathol 17, 1173-1177 Wadhwa, R., Takano, S., Robert, M., Yoshida, A., Nomura, H., Reddel, RR, Mitsui, Y., and Kaul, SC (1998) J Biol Chem 273, 29586-29591 Kaul, SC, Reddel, RR, Mitsui, Y., and Wadhwa, R. (2001) Neoplasia 3, 110-114 Wadhwa, R., Yaguchi, T., Hasan, MK, Mitsui, Y., Reddel, RR, and Kaul, SC (2002) Exp Cell Res 274, 246-253 Ma, Z., Izumi, H., Kanai, M., Kabuyama, Y., Ahn, NG, and Fukasawa, K. (2006) Oncogene Walker, C., Bottger, S., and Low, B. (2006) Am J Pathol 168, 1526-1530 Wadhwa, R., Takano, S., Taira, K., and Kaul, SC (2004) J Gene Med 6, 439-444 Wadhwa, R., Ando, H., Kawasaki, H., Taira, K., and Kaul, SC (2003) EMBO Rep 4, 595-601 Pizzatti, L., Sa, LA, de Souza, JM, Bisch, PM, and Abdelhay, E. (2006) Biochim Biophys Acta Shin, BK, Wang, H., Yim, AM, Le Naour, F., Brichory, F., Jang, JH, Zhao, R., Puravs, E., Tra, J., Michael, CW, Misek, DE , and Hanash, SM (2003) J Biol Chem 278, 7607-7616

本発明は、モータリン shRNA を利用した抗癌剤を提供することを解決すべき課題とした。   This invention made it the problem which should be solved to provide the anticancer agent using mortalin shRNA.

熱ショックタンパク質70ファミリーのひとつであるモータリンは、細胞内分子輸送、ミトコンドリア膜インポート、エネルギー産生、分子シャペロン能、p53活性の抑制など、数々の機能を担う。本発明者らは、抗癌治療のターゲットとしてモータリンに注目し、モータリン特異的siRNAを用いることによって癌細胞を死滅させることができることを実証し、モータリン特異的siRNAが抗癌剤として有用であることを見出した。本発明は、これらの知見に基づいて完成したものである。   Mortalin, one of the heat shock protein 70 family, plays a number of functions such as intracellular molecular transport, mitochondrial membrane import, energy production, molecular chaperone activity, and suppression of p53 activity. The present inventors have focused on mortalin as a target for anticancer treatment, demonstrated that cancer cells can be killed by using mortalin-specific siRNA, and found that mortalin-specific siRNA is useful as an anticancer agent. It was. The present invention has been completed based on these findings.

即ち、本発明によれば、配列番号1から6の何れかに記載の塩基配列を標的配列とするsiRNA又はshRNAが提供される。
本発明によればさらに、以下のセンスオリゴヌクレオチドとアンチセンスオリゴヌクレオチドの組み合わせからなるDNAが提供される。
(1)配列番号7の塩基配列からなるセンスオリゴヌクレオチド及び配列番号8の塩基配列からなるアンチセンスオリゴヌクレオチド;
(2)配列番号9の塩基配列からなるセンスオリゴヌクレオチド及び配列番号10の塩基配列からなるアンチセンスオリゴヌクレオチド;
(3)配列番号11の塩基配列からなるセンスオリゴヌクレオチド及び配列番号12の塩基配列からなるアンチセンスオリゴヌクレオチド;
(1)配列番号13の塩基配列からなるセンスオリゴヌクレオチド及び配列番号14の塩基配列からなるアンチセンスオリゴヌクレオチド;
(2)配列番号15の塩基配列からなるセンスオリゴヌクレオチド及び配列番号16の塩基配列からなるアンチセンスオリゴヌクレオチド;又は
(3)配列番号17の塩基配列からなるセンスオリゴヌクレオチド及び配列番号18の塩基配列からなるアンチセンスオリゴヌクレオチド;
That is, according to the present invention, siRNA or shRNA having the base sequence described in any one of SEQ ID NOs: 1 to 6 as a target sequence is provided.
The present invention further provides a DNA comprising a combination of the following sense oligonucleotide and antisense oligonucleotide.
(1) a sense oligonucleotide consisting of the base sequence of SEQ ID NO: 7 and an antisense oligonucleotide consisting of the base sequence of SEQ ID NO: 8;
(2) a sense oligonucleotide consisting of the base sequence of SEQ ID NO: 9 and an antisense oligonucleotide consisting of the base sequence of SEQ ID NO: 10;
(3) a sense oligonucleotide consisting of the base sequence of SEQ ID NO: 11 and an antisense oligonucleotide consisting of the base sequence of SEQ ID NO: 12;
(1) a sense oligonucleotide consisting of the base sequence of SEQ ID NO: 13 and an antisense oligonucleotide consisting of the base sequence of SEQ ID NO: 14;
(2) a sense oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 15 and an antisense oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 16; or (3) a sense oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 17 and the nucleotide sequence of SEQ ID NO: 18. An antisense oligonucleotide consisting of;

本発明によればさらに、上記のDNAを発現させることにより得られる、配列番号1から6の何れかに記載の塩基配列を標的配列とするsiRNA又はshRNAが提供される。   According to the present invention, there is further provided siRNA or shRNA obtained by expressing the above DNA and having the base sequence described in any one of SEQ ID NOs: 1 to 6 as a target sequence.

本発明によればさらに、上記のsiRNA又はshRNA、又はDNAを有効成分として含有する、抗癌剤が提供される。   The present invention further provides an anticancer agent containing the above-described siRNA or shRNA or DNA as an active ingredient.

本発明によればさらに、上記のsiRNA又はshRNA、又はDNAを有効成分として含有する抗癌剤を用いた癌の治療又は予防方法が提供される。   The present invention further provides a method for treating or preventing cancer using an anticancer agent containing the above siRNA or shRNA or DNA as an active ingredient.

本発明によればさらに、抗癌剤を製造するための、上記のsiRNA又はshRNA、又はDNAの使用が提供される。   The present invention further provides use of the above-described siRNA or shRNA or DNA for producing an anticancer agent.

本発明によればさらに、上記のDNAを含む、上記siRNA又はshRNAを発現できる組み換え発現ベクターが提供される。
本発明の組み換えベクターは、好ましくは、アデノウイルスベクターに、上記のDNAを組み込むことによって得られる。
本発明の組み換えベクターは、好ましくは、U6プロモーターを含むベクターに、上記のDNAを組み込むことによって得られる。
本発明によればさらに、上記の組み換え発現ベクターを有効成分として含有する、抗癌剤が提供される。
According to the present invention, there is further provided a recombinant expression vector capable of expressing the siRNA or shRNA comprising the DNA.
The recombinant vector of the present invention is preferably obtained by incorporating the above DNA into an adenovirus vector.
The recombinant vector of the present invention is preferably obtained by incorporating the above DNA into a vector containing a U6 promoter.
The present invention further provides an anticancer agent containing the recombinant expression vector as an active ingredient.

本発明によれば、モータリンshRNAは癌細胞を死滅させる効果が確認された。即ち、本発明により、モータリン siRNAを含む癌治療剤が提供される。   According to the present invention, mortalin shRNA has been confirmed to kill cancer cells. That is, the present invention provides a cancer therapeutic agent containing mortalin siRNA.

