JP5621440B2 - Winding bobbin for optical fiber - Google Patents
Winding bobbin for optical fiber Download PDFInfo
- Publication number
- JP5621440B2 JP5621440B2 JP2010205769A JP2010205769A JP5621440B2 JP 5621440 B2 JP5621440 B2 JP 5621440B2 JP 2010205769 A JP2010205769 A JP 2010205769A JP 2010205769 A JP2010205769 A JP 2010205769A JP 5621440 B2 JP5621440 B2 JP 5621440B2
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- bobbin
- winding drum
- flange
- shaft hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/03—Drawing means, e.g. drawing drums ; Traction or tensioning devices
- C03B37/032—Drawing means, e.g. drawing drums ; Traction or tensioning devices for glass optical fibres
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Storage Of Web-Like Or Filamentary Materials (AREA)
Description
本発明は、光ファイバのマイクロベンドロスを測定するに際し、光ファイバが巻かれる光ファイバ用巻取りボビンに関する。 The present invention relates to an optical fiber winding bobbin on which an optical fiber is wound when measuring the microbend loss of the optical fiber.
光ファイバの伝送損失にマイクロベンドによる損失があるが、これは被覆樹脂などに起因する微少なファイバ曲げにより発生する。この損失を測定するために従来は、光ファイバ用巻取りボビンの表面に細かいメッシュの金網を貼り付けて、その上に光ファイバを巻いて測定したり、あるいは、温度変化によるマイクロベンド特性を見るのに熱膨張の少ない石英製の巻取り胴部に大きなピッチで重ね巻きして恒温槽にて低温から高温まで変化させ、重なり部の曲げによるロスを温度変化と共に測定したりする方法(非特許文献1など参照)が採られていた。 The transmission loss of an optical fiber includes a loss due to a microbend, and this is caused by a slight fiber bending caused by a coating resin or the like. In order to measure this loss, conventionally, a fine mesh wire net is pasted on the surface of a take-up bobbin for optical fiber, and the optical fiber is wound on it, or the microbend characteristics due to temperature change are observed. However, a method of measuring the loss due to bending of the overlapping part with temperature change by wrapping around a winding cylinder made of quartz with low thermal expansion at a large pitch and changing from low temperature to high temperature in a constant temperature bath (non-patent Reference 1 etc.) was adopted.
上記のように光ファイバのマイクロベンドロスを測定する際、石英ガラス製の巻取り胴部に光ファイバを巻き付け、温度特性を測定する方法が採られている。このように巻取り胴部の素材に石英を用いるのは、熱膨張が少なく、正確にマイクロベンドロスが測定できるためである。図3に示すように、石英ガラス製巻取り胴部501に光ファイバを巻き付けるには、巻取機503の巻取り軸505に巻取り胴部501を装着して回転させる必要がある。この時、巻取り胴部501を保持し、回転力を伝えるために、金属製又は樹脂製の軸穴部品507と鍔509を取り付けて、軸穴部品507又は鍔509に巻取り胴部501を保持固定させ、回転力は巻取り軸505側のケレピン511と鍔509に設けたケレピン穴513の組み合わせで伝達していた。
そのため、温度特性の測定を行う際に、石英ガラス製巻取り胴部501に軸穴部品507と鍔509を取り付けたまま恒温槽に入れて温度変化させると、石英ガラス製巻取り胴部501に比べて熱膨張係数の大きい金属製又は樹脂製の軸穴部品507や鍔509で巻取り胴部を保持する場合、石英ガラス製巻取り胴部501を高温または低温にする際の熱膨張差で破損してしまう虞があった。この破損を避けるために、石英ガラス製巻取り胴部501を軸穴部品507や鍔509から外して恒温槽に入れることもできるが、その際には、光ファイバを床に接触させないように石英ガラス製巻取り胴部501の内径を受ける専用治具が必要であり、測定の準備作業が煩雑となり測定作業時間全体が長くなった。
As described above, when measuring the microbend loss of an optical fiber, a method of measuring the temperature characteristics by winding the optical fiber around a winding body made of quartz glass is employed. The reason why quartz is used for the material of the winding drum portion is that there is little thermal expansion and the microbend loss can be measured accurately. As shown in FIG. 3, in order to wind the optical fiber around the silica glass
Therefore, when the temperature characteristics are measured, if the temperature is changed by putting the
本発明は上記状況に鑑みてなされたもので、その目的は、石英ガラス製巻取り胴部の、他の部材との熱膨張差による破損を防止できる光ファイバ用巻取りボビンを提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a take-up bobbin for an optical fiber that can prevent damage due to a difference in thermal expansion of the take-up drum made of quartz glass with other members. is there.
