[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5620685B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP5620685B2
JP5620685B2 JP2010021027A JP2010021027A JP5620685B2 JP 5620685 B2 JP5620685 B2 JP 5620685B2 JP 2010021027 A JP2010021027 A JP 2010021027A JP 2010021027 A JP2010021027 A JP 2010021027A JP 5620685 B2 JP5620685 B2 JP 5620685B2
Authority
JP
Japan
Prior art keywords
heat exchange
exhaust gas
heat exchanger
heat
exchange tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010021027A
Other languages
Japanese (ja)
Other versions
JP2011158200A (en
Inventor
直毅 鹿園
直毅 鹿園
庸人 和氣
庸人 和氣
四郎 生田
四郎 生田
勇 神取
勇 神取
和明 岩元
和明 岩元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANDORI INDUSTRY LTD.
University of Tokyo NUC
Waki Factory Inc
Original Assignee
KANDORI INDUSTRY LTD.
University of Tokyo NUC
Waki Factory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANDORI INDUSTRY LTD., University of Tokyo NUC, Waki Factory Inc filed Critical KANDORI INDUSTRY LTD.
Priority to JP2010021027A priority Critical patent/JP5620685B2/en
Priority to US13/575,727 priority patent/US20130032320A1/en
Priority to PCT/JP2011/051617 priority patent/WO2011096324A1/en
Priority to CN201180007929.1A priority patent/CN102822617B/en
Publication of JP2011158200A publication Critical patent/JP2011158200A/en
Application granted granted Critical
Publication of JP5620685B2 publication Critical patent/JP5620685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • F28D7/1692Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換器に関し、詳しくは、燃焼後の排ガスと熱交換媒体との熱交換により排ガスの熱を回収するフィンレスの熱交換器に関する。   The present invention relates to a heat exchanger, and more particularly to a finless heat exchanger that recovers heat of exhaust gas by heat exchange between exhaust gas after combustion and a heat exchange medium.

従来、この種の熱交換器としては、U字状に形成された複数のチューブに冷却水を流し、複数のチューブの冷却水の出口に近い側から複数のチューブ内の冷却水と略直交して排ガスが流れるようにして排ガスの熱を回収するものが提案されている(例えば、非特許文献1参照)。この熱交換器では、複数のチューブなどをステンレスで形成することによって排ガスによる腐食を防止し、複数のチューブ間にコルゲートフィンを挿入することによって熱交換効率の向上を図っている。   Conventionally, as this type of heat exchanger, cooling water is made to flow through a plurality of tubes formed in a U-shape, and substantially orthogonal to the cooling water in the plurality of tubes from the side close to the cooling water outlet of the plurality of tubes. In order to recover the heat of the exhaust gas so that the exhaust gas flows, there has been proposed (for example, see Non-Patent Document 1). In this heat exchanger, a plurality of tubes and the like are formed of stainless steel to prevent corrosion due to exhaust gas, and heat exchange efficiency is improved by inserting corrugated fins between the plurality of tubes.

日本機械学会論文集(B偏) 72巻713号,pp.96−103,2006年Transactions of the Japan Society of Mechanical Engineers (B-biased), vol.72,713, pp. 96-103, 2006

排ガスの熱を回収する潜熱回収用の熱交換器では、小型化を図ると、排ガスの熱交換により生成される凝縮水により熱交換効率が低下する場合が生じる。熱交換器の小型化は、チューブを扁平にすると共にチューブ間の間隔を小さくして排ガスとの熱交換の効率を高くすることにより行なわれるが、チューブ間の間隔が小さくなると凝縮水がチューブ間に留まって排ガスの流通を妨げることとなり、熱交換の効率を低下させてしまう。特にチューブ間にフィンが取り付けられている熱交換器では、フィン効率の低下に加え、フィンが凝縮水の排水を妨げるため、熱交換の効率の低下は著しくなる。   In a heat exchanger for recovering latent heat that recovers heat of exhaust gas, if the size is reduced, heat exchange efficiency may be reduced due to condensed water generated by heat exchange of exhaust gas. The heat exchanger is downsized by flattening the tubes and reducing the spacing between the tubes to increase the efficiency of heat exchange with the exhaust gas. This hinders the flow of exhaust gas and reduces the efficiency of heat exchange. Particularly in a heat exchanger in which fins are attached between tubes, in addition to a decrease in fin efficiency, the fins impede drainage of condensed water, and thus a decrease in heat exchange efficiency becomes significant.

本発明の熱交換器は、排ガスの熱を回収する潜熱回収用の熱交換器において、熱交換器の小型化を図ると共に熱交換の効率を向上させることを主目的とする。   The main purpose of the heat exchanger of the present invention is to reduce the size of the heat exchanger and improve the efficiency of heat exchange in a latent heat recovery heat exchanger that recovers the heat of exhaust gas.

本発明の熱交換器は、上述の主目的を達成するために以下の手段を採った。   The heat exchanger of the present invention employs the following means in order to achieve the main object described above.

本発明の熱交換器は、
燃焼後の排ガスと熱交換媒体との熱交換により前記排ガスの熱を回収するフィンレスの熱交換器であって、
酸に対する耐食性に優れた金属板材により前記熱交換媒体の流路の厚みが3mm以下となるよう扁平な中空管として形成されて3mm以下の間隔をもって長手方向が主として鉛直方向となるよう並列に配置された複数の熱交換用チューブと、
前記複数の熱交換用チューブを収納すると共に前記複数の熱交換用チューブとの間に前記排ガスを流通するための流路を形成するシェルと、
を備え、
前記複数の熱交換用チューブは、鉛直下方に前記熱交換媒体の流入口が形成されると共に鉛直上方に前記熱交換媒体の流出口が形成されてなり、
前記シェルは、鉛直上方に前記排ガスの流入口が形成されると共に鉛直下方に前記排ガスの流出口が形成されてなり、
前記複数の熱交換用チューブおよび/または前記シェルは、前記排ガスが鉛直上方から下方に向けて蛇行して前記複数の熱交換用チューブの隙間に流れるよう蛇行誘導部が形成されてなる、
ことを要旨とする。
The heat exchanger of the present invention is
A finless heat exchanger for recovering heat of the exhaust gas by heat exchange between the exhaust gas after combustion and the heat exchange medium,
Formed as a flat hollow tube with a metal plate material excellent in corrosion resistance against acid so that the thickness of the flow path of the heat exchange medium is 3 mm or less, and arranged in parallel so that the longitudinal direction is mainly the vertical direction with an interval of 3 mm or less A plurality of heat exchange tubes,
A shell that houses the plurality of heat exchange tubes and forms a flow path for circulating the exhaust gas between the plurality of heat exchange tubes;
With
The plurality of heat exchange tubes have an inlet for the heat exchange medium formed vertically downward and an outlet for the heat exchange medium formed vertically upward,
The shell is formed with the exhaust gas inlet formed vertically above and the exhaust gas outlet formed vertically below,
The plurality of heat exchange tubes and / or the shell are formed with meandering guide portions such that the exhaust gas meanders vertically from below to flow through the gaps between the plurality of heat exchange tubes.
This is the gist.