以下、本発明の実施の形態について詳細に説明する。
RNAi(RNA interference)は、細胞に導入された2本鎖RNAが、同じ配列を持つ遺伝子の発現を抑制する現象を言う。RNAiによりモータリンの発現を阻害する物質の具体例としては、下記に説明するようなsiRNA又はshRNA等が挙げられる。
Hereinafter, embodiments of the present invention will be described in detail.
RNAi (RNA interference) is a phenomenon in which double-stranded RNA introduced into a cell suppresses the expression of a gene having the same sequence. Specific examples of substances that inhibit mortalin expression by RNAi include siRNA or shRNA as described below.

siRNA とはshort interfering RNAの略称であり、約21〜23塩基程度の長さの二本鎖RNAをいう。siRNAはRNAiを引き起こすことができる限り、どのような形態のものでもよく、例えば、化学合成もしくは生化学的合成、又は生物体内の合成で得られたsiRNA、あるいは約40塩基以上の二本鎖RNAが体内で分解されてできた10塩基対以上の短鎖二本鎖RNA等であればよい。siRNA の配列と、モータリンmRNAの部分配列とは100%一致することが好ましいが、必ずしも100%一致していなくてもよい。   siRNA is an abbreviation for short interfering RNA and refers to double-stranded RNA having a length of about 21 to 23 bases. The siRNA may be in any form as long as it can cause RNAi. For example, siRNA obtained by chemical synthesis or biochemical synthesis, or synthesis in an organism, or a double-stranded RNA having about 40 bases or more. May be any short double-stranded RNA of 10 base pairs or more produced by degradation in the body. The siRNA sequence and the partial sequence of mortalin mRNA preferably match 100%, but do not necessarily match 100%.

siRNAの塩基配列と、モータリン遺伝子の塩基配列との間で相同性のある領域は、モータリン遺伝子の翻訳開始領域を含まないことが好ましい。相同性を有する配列は、モータリン遺伝子の翻訳開始領域から20塩基離れていることが好ましく、70塩基離れていることがより好ましい。相同性を有する配列としては、例えば、モータリン遺伝子の3'末端付近の配列でもよい。   The region having homology between the siRNA base sequence and the mortalin gene base sequence preferably does not include the translation start region of the mortalin gene. The sequence having homology is preferably 20 bases away from the translation initiation region of the mortalin gene, more preferably 70 bases away. The sequence having homology may be, for example, a sequence near the 3 ′ end of the mortalin gene.

RNAiによりモータリンの発現を阻害する物質としては、siRNA を生成する約40塩基以上のdsRNA等を用いてもよい。例えば、モータリン遺伝子の核酸配列の一部に対して約70%以上、好ましくは75%以上、より好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは100%の相同性を有する配列を含む、二本鎖部分を含むRNA又はその改変体を使用することができる。相同性を有する配列部分は、通常は、少なくとも15ヌクレオチド以上であり、好ましくは約19ヌクレオチド以上であり、より好ましくは少なくとも20ヌクレオチド以上であり、さらに好ましくは21ヌクレオチド以上である。   As a substance that inhibits mortalin expression by RNAi, dsRNA of about 40 bases or more that generates siRNA may be used. For example, about 70% or more, preferably 75% or more, more preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, particularly preferably 95% with respect to a part of the nucleic acid sequence of the mortalin gene. As described above, RNA containing a double-stranded portion or a variant thereof containing a sequence having 100% homology can be used most preferably. The sequence portion having homology is usually at least 15 nucleotides or more, preferably about 19 nucleotides or more, more preferably at least 20 nucleotides or more, and further preferably 21 nucleotides or more.

RNAiによりモータリンの発現を阻害する物質としては、3'末端に突出部を有する短いヘアピン構造から成るshRNA(short hairpin RNA)を使用することもできる。shRNAとは、一本鎖RNAで部分的に回文状の塩基配列を含むことにより、分子内で二本鎖構造をとり、ヘアピンのような構造となる約20塩基対以上の分子のことである。また、shRNAとしては3'突出末端を有するのが好ましい。二本鎖部分の長さは特に限定されないが、好ましくは10ヌクレオチド以上であり、より好ましくは20ヌクレオチド以上である。ここで、3'突出末端は、好ましくはDNAであり、より好ましくは少なくとも2ヌクレオチド以上のDNAであり、さらに好ましくは2〜4ヌクレオチドのDNAである。   As a substance that inhibits the expression of mortalin by RNAi, shRNA (short hairpin RNA) having a short hairpin structure having a protruding portion at the 3 ′ end can also be used. shRNA is a molecule of about 20 base pairs or more that has a double-stranded structure in the molecule and a hairpin-like structure by including a partially palindromic base sequence in single-stranded RNA. is there. The shRNA preferably has a 3 ′ protruding end. The length of the double-stranded part is not particularly limited, but is preferably 10 nucleotides or more, more preferably 20 nucleotides or more. Here, the 3 ′ protruding end is preferably DNA, more preferably DNA of at least 2 nucleotides, and further preferably DNA of 2 to 4 nucleotides.

RNAiによりモータリンの発現を阻害する物質は、人工的に化学合成してもよいし、センス鎖及びアンチセンス鎖のDNA配列を逆向きに連結したヘアピン構造のDNAをT7 RNAポリメラーゼによってインビトロでRNAを合成することによって作製してもよい。インビトロで合成する場合は、T7 RNAポリメラーゼ及びT7プロモーターを用いて、鋳型DNAからアンチセンス及びセンスのRNAを合成することができる。これらをインビトロでアニーリングした後、細胞に導入すると、RNAiが引き起こされ、モータリンの発現が抑制される。細胞への導入は、例えば、リン酸カルシウム法、又は各種のトランスフェクション試薬(例えば、oligofectamine、Lipofectamine及びlipofection等)を用いた方法等により行うことができる。   A substance that inhibits mortalin expression by RNAi may be artificially chemically synthesized, or DNA in a hairpin structure in which the DNA sequences of the sense strand and antisense strand are ligated in the reverse direction is used to produce RNA in vitro using T7 RNA polymerase. It may be produced by synthesis. In the case of synthesis in vitro, antisense and sense RNAs can be synthesized from template DNA using T7 RNA polymerase and T7 promoter. When these are annealed in vitro and then introduced into cells, RNAi is caused and mortalin expression is suppressed. Introduction into cells can be performed, for example, by the calcium phosphate method, or a method using various transfection reagents (for example, oligofectamine, Lipofectamine, lipofection, etc.).

RNAiによりモータリンの発現を阻害する物質としては上述のsiRNA又はshRNAをコードする核酸配列を含む発現ベクターを用いてもよい。さらに該発現ベクターを含む細胞を用いてもよい。上記した発現ベクターや細胞の種類は特に限定されないが、既に医薬として用いられている発現ベクターや細胞が好ましい。   As a substance that inhibits mortalin expression by RNAi, an expression vector containing a nucleic acid sequence encoding the above-described siRNA or shRNA may be used. Furthermore, cells containing the expression vector may be used. The kind of the expression vector or cell described above is not particularly limited, but an expression vector or cell already used as a medicine is preferable.

本発明では、配列番号1から6の何れかに記載の塩基配列を標的配列とするsiRNA又はshRNAを用いることができる。具体的には、例えば、以下のセンスオリゴヌクレオチドとアンチセンスオリゴヌクレオチドの組み合わせからなるDNAを発現させることにより得られる、配列番号1から6の何れかに記載の塩基配列を標的配列とするsiRNA又はshRNAを用いることができる。   In the present invention, siRNA or shRNA having the base sequence described in any one of SEQ ID NOs: 1 to 6 as a target sequence can be used. Specifically, for example, an siRNA having a base sequence of any one of SEQ ID NOs: 1 to 6 obtained by expressing a DNA comprising a combination of the following sense oligonucleotide and antisense oligonucleotide as a target sequence: shRNA can be used.