本発明に係る上記目的は、下記構成により達成される。
(1) 軸穴部品の両端に一対の鍔が固定され、前記一対の鍔の間には筒状に形成された石英ガラス製の巻取り胴部が前記軸穴部品と同軸となって挟まれて固定される光ファイバ用巻取りボビンであって、
前記軸穴部品及び前記鍔は前記巻取り胴部と異なる熱膨張係数の素材からなり、
前記巻取り胴部と前記軸穴部品及び前記鍔との熱による膨張差を吸収する緩衝材が、前記巻取り胴部、前記軸穴部品及び前記鍔のそれぞれに接し、かつ前記巻取り胴部と前記軸穴部品及び前記鍔との間に介装されていることを特徴とする光ファイバ用巻取りボビン。
The above object of the present invention is achieved by the following configuration.
(1) A pair of rivets are fixed to both ends of the shaft hole component, and a cylindrical glass-made winding drum portion is sandwiched between the pair of ridges coaxially with the shaft hole component. An optical fiber winding bobbin fixed by
The shaft hole part and the flange are made of a material having a coefficient of thermal expansion different from that of the winding drum part,
A cushioning material that absorbs a difference in expansion due to heat between the winding drum portion, the shaft hole component, and the flange is in contact with each of the winding drum portion, the shaft hole component, and the flange, and the winding drum portion. An optical fiber take-up bobbin that is interposed between the shaft hole component and the flange.
この光ファイバ用巻取りボビンによれば、熱による膨張差を吸収する緩衝材が石英ガラス製巻取り胴部を保持する部分に介装され、軸穴部品の半径方向外側への膨張、及び鍔の軸方向への膨脹、鍔間隔の収縮、などにより石英ガラス製巻取り胴部に作用する応力を緩和することができる。例えば軸穴部品が半径方向外側に膨張しても、緩衝材にてその変位が吸収され、石英ガラス製巻取り胴部の内径を拡径させる方向の応力が格段に小さくなる。また、従来、当接していた石英製巻取り胴部の端面と鍔との間に緩衝材が挟入されることとなり、鍔が軸方向へ膨張しても、緩衝材にてその変位が吸収される。これにより、光ファイバ用巻取りボビンを、そのまま恒温槽に入れても、破損することなくマイクロベンドロスを測定できる。 According to this optical fiber winding bobbin, the buffer material that absorbs the difference in expansion due to heat is interposed in the portion that holds the winding barrel made of quartz glass, and the shaft hole component expands outward in the radial direction. The stress acting on the quartz glass winding drum can be relieved by the axial expansion and contraction of the ridge spacing. For example, even if the shaft hole component expands radially outward, the displacement is absorbed by the cushioning material, and the stress in the direction of expanding the inner diameter of the quartz glass winding drum is significantly reduced. In addition, a cushioning material is inserted between the end surface of the quartz winding drum and the flange, which has hitherto been abutted, and even if the collar expands in the axial direction, the displacement is absorbed by the cushioning material. Is done. Thereby, even if the take-up bobbin for optical fibers is put in a thermostat as it is, the microbend loss can be measured without being damaged.
(2) (1)の光ファイバ用巻取りボビンであって、前記緩衝材が弾性体であることを特徴とする光ファイバ用巻取りボビン。 (2) The optical fiber winding bobbin according to (1), wherein the buffer material is an elastic body.
この光ファイバ用巻取りボビンによれば、温度変化により、軸穴部品及び鍔と、石英ガラス製巻取り胴部との生じる変位を、弾性体の弾性変形により繰り返し吸収することができる。 According to this optical fiber winding bobbin, the displacement caused by the shaft hole part and the flange and the quartz glass winding drum due to temperature change can be repeatedly absorbed by the elastic deformation of the elastic body.