本発明の熱交換器では、酸に対する耐食性に優れた金属板材により熱交換媒体の流路の厚みが3mm以下となるよう扁平な中空管として形成された複数の熱交換用チューブを3mm以下の間隔をもって長手方向が主として鉛直方向となるよう並列に配置し、この配置した複数の熱交換用チューブをシェルに収納する。このとき、シェルと複数の熱交換用チューブとの間に排ガスを流通するための流路が形成される。複数の熱交換用チューブには鉛直下方に熱交換媒体の流入口を形成すると共に鉛直上方に熱交換媒体の流出口を形成し、シェルには鉛直上方に排ガスの流入口を形成すると共に鉛直下方に排ガスの流出口を形成する。そして、複数の熱交換用チューブかシェルの一方または双方に排ガスが鉛直上方から下方に向けて蛇行して複数の熱交換用チューブの隙間に流れるよう蛇行誘導部を形成する。このように、熱交換媒体の流路の厚みが3mm以下となるよう扁平な中空管として形成された複数の熱交換用チューブを3mm以下の間隔をもって並列に配置し、これをシェルに収納するから、小型の熱交換器とすることができる。   In the heat exchanger of the present invention, a plurality of heat exchanging tubes formed as flat hollow tubes so that the thickness of the flow path of the heat exchanging medium is 3 mm or less by a metal plate having excellent corrosion resistance to acid is 3 mm or less. It arrange | positions in parallel so that a longitudinal direction may become a vertical direction mainly with a space | interval, and this arrange | positioned several heat exchange tube is accommodated in a shell. At this time, a flow path for circulating the exhaust gas is formed between the shell and the plurality of heat exchange tubes. The heat exchange medium inlet is formed vertically below the plurality of heat exchange tubes, the heat exchange medium outlet is formed vertically upward, and the exhaust gas inlet is formed vertically upward on the shell. An exhaust port for exhaust gas is formed. Then, a meandering guide portion is formed in one or both of the plurality of heat exchange tubes or shells so that the exhaust gas meanders vertically from below to flow through the gaps of the plurality of heat exchange tubes. In this way, a plurality of heat exchange tubes formed as flat hollow tubes so that the thickness of the flow path of the heat exchange medium is 3 mm or less are arranged in parallel at intervals of 3 mm or less, and these are stored in the shell. Therefore, a small heat exchanger can be obtained.

こうして構成された本発明の熱交換器では、熱交換媒体は、複数の熱交換用チューブの鉛直下方に形成された流入口から流入して並列に配置された複数の熱交換用チューブを鉛直下方から鉛直上方に向けて流れ、複数の熱交換用チューブの鉛直上方に形成された流出口から流出する。一方、排ガスは、シェルの鉛直上方に形成された流入口から流入してシェルと複数の熱交換用チューブとの間に形成された流路を流れ、シェルの鉛直下方に形成された流出口から流出する。排ガスは、シェルと複数の熱交換用チューブとの間に形成された流路では、複数の熱交換用チューブかシェルの一方または双方に形成された蛇行誘導部により鉛直上方から下方に向けて蛇行して複数の熱交換用チューブの隙間に流れる。従って、熱交換媒体は鉛直下方から鉛直上方に流れることとなり、排ガスは蛇行誘導部により蛇行するものの全体として鉛直上方から鉛直下方に流れることとなるから、熱交換媒体と排ガスは対向流となり、熱交換の効率を向上させることになる。排ガスの熱交換により複数の熱交換用チューブの扁平面に凝縮水が生じるが、複数の熱交換用チューブは長手方向が主として鉛直方向となるよう並列に配置されているから、凝縮水は鉛直下方に向けて集水しながら排水される。この結果、生成した凝縮水が留まって排ガスの流れを妨げるのを抑制することができ、排ガスの圧力損失を低減することができる。また、本発明の熱交換器は、フィンレスの熱交換器として構成されているから、複数の熱交換用チューブの間にフィンが取り付けられているものに比して凝縮水の排水を促進することができる。この結果、小型で熱交換の効率のよい熱交換器とすることができる。   In the heat exchanger of the present invention configured as described above, the heat exchange medium flows vertically from the inlet formed in the vertically lower side of the plurality of heat exchange tubes, and vertically moves the plurality of heat exchange tubes arranged in parallel. From the outflow port formed vertically above the plurality of heat exchange tubes. On the other hand, the exhaust gas flows from the inlet formed vertically above the shell, flows through the flow path formed between the shell and the plurality of heat exchange tubes, and flows from the outlet formed vertically below the shell. leak. In the flow path formed between the shell and the plurality of heat exchange tubes, the exhaust gas is meandered vertically upward from below by a meandering guide portion formed in one or both of the plurality of heat exchange tubes or shells. And flows into the gaps between the plurality of heat exchange tubes. Accordingly, the heat exchange medium flows vertically downward from above, and the exhaust gas meanders by the meandering guide portion, but as a whole it flows from vertically upward to vertically downward. Exchange efficiency will be improved. Condensed water is generated on the flat surfaces of the plurality of heat exchange tubes due to heat exchange of the exhaust gas, but the plurality of heat exchange tubes are arranged in parallel so that the longitudinal direction is mainly the vertical direction. Drained while collecting water. As a result, it is possible to suppress the generated condensed water from remaining and hinder the flow of the exhaust gas, and reduce the pressure loss of the exhaust gas. In addition, since the heat exchanger of the present invention is configured as a finless heat exchanger, it promotes drainage of condensed water as compared with a case where fins are attached between a plurality of heat exchange tubes. Can do. As a result, it is possible to provide a heat exchanger that is small in size and efficient in heat exchange.

本発明の熱交換器において、前記複数の熱交換用チューブは、扁平面の略中央に鉛直方向の溝が形成されてなる、ものとすることもできる。こうすれば、複数の熱交換用チューブの扁平面に生じる凝縮水が溝を伝って鉛直下方に流れるから、凝縮水の排水性を向上させることができ、より小型で熱交換の効率のよい熱交換器とすることができる。また、この溝を形成することにより、複数の熱交換用チューブの強度を向上させることができる。この結果、より薄い金属板材を用いて複数の熱交換用チューブを形成することができる。この場合、前記複数の熱交換用チューブは前記溝が内側で接着固定されてなる、ものとすることもできる。こうすれば、複数の熱交換用チューブの強度を更に向上させることができる。   In the heat exchanger according to the present invention, the plurality of heat exchange tubes may be configured such that a vertical groove is formed at substantially the center of the flat surface. In this way, the condensed water generated on the flat surfaces of the plurality of heat exchange tubes flows vertically downward along the groove, so that the drainage of the condensed water can be improved, and heat that is more compact and efficient in heat exchange can be obtained. It can be an exchanger. Moreover, the strength of the plurality of heat exchange tubes can be improved by forming this groove. As a result, a plurality of heat exchange tubes can be formed using a thinner metal plate. In this case, the plurality of heat exchange tubes may be configured such that the grooves are bonded and fixed inside. In this way, the strength of the plurality of heat exchange tubes can be further improved.

また、本発明の熱交換器において、前記蛇行誘導部は、前記排ガスが前記複数の熱交換用チューブに対して略水平方向に流れるよう前記シェルの内側に形成された誘導壁である、ものとすることもできる。この場合、前記蛇行誘導部は、前記誘導壁に加え、前記シェルの誘導壁に整合する位置に該誘導壁の方向に前記複数の熱交換用チューブの扁平面に形成されたリブである、ものとすることもできる。こうすれば、排ガスをより確実に蛇行しながら複数の熱交換用チューブの隙間に流すことができ、熱交換の効率を向上させることができる。   Further, in the heat exchanger according to the present invention, the meandering guide portion is a guide wall formed inside the shell so that the exhaust gas flows in a substantially horizontal direction with respect to the plurality of heat exchange tubes. You can also In this case, the meandering guide portion is a rib formed on the flat surface of the plurality of heat exchange tubes in the direction of the guide wall at a position aligned with the guide wall of the shell, in addition to the guide wall. It can also be. If it carries out like this, exhaust gas can be made to flow through the clearance gap between several tubes for heat exchange, meandering more reliably, and the efficiency of heat exchange can be improved.

さらに、本発明の熱交換器において、前記蛇行誘導部は、前記複数の熱交換用チューブの扁平面に略水平方向に複数段となるよう形成された複数のリブであり、前記シェルは、外壁の内側が前記複数の熱交換用チューブの複数のリブが形成された位置における両側面のうち最上段から下段に向けて交互に一方の側面と他方の側面とに当接すると共に同一段におけ両側面のうち前記当接する側面と異なる側面では当接しないよう形成されてなる、ものとすることもできる。こうすれば、複数の熱交換用チューブの扁平面に形成された複数のリブとシェルとにより、シェルの内側に誘導壁を形成することなく、排ガスを蛇行させながら複数の熱交換用チューブの隙間に流すことができ、熱交換の効率を向上させることができる。   Furthermore, in the heat exchanger according to the present invention, the meandering guide portion is a plurality of ribs formed in a substantially horizontal direction on a flat surface of the plurality of heat exchange tubes, and the shell includes an outer wall. Of the plurality of heat exchanging tubes at a position where a plurality of ribs are formed, abuts against one side and the other side alternately from the uppermost side to the lower side, and both sides at the same level. It can also be formed so that it does not come into contact with a side surface different from the side surface with which the surface comes into contact. In this way, the plurality of ribs and shells formed on the flat surfaces of the plurality of heat exchange tubes allow the gaps between the plurality of heat exchange tubes while meandering the exhaust gas without forming a guide wall inside the shell. The efficiency of heat exchange can be improved.