本発明のモータリン siRNAを含む抗癌剤の投与経路は特に限定されず、経口投与又は非経口投与(例えば、静脈内投与、筋肉内投与、皮下投与、皮内投与、粘膜投与、直腸内投与、膣内投与、患部への局所投与、皮膚投与等)のいずれの投与経路により投与してもよい。経口投与に適する製剤形態としては、固形又は液体の形態が挙げられ、非経口投与に適する製剤形態としては、注射剤、点滴剤、坐剤、外用剤、点眼剤、点鼻剤等の形態が挙げられる。本発明の抗癌剤は、その製剤形態により必要に応じて薬学的に許容可能な添加剤が加えられていてもよい。薬学的に許容可能な添加剤の具体例としては、例えば、賦形剤、結合剤、崩壊剤、滑沢剤、抗酸化剤、保存剤、安定化剤、等張化剤、着色剤、矯味剤、希釈剤、乳化剤、懸濁化剤、溶媒、フィラー、増量剤、緩衝剤、送達ビヒクル、希釈剤、キャリア、賦形剤及び/又は薬学的アジュバント等が挙げられる。   The administration route of the anticancer agent containing the mortalin siRNA of the present invention is not particularly limited, and is orally or parenterally administered (for example, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, mucosal administration, intrarectal administration, intravaginal administration) Administration, local administration to the affected area, skin administration, etc.) may be used. Formulation forms suitable for oral administration include solid or liquid forms, and preparation forms suitable for parenteral administration include injections, drops, suppositories, external preparations, eye drops, nasal drops and the like. Can be mentioned. The anticancer agent of the present invention may be added with a pharmaceutically acceptable additive as required depending on the preparation form. Specific examples of pharmaceutically acceptable additives include, for example, excipients, binders, disintegrants, lubricants, antioxidants, preservatives, stabilizers, tonicity agents, coloring agents, taste masking agents. Agents, diluents, emulsifiers, suspending agents, solvents, fillers, bulking agents, buffers, delivery vehicles, diluents, carriers, excipients and / or pharmaceutical adjuvants and the like.

経口用の固形製剤形態の本発明の抗癌剤は、例えば、有効成分であるモータリン siRNAに賦形剤を加え、さらに必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、又は矯味剤などの製剤用添加物を加えた後、常法により錠剤、顆粒剤、散剤、カプセル剤として調製することができる。経口用の液体製剤形態の本発明の抗癌剤は、有効成分であるモータリン siRNAに矯味剤、安定化剤、又は保存剤など製剤用添加物の1種又は2種以上を加え、常法により内服液剤、シロップ剤、エリキシル剤等として調製することができる。   The anticancer agent of the present invention in the form of an oral solid preparation is, for example, an excipient added to mortalin siRNA which is an active ingredient, and further, a binder, a disintegrant, a lubricant, a coloring agent, a corrigent, etc. as necessary Can be prepared as tablets, granules, powders, and capsules by conventional methods. The anticancer agent of the present invention in the form of an oral liquid preparation is obtained by adding one or more additives for pharmaceutical preparation such as a corrigent, stabilizer or preservative to mortalin siRNA which is an active ingredient, Syrup, elixir and the like.

本発明の抗癌剤を液体製剤として処方するために使用される溶媒は、水性又は非水性のいずれでもよい。液体製剤は当該分野において周知の方法により調製することができる。例えば、注射剤は、生理食塩水、PBSのような緩衝液、滅菌水等の溶剤に溶解した後、フィルター等で濾過滅菌し、次いで無菌容器(例えば、アンプル等)に充填することにより調製することができる。この注射剤には、必要に応じて、慣用の薬学的キャリアを含めてもよい。また、非侵襲的なカテーテルを用いる投与方法を用いてもよい。本発明で用いることができるキャリアとしては、中性緩衝化生理食塩水、又は血清アルブミンを含む生理食塩水等が挙げられる。   The solvent used to formulate the anticancer agent of the present invention as a liquid preparation may be either aqueous or non-aqueous. Liquid preparations can be prepared by methods well known in the art. For example, an injection is prepared by dissolving in a saline solution, a buffer solution such as PBS, a solvent such as sterilized water, sterilizing by filtration with a filter or the like, and then filling an aseptic container (for example, an ampoule). be able to. This injection may contain a conventional pharmaceutical carrier, if necessary. Alternatively, an administration method using a non-invasive catheter may be used. Examples of the carrier that can be used in the present invention include neutral buffered physiological saline, physiological saline containing serum albumin, and the like.

モータリンのsiRNAまたはsiRNA発現ベクターなど遺伝子送達の種類に関しては、適用される細胞内でモータリンのsiRNAをコードするRNAまたはsiRNA発現ベクターの発現を得る限り特に方法は限定されるものではなく、例えば、ウイルスベクター、リポソームを用いた遺伝子導入を用いる事が可能である。ウイルスベクターとしては、例えば、レトロウイルス、ワクシニアウイルス、アデノウイルス、シンリンセムリキウイルス等の動物ウイルスが挙げられる。   With regard to the type of gene delivery such as mortalin siRNA or siRNA expression vector, the method is not particularly limited as long as the expression of RNA or siRNA expression vector encoding mortalin siRNA in the applied cells is obtained. It is possible to use gene transfer using vectors and liposomes. Examples of viral vectors include animal viruses such as retroviruses, vaccinia viruses, adenoviruses, and synthin liquiviruses.

RNAiによりモータリンの発現を阻害する物質は、細胞に直接注入してもよい。   A substance that inhibits mortalin expression by RNAi may be directly injected into cells.

本発明の抗癌剤の投与量は、使用目的、疾患の重篤度、患者の年齢、体重、性別、既往歴、又は有効成分として用いる物質の種類等を考慮して、当業者が決定することができる。本発明の抗癌剤の投与量は、例えば、有効成分量として、成人一人当たり、約0.1 ng〜約100 mg/kg、好ましくは約1 ng〜約10 mgであり、ウイルスベクター又は非ウイルスベクターとして投与される場合は、通常、0.0001〜100 mg、好ましくは0.001〜10 mg、より好ましくは0.01〜1 mgである。本発明の抗癌剤の投与頻度は、例えば、一日一回〜数ヶ月に1回であればよい。   The dosage of the anticancer agent of the present invention can be determined by those skilled in the art in consideration of the purpose of use, the severity of the disease, the patient's age, weight, sex, medical history, type of substance used as an active ingredient, etc. it can. The dose of the anticancer agent of the present invention is, for example, about 0.1 ng to about 100 mg / kg, preferably about 1 ng to about 10 mg per adult as an active ingredient, and is administered as a viral vector or a non-viral vector. When used, it is usually 0.0001 to 100 mg, preferably 0.001 to 10 mg, more preferably 0.01 to 1 mg. The administration frequency of the anticancer agent of the present invention may be, for example, once a day to once every several months.

本発明を以下の実施例でさらに詳しく説明するが、本発明はこれに限定されない。種々の変更、修飾が当業者には可能であり、これらの変更、修飾も本発明に含まれる。   The present invention will be described in more detail in the following examples, but the present invention is not limited thereto. Various changes and modifications can be made by those skilled in the art, and these changes and modifications are also included in the present invention.