(3) (2)の光ファイバ用巻取りボビンであって、前記弾性体がシリコンゴムであることを特徴とする光ファイバ用巻取りボビン。 (3) The optical fiber winding bobbin according to (2), wherein the elastic body is silicon rubber.
この光ファイバ用巻取りボビンによれば、弾性体として、恒温槽で設定する温度範囲に耐えられるシリコンゴムが選定される。温度特性の測定は、通常温度範囲が−60°Cから+80°Cであるので、ブタジエンゴムなどの他のゴムに比べ、低温耐性、耐付着性、弾力回復性などの面で、シリコンゴムが最も適している。 According to this take-up bobbin for optical fibers, silicon rubber that can withstand the temperature range set in the thermostat is selected as the elastic body. The temperature characteristics are usually measured in the temperature range of −60 ° C. to + 80 ° C. Therefore, compared with other rubbers such as butadiene rubber, silicon rubber is more suitable in terms of low temperature resistance, adhesion resistance, elasticity recovery, etc. Most suitable.
(4) (1)〜(3)のいずれか1つの光ファイバ用巻取りボビンであって、前記緩衝材は、前記巻取り胴部の円周方向に複数配置されていることを特徴とする光ファイバ用巻取りボビン。 (4) The take-up bobbin for optical fibers according to any one of (1) to (3), wherein a plurality of the buffer materials are arranged in a circumferential direction of the take-up drum portion. Winding bobbin for optical fiber.
この光ファイバ用巻取りボビンによれば、緩衝材が巻取り胴部の円周方向にバランス良く分散配置されることで、円周方向均等に、熱膨張差による石英ガラス製巻取り胴部に作用する応力を緩和することができる。 According to the take-up bobbin for optical fiber, the buffer material is distributed and arranged in a balanced manner in the circumferential direction of the take-up drum portion, so that it is uniformly distributed in the circumferential direction on the take-up drum portion made of quartz glass due to the difference in thermal expansion. The acting stress can be relaxed.
本発明に係る光ファイバ用巻取りボビンによれば、緩衝材を、石英ガラス製巻取り胴部と鍔及び軸穴部品との間に介装することにより、高温時に鍔や軸穴部品が熱膨張したときや、低温時に鍔間隔が収縮することによる熱膨張差を吸収でき、巻取り胴部の熱膨張差による破損を防止することができる。 According to the optical fiber winding bobbin of the present invention, the cushioning material is interposed between the quartz glass winding drum and the flange and the shaft hole component so that the flange and the shaft hole component are heated at a high temperature. It can absorb the difference in thermal expansion due to expansion or shrinkage of the ridge spacing at low temperatures, and can prevent damage to the winding drum due to the difference in thermal expansion.
以下、本発明の実施の形態を図面を参照して説明する。
図1は本発明に係る光ファイバ用巻取りボビンの断面図、図2は図1のA−A断面矢視図である。
本実施の形態による光ファイバ用巻取りボビン11は、図3に示した従来と同様の巻取機503の巻取り軸505に装着して回転される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a take-up bobbin for an optical fiber according to the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG.
