[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5622859B2 - 熱源装置 - Google Patents

熱源装置 Download PDF

Info

Publication number
JP5622859B2
JP5622859B2 JP2012538682A JP2012538682A JP5622859B2 JP 5622859 B2 JP5622859 B2 JP 5622859B2 JP 2012538682 A JP2012538682 A JP 2012538682A JP 2012538682 A JP2012538682 A JP 2012538682A JP 5622859 B2 JP5622859 B2 JP 5622859B2
Authority
JP
Japan
Prior art keywords
heat source
water
heat
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012538682A
Other languages
English (en)
Other versions
JPWO2012050087A1 (ja
Inventor
山本 学
学 山本
邦雄 室井
邦雄 室井
勇司 山本
勇司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Publication of JPWO2012050087A1 publication Critical patent/JPWO2012050087A1/ja
Application granted granted Critical
Publication of JP5622859B2 publication Critical patent/JP5622859B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明の実施形態は、熱源機側と負荷設備側とで構成される熱源システムの熱源装置に係り、特に冷水、あるいは温水を制御下において生成する熱源装置に関する。
従来より、例えば大規模な工場やビルといった場所に複数台の室内機(ファンコイルユニット)が設置されている場合に、熱源機からの熱源水(冷水、或いは温水)をこれらの室内機に供給して、複数の空調エリアを空調する熱源システムが利用されている。
この熱源システムは、大きく熱源機側と負荷設備側(室内機側)とに別れ、それぞれは熱源機から負荷設備に対して熱源水を供給する送水管と負荷設備を通って再度熱源機に熱源水が戻る還水管によって接続され1つの回路を構成している。
例えば、熱源機内で熱交換された熱源水は送水管を通って、負荷側の二次ポンプにより負荷設備に送水される。この熱源水は負荷設備内で熱交換が行われ、還水管を通り熱源機の一次ポンプに送られる。一次ポンプに送られた熱源水は、再度熱源機内を通過し回路内を循環する。
この時、何らかの不具合により一次ポンプによる正常な通水が行われないままで熱源機が運転されると、熱源機の熱交換器内に滞留した熱源水が冷却されて凍結し、熱交換器が凍結し破裂するおそれがある。
そのため、熱源機には、熱源水の流量を計測するための流量計が設置されており、流量計により熱源水の流れを検知している。
特開2006−275397号公報
しかし、流量計を設置する場合、設置費用が掛かるのはもちろんのこと、熱源システムが大きくなるに伴って流量計も大きなものが必要となるため、高額な流量計の設置に従い熱源機がより高額になるという問題があった。
本実施形態は上記課題を解決するためになされたものであり、本実施形態の目的は、流量計を設置することなく一次ポンプによる正常な通水が行われているか否かを適切に判断することができる制御手段を備えた熱源装置を提供することである。