(1)実験材料および方法
(a)細胞培養、トランスフェクション、ウィルス感染
ヒト由来の正常上皮細胞(TIG-1、WI-38)、骨肉種細胞(U2OS、mortalin過剰発現株U2OS)、繊維肉腫細胞(HT1080)は10%ウシ胎児血清(FBS)、ペニシリン、ストレプトマイシン、ファンギゾン(Life Technologies, Inc.)を添加したDulbecco's modified Eagle's minimal essential medium (DMEM)を培地とし、二酸化炭素濃度5%、湿度95%、37度のインキュベーター内で培養した。
(1) Experimental materials and methods (a) Cell culture, transfection, viral infection Normal human epithelial cells (TIG-1, WI-38), osteosarcoma cells (U2OS, mortalin overexpression strain U2OS), fibrosarcoma cells (HT1080) 10% fetal bovine serum (FBS), penicillin, streptomycin, Fungizone (Life Technologies, Inc.) added Dulbecco's modified Eagle's minimal essential medium (DMEM) as a medium, carbon dioxide concentration 5%, humidity 95% The cells were cultured in an incubator at 37 degrees.

mortalinを標的としたshRNA発現プラスミドのトランスフェクションにはFugene(Roche Applied Scinece)を用いた。通常は6cmの培養デッシュ60%コンフルエント程度の細胞に3μgのプラスミドDNAをトランスフェクションした。その後puromycin(2μg/ml)を添加した培地で48時間選択を行った。免疫染色ではトランスフェクション後24時間カバーガラス上で培養し、抗mortalin抗体で染色した。細胞増殖速度の検討は顕微鏡観察による増殖アッセイ、コロニー形成実験を行った。   Fugene (Roche Applied Scinece) was used for transfection of shRNA expression plasmid targeting mortalin. Usually, 3 μg of plasmid DNA was transfected into about 60% confluent cells of a 6 cm culture dish. Thereafter, selection was performed for 48 hours in a medium supplemented with puromycin (2 μg / ml). For immunostaining, the cells were cultured on a cover glass for 24 hours after transfection and stained with an anti-mortalin antibody. The cell growth rate was examined by microscopic observation of proliferation assay and colony formation experiment.

複製可能な発癌性アデノウィルス(Adonco viruses)は既に報告されている方法を用いて作製した(Kim, E., Kim, J. H., Shin, H. Y., Lee, H., Yang, J. M., Kim, J., Sohn, J. H., Kim, H., and Yun, C. O. (2003) Hum Gene Ther 14, 1415-1428)。 モータリンを標的としたshRNAを作るために、ヒトモータリンを標的としたshRNAの発現のためのDNA断片をセンスオリゴヌクレオチドとアンチセンスオリゴヌクレオチドをアニーリングすることによって作製した。   A replicable carcinogenic adenovirus (Adonco viruses) was generated using a method already reported (Kim, E., Kim, JH, Shin, HY, Lee, H., Yang, JM, Kim, J., Sohn, JH, Kim, H., and Yun, CO (2003) Hum Gene Ther 14, 1415-1428). In order to make shRNA targeting mortalin, a DNA fragment for the expression of shRNA targeting human mortalin was generated by annealing sense and antisense oligonucleotides.

No.1(標的配列:gcgtctcatt ggccggcgat a(配列番号1))
センスオリゴヌクレオチド:
caccgcgtcttattggtcggtgatacgtgtgctgtccgttcttctttcagcttgttgcttttt(配列番号7)
アンチセンスオリゴヌクレオチ:
gcataaaaagcgtctcattggccggcgatagaacggacagcacacgttcttctttcaacttatcgc (配列番号8)
No. 1 (target sequence: gcgtctcatt ggccggcgat a (SEQ ID NO: 1))
Sense oligonucleotide:
caccgcgtcttattggtcggtgatacgtgtgctgtccgttcttctttcagcttgttgcttttt (SEQ ID NO: 7)
Antisense oligonucleotides:
gcataaaaagcgtctcattggccggcgatagaacggacagcacacgttcttctttcaacttatcgc (SEQ ID NO: 8)

No.2(標的配列:gatgctggcc agatatctgg a (配列番号2))
センスオリゴヌクレオチド:
caccgatgctggtcagatatctggacgtgtgctgtccgttcttctttcagcttgttgcttttt (配列番号9)
アンチセンスオリゴヌクレオチ:
gcataaaaagatgctggccagatatctggagaacggacagcacacgttcttctttcaacttatcgc(配列番号10)
No. 2 (target sequence: gatgctggcc agatatctgg a (SEQ ID NO: 2))
Sense oligonucleotide:
caccgatgctggtcagatatctggacgtgtgctgtccgttcttctttcagcttgttgcttttt (SEQ ID NO: 9)
Antisense oligonucleotides:
gcataaaaagatgctggccagatatctggagaacggacagcacacgttcttctttcaacttatcgc (SEQ ID NO: 10)

No.3(標的配列:gactttgacc aggccttgct a (配列番号3))
センスオリゴヌクレオチド:
caccgactttgatcaggtcttgctacgtgtgctgtccgttcttctttcagcttgttgcttttt(配列番号11)
アンチセンスオリゴヌクレオチ:
gcataaaaagactttgaccaggccttgctagaacggacagcacacgttcttctttcaacttatcgc(配列番号12)
No. 3 (target sequence: gactttgacc aggccttgct a (SEQ ID NO: 3))
Sense oligonucleotide:
caccgactttgatcaggtcttgctacgtgtgctgtccgttcttctttcagcttgttgcttttt (SEQ ID NO: 11)
Antisense oligonucleotides:
gcataaaaagactttgaccaggccttgctagaacggacagcacacgttcttctttcaacttatcgc (SEQ ID NO: 12)

No.4(標的配列:gcaacaagct gaaagaaga(配列番号4))
センスオリゴヌクレオチド:
caccgcgataagttgaaagaagaacgtgtgctgtccgttcttctttcagcttgttgcttttt (配列番号13)
アンチセンスオリゴヌクレオチ:
gcataaaaagcaacaagctgaaagaagaacggacagcacacgttcttctttcaacttatcgc (配列番号14)
No. 4 (target sequence: gcaacaagct gaaagaaga (SEQ ID NO: 4))
Sense oligonucleotide:
caccgcgataagttgaaagaagaacgtgtgctgtccgttcttctttcagcttgttgcttttt (SEQ ID NO: 13)
Antisense oligonucleotides:
gcataaaaagcaacaagctgaaagaagaacggacagcacacgttcttctttcaacttatcgc (SEQ ID NO: 14)

No.5(標的配列:gccagaagga caacatatg(配列番号5))
センスオリゴヌクレオチド:
caccgctagaaggataacgtataacgtgtgctgtccgttatatgttgtccttctggcttttt (配列番号15)
アンチセンスオリゴヌクレオチ:
gcataaaaagccagaaggacaacatataacggacagcacacgttatacgttatccttctagc (配列番号16)
No. 5 (target sequence: gccagaagga caacatatg (SEQ ID NO: 5))
Sense oligonucleotide:
caccgctagaaggataacgtataacgtgtgctgtccgttatatgttgtccttctggcttttt (SEQ ID NO: 15)
Antisense oligonucleotides:
gcataaaaagccagaaggacaacatataacggacagcacacgttatacgttatccttctagc (SEQ ID NO: 16)

No.6(標的配列:gaatgaggct agaccttta (配列番号6))
センスオリゴヌクレオチド:
caccgagtgaggttagatctttaacgtgtgctgtccgttaaaggtctagcctcattcttttt (配列番号17)
アンチセンスオリゴヌクレオチ:
gcataaaaagaatgaggctagacctttaacggacagcacacgttaaagatctaacctcactc (配列番号18)
No. 6 (target sequence: gaatgaggct agaccttta (SEQ ID NO: 6))
Sense oligonucleotide:
caccgagtgaggttagatctttaacgtgtgctgtccgttaaaggtctagcctcattcttttt (SEQ ID NO: 17)
Antisense oligonucleotides:
gcataaaaagaatgaggctagacctttaacggacagcacacgttaaagatctaacctcactc (SEQ ID NO: 18)