The optical
光ファイバ用巻取りボビン11は、上記巻取り軸505が挿入される軸穴部品13と、この軸穴部品13の両端の鍔15と、光ファイバが外周に巻かれる石英ガラス製の巻取り胴部17と、を有する。軸穴部品13は、軸部19と、その両端に溶接等によって固定される小径フランジ21とを有する。この小径フランジ21には鍔15が固定される。
The optical
軸部19、小径フランジ21、及び鍔15は、金属製又は樹脂製となる。すなわち、軸穴部品13と鍔15は、巻取り胴部17と異なる熱膨張係数の素材からなっている。
The
軸穴部品13に固定される鍔15は、軸部19の端に固定される小径フランジ21に、六角穴付ネジ27によって固定される。六角穴付ネジ27は、鍔15の外側から挿入されて、小径フランジ21に形成される雌ネジ部29に螺合される。
なお、巻取り機に取り付けるために、左右いずれか、もしくは両方の鍔15に、上記ケレピン511に係合するケレピン穴を形成しても良い。また、ボビン外側に、上記ケレピン511に係合するようなケレピン穴を開けた別の取付機構を設けても良い。
The
In addition, in order to attach to a winder, you may form the pin pin hole engaged with the said
一対の鍔15の間には、筒状に形成される上記した石英ガラス製の巻取り胴部17が、軸穴部品13と同軸となって挟まれて固定される。従来構造では、巻取り胴部17は直接鍔及び軸穴部品に当接して挟まれていたが、本実施の形態による光ファイバ用巻取りボビン11では、その間に緩衝材37が介装される。巻取り胴部17は、緩衝材37を介して鍔15に挟まれることで、軸線方向の動きが緩和される。また、この緩衝材37は、巻取り胴部17の半径方向の動きも緩和している。なお、介装とは部材の間に位置させ、目的の形にすることを言う。本実施の形態では、鍔15及び軸穴部品13と巻取り胴部17との間に位置させている。
Between the pair of
左右の鍔15の内側対向面39には、小径フランジ21の外周に沿って図1に示す環状凹部41が形成される。また、小径フランジ21の外周部は歯車状になっていて、挟持壁43が半径方向外側に突出するように形成されている。この挟持壁43は、円周方向に所定間隔(角度60°間隔)で複数(本例では6つ)形成される。それぞれの挟持壁43には緩衝材37が保持される。すなわち、本実施の形態では、巻取り胴部17と鍔15及び軸穴部品13の熱による膨張差を吸収する緩衝材37が、巻取り胴部17と鍔15及び軸穴部品13との間において、円周方向で複数個介装されている。
An
緩衝材37は、図1に示すように、鍔の半径方向の寸法の略中央部で、半径方向内側が厚肉部45、外側が薄肉部47となる。厚肉部45と薄肉部47の間には段部49が形成される。つまり、緩衝材37はL字型となる。この段部49は、巻取り胴部17の内周面51に当接する。すなわち、緩衝材37は、半径方向の一端が挟持壁43に当接し、段部49が巻取り胴部17の内周面51及び巻取り胴部17の端面53に当接する。これにより、巻取り胴部17は、半径方向の動きが厚肉部45によって緩和され、軸線方向の動きが薄肉部47によって緩和されている。
As shown in FIG. 1, the cushioning
緩衝材37は弾性体であることが好ましい。また、弾性体はシリコンゴムであることがより好ましい。
The
次に、上記構成を有する光ファイバ用巻取りボビン11の作用を説明する。
光ファイバ用巻取りボビン11では、熱による膨張差を吸収する緩衝材37が巻取り胴部17を保持する部分に介装され、軸穴部品13や鍔15の熱による膨張や収縮により巻取り胴部17に作用する応力が緩和される。例えば軸穴部品13が半径方向外側に膨張しても、緩衝材37にてその変位が吸収され、巻取り胴部17の内径を拡径させる方向の応力が厚肉部45によって吸収され格段に小さくなる。
Next, the operation of the optical
In the optical fiber take-up
また、従来、当接していた巻取り胴部17の端面53と鍔15との間に緩衝材37の薄肉部47が挟入されることとなり、鍔15が軸方向に膨張・収縮しても、薄肉部47にてその変位が吸収され、巻取り胴部17の端部に掛かる応力が緩和される。これにより、光ファイバ用巻取りボビン11を、そのまま恒温槽に入れても、破損することなくマイクロベンドロスを測定することが可能となる。
Further, the thin-
温度変化により、軸穴部品13や鍔15と、巻取り胴部17との間に生じる変位は、緩衝材37の弾性変形により繰り返し吸収することができる。この種の弾性体としては、恒温槽で設定する温度範囲に耐えられるゴムなどが選定される。実際には温度範囲が−60°Cから+80°Cであるので、低温耐性では、ブタジエンゴムとシリコンゴムなどが適当な材料として挙げられるが、耐付着性や弾力回復性で勝るシリコンゴムがより好適となる。
The displacement generated between the
また、光ファイバ用巻取りボビン11では、緩衝材37が巻取り胴部17の円周方向にバランス良く分散配置されることで、円周方向均等に、熱膨張差による石英ガラス製巻取り胴部に作用する応力を緩和することができる。
Further, in the optical
したがって、本実施の形態に係る光ファイバ用巻取りボビン11によれば、緩衝材37を、巻取り胴部17と鍔15及び軸穴部品13の間に介装することにより、高温または低温とした時の熱膨張差を吸収でき、巻取り胴部17の熱膨張差による破損を防止することができる。
Therefore, according to the take-up
上記した実施の形態と同様の構成で光ファイバ用巻取りボビンを作成し、それに光ファイバを巻き、恒温槽にて低温から高温まで変化させてマイクロベンドロスを測定し、その際のボビンの破損の有無を調べた。
なお、緩衝材にはゴム硬度45度のシリコンゴムを用いた。
光ファイバを巻取り胴部に2500m巻き、光ファイバを巻装した光ファイバ用巻取りボビンを、恒温槽に120時間収容し、低温から高温まで変化させた。変化させた温度範囲は−60°Cから+80°Cとし、この温度の変化を1サイクルとして、20時間に1回の割合で6回繰り返した。
このようなマイクロベンドロスの測定を何回か繰り返したが、石英ガラス製巻取り胴部が破損することは無かった。