あるいは、本発明の熱交換器において、前記複数の熱交換用チューブは、扁平面に前記排ガスの主な流れ方向に対して10度〜80度の範囲内の角度で折れ曲がって連続する凹部と凸部とからなる波状凹凸部が略一面に亘って複数形成されてなる、ものとすることもできる。排ガスは、複数の熱交換用チューブの隙間を流れるときに複数の熱交換用チューブの扁平面に形成された複数の波状凹凸部により二次流れを伴って流れるようになる。この結果、熱交換効率が向上する。また、凝縮水は排ガスの流れにより波状凹凸部における凹部に導かれるから、波状凹凸部の凹部が凝縮水の排水流路の役割を担うようになる。即ち、複数の熱交換用チューブの扁平面に波状凹凸部を複数形成することにより、凝縮水の排水性を向上させることができるのである。   Alternatively, in the heat exchanger according to the present invention, the plurality of heat exchanging tubes are formed in a flat surface and a concave portion and a convex portion that are bent at an angle within a range of 10 degrees to 80 degrees with respect to a main flow direction of the exhaust gas. It is also possible to form a plurality of wavy uneven portions formed of a portion over substantially one surface. When the exhaust gas flows through the gaps between the plurality of heat exchange tubes, the exhaust gas flows along with the secondary flow by the plurality of wavy uneven portions formed on the flat surfaces of the plurality of heat exchange tubes. As a result, the heat exchange efficiency is improved. Moreover, since condensed water is guide | induced to the recessed part in a wavy uneven part by the flow of waste gas, the recessed part of a wavy uneven part plays a role of the drainage flow path of condensed water. That is, the drainage of condensed water can be improved by forming a plurality of wave-shaped uneven portions on the flat surfaces of a plurality of heat exchange tubes.

こうした複数の熱交換用チューブの扁平面に波状凹凸部を複数形成した態様の本発明の熱交換器において、前記複数の熱交換用チューブは、扁平面の鉛直上方に位置する部位における前記波状凹凸部の前記排ガスの主な流れ方向に対する角度の方が扁平面の鉛直下方に位置する部位における前記波状凹凸部の前記排ガスの主な流れ方向に対する角度より小さくなるよう形成されてなる、ものとすることもできる。複数の熱交換用チューブの扁平面の鉛直上方に位置する部位における波状凹凸部の排ガスの主な流れ方向に対する角度を小さくすることにより、排ガスの二次流れを促進して排ガスと熱交換媒体の熱交換の効率を向上させることができ、複数の熱交換用チューブの扁平面の鉛直下方に位置する部位における波状凹凸部の排ガスの主な流れ方向に対する角度を大きくすることにより、波状凹凸部における凹部の鉛直方向に対する角度を小さくして凝縮水を鉛直下方に流しやすくすることができる。この場合、前記複数の熱交換用チューブは、扁平面の鉛直上方に位置する部位における前記波状凹凸部の前記排ガスの主な流れ方向に対する角度が10度〜45度の範囲内となると共に扁平面の鉛直下方に位置する部位における前記波状凹凸部の前記排ガスの主な流れ方向に対する角度が45度〜80度の範囲内となるよう形成されてなる、ものとすることもできる。   In the heat exchanger of the present invention in which a plurality of wave-shaped uneven portions are formed on the flat surface of the plurality of heat exchange tubes, the plurality of heat exchange tubes are the wave-shaped unevenness at a portion located vertically above the flat surface. The angle of the portion with respect to the main flow direction of the exhaust gas is formed to be smaller than the angle with respect to the main flow direction of the exhaust gas of the wavy uneven portion in a portion located vertically below the flat surface. You can also. By reducing the angle of the corrugated irregularities in the part located vertically above the flat surface of the plurality of heat exchange tubes with respect to the main flow direction of the exhaust gas, the secondary flow of the exhaust gas is promoted, and the exhaust gas and the heat exchange medium The efficiency of heat exchange can be improved, and by increasing the angle of the wavy irregularities in the portion located vertically below the flat surface of the plurality of heat exchange tubes with respect to the main flow direction of the exhaust gas, The angle of the recess with respect to the vertical direction can be reduced to make it easier for the condensed water to flow vertically downward. In this case, the plurality of heat exchange tubes have a flat surface in which the angle of the wavy uneven portion at a portion located vertically above the flat surface with respect to the main flow direction of the exhaust gas is within a range of 10 degrees to 45 degrees. It is also possible that the angle of the wavy uneven portion at a portion located vertically below the main flow direction of the exhaust gas is within a range of 45 degrees to 80 degrees.

本発明の一実施例としての熱交換器20の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the heat exchanger 20 as one Example of this invention. 実施例の熱交換器20に用いる複数の熱交換用チューブ30の外観を側面から示す側面図である。It is a side view which shows the external appearance of the several tube 30 for heat exchange used for the heat exchanger 20 of an Example from the side. 熱交換用チューブ30の一部を拡大して示す拡大説明図である。4 is an enlarged explanatory view showing a part of a heat exchange tube 30 in an enlarged manner. FIG. 実施例の熱交換器20における排ガスの流れを模式的に示す説明図である。It is explanatory drawing which shows typically the flow of the exhaust gas in the heat exchanger 20 of an Example. 変形例の熱交換器20Bの構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the heat exchanger 20B of a modification. 変形例の熱交換器20Cの構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of 20 C of heat exchangers of a modification. 変形例の熱交換器20Dの構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of heat exchanger 20D of a modification. 変形例の熱交換器20Eの構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the heat exchanger 20E of a modification. 変形例の熱交換用チューブ30Fの構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the tube 30F for heat exchange of a modification. 変形例の熱交換器20Gの構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the heat exchanger 20G of a modification.

次に、本発明を実施するための形態を実施例を用いて説明する。   Next, the form for implementing this invention is demonstrated using an Example.

図1は本発明の一実施例としての熱交換器20の構成の概略を示す構成図であり、図2は実施例の熱交換器20に用いる複数の熱交換用チューブ30の外観を側面から示す側面図であり、図3は熱交換用チューブ30の一部を拡大して示す拡大説明図である。実施例の熱交換器20は、燃焼後の排ガスと冷却水などの熱交換媒体との熱交換により排ガスの熱を回収するフィンレスの熱交換器として構成されており、図示するように、長手方向が鉛直方向となるように並列に配置した複数(例えば22本など)の熱交換用チューブ30と、この複数の熱交換チューブ30を収納するシェル40と、を備える。   FIG. 1 is a configuration diagram showing an outline of the configuration of a heat exchanger 20 as an embodiment of the present invention, and FIG. 2 is a side view of the appearance of a plurality of heat exchange tubes 30 used in the heat exchanger 20 of the embodiment. FIG. 3 is an enlarged explanatory view showing a part of the heat exchange tube 30 in an enlarged manner. The heat exchanger 20 according to the embodiment is configured as a finless heat exchanger that recovers the heat of exhaust gas by exchanging heat between the exhaust gas after combustion and a heat exchange medium such as cooling water. Is provided with a plurality of (for example, 22) heat exchange tubes 30 arranged in parallel so as to be in the vertical direction, and a shell 40 that houses the plurality of heat exchange tubes 30.