その断片を、アデノウイルスpSP72-E3シャトルベクター(Cancer Gene Therapy, 12, p61-71, 2005)のBamH1とHindIIIサイトに組み込みpSP72-E3-shMotを作り出した。モータリンに特異的なshRNAを発現する殺腫瘍アデノウイルスを作製するために、SP72ΔE3-shMotシャトルベクターをXmnIで直線化した。その後、SpeI-処理したE1A- 、 E1B- ダブル変異にした複製全アデノウイルスベクターpdl-ΔB7を用いて大腸菌BJ5183に同時に形質転換して相同組み換えを行い、pΔB7-shMoアデノウイルスベクターを作成した。相同組み換えを確認するために、プラスミドDNAは一晩の大腸菌培養物から精製し、HindIIIで切断し、切断パターンを分析した。適切な相同組み換えAdプラスミドDNAをPacIで切断し、293細胞にトランスフェクションしてアデノウイルスAd-ΔB7-shMotを作製した。E1を欠失した複製インコンピテントAd (Ad-ΔE1、Adゲノム1341-3535の塩基配列の欠失;Int. J. Cancer, 88 p454-463, 2000)と、E1A、E1Bのダブル突然変異に置き換えた複製アデノウイルス(Ad-ΔB7)を調製した。すべてのウイルスは、293細胞で増殖させ、CsCl密度遠心法により精製し、10mMのトリスと4%のシュークロース、2mMのMgCl2の保存溶解液中で、-80℃で保存した。ウイルス粒子数は260nmのOD260の吸光度で測定した。1吸光ユニットは1012/mlのウイルスに相当した。また、感染のタイターは(プラーク形成単位/ml)は293細胞の限界希釈法による決定した。MOIは感染効率から計算した。ウィルス感染は細胞を48ウェルプレートに準備しMOIを10−300で感染させた。ウィルス感染による細胞増殖速度の解析は上述の方法で行った。The fragment was incorporated into the BamH1 and HindIII sites of the adenovirus pSP72-E3 shuttle vector (Cancer Gene Therapy, 12, p61-71, 2005) to create pSP72-E3-shMot. In order to generate an oncogenic adenovirus expressing a shRNA specific for mortalin, the SP72ΔE3-shMot shuttle vector was linearized with XmnI. Subsequently, E. coli BJ5183 was simultaneously transformed with the SpeI-treated E1A- and E1B-double mutant whole adenovirus vector pdl-ΔB7, and homologous recombination was performed to prepare a pΔB7-shMo adenovirus vector. To confirm homologous recombination, plasmid DNA was purified from overnight E. coli cultures, cut with HindIII, and analyzed for cleavage patterns. Appropriate homologous recombination Ad plasmid DNA was cut with PacI and transfected into 293 cells to produce adenovirus Ad-ΔB7-shMot. Replication incompetent Ad lacking E1 (Ad-ΔE1, deletion of nucleotide sequence of Ad genome 1341-3535; Int. J. Cancer, 88 p454-463, 2000) and double mutation of E1A and E1B A replacement replicating adenovirus (Ad-ΔB7) was prepared. All viruses were grown in 293 cells, purified by CsCl density centrifugation, and stored at −80 ° C. in a stock lysate of 10 mM Tris, 4% sucrose, 2 mM MgCl 2. The number of virus particles was measured by the absorbance of OD260 at 260 nm. One absorbance unit corresponded to 10 12 / ml virus. The infection titer (plaque forming unit / ml) was determined by the limiting dilution method of 293 cells. MOI was calculated from the infection efficiency. For virus infection, cells were prepared in 48-well plates and infected with MOI of 10-300. Analysis of cell growth rate due to virus infection was performed by the method described above.

図1は、本実施例で用たアデノウイルスベクターの図を示す。 示したすべてのアデノウイルスベクターは全長アデノウイルス遺伝子を用い、大腸菌プラスミドに組替え操作した。Ad- Δ E1 はすべての E1 領域を削除した。; Ad- Δ B7はretinoblastoma (RB)結合部位の変異を持つE1Aと E1B 領域を失ったものである。Ad- Δ B7- shMot は U6 プロモーターによって制御されたmortalin 特異的なshRNAを働かせる。ΔE1A 、Δ E1B とΔ E3 はそれぞれ E1A 、 E1B と E3 遺伝子の削除を示す。 ITR = inverted terminal repeat;Ψ = パッケージシグナル;IX= タンパク質IX。 アスタリスクは E1A のRb タンパク質結合部位の変異を示す。   FIG. 1 shows a diagram of the adenovirus vector used in this example. All the adenoviral vectors shown used full length adenoviral genes and were engineered into E. coli plasmids. Ad-Δ E1 deleted all E1 regions. Ad-ΔB7 has lost the E1A and E1B regions with mutations in the retinoblastoma (RB) binding site. Ad-Δ B7-shMot acts on a mortalin-specific shRNA controlled by the U6 promoter. ΔE1A, ΔE1B and ΔE3 indicate deletion of the E1A, E1B and E3 genes, respectively. ITR = inverted terminal repeat; Ψ = package signal; IX = protein IX. The asterisk indicates a mutation in the E1A Rb protein binding site.

(b)siRNA発現ベクターの構築
siRNA発現ベクターの構築のために、テトラサイクリンによる誘導が可能なU6プロモーターを持つベクターを用いた(Miyagishi, M., and Taira, K. (2002) Nat Biotechnol 20, 497-500)(Miyagishi, M., Sumimoto, H., Miyoshi, H., Kawakami, Y., and Taira, K. (2004) J Gene Med 6, 715-723)。siRNAの標的部位はアルゴリズムを用いて設計した(http://www.igene-therapeutics.co.jp)。siRNAの標的となるmortalinの配列を表1に示す。
(B) Construction of siRNA expression vector
For the construction of the siRNA expression vector, a vector having a U6 promoter capable of being induced by tetracycline was used (Miyagishi, M., and Taira, K. (2002) Nat Biotechnol 20, 497-500) (Miyagishi, M. Sumimoto, H., Miyoshi, H., Kawakami, Y., and Taira, K. (2004) J Gene Med 6, 715-723). The target site of siRNA was designed using an algorithm (http://www.igene-therapeutics.co.jp). Table 1 shows the sequence of mortalin targeted by siRNA.