熱源機側と負荷設備側とで構成される熱源システムの熱源装置であって、前記熱源装置は、熱源機および熱源コントローラから構成され、前記熱源機は、熱源水と冷凍サイクルを循環する冷媒との間で熱交換させる水熱交換器と、前記水熱交換器に熱源水を送水する一次ポンプと、前記水熱交換器、前記一次ポンプからの情報により動作する熱源機制御装置とを含み、前記熱源コントローラは熱源側の熱源機制御装置及び負荷設備側に接続され、前記一次ポンプを起動させた後、前記水熱交換器の前後の熱源水の温度差または、前記水熱交換器の前後の熱源水の圧力差に応じて、前記一次ポンプによる熱源水の通水が正常か否かを判断し、通水判断により通水が正常と判断された後、前記冷凍サイクルを動作させるようにした事を特徴とする。
また、前記前記熱源コントローラは、熱源機の熱源機制御装置から、熱源水の入口側温度と出口側温度を取得し、その温度差を算出する温度差算出手段と、前記温度差と熱源コントローラに予め記憶された設定値とを比較し、一次ポンプにより正常に熱源水が通水しているか否かを判断する通水判定手段と、前記通水判定手段により一次ポンプによる通水が正常と判断された熱源機の冷凍サイクルを動作させて冷水或いは温水を生成させる冷温水生成手段を備えていることが望ましい。
本発明の1実施形態に係る、熱源装置を含む熱源ステムの全体の構成を示す図。 上記実施形態に係る、熱源装置の冷凍サイクルを示す図。 上記熱源装置における熱源コントローラの機能手段を示す概略ダイアグラム。 上記実施形態に係る、熱源システムの動作を示すフローチャート。
以下、本発明の1実施の形態について図1〜4を用いて説明する。
図1に示すように、本実施形態の熱源システムSは、熱源機側Aと負荷設備側Bとで構成され、大規模なビル、工場などの空調を行う空調設備や温水プールなどの給湯設備などに用いられる。
本実施形態においては、熱源機側Aの熱源機1A〜1Cを空冷式ヒートポンプチラーユニットとし、負荷設備側Bをファンコイル(空気調和機)とした場合について説明する。
熱源機側Aには、熱源水を生成する3台の熱源機1A、1B、1Cと、各熱源機1A〜1Cに夫々熱源水を供給する一次ポンプ2A、2B、2Cと、これらを統括的に運転制御する制御部である熱源コントローラ3が設け、熱源装置を構成している。
図2は、熱源機1A〜1Cの冷凍サイクルおよび構成を示す図である。なお、熱源機1B、1Cは、熱源機1Aと同一の構成を備えるため、図2においては、図示を省略している。
図2に示すように、各熱源機1A〜1Cは、圧縮機11、四方弁13、第1熱交換器(空気熱交換器)14、電動膨張弁15、第2熱交換器(水熱交換器)16を備え、それぞれが冷媒配管pによって接続されて冷凍サイクルRを構成して設けられている。冷媒配管p内には冷媒が充填されており、この冷媒が冷凍サイクルR内を循環する。
また、また、各熱源機は後述の各熱源機制御装置10を備え、熱源コントローラ3と接続されている。
各熱源機1A〜1Cの圧縮機11は、それぞれ圧縮機用インバータ12に接続され、この圧縮機用インバータ12によって可変速運転される。
各熱源機1A〜1Cの水熱交換器16の熱源水入口側には、それぞれ1次ポンプ2A〜2Cが設けられている。
各1次ポンプ2A〜2Cは、それぞれ熱源機1A〜1Cに内蔵されるとともに、それぞれ一次ポンプ用インバータ23に接続されている。各一次ポンプ2A〜2Cは、熱源コントローラ3からの指示に基づき、各熱源機制御装置10を介して各一次ポンプ用インバータ装置23によって可変速運転される。なお、各一次ポンプ2A〜2Cは、仕様(入力―流量特性)が同一のものが使用されている。
各熱源機1A〜1Cの空気熱交換器14の近傍には、空気熱交換器14に送風する送風機17が設けられている。送風機17は、それぞれ送風機用インバータ18に接続され、この送風機用インバータ18によって可変速運転される。
各熱源機1A〜1Cの水熱交換器16の熱源水入口付近には、各熱源機1A〜1Cに供給される熱源水の入口側水温Twiを計測する入口側水温センサ19と、熱源機1に供給される熱源水の入口側水圧Pwiを計測する入口側水圧センサ20が設けられている。
一方、各熱源機1A〜1Cの水熱交換器16の熱源水出口付近には、各熱源機1A〜1Cから出て負荷設備側Bへ供給される熱源水の出口側水温Tweを計測する出口側水温センサ21と、各熱源機1A〜1Cから出て負荷設備側へ供給される熱源水の出口側水圧Pweを計測する出口側水圧センサ22が設けられている。