各熱交換用チューブ30は、酸に対する耐食性に優れた金属材料(例えば、ステンレスなど)による厚みが0.3mmの板材により、高さ(長さ)が150mm、幅が30mm、内側の熱交換媒体の流路の厚みが2.4mm(全体としての厚みは板厚を含めて3.0mm)の全体として略矩形形状の扁平な中空管として形成されており、隣接する熱交換用チューブ30との隙間が1.6mmとなるよう長手方向が鉛直方向となるよう並列に配置されている。各熱交換用チューブ30の鉛直下方の下端近傍には熱交換媒体の流入口31が形成されており、各熱交換用チューブ30の各流入口31は連絡管31aにより連通している。また、各熱交換用チューブ30の鉛直上方の上端近傍には熱交換媒体の流出口32が形成されており、各熱交換用チューブ30の各流出口32は連絡管32aにより連通している。従って、熱交換媒体は、各熱交換用チューブ30の鉛直下方に位置する各流入口31から流入し、各熱交換用チューブ30を鉛直上方に流れ、各熱交換用チューブ30の鉛直上方に位置する各流出口32から流出する。   Each of the heat exchange tubes 30 is a plate material having a thickness of 0.3 mm made of a metal material (for example, stainless steel) excellent in acid resistance to acid, and has a height (length) of 150 mm, a width of 30 mm, and an inner heat exchange medium. Is formed as a flat hollow tube having a substantially rectangular shape as a whole with a thickness of 2.4 mm (total thickness is 3.0 mm including the plate thickness). These are arranged in parallel so that the longitudinal direction is the vertical direction so that the gap is 1.6 mm. A heat exchange medium inlet 31 is formed in the vicinity of the lower end of each heat exchange tube 30 in the vertical direction, and each inlet 31 of each heat exchange tube 30 communicates with a communication pipe 31a. In addition, a heat exchange medium outlet 32 is formed in the vicinity of the upper upper end of each heat exchange tube 30 vertically, and each outlet 32 of each heat exchange tube 30 communicates with a communication pipe 32a. Therefore, the heat exchange medium flows in from each inlet 31 located vertically below each heat exchange tube 30, flows vertically through each heat exchange tube 30, and is located above each heat exchange tube 30 vertically. It flows out from each outflow port 32.

各熱交換用チューブ30の扁平面の中央には、図1および図3に示すように、鉛直方向の深さが1.2mmで幅が1.6mmの内側に凸状の溝36が形成されている。溝36は、熱交換用チューブ30の両扁平面に形成されているため、チューブの内側で両扁平面の溝36が当接する。実施例では、このチューブの内側で当接する両扁平面の溝36をロウ付けなどにより接着固定している。これにより、熱交換用チューブ30の強度を向上させることができる。また、この溝36は、排ガスとの熱交換により熱交換用チューブ30の表面に生じる凝縮水を集水して鉛直下方に導くものとなるから、凝縮水の排水性を向上させることができる。   As shown in FIGS. 1 and 3, a convex groove 36 is formed in the center of the flat surface of each heat exchange tube 30 with a vertical depth of 1.2 mm and a width of 1.6 mm. ing. Since the grooves 36 are formed on both flat surfaces of the heat exchanging tube 30, the grooves 36 of both flat surfaces abut on the inside of the tube. In the embodiment, the grooves 36 on both flat surfaces that are in contact with the inside of the tube are bonded and fixed by brazing or the like. Thereby, the intensity | strength of the tube 30 for heat exchange can be improved. Moreover, since this groove | channel 36 collects the condensed water which arises on the surface of the tube 30 for heat exchange by heat exchange with waste gas, and guides it vertically below, it can improve the drainage of condensed water.

また、各熱交換用チューブ30の扁平面には、水平に対して予め定めた角度αで折れ曲がって連続する「V」字あるいは「W」字を90度回転して連続させた形状の凹部33と凸部34とからなる波状凹凸部33,34が全面に形成されている。この波状凹凸部33,34の水平からの角度αは、10度〜80度の範囲、好ましくは30度〜60度の範囲、更に好ましくは30度〜45度の範囲であり、実施例では30度とした。各熱交換用チューブ30の扁平面に形成された波状凹凸部33,34は、排ガスが略水平に流れたときに、排ガスの主な流れの他に二次流れを生じさせる。このため、排ガスと熱交換媒体の熱交換の効率を向上させることができる。また、波状凹凸部33,34は、排ガスの流れにより付着した凝縮水を凹部33に集水し、さらに鉛直下方に導くものとなるから、凝縮水の排水性を向上させることができる。   Further, the flat surface of each heat exchange tube 30 has a concave portion 33 having a shape in which a continuous “V” or “W” shape is bent by a predetermined angle α with respect to the horizontal and rotated by 90 degrees. And wavy rugged portions 33 and 34 each including a convex portion 34 are formed on the entire surface. The angle α from the horizontal of the wavy uneven portions 33 and 34 is in the range of 10 to 80 degrees, preferably in the range of 30 to 60 degrees, more preferably in the range of 30 to 45 degrees, and 30 in the embodiment. Degree. The wavy uneven portions 33 and 34 formed on the flat surface of each heat exchange tube 30 cause a secondary flow in addition to the main flow of the exhaust gas when the exhaust gas flows substantially horizontally. For this reason, the efficiency of heat exchange between the exhaust gas and the heat exchange medium can be improved. Moreover, since the wavy uneven portions 33 and 34 collect condensed water adhering to the flow of exhaust gas into the recessed portion 33 and guide it further vertically downward, it is possible to improve the drainage of the condensed water.

シェル40は、各熱交換用チューブ30と同様に、酸に対する耐食性に優れた金属材料(例えば、ステンレスなど)による厚みが0.3mmの板材により、連絡管31a,32aにより連結された複数の熱交換用チューブ30を収納する略直方体形状のケースとして形成されており、複数の熱交換用チューブ30との間で排ガスの流路46a,46b,46c,46dを形成する。シェル40の鉛直上方の図1中左側には排ガスの流入口41が形成されており、シェル40の鉛直下方の図1中右側には排ガスの流出口42が形成されている。また、シェル40の内側には、複数の熱交換用チューブ30との間で形成する排ガスの流路46a,46b,46c,46dを区分すると共に排ガスの流れを誘導する誘導壁43,44が取り付けられている。従って、排ガスは、図4の白抜き矢印に示すように、シェル40の鉛直上方に形成された流入口41から流入し、蛇行しながら複数の熱交換用チューブ30の隙間と流路46a,46b,46c,46dとを通って、シェル40の鉛直下方に形成された流出口42から流出する。従って、排ガスと複数の熱交換用チューブ30に流れる熱交換媒体とは全体として対向流となり、熱交換の効率を向上させることができる。   As with each heat exchange tube 30, the shell 40 is made of a plurality of heat connected by connecting pipes 31 a and 32 a with a plate material having a thickness of 0.3 mm made of a metal material (for example, stainless steel) having excellent corrosion resistance against acid. It is formed as a substantially rectangular parallelepiped case that houses the replacement tube 30, and exhaust gas flow paths 46 a, 46 b, 46 c, 46 d are formed between the plurality of heat exchange tubes 30. An exhaust gas inlet 41 is formed on the left side in FIG. 1 vertically above the shell 40, and an exhaust gas outlet 42 is formed on the right side in FIG. Further, inside the shell 40, guide walls 43, 44 for separating the exhaust gas flow paths 46a, 46b, 46c, 46d formed between the plurality of heat exchange tubes 30 and guiding the flow of the exhaust gas are attached. It has been. Accordingly, the exhaust gas flows in from the inlet 41 formed vertically above the shell 40 as shown by the white arrow in FIG. 4, and the gaps between the heat exchange tubes 30 and the flow paths 46 a and 46 b while meandering. , 46c, 46d, and flows out from an outlet 42 formed vertically below the shell 40. Therefore, the exhaust gas and the heat exchange medium flowing through the plurality of heat exchange tubes 30 are opposed to each other as a whole, and the efficiency of heat exchange can be improved.