siRNA構築物の典型例では、センス配列オリゴ(5'-caccGttGCtCACTtCAAGAGAGgtgtgctgtccCTCTCTTGGAGTGGGCGGCtttttt-3')及びアンチセンス配列オリゴ(5'-GCATaaaaaaGCCGCCCACTCCAAGAGAGggacagcacacCTCTCTTGaAGTGaGCaaC-3')を作製した。下線部分は、標的部位の配列を示す。CからT、及びGからAへの変異をセンス配列のみに挿入した。100μMのセンス及びアンチセンスのオリゴヌクレオチド5μlを混合して、100-150mMのNaCl中で最終容量(20μl)でサーマルサイクラー(99℃2分、2時間かけて72℃から4℃まで低下)を用いてアニーリングさせた。アニーリングしたオリゴヌクレオチドを希釈し(1:200)、そのうち2μlを、BspM I で切断して精製したpciPurベクターにハイ・ライゲーションキット(タカラ)を用いてライゲーションした。形質転換した細菌から調製したプラスミドDNAの配列をアンチセンスベクタープライマー (CAGGAAACAGCTATGAC)(配列番号19)を用いて決定し、クローニングされたDNA断片を確認した。In a typical siRNA construct, a sense sequence oligo (5′-cacc GttGCtCACTtCAAGAGAG gtgtgctgtcc CTCTCTTGGAGTGGGCGGC tttttt-3 ′) and an antisense sequence oligo (5′-GCATaaaaaa GCCGCCCACTCCAAGAGAG ggacagcacac CTCTCTTGaAGTGTGCAGCaaC- 3 ′) were prepared. The underlined portion indicates the sequence of the target site. Mutations from C to T and G to A were inserted only into the sense sequence. Mix 5 μl of 100 μM sense and antisense oligonucleotides and use a thermal cycler (99 ° C. 2 min, decrease from 72 ° C. to 4 ° C. over 2 hours) in 100-150 mM NaCl in a final volume (20 μl). And annealed. The annealed oligonucleotides were diluted (1: 200), 2 μl of which was ligated to the pciPur vector purified by digestion with BspM I using the High Ligation Kit (Takara). The sequence of the plasmid DNA prepared from the transformed bacteria was determined using an antisense vector primer (CAGGAAACAGCTATGAC) (SEQ ID NO: 19), and the cloned DNA fragment was confirmed.

(2)結果
モータリンは発癌において発現が増加し、悪性の癌細胞に関与している(Wadhwa, R., Takano, S., Kaur, K., Deocaris, C. C., Pereira-Smith, O. M., Reddel, R. R., and Kaul, S. C. (2006) Int J Cancer;及び、Dundas, S. R., Lawrie, L. C., Rooney, P. H., and Murray, G. I. (2005) J Pathol 205, 74-81)(特開2006−89471号公報)。本発明者らは、モータリン発現siRNAを構築し、ヒト癌細胞に対する効果を検討した。(i) U6プロモーター (Miyagishi, M., and Taira, K. (2002) Nat Biotechnol 20, 497-500)、 (ii)アデノ腫瘍退縮性ウイルス(Adonoc-motshRNAs) (Kim, E., Kim, J. H., Shin, H. Y., Lee, H., Yang, J. M., Kim, J., Sohn, J. H., Kim, H., and Yun, C. O. (2003) Hum Gene Ther 14, 1415-1428) を用いた2種類のsiRNAを作製した。テトラサイクリン誘導性U6プロモーターを用いたモータリンshRNA (596, 696 ,906)および恒常性Adonoc-motshRNAs (7, 8 ,9)を構築した(表1、図1)。以下に示すデータにおいて、モータリンshRNAは癌細胞を死滅させる効果があり、癌治療に用いることができることが実証された。
(2) Results Mortalin has increased expression in carcinogenesis and is involved in malignant cancer cells (Wadhwa, R., Takano, S., Kaur, K., Deocaris, CC, Pereira-Smith, OM, Reddel, RR, and Kaul, SC (2006) Int J Cancer; and Dundas, SR, Lawrie, LC, Rooney, PH, and Murray, GI (2005) J Pathol 205, 74-81) (JP 2006-89471 A) ). The present inventors constructed a mortalin-expressing siRNA and examined its effect on human cancer cells. (i) U6 promoter (Miyagishi, M., and Taira, K. (2002) Nat Biotechnol 20, 497-500), (ii) Adeno-oncolytic virus (Adonoc-motshRNAs) (Kim, E., Kim, JH , Shin, HY, Lee, H., Yang, JM, Kim, J., Sohn, JH, Kim, H., and Yun, CO (2003) Hum Gene Ther 14, 1415-1428) siRNA was produced. Mortalin shRNA (596, 696, 906) and homeostatic Adonoc-motshRNAs (7, 8, 9) using the tetracycline-inducible U6 promoter were constructed (Table 1, FIG. 1). In the data shown below, it was demonstrated that mortalin shRNA has an effect of killing cancer cells and can be used for cancer treatment.

図2においては、表示したモータリンshRNAをヒト骨肉腫細胞にトランスフェクションした。トランスフェクト細胞はピューロマイシン(2 ug/ul)を添加した培地で48〜96時間培養し、選択した。テトラサイクリン誘導性構築物は培地にドキシサイクリン(1μg/ml)を加え誘導させた。   In FIG. 2, the displayed mortalin shRNA was transfected into human osteosarcoma cells. Transfected cells were selected by culturing for 48 to 96 hours in a medium supplemented with puromycin (2 ug / ul). The tetracycline-inducible construct was induced by adding doxycycline (1 μg / ml) to the medium.

図2Aは、モータリンshRNAトランスフェクトおよびコントロール細胞におけるモータリンの免疫染色を示す。モータリンshRNAトランスフェクト細胞の約60%で非常に弱い染色が示された。
図2Bでは、ベクタートランスフェクト細胞は健常であるが、モータリンshRNAトランスフェクト細胞は死滅した。
図2Cでは、ピューロマイシン選択細胞を低密度(2000 個/10cm ディッシュ)で蒔き、15日間、コロニー形成の観察を行った。コロニー形成率の大幅な低下が示された。
FIG. 2A shows mortalin immunostaining in mortalin shRNA transfected and control cells. About 60% of the mortalin shRNA transfected cells showed very weak staining.
In FIG. 2B, the vector transfected cells are healthy, but the mortalin shRNA transfected cells are killed.
In FIG. 2C, puromycin-selected cells were seeded at low density (2000 cells / 10 cm dish) and colony formation was observed for 15 days. A significant reduction in colony formation rate was shown.

図3では、既に示したようにモータリンshRNA発現アデノ腫瘍退縮性ウイルスを作製した(Kim, E., Kim, J. H., Shin, H. Y., Lee, H., Yang, J. M., Kim, J., Sohn, J. H., Kim, H., and Yun, C. O. (2003) Hum Gene Ther 14, 1415-1428)。これらのウイルスはヒト癌細胞において選択的複製を示す。これらをMOI100で正常および癌細胞にウイルス感染させた。   In FIG. 3, mortalin shRNA-expressing adeno-oncolytic virus was prepared as already shown (Kim, E., Kim, JH, Shin, HY, Lee, H., Yang, JM, Kim, J., Sohn, JH, Kim, H., and Yun, CO (2003) Hum Gene Ther 14, 1415-1428). These viruses show selective replication in human cancer cells. These were virus infected normal and cancer cells with MOI100.

図3Aは、Adonco-motshRNAウイルス感染細胞のクリスタルバイオレット染色を示す。正常細胞(TIG-1とWI38)は感染48-60時間後においても効果を示さないが、癌細胞(U2OSとHT1080)は各6種のshRNAにおいて顕著な死滅が示された。   FIG. 3A shows crystal violet staining of Adonco-motshRNA virus infected cells. Normal cells (TIG-1 and WI38) showed no effect at 48-60 hours after infection, whereas cancer cells (U2OS and HT1080) showed significant killing in each of the 6 shRNAs.

図3Bでは、感染後36−48時間における細胞生存率を検討した。癌細胞は非常に低い生存率を示したが、正常細胞では6種いずれのshRNAにおいても著しい効果が見られなかった。   In FIG. 3B, cell viability was examined 36-48 hours after infection. Cancer cells showed a very low survival rate, but normal cells did not show significant effects on any of the six shRNAs.