各熱源機1A〜1Cには、四方弁13、電動膨張弁15、圧縮機11および送風機17を駆動制御する熱源機制御装置10が設けられる。この熱源機制御装置10に各種センサ19〜22が接続される。
各熱源機制御装置10は、熱源コントローラ3からの指示に基づき、各熱源機1A〜1Cの出口側水温Tweが予め設定された目標温度Tとなるように各熱源機1A〜1Bを動作させる。
なお、熱源機1は、図1において3台並列となるように接続されているが、この熱源機1は何台接続されていても良い。
このように構成された各熱源機1A〜1Cにおいて、冷房運転時(冷水生成時)には図2中の実線矢印で示す方向に冷媒が流れる。圧縮機11で圧縮された冷媒は、四方弁13、空気熱交換器14、電動膨張弁15、水熱交換器16を順次通過し、再び四方弁13を介して圧縮機11へと戻る。このとき、空気熱交換器14は凝縮器として作用し、水熱交換器16は蒸発器として作用する。水熱交換器16において、冷媒は、一次ポンプ2によって送られる熱源水と熱交換することにより、熱源水を冷却する。
一方、暖房運転時(温水生成時)には四方弁13が切換わることにより、図2中の一点差線矢印で示す方向に冷媒が流れる。圧縮機11で圧縮された冷媒は、四方弁13、水熱交換器16、電動膨張弁15、および空気熱交換器14を順次通過し、再び四方弁13を介して圧縮機11へと戻る。このとき、空気熱交換器14は蒸発器として作用し、水熱交換器16は凝縮器として作用する。水熱交換器16において、冷媒は、一次ポンプ2によって送られる熱源水と熱交換することにより、熱源水を加熱する。
このように、各熱源機1A〜1Cは、冷房/冷却用の冷水と暖房/加熱用の温水を生成することができる。
図1に示すように、各熱源機1A〜1Cにおいて生成された熱源水は、その一端が各熱源機1A〜1Cの熱源水出口に接続される送水管4を通して負荷設備側Bへと供給される。送水管4には、さらに二次ポンプ(負荷側ポンプ)5が接続され、負荷設備側Bへと熱源水が送水される。
二次ポンプ5は、二次ポンプ用インバータ51によって可変速駆動され、負荷設備側Bへ供給する熱源水の流量が制御される。二次ポンプ5の出力(流量)は、負荷設備側Bが要求する冷温熱能力に応じて熱源機側Aの動作とは無関係に流量が制御されている。
負荷設備側Bのファンコイル6(6A、6B)において被空調室の空気と熱交換された熱源水は、ファンコイル6の出口側に接続されている二方弁7を介して還水管8内を流れ、熱源機側Aの一次ポンプ2に送られる。
なお、ファンコイル6は、図1において2台並列となるように接続されているが、このファンコイル6は何台接続されていても良い。
熱源機側Aと負荷設備側Bとの間に、送水管4と環水管8とを連通するバイパス管9が設けられている。上述したように、二次ポンプ5の流量は熱源機側Aの動作とは無関係に制御されるため、熱源機側Aを流れる熱源水の量と負荷設備側Bを流れる熱源水の量にアンバランスが生じることがある。このアンバランスが生じた際、バイパス管9内に熱源水が流れることよって、熱源機側Aを流れる熱源水の量と負荷設備側Bを流れる熱源水の量がバランスするようになっている。
送水管4には、送水管4内を流れる熱源水の送水温度TwSを検知する送水温度センサ41が設けられる。一方、環水管8には、環水管8内の熱源水の環水温度TwRを検知する環水温度センサ81が設けられている。
図2に示すように、各熱源機1A〜1Cの熱源機入口側水温センサ19、熱源機入口側水圧センサ20、熱源機出口側水温センサ21および熱源機出口側水圧センサ22において計測された温度情報は、各熱源機1A〜1Cの熱源制御装置10を介して熱源コントローラ3に集められる。
また、図1に示すように、負荷設備側Bも熱源コントローラ3に接続されており、送水温度センサ41、環水温度センサ81の温度情報も熱源コントローラ3に集められる。また、特に図示しないが、負荷設備側Bからの負荷側情報も熱源コントローラ3に入力される。
熱源コントローラ3は、各種温度情報および負荷設備側の情報に基づいて各熱源機1A〜1Cの動作条件を決定する。そして、決定した動作条件を各室外機1A〜1Cに通知する。各熱源機1A〜1Cの熱源機制御装置10は、熱源コントローラ3から通知された動作条件に従って、自機の圧縮機11、四方弁13、電動膨張弁15、送風機17および1次ポンプ2などを駆動する。