なお、恒温槽から取り出した光ファイバ用巻取りボビンのシリコンゴムの潰れを実測したが、径方向では、巻取り胴部の直径φ100に対し、ゴム厚さ15.5mmにおいて3.2%の潰れ、長さ方向では、巻取り胴部の管長さ220mmに対し、ゴム厚さ5.5mmにおいて9%の潰れが確認された。このことから、緩衝材を巻取り胴部と鍔及び軸穴部品との間に介装することにより、温度差により生じる部材間の膨張差が緩衝材によって吸収されているため、巻取り胴部に破損の生じないことが知見できた。
Create a take-up bobbin for an optical fiber with the same configuration as the above-mentioned embodiment, wind the optical fiber on it, measure the microbend loss by changing from low temperature to high temperature in a constant temperature bath, and break the bobbin at that time The presence or absence of was investigated.
Note that silicon rubber having a rubber hardness of 45 degrees was used as the buffer material.
The optical fiber winding bobbin around which the optical fiber was wound around the winding body and the optical fiber was wound was housed in a thermostatic bath for 120 hours, and was changed from a low temperature to a high temperature. The temperature range changed was from −60 ° C. to + 80 ° C. This change in temperature was defined as one cycle, and was repeated six times at a rate of once every 20 hours.
Such measurement of microbendros was repeated several times, but the quartz glass winding drum was not damaged.
In addition, the crushing of the silicon rubber of the take-up bobbin for the optical fiber taken out from the thermostatic chamber was measured. In the length direction, 9% crushing was confirmed at a rubber thickness of 5.5 mm with respect to the tube length of 220 mm of the winding drum portion. Because of this, by interposing the cushioning material between the winding drum portion and the flange and shaft hole parts, the difference in expansion between the members caused by the temperature difference is absorbed by the cushioning material. It was found that no damage occurred.
11 光ファイバ用巻取りボビン
13 軸穴部品
15 鍔
17 巻取り胴部
37 緩衝材
DESCRIPTION OF
Claims (4)
前記軸穴部品及び前記鍔は前記巻取り胴部と異なる熱膨張係数の素材からなり、
前記巻取り胴部と前記軸穴部品及び前記鍔との熱による膨張差を吸収する緩衝材が、前記巻取り胴部、前記軸穴部品及び前記鍔のそれぞれに接し、かつ前記巻取り胴部と前記軸穴部品及び前記鍔との間に介装されていることを特徴とする光ファイバ用巻取りボビン。 A pair of flanges are fixed to both ends of the shaft hole component, and a cylindrical glass-made winding drum portion is coaxially sandwiched and fixed between the pair of flanges. An optical fiber take-up bobbin,
The shaft hole part and the flange are made of a material having a coefficient of thermal expansion different from that of the winding drum part,
A cushioning material that absorbs a difference in expansion due to heat between the winding drum portion, the shaft hole component, and the flange is in contact with each of the winding drum portion, the shaft hole component, and the flange, and the winding drum portion. An optical fiber take-up bobbin that is interposed between the shaft hole component and the flange.
前記緩衝材が弾性体であることを特徴とする光ファイバ用巻取りボビン。 A take-up bobbin for an optical fiber according to claim 1,
The take-up bobbin for an optical fiber, wherein the buffer material is an elastic body.