以上説明した実施例の熱交換器20によれば、扁平な中空管として形成された略矩形形状の複数の熱交換用チューブ30を1.6mmの間隔をもって長手方向が鉛直方向となるよう並列に配置し、熱交換媒体を鉛直下方に位置する各流入口31から流入し、各熱交換用チューブ30を鉛直上方に流し、各熱交換用チューブ30の鉛直上方に位置する各流出口32から流出させ、一方、排ガスをシェル40の鉛直上方に形成された流入口41から流入し、シェル40と複数の熱交換用チューブ30と誘導壁43,44とにより形成される流路46a,46b,46c,46dと複数の熱交換用チューブ30の隙間とに蛇行させながら流し、シェル40の鉛直下方に形成された流出口42から流出することにより、排ガスと複数の熱交換用チューブ30に流れる熱交換媒体とを全体として対向流として、熱交換の効率の向上を図ることができる。複数の熱交換用チューブ30を長手方向が鉛直方向となるよう並列に配置することにより、排ガスの熱交換により複数の熱交換用チューブ30の扁平面に生じる凝縮水を鉛直下方に向けて集水しながら排水することができる。この結果、生成した凝縮水が留まって排ガスの流れを妨げるのを抑制することができ、排ガスの圧力損失を低減することができる。しかも、実施例の熱交換器20は、フィンレスの熱交換器として構成したから、複数の熱交換用チューブ30の間にフィンが取り付けられているものに比して凝縮水の排水を促進することができる。この結果、小型で熱交換の効率のよい熱交換器とすることができる。   According to the heat exchanger 20 of the embodiment described above, a plurality of substantially rectangular heat exchange tubes 30 formed as flat hollow tubes are arranged in parallel so that the longitudinal direction becomes the vertical direction with an interval of 1.6 mm. The heat exchange medium flows in from each inlet 31 located vertically below, flows each heat exchange tube 30 vertically upward, and flows from each outlet 32 located vertically above each heat exchange tube 30. On the other hand, exhaust gas flows in from an inlet 41 formed vertically above the shell 40, and flow paths 46a, 46b, formed by the shell 40, a plurality of heat exchange tubes 30, and guide walls 43, 44, 46c, 46d and the gaps between the plurality of heat exchanging tubes 30 are caused to meander and flow out of the outlet 42 formed vertically below the shell 40, whereby the exhaust gas and the plural heat exchanging tubes are flown. As counterflow as a whole heat exchange medium flowing through the 30, it is possible to improve the efficiency of heat exchange. By arranging the plurality of heat exchange tubes 30 in parallel so that the longitudinal direction is the vertical direction, the condensed water generated on the flat surfaces of the plurality of heat exchange tubes 30 by the heat exchange of the exhaust gas is collected vertically downward. It can be drained while. As a result, it is possible to suppress the generated condensed water from remaining and hinder the flow of the exhaust gas, and reduce the pressure loss of the exhaust gas. Moreover, since the heat exchanger 20 according to the embodiment is configured as a finless heat exchanger, the condensate drainage is promoted as compared with the case where fins are attached between the plurality of heat exchange tubes 30. Can do. As a result, it is possible to provide a heat exchanger that is small in size and efficient in heat exchange.

また、実施例の熱交換器20によれば、複数の熱交換用チューブ30の扁平面の中央に鉛直方向の溝36を形成したことにより、排ガスの熱交換により熱交換用チューブ30の扁平面に生じる凝縮水を集水して鉛直下方に導くことができ、凝縮水の排水性を向上させることができると共に、複数の熱交換用チューブ30の強度を向上させることができ、薄い板厚の金属材料で複数の熱交換用チューブ30を形成することができ、より小型の熱交換器とすることができる。しかも、溝36はチューブの内側で接着固定することにより、熱交換用チューブ30の強度を更に向上させることができる。   Moreover, according to the heat exchanger 20 of an Example, by forming the groove | channel 36 of the perpendicular direction in the center of the flat surface of the several tube 30 for heat exchange, the flat surface of the tube 30 for heat exchange by heat exchange of waste gas. The condensate produced in the water can be collected and guided vertically downward, the drainage of the condensate can be improved, the strength of the plurality of heat exchange tubes 30 can be improved, and the thin plate thickness A plurality of heat exchange tubes 30 can be formed of a metal material, and a smaller heat exchanger can be obtained. In addition, the strength of the heat exchanging tube 30 can be further improved by bonding and fixing the groove 36 inside the tube.

さらに、実施例の熱交換器20によれば、複数の熱交換用チューブ30の扁平面に排ガスが主に流れる方向の水平に対して予め定めた角度αで折れ曲がって連続する凹部33と凸部34とからなる波状凹凸部33,34を全面に形成したことにより、排ガスに主な流れの他に二次流れを生じさせることができ、この結果、排ガスと熱交換媒体の熱交換の効率を向上させることができる。また、波状凹凸部33,34は、排ガスの流れにより付着した凝縮水を凹部33に集水して鉛直下方に導くから、凝縮水の排水性を更に向上させることができる。   Furthermore, according to the heat exchanger 20 of an Example, the recessed part 33 and convex part which bend | fold and continue by the predetermined angle (alpha) with respect to the horizontal of the direction where an exhaust gas mainly flows to the flat surface of the several tube 30 for heat exchange. In addition to the main flow in the exhaust gas, a secondary flow can be generated, and as a result, the efficiency of heat exchange between the exhaust gas and the heat exchange medium can be improved. Can be improved. Moreover, since the wavy uneven portions 33 and 34 collect condensed water adhering to the flow of exhaust gas in the recessed portion 33 and guide it vertically downward, it is possible to further improve the drainage of the condensed water.

実施例の熱交換器20では、複数の熱交換用チューブ30の扁平面の中央に溝36を形成すると共に扁平面の略全面に波状凹凸部33,34を形成するものとしたが、図5の変形例の熱交換器20Bに示すように、複数の熱交換用チューブ30Bの扁平面の中央に溝36は形成するが、扁平面に波状凹凸部33,34は形成しないものとしてもよいし、逆に、図6の変形例の熱交換器20Cに示すように、複数の熱交換用チューブ30Cの扁平面の中央に溝36は形成しないが、扁平面に波状凹凸部33C,34Cは形成するものとしてもよい。この場合、複数の熱交換用チューブ30Cの扁平面の中央にも波状凹凸部33C,34Cを形成するものとしてもよい。或いは、複数の熱交換用チューブの扁平面には溝36も波状凹凸部33,34も形成しないものとしても構わない。   In the heat exchanger 20 of the embodiment, the groove 36 is formed at the center of the flat surface of the plurality of heat exchange tubes 30 and the wavy uneven portions 33 and 34 are formed on substantially the entire flat surface. As shown in the heat exchanger 20B of this modification, the groove 36 is formed in the center of the flat surface of the plurality of heat exchange tubes 30B, but the wavy uneven portions 33 and 34 may not be formed on the flat surface. On the contrary, as shown in the heat exchanger 20C of the modification of FIG. 6, the groove 36 is not formed at the center of the flat surface of the plurality of heat exchange tubes 30C, but the wavy uneven portions 33C and 34C are formed on the flat surface. It is good also as what to do. In this case, the wavy uneven portions 33C and 34C may be formed at the center of the flat surface of the plurality of heat exchange tubes 30C. Alternatively, neither the groove 36 nor the wavy uneven portions 33 and 34 may be formed on the flat surfaces of the plurality of heat exchange tubes.

実施例の熱交換器20では、複数の熱交換用チューブ30の扁平面の中央に溝36を形成すると共に扁平面の略全面に波状凹凸部33,34を形成するものとしたが、図7の変形例の熱交換器20Dに示すように、複数の熱交換用チューブ30Dの扁平面の誘導壁43,44に整合する位置に外側に凸となるリブ37a〜37dを形成するものとしてもよい。こうすれば、排ガスの蛇行をより確実に誘導することができる。この場合、隣接するリブ37aとリブ37b,リブ37cとリブ37dは、溝36で分離されるのが好ましい。このように、複数の熱交換用チューブ30Dの扁平面の誘導壁43,44に整合する位置にリブを形成する場合、図8の変形例の熱交換器20Eに示すように、複数の熱交換用チューブ30Eの扁平面の誘導壁43,44に隣接する部位から溝36までのリブ37a,37dだけを形成するものとしてもよい。   In the heat exchanger 20 of the embodiment, the groove 36 is formed in the center of the flat surface of the plurality of heat exchange tubes 30 and the wavy uneven portions 33 and 34 are formed on substantially the entire flat surface. As shown in the heat exchanger 20D of the modified example, ribs 37a to 37d protruding outward may be formed at positions aligned with the flat guide walls 43 and 44 of the plurality of heat exchange tubes 30D. . By so doing, it is possible to more reliably induce exhaust gas meandering. In this case, it is preferable that the adjacent ribs 37a and 37b and the ribs 37c and 37d are separated by the groove 36. Thus, when forming a rib in the position which aligns with the flat guide walls 43 and 44 of several heat exchange tube 30D, as shown to the heat exchanger 20E of the modification of FIG. 8, several heat exchange is shown. Only the ribs 37a and 37d from the portion adjacent to the flat guide walls 43 and 44 of the tube 30E to the groove 36 may be formed.