なお、熱源コントローラ3は、図1および図2において熱源機1A〜1Cの外部に配置されているが、熱源機1A〜1Cのいずれか1台に収容されていても良い。
熱源コントローラ3は、主要な機能として次の(1)〜(3)の手段を有する。
(1)各熱源機1A〜1Cの熱源機制御装置10から、熱源水の入口側温度Twiと出口側温度Tweを取得し、入口側水温Twiと出口側水温Tweの温度差ΔT(ΔT=|Twi−Twe|)を算出する温度差算出手段。
(2)温度差ΔTと熱源コントローラ3に予め記憶された設定値TSとを比較し、一次ポンプ2により正常に熱源水が通水しているか否かを判断する通水判定手段。
(3)通水判定手段により一次ポンプ2による通水が正常と判断された熱源機1の冷凍サイクルRを動作させて冷水或いは温水を生成させる冷温水生成手段。
即ち、図3に示されるように、熱源コントローラ3は、以下に詳述する、温度差算出手段3A、通水判定手段3B、冷温水生成手段3Cを備えている。
前記熱源機からの情報(信号)、即ち、熱源機制御装置10から、熱源水の入口側温度Twiと出口側温度Tweを取得し(入力し)、温度差算出手段3Aで入口側水温Twiと出口側水温Tweの温度差ΔT(ΔT=|Twi−Twe|)を算出する。
算出された温度差ΔTは通水判定手段3Bに送られ、熱源コントローラ3に予め記憶された設定値TSとを比較し、一次ポンプ2により正常に熱源水が通水しているか否かを判断する。この意味では、通水判定手段3Bは比較機能、判断機能を有しているともいえる。尚、予め記憶された設定値は通水判定手段3B内に機能手段として設けても良いし、外部配置として熱源コントローラ3に接続することも出来る。
更に、通水判定手段3Bには冷温水生成手段3Cが接続されていて、通水判定手段3Bにより一次ポンプ2による通水が正常と判断された熱源機1の冷凍サイクルRを動作させて冷水或いは温水を生成させる。冷温水生成手段3Cからの情報は熱源機制御装置10に戻る。これらの動作は各手段間で信号の入出力により実施される。
次に、上記のような熱源システムSの動作について図4を参照して説明する。
図4は、熱源コントローラ3および各熱源機1A〜1Cの熱源機制御装置10が実行する処理のフローチャートである。
オペレータが負荷設備側Bに設けられた操作部、または、熱源コントローラ3に設けられた操作部を操作する、あるいは、熱源コントローラ3に設定された運転スケジュールに応じて運転開始が指示されると、まず、熱源コントローラ3の指令に基づいて、各熱源機制御装置10が各熱源機1A〜1Cの一次ポンプインバータ23を介して1次ポンプ2A〜2Cを所定の周波数で駆動させる(ステップS1)。
所定時間経過後(ステップS2のYes)、熱源コントローラ3は、各熱源機制御装置10から各熱源機1A〜1Cの入口側水温Twiと出口側水温Tweを取得する(ステップS3)。
次に、熱源コントローラ3は、ステップS3の処理にて取得した各熱源機1A〜1Cの入口側水温Twiと出口側水温Tweの温度差ΔT(ΔT=|Twi−Twe|)を算出する(ステップS4)。
次に、熱源コントローラ3は、熱源コントローラ3に予め記憶された設定値Ts(例えば、Ts=2℃)と、ステップS4の処理で算出した各熱源機1A〜1CのΔTとを比較する(ステップS5)。
ここで、各熱源機1A〜1Cの冷凍サイクルRは動作していないので、水熱交換器16を通過する前後で熱源水に温度変化は生じない。しかし、各一次ポンプ2A〜2Cを駆動させた時点でエア溜まり等により正常に熱源水が流れなかった場合、各一次ポンプ2A〜2Cから発生する熱が各一次ポンプ2A〜2Cの下流側に位置する入口側水温センサ19に伝わり、この入口側水温センサ19により検知される入口側水温Twiが出口側水温センサ21により検知される出口側水温Tweよりも高くなる。また、各一次ポンプ2A〜2Cを駆動させた時点で水熱交換器16内部が部分凍結等により少しの熱源水しか流れなかった場合、当該凍結部分を流れて冷却された熱源水の熱が出口側水温センサ21に伝わり、この出口側水温センサ21により検知される出口側水温Tweが入口側水温センサ19により検知される入口温度水温Twiよりも低くなる。
つまり、何らかの不具合で各一次ポンプ2A〜2Cによる通水に異常がある場合は、入口側水温Twiと出口側水温Tweとの間に温度差ΔTが生じる。このΔTが設定値Tsより大きければ、各一次ポンプ2A〜2Cによる通水に異常があると判断できる。
逆に、入口側水温Twiと出口側水温Tweの温度差ΔTが設定値Ts以下であれば、各一次ポンプ2A〜2Cによる通水が正常であると判断できる。
従って、熱源コントローラ3は、ステップS5において各熱源機1A〜1Cにおける温度差ΔTが設定値Ts以下の場合(ステップS5のYes)、各一次ポンプ2A〜2Cにより熱源水が正常に通水していると判断し、各熱源機1A〜1Cの冷凍サイクルRを動作させて冷水或いは温水の生成を開始する(ステップS6)。
各熱源機1A〜1Cの温度差ΔTが設定値Tsよりも大きい場合(ステップS5のNo)、熱源コントローラ3は、各一次ポンプ2A〜2Cにより熱源水が正常に通水していないと判断し、熱源コントローラ3に設けられた表示手段に通水異常がある熱源機の情報を表示させ(ステップS7)、通水異常がある熱源機の冷凍サイクルRを動作させない。
熱源コントローラ3は、通水が正常な熱源機の冷凍サイクルRを動作させて冷水あるいは温水の生成を開始する(ステップS8)。
以上説明したように、本実施形態における熱源装置は、高価な流量計を設置することなく各一次ポンプ2A〜2Cによる通水状態を把握することができ、通水異常がある熱源機の冷凍サイクルRを動作させないので、水熱交換器16の凍結や破裂等を未然に防止することができる。
前記実施形態では、入口側水温センサ19により検知される入口側水温Twiと出口側水温センサ21により検知される出口側水温Tweの温度差ΔTにより各一次ポンプ2A〜2Cによる通水状態を判断したが、これに替えて、入口側水圧センサ20により検知される入口側水圧Pwiと出口側水圧センサ21により検知される出口側水圧Pweの圧力差ΔP(圧力損失)を用いて各一次ポンプ2A〜2Cによる通水状態を判断してもよい。
具体的には、熱源コントローラ3に予め記憶させた水熱交換器16の流量と圧力損失ΔPとを関連付けたテーブルに、各熱源機1A〜1Cの入口側水圧センサ20により検知される入口側水圧Pwiと出口側水圧センサ21により検知される出口側水圧Pweから算出した圧力損失ΔPを対応させて、各熱源機1A〜1Cの水熱交換器16を流れる熱源水の流量Qを推定し、推定した流量Qが所定の流量以上であるか否かによって各一次ポンプ2A〜2Cによる通水状態を判断することができる。
また、各熱源機1A〜1Cの出口側水圧センサ22により検知される出口側水圧Pweが、各一次ポンプ2A〜2Cの起動後に、起動前よりも所定値以上の水圧上昇を検知した場合に、各一次ポンプ2A〜2Cによる通水が正常であると判断してもよい。
また、負荷設備側Bの負荷に応じて熱源コントローラ3が熱源機1の運転台数を制御する場合においては、既に冷水あるいは温水を生成するために運転している熱源機から検知された出口側水圧Pwe(2台以上の熱源機が既に起動している場合にはその平均値)と、熱源コントローラ3の運転台数増加指令により新たに一次ポンプを起動した熱源機から検知された出口側水圧Pweとを比較して、両者の差が所定の範囲内であれば、新たに一次ポンプを起動した熱源機において通水が正常に行われていると判断してもよい。
また、既に冷水あるいは温水を生成するために運転している熱源機から検知された入口側水温Twi(2台以上の熱源機が既に起動している場合にはその平均値)と、熱源コントローラ3の運転台数増加指令により新たに一次ポンプを起動した熱源機から検知された入口側水温Twiとを比較して、両者の差が所定の範囲内であれば、新たに一次ポンプを起動した熱源機において通水が正常に行われていると判断してもよい。
その他、上記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
S…熱源システム、A…熱源機側、B…負荷設備側、1A〜1C…熱源機、2A〜2C
…一次ポンプ、3…熱源コントローラ、10…熱源機制御装置、19…熱源機入口側温センサ、20…熱源機入口側水圧センサ、21…熱源機出口側水温センサ、22…熱源機出口側水圧センサ

Claims (4)

  1. 熱源機側と負荷設備側とで構成される熱源システムの熱源装置であって、前記熱源装置は、熱源機および熱源コントローラから構成され、
    前記熱源機は、熱源水と冷凍サイクルを循環する冷媒との間で熱交換させる水熱交換器と、前記水熱交換器に熱源水を送水する一次ポンプと、前記水熱交換器、前記一次ポンプからの情報により動作する熱源機制御装置とを含み、
    前記熱源コントローラは熱源側の熱源機制御装置及び負荷設備側に接続され、前記一次ポンプを起動させた後、前記水熱交換器の前後の熱源水の温度差または、前記水熱交換器の前後の熱源水の圧力差に応じて、前記一次ポンプによる熱源水の通水が正常か否かを判断し、通水判断により通水が正常と判断された後、前記冷凍サイクルを動作させるようにした事、を備えたことを特徴とする熱源装置。
  2. 前記熱源コントローラは、熱源機の熱源機制御装置から、熱源水の入口側温度と出口側温度を取得し、その温度差を算出する温度差算出手段と、前記温度差と熱源コントローラに予め記憶された設定値とを比較し、一次ポンプにより正常に熱源水が通水しているか否かを判断する通水判定手段と、前記通水判定手段により一次ポンプによる通水が正常と判断された熱源機の冷凍サイクルを動作させて冷水或いは温水を生成させる冷温水生成手段を備えていることを特徴とする請求項1に記載の熱源装置。
    有する。
  3. 前記熱源機は、前記水熱交換器の熱源水入口側の水温を検知する入口側水温センサと、前記水熱交換器の熱源水出口側の水温を検知する出口側水温センサとを備え、前記熱源機制御装置は、前記入口側水温と前記出口側水温の温度差が所定の範囲内であるときに、前記冷凍サイクルの動作を許可することを特徴とする請求項2に記載の熱源装置。
  4. 前記熱源機は、前記水熱交換器の熱源水入口側の水圧を検知する入口側水圧センサと、前記水熱交換器の熱源水出口側の水圧を検知する出口側水圧センサと、を備え、前記熱源機制御装置は、前記入口側水圧と前記出口側水圧から圧力損失を算出し、予め記憶された前記水熱交換器の流量と圧力損失とを関連付けたテーブルから前記一次ポンプの流量を推定し、推定した流量が所定値以上であるときに、前記冷凍サイクルの動作を許可することを特徴とする請求項2に記載の熱源装置。
JP2012538682A 2010-10-15 2011-10-11 熱源装置 Active JP5622859B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010232048 2010-10-15
JP2010232048 2010-10-15
PCT/JP2011/073337 WO2012050087A1 (ja) 2010-10-15 2011-10-11 熱源装置

Publications (2)

Publication Number Publication Date
JPWO2012050087A1 JPWO2012050087A1 (ja) 2014-02-24
JP5622859B2 true JP5622859B2 (ja) 2014-11-12

Family

ID=45938316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012538682A Active JP5622859B2 (ja) 2010-10-15 2011-10-11 熱源装置

Country Status (7)

Country Link
US (1) US9157650B2 (ja)
JP (1) JP5622859B2 (ja)
KR (1) KR101496599B1 (ja)
CN (1) CN103154626B (ja)
BR (1) BR112013008728B1 (ja)
RU (1) RU2535271C1 (ja)
WO (1) WO2012050087A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221383A1 (ja) * 2016-06-23 2017-12-28 三菱電機株式会社 熱媒体循環システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004764B2 (ja) * 2012-06-12 2016-10-12 三菱重工業株式会社 熱源システムの熱源選択装置及びその方法並びに熱源システム
US10107531B2 (en) * 2012-08-31 2018-10-23 Danfoss A/S Method for controlling a chiller system
JP6249331B2 (ja) * 2013-11-01 2017-12-20 三菱重工サーマルシステムズ株式会社 熱源制御装置、熱源システム及び熱源制御方法
KR101805334B1 (ko) * 2014-02-20 2017-12-05 도시바 캐리어 가부시키가이샤 열원 장치
RU2624428C1 (ru) * 2016-04-04 2017-07-03 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Устройство для пофасадного регулирования температуры воздуха в помещении
WO2018146800A1 (ja) * 2017-02-10 2018-08-16 三菱電機株式会社 冷凍サイクル装置
CN109060865A (zh) * 2018-07-26 2018-12-21 桂林电子科技大学 一种等效热源的实验装置
CN110092488A (zh) * 2019-04-28 2019-08-06 导洁(北京)环境科技有限公司 基于物联网智能管理带制冷的暖通设备的水处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775364U (ja) * 1980-10-24 1982-05-10
JPS63163725A (ja) * 1986-12-26 1988-07-07 Mitsubishi Electric Corp 空気調和装置
JPH1078266A (ja) * 1996-09-04 1998-03-24 Nippon P-Mac Kk 水熱源空気調和装置の制御方法及び保護機能を有する水熱源空気調和装置
JP2003050067A (ja) * 2001-08-03 2003-02-21 Ckd Corp 冷却装置及び冷却装置の不具合判定方法
JP2005155973A (ja) * 2003-11-21 2005-06-16 Hitachi Plant Eng & Constr Co Ltd 空調設備
JP2009036485A (ja) * 2007-08-03 2009-02-19 Toshiba Carrier Corp 給湯装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161106A (en) * 1977-02-28 1979-07-17 Water Chemists, Inc. Apparatus and method for determining energy waste in refrigeration units
JPS5775364A (en) 1980-10-28 1982-05-11 Nec Corp Cost timepiece
DE68914142T2 (de) * 1988-01-19 1994-07-07 Multistack Int Pty Ltd Heiz- und kühlsysteme.
DE69209652D1 (de) * 1991-08-06 1996-05-09 Cassowary Ltd Temperatursteuerungsvorrichtung und zentraleinheit für temperatursteuerungsvorrichtung
US5419146A (en) * 1994-04-28 1995-05-30 American Standard Inc. Evaporator water temperature control for a chiller system
US5539382A (en) * 1995-04-21 1996-07-23 Carrier Corporation System for monitoring the operation of a condenser unit
KR0154593B1 (ko) * 1995-05-15 1999-02-18 배순훈 보일러의 펌프 이상과 열교환기 막힘구분장치 및 방법
JP3227651B2 (ja) * 1998-11-18 2001-11-12 株式会社デンソー 給湯器
JP3737381B2 (ja) * 2000-06-05 2006-01-18 株式会社デンソー 給湯装置
JP3841632B2 (ja) * 2000-09-12 2006-11-01 三菱電機株式会社 加熱気化式加湿機およびその故障検知方法
US7076964B2 (en) * 2001-10-03 2006-07-18 Denso Corporation Super-critical refrigerant cycle system and water heater using the same
JP4173981B2 (ja) * 2002-09-11 2008-10-29 株式会社山武 2次ポンプ方式熱源変流量制御方法および2次ポンプ方式熱源システム
JP2004205200A (ja) * 2002-12-10 2004-07-22 Sanyo Electric Co Ltd ヒートポンプ式温水暖房装置
JP2004232947A (ja) * 2003-01-30 2004-08-19 Sanyo Electric Co Ltd ヒートポンプ式温水暖房装置
JP4505363B2 (ja) 2005-03-29 2010-07-21 東洋熱工業株式会社 空調システムの冷温水制御方法
JP4948374B2 (ja) * 2007-11-30 2012-06-06 三菱電機株式会社 冷凍サイクル装置
JP2010196946A (ja) * 2009-02-24 2010-09-09 Daikin Ind Ltd ヒートポンプシステム
CN101782260B (zh) * 2010-01-22 2012-08-15 华中科技大学 一种空调水系统优化控制方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775364U (ja) * 1980-10-24 1982-05-10
JPS63163725A (ja) * 1986-12-26 1988-07-07 Mitsubishi Electric Corp 空気調和装置
JPH1078266A (ja) * 1996-09-04 1998-03-24 Nippon P-Mac Kk 水熱源空気調和装置の制御方法及び保護機能を有する水熱源空気調和装置
JP2003050067A (ja) * 2001-08-03 2003-02-21 Ckd Corp 冷却装置及び冷却装置の不具合判定方法
JP2005155973A (ja) * 2003-11-21 2005-06-16 Hitachi Plant Eng & Constr Co Ltd 空調設備
JP2009036485A (ja) * 2007-08-03 2009-02-19 Toshiba Carrier Corp 給湯装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221383A1 (ja) * 2016-06-23 2017-12-28 三菱電機株式会社 熱媒体循環システム
JPWO2017221383A1 (ja) * 2016-06-23 2019-01-31 三菱電機株式会社 熱媒体循環システム

Also Published As

Publication number Publication date
BR112013008728B1 (pt) 2020-10-27
CN103154626B (zh) 2015-11-25
CN103154626A (zh) 2013-06-12
RU2013122264A (ru) 2014-11-20
BR112013008728A2 (pt) 2016-06-28
US9157650B2 (en) 2015-10-13
JPWO2012050087A1 (ja) 2014-02-24
RU2535271C1 (ru) 2014-12-10
US20130219936A1 (en) 2013-08-29
KR20130091341A (ko) 2013-08-16
WO2012050087A1 (ja) 2012-04-19
KR101496599B1 (ko) 2015-02-26

Similar Documents

Publication Publication Date Title
JP5622859B2 (ja) 熱源装置
CN102077041B (zh) 空调装置和空调装置的制冷剂量判定方法
JP5029913B2 (ja) 空調システム及びその制御方法
KR101505856B1 (ko) 공기조화기 및 그 제어방법
JP6641376B2 (ja) 異常検知システム、冷凍サイクル装置、及び異常検知方法
JP4839861B2 (ja) 空気調和装置
JP6609697B2 (ja) 熱源システム、及び熱源システムの制御方法
JP2012141113A (ja) 空気調和温水機器システム
JP2014102050A (ja) 冷凍装置
WO2016125239A1 (ja) 冷凍空調装置
JP2016084969A (ja) 空調システムの制御装置、空調システム、及び空調システムの異常判定方法
KR20100079405A (ko) 공기조화기 및 그 동작방법
JP2017003135A (ja) 熱源設備及び熱源設備制御方法
JP5245575B2 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP7211913B2 (ja) ヒートポンプ装置
JP6111692B2 (ja) 冷凍装置
JP6042024B2 (ja) 空気調和装置
JP6636193B2 (ja) 異常検知システム、冷凍サイクル装置、及び異常検知方法
JP4809208B2 (ja) 冷凍空調システム
KR102470369B1 (ko) 공기조화기 및 그 동작방법
JP2016084987A (ja) 空調機の運転方法、その運転方法を用いた空調機
JP2016084987A5 (ja)
JP6636192B2 (ja) 異常検知システム、冷凍サイクル装置、及び異常検知方法
KR101266098B1 (ko) 공기조화기 및 그 제어방법
JP2015152290A (ja) 空気調和装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R150 Certificate of patent or registration of utility model

Ref document number: 5622859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250