図4には、MOI 0-300でAdonco-motshRNA およびコントロールを感染させたU2OS細胞の増殖の結果を示す。MOI 25において、#7および#9細胞が死に始め、MOI 300で100%の細胞が死滅した。#8およびコントロールウイルス細胞は大量感染(MOI 200-500の感染領域)で死滅を引き起こした。   FIG. 4 shows the results of proliferation of U2OS cells infected with Adonco-motshRNA and controls with MOI 0-300. At MOI 25, # 7 and # 9 cells began to die and at MOI 300 100% of the cells died. # 8 and control virus cells caused killing in massive infections (MOI 200-500 infected area).

図5では、Adonco-motshRNAを感染させたヒト正常繊維芽細胞についても図4で示した癌細胞と並行して、感染後36-48時間での増殖を検討した。細胞死滅は各6種の感染癌細胞にほぼ選択的に見られた。   In FIG. 5, human normal fibroblasts infected with Adonco-motshRNA were also examined for proliferation at 36-48 hours after infection in parallel with the cancer cells shown in FIG. Cell killing was almost selectively seen in each of the six infected cancer cells.

図6では、既に示したようにレトロウイルスによりU2OS細胞内でモータリンを過剰発現させた(Wadhwa, R., Takano, S., Kaur, K., Deocaris, C. C., Pereira-Smith, O. M., Reddel, R. R., and Kaul, S. C. (2006) Int J Cancer)。コントロールおよびモータリン過剰発現細胞を元のU2OS細胞と同様に6種のAdonco-motshRNAで感染させた。モータリン過剰発現U2OS細胞は残存したが、元のU2OS細胞は各6種のAdonco-motshRNAにより効果的に死滅した。この結果はshRNAによるモータリンのノックダウンが癌細胞の死滅を導くことを示している。   In FIG. 6, mortalin was overexpressed in U2OS cells by retrovirus as already shown (Wadhwa, R., Takano, S., Kaur, K., Deocaris, CC, Pereira-Smith, OM, Reddel, RR, and Kaul, SC (2006) Int J Cancer). Control and mortalin overexpressing cells were infected with 6 types of Adonco-motshRNA in the same manner as the original U2OS cells. Although mortalin overexpressing U2OS cells remained, the original U2OS cells were effectively killed by each of six types of Adonco-motshRNA. This result indicates that mortalin knockdown by shRNA leads to cancer cell death.

図1は、本研究で用いられたアデノウイルスベクターの図を示す。FIG. 1 shows a diagram of the adenoviral vector used in this study. 図2は、モータリンshRNAをヒト骨肉腫細胞にトランスフェクションした結果を示す。FIG. 2 shows the results of transfection of mortalin shRNA into human osteosarcoma cells. 図3は、モータリンshRNA発現アデノ腫瘍退縮性ウイルスを正常細胞および癌細胞に感染させた結果を示す。FIG. 3 shows the results of infecting normal cells and cancer cells with a mortalin shRNA-expressing adeno-oncolytic virus. 図4は、Adonco-motshRNA およびコントロールを感染させたU2OS細胞の増殖を示す。FIG. 4 shows the proliferation of U2OS cells infected with Adonco-motshRNA and control. 図5は、Adonco-motshRNAを感染させたヒト正常繊維芽細胞についても図4で示した癌細胞と並行して、感染後36-48時間での増殖を検討した結果を示す。FIG. 5 shows the results of examining the proliferation of human normal fibroblasts infected with Adonco-motshRNA in 36-48 hours after infection in parallel with the cancer cells shown in FIG. 図6は、コントロールおよびモータリン過剰発現細胞を、元のU2OS細胞と同様に6種のAdonco-motshRNAで感染させた結果を示す。FIG. 6 shows the results of infection of control and mortalin overexpressing cells with 6 types of Adonco-motshRNA in the same manner as the original U2OS cells.

Claims (5)

以下のセンスオリゴヌクレオチドとアンチセンスオリゴヌクレオチドの組み合わせからなるDNAを発現させることにより得られる、配列番号1から3の何れかに記載の塩基配列を標的配列とするsiRNA又はshRNA。
(1)配列番号7の塩基配列からなるセンスオリゴヌクレオチド及び配列番号8の塩基配列からなるアンチセンスオリゴヌクレオチド;
(2)配列番号9の塩基配列からなるセンスオリゴヌクレオチド及び配列番号10の塩基配列からなるアンチセンスオリゴヌクレオチド;
(3)配列番号11の塩基配列からなるセンスオリゴヌクレオチド及び配列番号12の塩基配列からなるアンチセンスオリゴヌクレオチド;
A siRNA or shRNA having a base sequence described in any one of SEQ ID NOs: 1 to 3 as a target sequence, obtained by expressing DNA comprising a combination of the following sense oligonucleotide and antisense oligonucleotide.
(1) a sense oligonucleotide consisting of the base sequence of SEQ ID NO: 7 and an antisense oligonucleotide consisting of the base sequence of SEQ ID NO: 8;
(2) a sense oligonucleotide consisting of the base sequence of SEQ ID NO: 9 and an antisense oligonucleotide consisting of the base sequence of SEQ ID NO: 10;
(3) a sense oligonucleotide consisting of the base sequence of SEQ ID NO: 11 and an antisense oligonucleotide consisting of the base sequence of SEQ ID NO: 12;
以下のセンスオリゴヌクレオチドとアンチセンスオリゴヌクレオチドの組み合わせからなるDNAを発現させることにより得られる、配列番号4から6の何れかに記載の塩基配列を標的配列とするsiRNA又はshRNA。
(1)配列番号13の塩基配列からなるセンスオリゴヌクレオチド及び配列番号14の塩基配列からなるアンチセンスオリゴヌクレオチド;
(2)配列番号15の塩基配列からなるセンスオリゴヌクレオチド及び配列番号16の塩基配列からなるアンチセンスオリゴヌクレオチド;又は
(3)配列番号17の塩基配列からなるセンスオリゴヌクレオチド及び配列番号18の塩基配列からなるアンチセンスオリゴヌクレオチド;
An siRNA or shRNA having a base sequence of any one of SEQ ID NOs: 4 to 6 as a target sequence, obtained by expressing DNA comprising a combination of the following sense oligonucleotide and antisense oligonucleotide.
(1) a sense oligonucleotide consisting of the base sequence of SEQ ID NO: 13 and an antisense oligonucleotide consisting of the base sequence of SEQ ID NO: 14;
(2) a sense oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 15 and an antisense oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 16; or (3) a sense oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 17 and the nucleotide sequence of SEQ ID NO: 18. An antisense oligonucleotide consisting of;
以下のセンスオリゴヌクレオチドとアンチセンスオリゴヌクレオチドの組み合わせからなるDNAをU6プロモーターを含むベクターに組み込むことによって得られる請求項1に記載のsiRNA又はshRNAを発現できる組み換え発現ベクター。
(1)配列番号7の塩基配列からなるセンスオリゴヌクレオチド及び配列番号8の塩基配列からなるアンチセンスオリゴヌクレオチド;
(2)配列番号9の塩基配列からなるセンスオリゴヌクレオチド及び配列番号10の塩基配列からなるアンチセンスオリゴヌクレオチド;
(3)配列番号11の塩基配列からなるセンスオリゴヌクレオチド及び配列番号12の塩基配列からなるアンチセンスオリゴヌクレオチド;
The recombinant expression vector which can express siRNA or shRNA of Claim 1 obtained by integrating the DNA which consists of a combination of the following sense oligonucleotide and antisense oligonucleotide into the vector containing a U6 promoter.
(1) a sense oligonucleotide consisting of the base sequence of SEQ ID NO: 7 and an antisense oligonucleotide consisting of the base sequence of SEQ ID NO: 8;
(2) a sense oligonucleotide consisting of the base sequence of SEQ ID NO: 9 and an antisense oligonucleotide consisting of the base sequence of SEQ ID NO: 10;
(3) a sense oligonucleotide consisting of the base sequence of SEQ ID NO: 11 and an antisense oligonucleotide consisting of the base sequence of SEQ ID NO: 12;
以下のセンスオリゴヌクレオチドとアンチセンスオリゴヌクレオチドの組み合わせからなるDNAをアデノウイルスベクターに組み込むことによって得られる請求項2に記載のsiRNA又はshRNAを発現できる組み換え発現ベクター。
(1)配列番号13の塩基配列からなるセンスオリゴヌクレオチド及び配列番号14の塩基配列からなるアンチセンスオリゴヌクレオチド;
(2)配列番号15の塩基配列からなるセンスオリゴヌクレオチド及び配列番号16の塩基配列からなるアンチセンスオリゴヌクレオチド;又は
(3)配列番号17の塩基配列からなるセンスオリゴヌクレオチド及び配列番号18の塩基配列からなるアンチセンスオリゴヌクレオチド;
The recombinant expression vector which can express siRNA or shRNA of Claim 2 obtained by integrating DNA which consists of a combination of the following sense oligonucleotide and antisense oligonucleotide in an adenovirus vector.
(1) a sense oligonucleotide consisting of the base sequence of SEQ ID NO: 13 and an antisense oligonucleotide consisting of the base sequence of SEQ ID NO: 14;
(2) a sense oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 15 and an antisense oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 16; or (3) a sense oligonucleotide comprising the nucleotide sequence of SEQ ID NO: 17 and the nucleotide sequence of SEQ ID NO: 18. An antisense oligonucleotide consisting of;
請求項1又は2に記載のsiRNA又はshRNA、又は請求項3又は4に記載の組み換えベクターを有効成分として含有する、抗癌剤。 An anticancer agent comprising the siRNA or shRNA according to claim 1 or 2 or the recombinant vector according to claim 3 or 4 as an active ingredient.
JP2009520437A 2007-06-20 2008-06-10 Cancer therapeutic agent containing mortalin siRNA Active JP5625143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009520437A JP5625143B2 (en) 2007-06-20 2008-06-10 Cancer therapeutic agent containing mortalin siRNA

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007162029 2007-06-20
JP2007162029 2007-06-20
PCT/JP2008/060599 WO2008156012A1 (en) 2007-06-20 2008-06-10 CANCER REMEDY CONTAINING MORTALIN siRNA
JP2009520437A JP5625143B2 (en) 2007-06-20 2008-06-10 Cancer therapeutic agent containing mortalin siRNA

Publications (2)

Publication Number Publication Date
JPWO2008156012A1 JPWO2008156012A1 (en) 2010-08-26
JP5625143B2 true JP5625143B2 (en) 2014-11-19

Family

ID=40156170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009520437A Active JP5625143B2 (en) 2007-06-20 2008-06-10 Cancer therapeutic agent containing mortalin siRNA

Country Status (3)

Country Link
JP (1) JP5625143B2 (en)
KR (1) KR101555926B1 (en)
WO (1) WO2008156012A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293716B2 (en) 2005-05-26 2012-10-23 Ramot At Tel Aviv University Ltd. Method of treating cancer by modulation of mortalin
US8470793B2 (en) 2007-09-25 2013-06-25 Ramot At Tel-Aviv University Ltd. Down-regulation of mortalin by siRNA
KR101168726B1 (en) * 2009-11-30 2012-07-30 한국생명공학연구원 Pharmaceutical composition for treating cancer
WO2013115579A1 (en) * 2012-01-31 2013-08-08 연세대학교 산학협력단 Shrna for suppressing tgf-β2 expression
JP6562906B2 (en) * 2013-10-02 2019-08-21 アルバート アインシュタイン カレッジ オブ メディシン,インコーポレイティド Methods and compositions for inhibiting metastasis, treating fibrosis, and improving wound healing
KR20170081962A (en) * 2016-01-05 2017-07-13 한양대학교 산학협력단 Compositions of Prevention or Treatment of Keloid or Hypertrophic scar

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089471A (en) * 2004-08-26 2006-04-06 National Institute Of Advanced Industrial & Technology Use of antimortalin 2 antibody and functional nucleic acid in treatment of cancer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089471A (en) * 2004-08-26 2006-04-06 National Institute Of Advanced Industrial & Technology Use of antimortalin 2 antibody and functional nucleic acid in treatment of cancer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013030049; Human Gene Therapy, 2003, Vol.14, p.1415-1428 *
JPN6013030050; Nature Biotechnology, 2002, Vol.19, p.497-500 *

Also Published As

Publication number Publication date
KR101555926B1 (en) 2015-09-25
KR20100066429A (en) 2010-06-17
WO2008156012A1 (en) 2008-12-24
JPWO2008156012A1 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
US8901081B2 (en) Uses of GRS proteins or fragments thereof
RU2756253C2 (en) THERAPEUTIC COMPOSITIONS AND METHODS AGAINST MALIGNANT TUMORS WITH RNAi MOLECULES DIRECTED AGAINST Hsp47
JP5625143B2 (en) Cancer therapeutic agent containing mortalin siRNA
US10864283B2 (en) Composition for preventing or treating keloid or hypertrophic scars
US20190290711A1 (en) Tropism modified cancer terminator virus (ad.5/3 ctv;ad.5/3-ctv-m7)
US20160312228A1 (en) Method of inducing an immune response
AU2011235369B2 (en) Method for inhibiting HIV replication in mammal and human cells
RU2664466C1 (en) Composition for treating cancer associated with hpv infection
KR101286053B1 (en) The shRNA downregulating TGF-β1 for treatment of tumor
Xu et al. Targeting Stat3 suppresses growth of U251 cell-derived tumours in nude mice
KR101374585B1 (en) The shRNA downregulating HSP27 for treatment of tumor
CN115786270A (en) Engineered macrophages and their use in the treatment of fibrotic diseases
KR101464360B1 (en) Adenovirus Containing Ribozyme and shRNA, and Therapeutic Composition Comprising Thereof
EP1994052A1 (en) Use of iex-1 for the treatment of glioma tumors
KR101595152B1 (en) Gene delivery system comprising TCTP-PTD
KR20090092536A (en) Composition comprising recombinant adenovirus and liposome with enhanced gene transfer
Ruan et al. Recombinant adeno-associated virus delivered human thioredoxin-PR39 prevents hypoxia-induced apoptosis of ECV304 cells☆
WO2011162419A1 (en) Tumor growth controlling method targeting galactosylceramide expression factor-1
Chen et al. Antitumor efficacy of SLPI promoter-controlled expression of artificial microRNA targeting EGFR in a squamous cell carcinoma cell line
KR102182081B1 (en) Pharmaceutical composition for preventing or treating leukemia containing expression inhibitor of CA5A and CA5B
JP2015500808A (en) Treatment of B-cell lymphoma
KR20210088180A (en) Composition for preventing or treating cancer comprising TRAIL-secreting mesenchymal stem cells and compound C
KR101485576B1 (en) A bacterium salmonella harboring siRNA against syntrophin beta and antitumoral composition thereof
US9228202B2 (en) Intracellular viral vector delivery method employing iron ion/viral vector composite
WO2005089791A1 (en) Pea15 as a tumor suppressor gene

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130919

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130919

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131017

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131025

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131125

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140718

R150 Certificate of patent or registration of utility model

Ref document number: 5625143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250