実施例の熱交換器20の複数の熱交換用チューブ30では、扁平面に形成される波状凹凸部33,34の水平からの角度αについては30度としたが、10度〜80度の範囲であればよく、好ましくは30度〜60度の範囲がよい。また、図9の変形例の熱交換用チューブ30Fに示すように、排ガスの流入側に位置する波状凹凸部33Fa,34Faについては水平からの角度αが小さく、排ガスの流出側に位置する波状凹凸部33Fb,34Fbについては水平からの角度βが角度αより大きくするものとしてもよい。例えば、角度αについては10度〜45度が好ましく、角度βについては45度〜80度が好ましい。変形例の熱交換用チューブ30Fでは、角度αについては30度を用い、角度βについては60度を用いた。これには、排ガスの流入側に位置する波状凹凸部33Fa,34Faについては排ガスの二次流れを促進して熱交換の効率を向上させるよう角度αを設定し、排ガスの流出側に位置する波状凹凸部33Fb,34Fbについては凝縮水の下方への排水を促進するよう角度βを設定することに基づく。従って、排ガスの流入側から流出側に向かうほど連続的に或いは段階的に水平からの角度が大きくなるように波状凹凸部33,34を形成するものとしてもよい。   In the plurality of heat exchange tubes 30 of the heat exchanger 20 of the embodiment, the angle α from the horizontal of the wavy uneven portions 33 and 34 formed on the flat surface is set to 30 degrees, but is in the range of 10 degrees to 80 degrees. And preferably in the range of 30 to 60 degrees. Further, as shown in the heat exchanging tube 30F of the modification of FIG. 9, the wavy irregularities 33Fa and 34Fa located on the exhaust gas inflow side have a small angle α from the horizontal, and the wavy irregularities located on the exhaust gas outflow side. For the portions 33Fb and 34Fb, the angle β from the horizontal may be larger than the angle α. For example, the angle α is preferably 10 to 45 degrees, and the angle β is preferably 45 to 80 degrees. In the heat exchange tube 30F of the modification, 30 degrees was used for the angle α, and 60 degrees was used for the angle β. For this, for the wavy uneven portions 33Fa and 34Fa located on the exhaust gas inflow side, an angle α is set so as to improve the efficiency of heat exchange by promoting the secondary flow of the exhaust gas, and the wavy shape located on the exhaust gas outflow side. The uneven portions 33Fb and 34Fb are based on setting the angle β so as to promote the drainage of the condensed water downward. Accordingly, the wavy uneven portions 33 and 34 may be formed so that the angle from the horizontal increases stepwise or stepwise from the inflow side to the outflow side of the exhaust gas.

実施例の熱交換器20では、複数の熱交換用チューブ30を、ステンレスによる厚みが0.3mmの板材により、高さ(長さ)が150mm、幅が30mm、内側の熱交換媒体の流路の厚みが2.4mm(全体としての厚みは板厚を含めて3.0mm)の全体として略矩形形状の扁平な中空管となるよう形成し、隣接する熱交換用チューブ30との隙間が1.6mmとなるよう長手方向が鉛直方向となるよう並列に配置したが、ステンレス以外の酸に対する耐食性に優れた金属材料による板材であれば如何なる板材であってもよく、板材の厚みも強度を保持することができれば0.3mmより薄くてもよいし厚くてもよい。また、高さや幅,内側の熱交換媒体の流路の厚みは、150mm,30mm,2.4mmに限定されるものではなく、内側の熱交換媒体の流路の厚みが3mm以下であれば如何なる高さ幅,内側の熱交換媒体の流路の厚みとしてもよい。さらに、複数の熱交換用チューブ30の形状は略矩形形状の扁平な中空管でなくてもよく、例えば、楕円状の扁平な中空管であってもよい。加えて、隣接する熱交換用チューブ30との隙間は1.6mmに限定されるものではなく、3mm以下であれば如何なる間隔としても構わない。更に加えて複数の熱交換用チューブ30は長手方向が正確に鉛直方向となるよう並列に配置する必要はなく、ある程度の角度をもって長手方向が鉛直方向となるよう並列に配置すればよい。   In the heat exchanger 20 of the embodiment, the plurality of heat exchange tubes 30 are made of a stainless steel plate having a thickness of 0.3 mm, the height (length) is 150 mm, the width is 30 mm, and the flow path of the inner heat exchange medium The thickness of the tube is 2.4 mm (the overall thickness is 3.0 mm including the plate thickness) so as to form a substantially rectangular flat hollow tube as a whole, and there is a gap between the adjacent heat exchange tubes 30. Although arranged in parallel so that the longitudinal direction becomes the vertical direction so as to be 1.6 mm, any plate material may be used as long as it is a metal material having excellent corrosion resistance against acids other than stainless steel, and the thickness of the plate material is also strong. If it can hold | maintain, it may be thinner than 0.3 mm and may be thick. Further, the height, width, and thickness of the inner heat exchange medium flow path are not limited to 150 mm, 30 mm, and 2.4 mm, and any thickness may be used as long as the inner heat exchange medium flow path thickness is 3 mm or less. It may be the height width and the thickness of the flow path of the inner heat exchange medium. Further, the shape of the plurality of heat exchange tubes 30 may not be a substantially rectangular flat hollow tube, and may be, for example, an elliptical flat hollow tube. In addition, the gap between the adjacent heat exchange tubes 30 is not limited to 1.6 mm, and may be any interval as long as it is 3 mm or less. In addition, the plurality of heat exchange tubes 30 do not need to be arranged in parallel so that the longitudinal direction is accurately in the vertical direction, and may be arranged in parallel so that the longitudinal direction is in the vertical direction at a certain angle.

実施例の熱交換器20では、シェル40を、ステンレスによる厚みが0.3mmの板材により、複数の熱交換用チューブ30を収納する略直方体形状のケースとして形成したが、ステンレス以外の酸に対する耐食性に優れた金属材料による板材であれば如何なる板材であってもよく、板材の厚みも強度を保持することができれば0.3mmより薄くてもよいし厚くてもよい。   In the heat exchanger 20 of the embodiment, the shell 40 is formed as a substantially rectangular parallelepiped case that houses a plurality of heat exchange tubes 30 by using a stainless steel plate having a thickness of 0.3 mm. However, the shell 40 is resistant to acids other than stainless steel. Any plate material may be used as long as it is a plate material made of an excellent metal material, and the thickness of the plate material may be less than 0.3 mm or thick as long as the strength can be maintained.

実施例の熱交換器20では、シェル40を、複数の熱交換用チューブ30を収納する略直方体形状のケースとして形成し、その内側に誘導壁43,44を設けて排ガスが蛇行しながら複数の熱交換用チューブ30の隙間と流路46a,46b,46c,46dとを流れるようにしたが、図10の変形例の熱交換器20Gに示すように、リブ37a〜37dが形成された複数の熱交換用チューブ30Dを用い、シェル40Gを、その外壁の内側が複数の熱交換用チューブ30Dのリブ37aが形成された側面と複数の熱交換用チューブ30Dのリブ37dが形成された側面とに当接するように、即ち、外壁の内側が複数の熱交換用チューブ30Dの複数のリブ37a〜37dが形成された位置における両側面のうち最上段から下段に向けて交互に一方の側面(リブ37aが形成された位置における側面)と他方の側面(リブ37dが形成された位置における側面)とに当接すると共に同一段におけ両側面のうち当接する側面(リブ37a,37dが形成された位置における側面)と異なる側面(リブ37b,37cが形成された位置における側面)では当接しないよう形成するものとしてもよい。こうすれば、複数の熱交換用チューブ30Dの扁平面に形成された複数のリブ37a〜37dとシェル40Gとにより、シェル40Gの内側に誘導壁を形成することなく、排ガスを蛇行させながら複数の熱交換用チューブ30Dの隙間に流すことができ、熱交換の効率を向上させることができる。   In the heat exchanger 20 of the embodiment, the shell 40 is formed as a substantially rectangular parallelepiped case that houses the plurality of heat exchange tubes 30, and a plurality of exhaust gases meander while providing guide walls 43 and 44 inside thereof. Although it was made to flow through the clearance gap of the heat exchange tube 30 and the flow paths 46a, 46b, 46c, 46d, as shown in the heat exchanger 20G of the modification of FIG. 10, a plurality of ribs 37a to 37d are formed. The heat exchange tube 30D is used, and the shell 40G is formed on the side surface of the outer wall where the ribs 37a of the plurality of heat exchange tubes 30D are formed and the side surface where the ribs 37d of the plurality of heat exchange tubes 30D are formed. In order to come into contact, that is, the inside of the outer wall alternates from the top to the bottom of both side surfaces at the positions where the plurality of ribs 37a to 37d of the plurality of heat exchange tubes 30D are formed. The side surfaces (ribs 37a and 37d) that contact one side surface (the side surface at the position where the rib 37a is formed) and the other side surface (the side surface at the position where the rib 37d is formed) and abut on both sides in the same step. It is good also as what forms so that it may not contact | abut on the side surface (side surface in the position in which the ribs 37b and 37c were formed) different from the side surface in the position in which it was formed. In this way, the plurality of ribs 37a to 37d and the shell 40G formed on the flat surfaces of the plurality of heat exchange tubes 30D and the plurality of ribs 37a to 37d and a plurality of ribs meandering the exhaust gas without forming a guide wall inside the shell 40G. The heat exchange tube 30D can be passed through the gap, and the efficiency of heat exchange can be improved.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated using the Example, this invention is not limited at all to such an Example, In the range which does not deviate from the summary of this invention, it is with various forms. Of course, it can be implemented.

本発明は、熱交換器の製造産業などに利用可能である。   The present invention can be used in the heat exchanger manufacturing industry and the like.

20,20B〜20E,20G 熱交換器、30,30B〜30F 熱交換用チューブ、31 流入口、32 流出口、31a,32a 連絡官、33,34,33C,34C,33Fa,34Fa,33Fb,34Fb 波状凹凸部(33 凹部,34 凸部)、36 溝、37a〜37d リブ、40,40G シェル、41 流入口、42 流出口、43,44 誘導壁、46a〜46d 流路。   20, 20B-20E, 20G heat exchanger, 30, 30B-30F heat exchange tube, 31 inlet, 32 outlet, 31a, 32a contact officer, 33, 34, 33C, 34C, 33Fa, 34Fa, 33Fb, 34Fb Wavy uneven part (33 concave part, 34 convex part), 36 groove, 37a-37d rib, 40, 40G shell, 41 inlet, 42 outlet, 43,44 guide wall, 46a-46d flow path.

Claims (6)

燃焼後の排ガスと熱交換媒体との熱交換により前記排ガスの熱を回収するフィンレスの熱交換器であって、
酸に対する耐食性に優れた金属板材により前記熱交換媒体の流路の厚みが3mm以下となるよう扁平な中空管として形成されて3mm以下の間隔をもって長手方向が主として鉛直方向となるよう並列に配置された複数の熱交換用チューブと、
前記複数の熱交換用チューブを収納すると共に前記複数の熱交換用チューブとの間に前記排ガスを流通するための流路を形成するシェルと、
を備え、
前記複数の熱交換用チューブは、扁平面の略中央に鉛直方向の溝が形成されていると共に内側で向かい合う前記溝で接着固定されており、且つ、鉛直下方に前記熱交換媒体の流入口が形成されると共に鉛直上方に前記熱交換媒体の流出口が形成されていることにより前記熱交換媒体を鉛直下方から鉛直上方に流し、更に、扁平面に前記排ガスの主な流れ方向に対して10度〜80度の範囲内の角度をもって交差するようV字またはW字を90度回転して連続させた形状の折れ曲がって連続する凹部と凸部とからなる波状凹凸部が略一面に亘って複数形成されてなり、
前記シェルは、鉛直上方に前記排ガスの流入口が形成されると共に鉛直下方に前記排ガスの流出口が形成されてなり、
前記複数の熱交換用チューブおよび/または前記シェルは、前記排ガスが鉛直上方から下方に向けて蛇行して前記複数の熱交換用チューブの隙間に流れるよう蛇行誘導部が形成されてなる、
熱交換器。
A finless heat exchanger for recovering heat of the exhaust gas by heat exchange between the exhaust gas after combustion and the heat exchange medium,
Formed as a flat hollow tube with a metal plate material excellent in corrosion resistance against acid so that the thickness of the flow path of the heat exchange medium is 3 mm or less, and arranged in parallel so that the longitudinal direction is mainly the vertical direction with an interval of 3 mm or less A plurality of heat exchange tubes,
A shell that houses the plurality of heat exchange tubes and forms a flow path for circulating the exhaust gas between the plurality of heat exchange tubes;
With
The plurality of heat exchanging tubes have a vertical groove formed substantially in the center of the flat surface, and are bonded and fixed by the grooves facing inside, and an inlet of the heat exchange medium is vertically below. Since the outlet of the heat exchange medium is formed vertically upward, the heat exchange medium flows from vertically downward to vertically upward, and further on a flat surface with respect to the main flow direction of the exhaust gas. A plurality of wave-like irregularities composed of a concave portion and a convex portion which are bent and continuous in a shape in which a V-shape or a W-shape is rotated 90 degrees so as to intersect at an angle in the range of 80 degrees to 80 degrees. Formed ,
The shell is formed with the exhaust gas inlet formed vertically above and the exhaust gas outlet formed vertically below,
The plurality of heat exchange tubes and / or the shell are formed with meandering guide portions such that the exhaust gas meanders vertically from below to flow through the gaps between the plurality of heat exchange tubes.
Heat exchanger.
請求項1記載の熱交換器であって、
前記蛇行誘導部は、前記排ガスが前記複数の熱交換用チューブに対して略水平方向に流れるよう前記シェルの内側に形成された誘導壁である、
熱交換器。
The heat exchanger according to claim 1 ,
The meandering guide part is a guide wall formed inside the shell so that the exhaust gas flows in a substantially horizontal direction with respect to the plurality of heat exchange tubes.
Heat exchanger.
請求項2記載の熱交換器であって、
前記蛇行誘導部は、前記誘導壁に加え、前記シェルの誘導壁に整合する位置に該誘導壁の方向に前記複数の熱交換用チューブの扁平面に形成されたリブである、
熱交換器。
The heat exchanger according to claim 2 ,
The meandering guide part is a rib formed on the flat surface of the plurality of heat exchange tubes in the direction of the guide wall at a position aligned with the guide wall of the shell, in addition to the guide wall.
Heat exchanger.
請求項1記載の熱交換器であって、
前記蛇行誘導部は、前記複数の熱交換用チューブの扁平面に略水平方向に複数段となるよう形成された複数のリブであり、
前記シェルは、外壁の内側が前記複数の熱交換用チューブの複数のリブが形成された位置における両側面のうち最上段から下段に向けて交互に一方の側面と他方の側面とに当接すると共に同一段におけ両側面のうち前記当接する側面と異なる側面では当接しないよう形成されてなる、
熱交換器。
熱交換器。
The heat exchanger according to claim 1 ,
The meandering guide part is a plurality of ribs formed to have a plurality of steps in a substantially horizontal direction on the flat surface of the plurality of heat exchange tubes,
The shell is in contact with one side surface and the other side surface alternately from the top to the bottom of both side surfaces of the outer wall at the position where the plurality of ribs of the plurality of heat exchange tubes are formed. It is formed so as not to abut on the side surface different from the abutting side surface among both side surfaces in the same step,
Heat exchanger.
Heat exchanger.
請求項1記載の熱交換器であって、
前記複数の熱交換用チューブは、扁平面の鉛直上方に位置する部位における前記波状凹凸部の前記排ガスの主な流れ方向に対する角度の方が扁平面の鉛直下方に位置する部位における前記波状凹凸部の前記排ガスの主な流れ方向に対する角度より小さくなるよう形成されてなる、
熱交換器。
The heat exchanger according to claim 1 ,
The plurality of heat exchanging tubes include the wavy uneven portion in a portion where the angle of the wavy uneven portion in the portion located vertically above the flat surface with respect to the main flow direction of the exhaust gas is located vertically below the flat surface. Formed to be smaller than an angle with respect to the main flow direction of the exhaust gas.
Heat exchanger.
請求項5記載の熱交換器であって、
前記複数の熱交換用チューブは、扁平面の鉛直上方に位置する部位における前記波状凹凸部の前記排ガスの主な流れ方向に対する角度が10度〜45度の範囲内となると共に扁平面の鉛直下方に位置する部位における前記波状凹凸部の前記排ガスの主な流れ方向に対する角度が45度〜80度の範囲内となるよう形成されてなる、
熱交換器。
The heat exchanger according to claim 5 ,
The plurality of heat exchanging tubes have an angle with respect to a main flow direction of the exhaust gas of the wavy uneven portion in a portion located vertically above the flat surface and vertically below the flat surface. Is formed so that an angle of the wavy uneven portion in a portion located in the main flow direction of the exhaust gas is within a range of 45 degrees to 80 degrees.
Heat exchanger.
JP2010021027A 2010-02-02 2010-02-02 Heat exchanger Active JP5620685B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010021027A JP5620685B2 (en) 2010-02-02 2010-02-02 Heat exchanger
US13/575,727 US20130032320A1 (en) 2010-02-02 2011-01-27 Heat exchanger
PCT/JP2011/051617 WO2011096324A1 (en) 2010-02-02 2011-01-27 Heat exchanger
CN201180007929.1A CN102822617B (en) 2010-02-02 2011-01-27 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021027A JP5620685B2 (en) 2010-02-02 2010-02-02 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2011158200A JP2011158200A (en) 2011-08-18
JP5620685B2 true JP5620685B2 (en) 2014-11-05

Family

ID=44355324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021027A Active JP5620685B2 (en) 2010-02-02 2010-02-02 Heat exchanger

Country Status (4)

Country Link
US (1) US20130032320A1 (en)
JP (1) JP5620685B2 (en)
CN (1) CN102822617B (en)
WO (1) WO2011096324A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6266228B2 (en) * 2013-05-13 2018-01-24 三菱電機ビルテクノサービス株式会社 Heat exchanger
JP6367601B2 (en) * 2014-04-23 2018-08-01 京セラ株式会社 Fuel cell device
JP6459027B2 (en) * 2014-07-15 2019-01-30 国立大学法人 東京大学 Heat exchanger
JPWO2017115436A1 (en) * 2015-12-28 2018-10-18 国立大学法人 東京大学 Heat exchanger
CN105674789B (en) * 2016-01-19 2018-01-19 昆明五威科工贸有限公司 A kind of water tank
JP6615316B2 (en) * 2016-03-16 2019-12-04 三菱電機株式会社 Finless type heat exchanger, outdoor unit of air conditioner equipped with the finless type heat exchanger, and indoor unit of air conditioner equipped with the finless type heat exchanger
SI3290822T1 (en) * 2016-08-30 2020-07-31 Alfa Laval Corporate Ab Plate heat exchanger for solar heating
JP6717326B2 (en) * 2017-07-18 2020-07-01 株式会社デンソー Heat exchanger
CN112648874B (en) * 2020-12-26 2022-07-15 国网甘肃省电力公司经济技术研究院 Heat storage and release device based on cascaded phase transition tube bank

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111156A (en) * 1978-02-21 1979-08-31 Nippon Dyeing Machine Mfg Co Plate type heat exchanger
JP2984480B2 (en) * 1992-10-09 1999-11-29 三菱重工業株式会社 Stacked heat exchanger
JPH10318695A (en) * 1997-05-19 1998-12-04 Zexel Corp Heat exchanger
DE19846518B4 (en) * 1998-10-09 2007-09-20 Modine Manufacturing Co., Racine Heat exchangers, in particular for gases and liquids
SE521816C2 (en) * 1999-06-18 2003-12-09 Valeo Engine Cooling Ab Fluid transport pipes and vehicle coolers
JP2001183031A (en) * 1999-12-27 2001-07-06 Mitsubishi Heavy Ind Ltd Heat exchanger, absorption refrigerating machine, and cogeneration system
CN2404088Y (en) * 2000-01-31 2000-11-01 曹毅文 Conduit ferrule plate efficient heat-exchanger
DE10214467A1 (en) * 2002-03-30 2003-10-09 Modine Mfg Co Exhaust gas heat exchanger for motor vehicles
DE10247264A1 (en) * 2002-10-10 2004-04-29 Behr Gmbh & Co. Plate heat exchanger in stack construction
JP2004177061A (en) * 2002-11-28 2004-06-24 Toyo Radiator Co Ltd Wavy fin of exhaust gas cooling heat exchanger
JP3956885B2 (en) * 2003-04-03 2007-08-08 株式会社デンソー Manufacturing method and apparatus for heat exchanger tube
BRPI0516124A (en) * 2004-10-07 2008-08-26 Behr Gmbh & Co Kg air-cooled exhaust gas heat exchanger, especially automotive exhaust gas cooler
ES2285337T5 (en) * 2004-11-10 2010-10-04 Modine Manufacturing Company HEAT EXCHANGER WITH OPEN PROFILE AS ACCOMMODATION.
WO2006059005A1 (en) * 2004-11-30 2006-06-08 Valeo Systemes Thermiques Heat exchanger with heat storage
US7182128B2 (en) * 2005-03-09 2007-02-27 Visteon Global Technologies, Inc. Heat exchanger tube having strengthening deformations
KR100645734B1 (en) * 2005-12-14 2006-11-15 주식회사 경동나비엔 Heat exchanger of condensing boiler for heating and hot-water supply
US8726508B2 (en) * 2006-01-19 2014-05-20 Modine Manufacturing Company Flat tube, flat tube heat exchanger, and method of manufacturing same
WO2007104580A2 (en) * 2006-03-16 2007-09-20 Behr Gmbh & Co. Kg Heat exchanger for a motor vehicle
JP2007278637A (en) * 2006-04-10 2007-10-25 Xenesys Inc Heat exchanger
JP4818040B2 (en) * 2006-09-26 2011-11-16 京セラ株式会社 Plate fin type heat exchanger and fuel cell system
DE102006048305B4 (en) * 2006-10-12 2011-06-16 Modine Manufacturing Co., Racine Plate heat exchanger
EP2122289A4 (en) * 2007-02-27 2013-01-09 Carrier Corp Multi-channel flat tube evaporator with improved condensate drainage

Also Published As

Publication number Publication date
CN102822617B (en) 2014-10-15
US20130032320A1 (en) 2013-02-07
JP2011158200A (en) 2011-08-18
CN102822617A (en) 2012-12-12
WO2011096324A1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5620685B2 (en) Heat exchanger
US20120227945A1 (en) Free-draining finned surface architecture for heat exchanger
JP2010019534A (en) Heat exchanger
JP5182570B2 (en) Water heater
JP6206975B2 (en) Heat exchanger
CN103857974A (en) Fin tube heat exchanger and method for manufacturing same
JP2009121708A (en) Heat exchanger
JP6206976B2 (en) Heat exchanger
JP2015098947A (en) Exhaust heat exchanger
JP6375897B2 (en) Heat exchanger
JP6341530B2 (en) Multi-tube heat exchanger
JP2010139110A (en) Latent heat recovery type heat exchanger
JP7244440B2 (en) Header plateless heat exchanger
JP2005274045A (en) Heat source device
JP2010216795A (en) Plate type heat exchanger
JP2010065892A (en) Heat exchanger
JP2010014329A (en) Heat exchanger
JP2009204278A (en) Heat exchanger
JP2018128227A (en) Outdoor heat exchanger
JP5409056B2 (en) Plate heat exchanger
JP2005274044A (en) Heat source device
JP6435487B2 (en) Heat exchanger
JPWO2019131569A1 (en) Header plateless heat exchanger
JP2011043317A (en) Heat exchanger
JP2010107068A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140919

R150 Certificate of patent or registration of utility model

Ref document number: 5620685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250