前記弾性体がシリコンゴムであることを特徴とする光ファイバ用巻取りボビン。 A take-up bobbin for an optical fiber according to claim 2,
A take-up bobbin for an optical fiber, wherein the elastic body is silicon rubber.
前記緩衝材は、前記巻取り胴部の円周方向に複数配置されていることを特徴とする光ファイバ用巻取りボビン。 The take-up bobbin for an optical fiber according to any one of claims 1 to 3,
A plurality of the buffer materials are arranged in the circumferential direction of the winding drum part, and the winding bobbin for optical fiber is characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010205769A JP5621440B2 (en) | 2010-09-14 | 2010-09-14 | Winding bobbin for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010205769A JP5621440B2 (en) | 2010-09-14 | 2010-09-14 | Winding bobbin for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012062138A JP2012062138A (en) | 2012-03-29 |
JP5621440B2 true JP5621440B2 (en) | 2014-11-12 |
Family
ID=46058258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010205769A Active JP5621440B2 (en) | 2010-09-14 | 2010-09-14 | Winding bobbin for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5621440B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101936973B1 (en) * | 2011-06-17 | 2019-01-09 | 베카에르트 빈장 스틸 코드 코., 엘티디. | Spool for winding fine wire at high tension with internal flexible supports |
CN109545539B (en) * | 2019-01-22 | 2020-07-17 | 中国科学院电工研究所 | Method for manufacturing frameless niobium-tin superconducting coil |
CN113979176B (en) * | 2021-10-27 | 2022-12-06 | 江西德尔诚半导体有限公司 | Diode device that gathers materials |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5125590A (en) * | 1991-01-14 | 1992-06-30 | Hughes Aircraft Company | Compliant bobbin for an optical fiber wound pack |
JP2004338838A (en) * | 2003-05-14 | 2004-12-02 | Sumitomo Electric Ind Ltd | Linear body winding bobbin |
-
2010
- 2010-09-14 JP JP2010205769A patent/JP5621440B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012062138A (en) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6781775B2 (en) | Displacement measuring device using a fiber Bragg grating sensor and its sensitivity and durability adjustment method | |
US9248615B2 (en) | Compact fiber optic sensors | |
JP5621440B2 (en) | Winding bobbin for optical fiber | |
US20150323013A1 (en) | Fiber sensor assembly | |
US20170328743A1 (en) | Cable and method for introducing initial tensile strain to optical fiber | |
GB2548951A (en) | Temperature measuring device for outer wall surface of pipelines of a nuclear power plant | |
US10006843B2 (en) | Method for predicting remaining life of hose and method for diagnosing deterioration level of hose | |
CN108332878B (en) | Fiber grating temperature sensor and preparation method thereof | |
CN102305965A (en) | Sensing optical cable for synchronously monitoring temperature and pressure in oil well tubing in distribution mode | |
US20160147011A1 (en) | Polarisation maintaining optical fiber package | |
JP2024503456A (en) | FBG heat-resistant strain sensor and its calibration method | |
US20160159000A1 (en) | Method of making adhesion between thermoset and thermoplastic polymers | |
JP2012194004A (en) | Optical fiber characteristic measuring method | |
US9746387B2 (en) | Machine arrangement | |
US20160161346A1 (en) | Fiber-Optic Sensor with a Protective Tube and Method for Installing a Fiber-Optic Sensor in the Protective Tube | |
WO2014090324A1 (en) | Optical fibre sensor assembly | |
WO2014108170A1 (en) | Fibreoptic sensor clip | |
CN107817061B (en) | Packaging process method of novel FBG temperature sensor based on low-melting-point glass | |
US10451807B2 (en) | Strain isolated fiber Bragg grating sensors | |
JP2023050692A (en) | temperature sensor | |
JP2006047154A (en) | Fiber-optic temperature sensor and its manufacturing method | |
JP7047366B2 (en) | Fiber optic sensor | |
KR102499778B1 (en) | Fiber bragg grating strain sensor pakage | |
JP6259342B2 (en) | Optical fiber sensor | |
CN210222297U (en) | Reflector packaging structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20121031 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140709 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140826 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140908 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5621440 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |