JP5618175B2 - New heterocyclic aromatic polymers - Google Patents
New heterocyclic aromatic polymers Download PDFInfo
- Publication number
- JP5618175B2 JP5618175B2 JP2009165239A JP2009165239A JP5618175B2 JP 5618175 B2 JP5618175 B2 JP 5618175B2 JP 2009165239 A JP2009165239 A JP 2009165239A JP 2009165239 A JP2009165239 A JP 2009165239A JP 5618175 B2 JP5618175 B2 JP 5618175B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- organic group
- formula
- ring
- represent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Description
本発明は、2環式芳香族化合物を単量体として得られる複素環含有導電性ポリマーとその製造法に関する。さらに、該ポリマーを含有する導電性樹脂組成物にも関する。 The present invention relates to a heterocyclic-containing conductive polymer obtained using a bicyclic aromatic compound as a monomer and a method for producing the same. Furthermore, the present invention also relates to a conductive resin composition containing the polymer.
導電性高分子と呼ばれる共役高分子が、従来の常識を超えた画期的な性能や機能を有する新素材として注目されている。これらは、例えば電界発光素子(EL)素子、二次電池、コンデンサをはじめとする各種新機能素子として開発されており、一部はすでに工業製品として利用されている。代表的なものとしては、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリフェニレンサルファイド、ポリピロール、ポリチオフェン、ポリ(3−メチルチオフェン)、ポリアニリン、ポリペリナフタレン、ポリアクリロニトリル等が知られている。これらは、例えば固体電解コンデンサなどの分野で使用されている(例えば、特許文献1を参照)。しかし、これらの材料は、導電性、耐熱性、耐候性、透明性、成形加工性(なかでも、溶媒溶解性)など全ての面で優れた物性を有するわけではなく、高いレベルの物性がバランス良く要求される電子材料分野において利用するには不充分であった。 A conjugated polymer called a conductive polymer has been attracting attention as a new material having epoch-making performance and functions exceeding conventional common sense. These have been developed as various new functional elements including, for example, an electroluminescent element (EL) element, a secondary battery, and a capacitor, and some of them are already used as industrial products. Typical examples include polyacetylene, polyparaphenylene, polyphenylene vinylene, polyphenylene sulfide, polypyrrole, polythiophene, poly (3-methylthiophene), polyaniline, polyperiphthalene, polyacrylonitrile and the like. These are used in the field of, for example, a solid electrolytic capacitor (see, for example, Patent Document 1). However, these materials do not have excellent physical properties in all aspects such as conductivity, heat resistance, weather resistance, transparency, moldability (especially solvent solubility), and a high level of physical properties is balanced. It was insufficient for use in the field of electronic materials, which is often required.
上記の各種の導電性ポリマーの中でも、特にポリピロールやポリチオフェンは、その導電性や成形加工性の有利さから、固体電解コンデンサや有機太陽電池、有機発光素子、ITOに変わる導電性フィルムとして産業利用が検討されている導電性高分子である(特許文献1、2及び3を参照)。 Among the above-mentioned various conductive polymers, polypyrrole and polythiophene are particularly useful for industrial applications as solid electrolytic capacitors, organic solar cells, organic light-emitting elements, and conductive films that replace ITO due to the advantages of their conductivity and moldability. It is a conductive polymer under investigation (see Patent Documents 1, 2, and 3).
ポリピロールやポリチオフェンは、適当な置換基を導入することで、ある程度、導電性、耐熱性、耐侯性や成形加工性(なかでも、溶剤溶解性)を調整することが可能である。しかし、他の導電性高分子と同様、全ての面で優れた物性を有するわけではなく、複数の特性を同時に付与することは、極めて困難であり、近年のより高いレベルの要求に対しては不十分である。 Polypyrrole and polythiophene can be adjusted to a certain degree of conductivity, heat resistance, weather resistance, and moldability (particularly solvent solubility) by introducing appropriate substituents. However, like other conductive polymers, it does not have excellent physical properties in all aspects, and it is extremely difficult to simultaneously impart a plurality of characteristics. It is insufficient.
ポリピロールやポリチオフェンの製造方法としては、ピロールやチオフェンを電気化学的に酸化重合(電解重合)させる方法や、酸化剤を用いて化学的に酸化重合(化学重合)させる方法が知られている。電解重合により得られた膜状の導電性ポリマーは、量産性、経済性に劣り、それ自体の強度も弱く、また不溶不融のため成型加工が困難であるという問題があった。 As a method for producing polypyrrole or polythiophene, there are known a method in which pyrrole or thiophene is electrochemically oxidatively polymerized (electrolytic polymerization) or a method in which an oxidant is used to chemically oxidatively polymerize (chemical polymerization). The film-like conductive polymer obtained by electrolytic polymerization has problems of being inferior in mass productivity and economy, weak in its own strength, and difficult to mold due to insolubility and infusibility.
本発明の目的は、上記従来の課題を解決するものであり、その目的とするところは、優れた導電性、耐熱性、耐候性、成形加工性(なかでも、溶媒溶解性)、及び、透明性などの特性を複数有する導電性ポリマーを提供することにある。本発明の他の目的は、当該導電性ポリマーの簡便な製造方法、及び、当該導電性ポリマーを含む導電性樹脂組成物を提供することにある。 The object of the present invention is to solve the above-mentioned conventional problems, and the object is to have excellent conductivity, heat resistance, weather resistance, moldability (particularly, solvent solubility), and transparency. It is to provide a conductive polymer having a plurality of properties such as properties. Another object of the present invention is to provide a simple method for producing the conductive polymer and a conductive resin composition containing the conductive polymer.
本発明者らは、上記課題を解決するために鋭意検討を行った結果、少なくともチオフェン環又はピロール環のいずれか一方の複素環式骨格を有する非縮合系の2環式芳香族化合物を単量体として得たポリマーが、導電性、耐熱性、耐候性、成形加工性(なかでも、溶媒溶解性)、及び、透明性に優れていることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a single amount of a non-condensed bicyclic aromatic compound having at least one heterocyclic skeleton of either a thiophene ring or a pyrrole ring. The polymer obtained as a body was found to be excellent in conductivity, heat resistance, weather resistance, moldability (particularly, solvent solubility), and transparency, and the present invention was completed.
すなわち、本発明は、下記一般式(1)で表される複素環含有芳香族化合物を単量体として酸化重合して得られる導電性ポリマーに関する。
A−B (1)
(式中、Aは、置換若しくは無置換のチオフェン環基、又は、置換若しくは無置換のピロール環基を表す。Bは、置換若しくは無置換の炭化水素系芳香族環基、置換若しくは無置換のチオフェン環基、又は、置換若しくは無置換のピロール環基を表す。Aによって表される環とBによって表される環は直接結合している。ただし、AとBは互いに異なる構造を表す。)
さらに、本発明は、上記一般式(1)で表される複素環含有芳香族化合物を単量体として、酸化剤を用いた化学重合法により酸化重合することを特徴とする、導電性ポリマーの製造方法にも関する。
That is, the present invention relates to a conductive polymer obtained by oxidative polymerization using a heterocyclic ring-containing aromatic compound represented by the following general formula (1) as a monomer.
AB (1)
(In the formula, A represents a substituted or unsubstituted thiophene ring group or a substituted or unsubstituted pyrrole ring group. B represents a substituted or unsubstituted hydrocarbon aromatic ring group, a substituted or unsubstituted hydrocarbon group. A thiophene ring group or a substituted or unsubstituted pyrrole ring group, wherein the ring represented by A and the ring represented by B are directly bonded, provided that A and B represent structures different from each other.
Furthermore, the present invention provides an electroconductive polymer characterized by oxidatively polymerizing a heterocyclic ring-containing aromatic compound represented by the above general formula (1) as a monomer by a chemical polymerization method using an oxidizing agent. It also relates to the manufacturing method.
さらに本発明は、前記導電性ポリマーを含有する導電性樹脂組成物にも関する。 The present invention further relates to a conductive resin composition containing the conductive polymer.
本発明の導電性ポリマーは、導電性、耐熱性、耐候性、成形加工性(なかでも、溶媒溶解性)、透明性等に関して優れた物性を有する。 The conductive polymer of the present invention has excellent physical properties with respect to conductivity, heat resistance, weather resistance, molding processability (in particular, solvent solubility), transparency, and the like.
本発明の複素環含有芳香族ポリマーは、下記一般式(1)で表される、少なくともチオフェン環又はピロール環のいずれか一方の複素環式骨格を有する非縮合系の2環式芳香族化合物を単量体として、酸化重合して得られる導電性ポリマーである。
A−B (1)
The heterocycle-containing aromatic polymer of the present invention is a non-condensed bicyclic aromatic compound represented by the following general formula (1) and having at least either a thiophene ring or a pyrrole ring heterocyclic skeleton. It is a conductive polymer obtained by oxidative polymerization as a monomer.
AB (1)
式(1)中、Aは、置換若しくは無置換のチオフェン環基、又は、置換若しくは無置換のピロール環基を表す。Bは、置換若しくは無置換の炭化水素系芳香族環基、置換若しくは無置換のチオフェン環基、又は、置換若しくは無置換のピロール環基を表す。Aによって表される環とBによって表される環は直接結合している。ただし、AとBは互いに異なる構造を表す。 In formula (1), A represents a substituted or unsubstituted thiophene ring group or a substituted or unsubstituted pyrrole ring group. B represents a substituted or unsubstituted hydrocarbon aromatic ring group, a substituted or unsubstituted thiophene ring group, or a substituted or unsubstituted pyrrole ring group. The ring represented by A and the ring represented by B are directly bonded. However, A and B represent different structures.
異種の複素環式芳香族化合物/炭化水素系芳香族化合物を組み合わせることで、導電性ポリマーに2つの構成要素由来の異なる性質を付与できることから、従来の単一の化合物を単量体としたポリマーでは得られない、高レベルの物性を達成することができる。また、異種の複素環式芳香族化合物/炭化水素系芳香族化合物の構造を適宜選択することで、利用目的に応じて、溶媒溶解性や透明性の調整が可能であるだけでなく、導電性のレベルも調整することが可能となり、導電性ポリマーの産業上の利用範囲を拡大することが可能となる。また、チオフェン構造とピロール構造を組み合わせることで、導電性のほか、耐熱性、耐候性、溶剤可溶性、成型加工性にも優れたポリマーとなる。 By combining different types of heteroaromatic compounds / hydrocarbon aromatic compounds, different properties derived from two constituent elements can be imparted to the conductive polymer. It is possible to achieve a high level of physical properties that cannot be achieved with. In addition, by appropriately selecting the structure of different heteroaromatic compounds / hydrocarbon aromatic compounds, it is possible not only to adjust solvent solubility and transparency according to the purpose of use, but also to have conductivity. It is possible to adjust the level of the conductive polymer, and it is possible to expand the industrial application range of the conductive polymer. Further, by combining the thiophene structure and the pyrrole structure, it becomes a polymer excellent in conductivity, heat resistance, weather resistance, solvent solubility, and moldability.
また、本発明の導電性ポリマーは、非縮合系の2環式芳香族化合物を重合して得られるものであるので、Aから導かれたユニットと、Bから導かれたユニットが当該ポリマー中にほぼ1:1の割合で含まれる。よって2種類の単環式化合物をランダム重合する場合と異なって、両ユニットの割合を厳密に制御することが可能である。また、A−Bで示される化合物が単量体として使用されるので、Aから導かれた繰り返し単位と、Bから導かれた繰り返し単位が当該ポリマー中に、偏りなく、ほぼ均一に分布するので、当該ポリマーは均質な物性を示すことができる。 Moreover, since the conductive polymer of the present invention is obtained by polymerizing a non-condensed bicyclic aromatic compound, a unit derived from A and a unit derived from B are contained in the polymer. It is included in a ratio of approximately 1: 1. Therefore, unlike the case of randomly polymerizing two types of monocyclic compounds, it is possible to strictly control the ratio of both units. Further, since the compound represented by AB is used as a monomer, the repeating unit derived from A and the repeating unit derived from B are distributed almost uniformly in the polymer without any deviation. The polymer can exhibit uniform physical properties.
本発明の複素環含有芳香族ポリマーについては、本明細書中で、「複素環含有芳香族ポリマー(1)」と記載する場合がある。 The heterocycle-containing aromatic polymer of the present invention may be referred to as “heterocycle-containing aromatic polymer (1)” in the present specification.
チオフェン環基とは2−チエニル基のことをいい、炭素原子上に置換基を有してもよい。 A thiophene ring group means a 2-thienyl group, and may have a substituent on a carbon atom.
ピロール環基とは2−ピロリル基のことをいい、炭素原子上又は窒素原子上に置換基を有してもよい。 A pyrrole ring group means a 2-pyrrolyl group, and may have a substituent on a carbon atom or a nitrogen atom.
式(1)におけるA又はBで表される置換チオフェン環基及び置換ピロール環基の例としては、例えば、以下のような構造が挙げられる。 Examples of the substituted thiophene ring group and the substituted pyrrole ring group represented by A or B in Formula (1) include the following structures.
(各式中、Xはハロゲン原子、nは1から10の整数、kは0から20の整数) (In each formula, X is a halogen atom, n is an integer from 1 to 10, and k is an integer from 0 to 20)
(各式中、Xはハロゲン原子、nは1から10の整数、kは0から20の整数) (In each formula, X is a halogen atom, n is an integer from 1 to 10, and k is an integer from 0 to 20)
(各式中、Xはハロゲン原子、nは1から10の整数、kは0から20の整数、Rは、置換基を有していてもよい芳香族基又は炭素数1から10のアルキル基を示す)
チオフェン環基の置換基としては、後述の有機基が挙げられるが、炭素数1から10のアルキル基又は炭素数1から5のアルコキシ基が好ましい。また、ピロール環基の置換基としては、後述の有機基が挙げられるが、炭素原子上の置換基としては、炭素数1から10のアルキル基又は炭素数1から5のアルコキシ基が好ましく、窒素原子上の置換基としては、炭素数1から10のアルキル基又は置換基を有していてもよいフェニル基が好ましい。これらチオフェン環基やピロール環基の置換基であるアルキル基又はアルコキシ基には、ハロゲン元素やカルボン酸基、スルホン酸基などの官能基が結合していても良い。
(In each formula, X is a halogen atom, n is an integer of 1 to 10, k is an integer of 0 to 20, and R is an optionally substituted aromatic group or alkyl group having 1 to 10 carbon atoms. Indicate)
Examples of the substituent of the thiophene ring group include an organic group described later, and an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 5 carbon atoms is preferable. Further, examples of the substituent of the pyrrole ring group include an organic group described later. The substituent on the carbon atom is preferably an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 5 carbon atoms, and nitrogen. As the substituent on the atom, an alkyl group having 1 to 10 carbon atoms or an optionally substituted phenyl group is preferable. A functional group such as a halogen element, a carboxylic acid group, or a sulfonic acid group may be bonded to the alkyl group or alkoxy group that is a substituent of the thiophene ring group or pyrrole ring group.
前述の炭化水素系芳香族環基としては、特に限定されないが、例えば、フェニル基やナフチル基が挙げられる。好ましくはフェニル基である。これらの基は置換基を有してもよく、そのような置換基としては、後述の有機基が挙げられるが、なかでも炭素数1から10のアルキル基又は炭素数1から5のアルコキシ基が好ましい。 Although it does not specifically limit as said hydrocarbon-type aromatic ring group, For example, a phenyl group and a naphthyl group are mentioned. A phenyl group is preferred. These groups may have a substituent, and examples of such a substituent include an organic group described later. Among them, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 5 carbon atoms is preferable. preferable.
Aによって表される環とBによって表される環は、環構造に含まれない原子を介して結合することはなく、両環に含まれる原子間の結合によって、直接結合している。 The ring represented by A and the ring represented by B are not bonded via an atom not included in the ring structure, but are directly bonded by a bond between atoms included in both rings.
複素環含有芳香族ポリマー(1)の単量体としては、溶剤溶解性や耐熱性、耐候性の観点から、チオフェン環基又はピロール環基の3位又は4位に結合している置換基の数の合計が、2個以上である化合物が好ましい。また、3位又は4位に結合している置換基の数の合計が4個である場合(すなわち、すべての3位及び4位に置換基が結合している場合)、立体障害を避けるために、A又はBの少なくとも一方において、3位の置換基と4位の置換基が結合して環構造を形成していることが好ましい。 As the monomer of the heterocyclic ring-containing aromatic polymer (1), from the viewpoint of solvent solubility, heat resistance, and weather resistance, a substituent bonded to the 3-position or 4-position of the thiophene ring group or pyrrole ring group Compounds having a total number of 2 or more are preferred. In addition, in order to avoid steric hindrance when the total number of substituents bonded to the 3-position or 4-position is 4 (that is, when the substituents are bonded to all the 3-position and 4-position). In addition, in at least one of A and B, it is preferable that the substituent at the 3-position and the substituent at the 4-position are bonded to form a ring structure.
複素環含有芳香族ポリマー(1)の単量体は、Aで示される環上の炭素原子のうち少なくとも1つは無置換であり、かつ、Bで示される環上の炭素原子のうち少なくとも1つは無置換である。このような単量体を酸化重合すると、無置換の炭素原子間でカップリング反応が進行することで、複素環含有芳香族ポリマー(1)として、繰り返し単位が−A−B−で示される直鎖状重合体が得られる。A又はBによって表されるチオフェン環又はピロール環は、一方の2位の炭素原子間で互いに結合し、他方の2位の炭素原子が無置換であることが好ましい。 The monomer of the heterocyclic ring-containing aromatic polymer (1) has at least one of carbon atoms on the ring represented by A unsubstituted, and at least one carbon atom on the ring represented by B. One is unsubstituted. When such a monomer is oxidatively polymerized, a coupling reaction proceeds between unsubstituted carbon atoms, so that the repeating unit is represented by -A-B- as the heterocyclic ring-containing aromatic polymer (1). A chain polymer is obtained. The thiophene ring or pyrrole ring represented by A or B is preferably bonded to one another between the carbon atoms at the 2-position, and the other carbon atom at the 2-position is unsubstituted.
複素環含有芳香族ポリマー(1)の単量体としては、下記式(2)〜(6)のいずれかによって表される複素環含有芳香族化合物が好ましく、なかでも、チオフェン環基とピロール環基を含む式(2)又は(3)で表される複素環含有芳香族化合物が特に好ましい。これらの単量体では、酸化重合は、チオフェン環上の2位の無置換の炭素原子や、ピロール環上の2位の無置換の炭素原子において進行する。 As the monomer of the heterocyclic ring-containing aromatic polymer (1), a heterocyclic ring-containing aromatic compound represented by any one of the following formulas (2) to (6) is preferable, and in particular, a thiophene ring group and a pyrrole ring A heterocyclic ring-containing aromatic compound represented by the formula (2) or (3) containing a group is particularly preferable. In these monomers, oxidative polymerization proceeds at the 2-position unsubstituted carbon atom on the thiophene ring or the 2-position unsubstituted carbon atom on the pyrrole ring.
式(2)では、式(1)におけるAが、3位及び/又は4位に置換基を有することがあるチオフェン環基を表し、Bが、3位及び/又は4位に置換基を有することがあるピロール環基を表す。 In Formula (2), A in Formula (1) represents a thiophene ring group that may have a substituent at the 3-position and / or 4-position, and B has a substituent at the 3-position and / or 4-position. Represents a pyrrole ring group.
式(2)中、R1とR2は、それぞれ独立して、水素原子又は有機基を表すが、少なくとも一方は有機基を表し、かつ、R3とR4は、それぞれ独立して、水素原子又は有機基を表す(ケースi)。あるいは、R1とR2がともに水素原子を表し、かつ、R3とR4は、それぞれ独立して、有機基を表す(ケースii)。R1とR2の双方が有機基を表す場合、これらは互いに結合して環構造を形成してもよい。R3とR4の双方が有機基を表す場合、これらは互いに結合して環構造を形成してもよい。このような環構造としては、エチレンジオキシ基により形成される環構造が挙げられる。 In formula (2), R 1 and R 2 each independently represent a hydrogen atom or an organic group, but at least one of them represents an organic group, and R 3 and R 4 each independently represent hydrogen. Represents an atom or an organic group (case i). Alternatively, R 1 and R 2 both represent a hydrogen atom, and R 3 and R 4 each independently represent an organic group (case ii). When both R 1 and R 2 represent an organic group, they may be bonded to each other to form a ring structure. When both R 3 and R 4 represent an organic group, they may be bonded to each other to form a ring structure. Examples of such a ring structure include a ring structure formed by an ethylenedioxy group.
好ましくは、式(2)中、ケースiにおいて、R1とR2は、それぞれ独立して、有機基を表し、これらは互いに結合して環構造を形成し、及び/又はケースiiにおいて、R3とR4は、それぞれ独立して、有機基を表し、これらは互いに結合して環構造を形成する。 Preferably, in formula (2), in case i, R 1 and R 2 each independently represent an organic group, which are bonded to each other to form a ring structure and / or in case ii, R 1 3 and R 4 each independently represents an organic group, which are bonded to each other to form a ring structure.
より好ましくは、ケースiにおいて、R1とR2は、それぞれ独立して、有機基を表し、これらは互いに結合して環構造を形成する。 More preferably, in case i, R 1 and R 2 each independently represent an organic group, which are bonded to each other to form a ring structure.
さらに好ましくは、優れた導電性を得る観点から、ケースiにおいて、R1とR2が、互いに結合して、エチレンジオキシ基を表す。この場合、式(2)で表される化合物は、下記式(2′)で表される。 More preferably, from the viewpoint of obtaining excellent conductivity, in case i, R 1 and R 2 are bonded to each other to represent an ethylenedioxy group. In this case, the compound represented by the formula (2) is represented by the following formula (2 ′).
特に、式(2′)中のR3及びR4が水素原子を表す下記式で示される化合物が好ましい。 In particular, a compound represented by the following formula in which R 3 and R 4 in the formula (2 ′) represent a hydrogen atom is preferable.
式(3)では、式(1)におけるAが、3位及び/又は4位に置換基を有することがあるチオフェン環基を表し、Bが、3位及び/又は4位に置換基を有することがあるN−置換ピロール環基を表す。 In Formula (3), A in Formula (1) represents a thiophene ring group that may have a substituent at the 3-position and / or 4-position, and B has a substituent at the 3-position and / or 4-position. Represents an N-substituted pyrrole ring group.
式(3)中、R5とR6は、それぞれ独立して、水素原子又は有機基を表すが、少なくとも一方は有機基を表し、かつ、R7とR8は、それぞれ独立して、水素原子又は有機基を表す(ケースi)。あるいは、R5とR6がともに水素原子を表し、かつ、R7とR8は、それぞれ独立して、有機基を表す(ケースii)。R5とR6の双方が有機基を表す場合、これらは互いに結合して環構造を形成してもよい。R7とR8の双方が有機基を表す場合、これらは互いに結合して環構造を形成してもよい。このような環構造としては、エチレンジオキシ基により形成される環構造が挙げられる。Rn1は有機基を表す。 In formula (3), R 5 and R 6 each independently represent a hydrogen atom or an organic group, but at least one of them represents an organic group, and R 7 and R 8 each independently represent hydrogen. Represents an atom or an organic group (case i). Alternatively, R 5 and R 6 both represent a hydrogen atom, and R 7 and R 8 each independently represent an organic group (case ii). When both R 5 and R 6 represent an organic group, they may be bonded to each other to form a ring structure. When both R 7 and R 8 represent an organic group, they may be bonded to each other to form a ring structure. Examples of such a ring structure include a ring structure formed by an ethylenedioxy group. Rn 1 represents an organic group.
好ましくは、式(3)中、ケースiにおいて、R5とR6は、それぞれ独立して、有機基を表し、これらは互いに結合して環構造を形成し、及び/又は、ケースiiにおいて、R7とR8は、それぞれ独立して、有機基を表し、これらは互いに結合して環構造を形成する。 Preferably, in formula (3), in case i, R 5 and R 6 each independently represent an organic group, which are bonded to each other to form a ring structure, and / or in case ii, R 7 and R 8 each independently represents an organic group, which are bonded to each other to form a ring structure.
より好ましくは、ケースiにおいて、式(3)中、R5とR6は、それぞれ独立して、有機基を表し、これらは互いに結合して環構造を形成する。 More preferably, in case i, in formula (3), R 5 and R 6 each independently represent an organic group, which are bonded to each other to form a ring structure.
さらに好ましくは、優れた導電性の観点から、ケースiにおいて、R5とR6が、互いに結合して、エチレンジオキシ基を表す。この場合、式(3)で表される化合物は、下記式(3′)で表される。 More preferably, from the viewpoint of excellent conductivity, in case i, R 5 and R 6 are bonded to each other to represent an ethylenedioxy group. In this case, the compound represented by the formula (3) is represented by the following formula (3 ′).
特に、式(3′)中のR7及びR8が水素原子を表し、Rn1が置換基を有していてもよいフェニル基を表す下記式(3″)で示される化合物が好ましい。 In particular, a compound represented by the following formula (3 ″) in which R 7 and R 8 in the formula (3 ′) represent a hydrogen atom and Rn 1 represents a phenyl group which may have a substituent is preferable.
式(3″)中のRxは、水素原子、有機基又はハロゲン原子を表す。導電性や溶剤溶解性の観点から、特に、水素原子、フッ素原子、メトキシ基(−OCH3)、トリフルオロメチル基(−CF3)、メトキシカルボニル基(−COOCH3)が好ましい。 Rx in the formula (3 ″) represents a hydrogen atom, an organic group or a halogen atom. From the viewpoint of conductivity and solvent solubility, in particular, a hydrogen atom, a fluorine atom, a methoxy group (—OCH 3 ), trifluoromethyl. A group (—CF 3 ) and a methoxycarbonyl group (—COOCH 3 ) are preferred.
式(4)では、式(1)におけるAが、3位及び/又は4位に置換基を有することがあるピロール環基を表し、Bが、3位及び/又は4位に置換基を有することがあるN−置換ピロール環基を表す。 In Formula (4), A in Formula (1) represents a pyrrole ring group that may have a substituent at the 3-position and / or 4-position, and B has a substituent at the 3-position and / or 4-position. Represents an N-substituted pyrrole ring group.
式(4)中、R9とR10は、それぞれ独立して、水素原子又は有機基を表すが、少なくとも一方は有機基を表し、かつ、R11とR12は、それぞれ独立して、水素原子又は有機基を表す(ケースi)。あるいは、R9とR10がともに水素原子を表し、かつ、R11とR12は、それぞれ独立して、有機基を表す(ケースii)。R9とR10の双方が有機基を表す場合、これらは互いに結合して環構造を形成してもよい。R11とR12の双方が有機基を表す場合、これらは互いに結合して環構造を形成してもよい。このような環構造としては、エチレンジオキシ基により形成される環構造が挙げられる。Rn2は有機基を表す。 In formula (4), R 9 and R 10 each independently represent a hydrogen atom or an organic group, but at least one of them represents an organic group, and R 11 and R 12 each independently represent hydrogen. Represents an atom or an organic group (case i). Alternatively, R 9 and R 10 both represent a hydrogen atom, and R 11 and R 12 each independently represent an organic group (case ii). When both R 9 and R 10 represent an organic group, they may be bonded to each other to form a ring structure. When both R 11 and R 12 represent an organic group, they may be bonded to each other to form a ring structure. Examples of such a ring structure include a ring structure formed by an ethylenedioxy group. Rn 2 represents an organic group.
好ましくは、式(4)中、ケースiにおいて、R9とR10は、それぞれ独立して、有機基を表し、これらは互いに結合して環構造を形成し、及び/又は、ケースiiにおいて、R11とR12は、それぞれ独立して、有機基を表し、これらは互いに結合して環構造を形成する。 Preferably, in formula (4), in case i, R 9 and R 10 each independently represent an organic group, which are bonded to each other to form a ring structure, and / or in case ii, R 11 and R 12 each independently represents an organic group, which are bonded to each other to form a ring structure.
式(5)では、式(1)におけるA及びBが、それぞれ独立して、3位及び/又は4位に置換基を有することがあるピロール環基を表す。ただし、AとBは互いに異なる構造を表すことから、R13、R14及びRn3の組合せと、R15、R16及びRn4の組合せとが同一である場合は除く。 In Formula (5), A and B in Formula (1) each independently represent a pyrrole ring group that may have a substituent at the 3-position and / or 4-position. However, since A and B represent structures different from each other, the case where the combination of R 13 , R 14 and Rn 3 and the combination of R 15 , R 16 and Rn 4 are the same is excluded.
式(5)中、R13とR14は、それぞれ独立して、水素原子又は有機基を表すが、少なくとも一方は有機基を表し、かつ、R15とR16は、それぞれ独立して、水素原子又は有機基を表す(ケースi)。あるいは、R13とR14がともに水素原子を表し、かつ、R15とR16は、それぞれ独立して、有機基を表す(ケースii)。R13とR14の双方が有機基を表す場合、これらは互いに結合して環構造を形成してもよい。R15とR16の双方が有機基を表す場合、これらは互いに結合して環構造を形成してもよい。このような環構造としては、エチレンジオキシ基により形成される環構造が挙げられる。Rn3とRn4は、それぞれ独立して有機基を表す。 In formula (5), R 13 and R 14 each independently represent a hydrogen atom or an organic group, but at least one of them represents an organic group, and R 15 and R 16 each independently represent hydrogen. Represents an atom or an organic group (case i). Alternatively, R 13 and R 14 both represent a hydrogen atom, and R 15 and R 16 each independently represent an organic group (case ii). When both R 13 and R 14 represent an organic group, they may be bonded to each other to form a ring structure. When both R 15 and R 16 represent an organic group, they may be bonded to each other to form a ring structure. Examples of such a ring structure include a ring structure formed by an ethylenedioxy group. Rn 3 and Rn 4 each independently represents an organic group.
好ましくは、式(5)中、ケースiにおいて、R13とR14は、それぞれ独立して、有機基を表し、これらは互いに結合して環構造を形成し、及び/又は、ケースiiにおいて、R15とR16は、それぞれ独立して、有機基を表し、これらは互いに結合して環構造を形成する。 Preferably, in formula (5), in case i, R 13 and R 14 each independently represent an organic group, which are bonded to each other to form a ring structure, and / or in case ii, R 15 and R 16 each independently represent an organic group, which are bonded to each other to form a ring structure.
式(6)では、式(1)におけるAが、チオフェン環上の3位の置換基と4位の置換基が結合してエチレンジオキシ基を形成している3,4−エチレンジオキシチオフェン環基を表し、Bが、オルト位及び/又はメタ位に置換基を有することがあるフェニル基を表す。 In Formula (6), A in Formula (1) is 3,4-ethylenedioxythiophene in which the 3-position substituent and 4-position substituent on the thiophene ring are bonded to form an ethylenedioxy group. Represents a cyclic group, and B represents a phenyl group which may have a substituent at the ortho position and / or the meta position.
式(6)中、R17とR18は、それぞれ独立して、水素原子又は有機基を表すが、少なくとも一方は有機基を表す。R19とR20は、それぞれ独立して、有機基を表す。ベンゼン環のオルト位とメタ位は特に酸化されやすいため、これらの位置のうち少なくとも3つに置換基を結合させることによって、化合物の安定性を高めることができる。 In formula (6), R 17 and R 18 each independently represent a hydrogen atom or an organic group, but at least one of them represents an organic group. R 19 and R 20 each independently represents an organic group. Since the ortho and meta positions of the benzene ring are particularly easily oxidized, the stability of the compound can be enhanced by attaching a substituent to at least three of these positions.
R1〜R20及びRn1〜Rn4、Rxが表すことのできる有機基としては、例えば、炭素数1から10の直鎖状、分岐状または環状のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s−ブチル基、t−ブチル基、ヘキシル基、シクロヘキシル基等)、炭素数1から10の直鎖状、分岐状または環状のアルケニル基(例えば、エチレン基、プロピレン基、ブタン−1,2−ジイル基、シクロヘキセニル基等)、炭素数1から5のアルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基等)、置換基を有していてもよいフェニル基(例えば、フェニル基、トリル基、ジメチルフェニル基、ビフェニル基、シクロヘキシルフェニル基等)、アラルキル基(例えば、ベンジル基、フェネチル基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基等)が挙げられる。さらに、これらの有機機には、カルボキシル基、アミノ基、ニトロ基、シアノ基、スルホン酸基、水酸基などの官能基やフッ素、塩素、臭素、ヨウ素などのハロゲン元素が結合していても良い。また、R1〜R20は、カルボキシル基、アミノ基、ニトロ基、シアノ基、スルホン酸基、水酸基やハロゲン元素であっても良い。以上の有機基はそれぞれ独立して選択される。 Examples of the organic group that can be represented by R 1 to R 20 and Rn 1 to Rn 4 , Rx include, for example, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms (for example, a methyl group, an ethyl group, and the like). Propyl group, isopropyl group, butyl group, s-butyl group, t-butyl group, hexyl group, cyclohexyl group, etc.), linear, branched or cyclic alkenyl group having 1 to 10 carbon atoms (for example, ethylene group) , A propylene group, a butane-1,2-diyl group, a cyclohexenyl group, etc.), an alkoxy group having 1 to 5 carbon atoms (for example, a methoxy group, an ethoxy group, an isopropoxy group, etc.), and a substituent. Good phenyl groups (eg phenyl, tolyl, dimethylphenyl, biphenyl, cyclohexylphenyl etc.), aralkyl groups (eg benzyl, phenethyl) Group) and an alkoxycarbonyl group (for example, methoxycarbonyl group and the like). Furthermore, functional groups such as carboxyl group, amino group, nitro group, cyano group, sulfonic acid group and hydroxyl group, and halogen elements such as fluorine, chlorine, bromine and iodine may be bonded to these organic machines. R 1 to R 20 may be a carboxyl group, an amino group, a nitro group, a cyano group, a sulfonic acid group, a hydroxyl group, or a halogen element. The above organic groups are independently selected.
R1〜R20が表すことのできる有機基としては、炭素数1から10のアルキル基又は炭素数1から5のアルコキシ基が好ましい。Rn1〜Rn4が表すことのできる有機基としては、炭素数1から10のアルキル基、又は、フェニル基が好ましく、特にフェニル基が好ましい。 The organic group that can be represented by R 1 to R 20 is preferably an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. The organic group that can be represented by Rn 1 ~Rn 4, alkyl group having 1 to 10 carbon atoms, or, preferably a phenyl group, phenyl group is particularly preferable.
隣接するR1〜R20(R1とR2、R3とR4、R5とR6、R7とR8、R9とR10、R11とR12、R13とR14、R15とR16、R17とR18、R19とR20)の両方が有機基であり、これらが互いに結合して環構造を形成する場合、環構造としては、特に限定されないが、炭素数2から10の脂環式構造が好ましい。脂環式構造には酸素原子、ケイ素原子、硫黄原子、窒素原子などを含んでいても良く、なかでも、特に酸素原子を含んだアルキレンジオキシ基を有する環構造が好ましい。さらに、脂環式構造が芳香族性を有していても良く、この場合、複素環含有芳香族化合物(1)のA、Bは、縮環構造を有する(例えば、イソチアナフテン等)事を意味する。 Adjacent R 1 to R 20 (R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 7 and R 8 , R 9 and R 10 , R 11 and R 12 , R 13 and R 14 , When R 15 and R 16 , R 17 and R 18 , R 19 and R 20 ) are organic groups and they are bonded to each other to form a ring structure, the ring structure is not particularly limited, An alicyclic structure of formula 2 to 10 is preferred. The alicyclic structure may contain an oxygen atom, a silicon atom, a sulfur atom, a nitrogen atom, etc., and among them, a ring structure having an alkylenedioxy group containing an oxygen atom is particularly preferable. Furthermore, the alicyclic structure may have aromaticity. In this case, A and B of the heterocyclic ring-containing aromatic compound (1) have a condensed ring structure (for example, isothianaphthene). Means.
単量体である複素環含有芳香族化合物は、超原子価ヨウ素反応剤の存在下、2種類の複素環芳香族化合物、又は、複素環芳香族化合物と炭化水素系芳香族化合物をカップリングさせることで製造することができる。このようなカップリング反応が超原子価ヨウ素反応剤の存在下では、1:1の比率で効率よく進行する。超原子価ヨウ素反応剤としては後述と同様のものを使用することができる。 A heterocycle-containing aromatic compound that is a monomer couples two types of heteroaromatic compounds or heteroaromatic compounds and hydrocarbon aromatic compounds in the presence of a hypervalent iodine reactant. Can be manufactured. Such a coupling reaction proceeds efficiently at a ratio of 1: 1 in the presence of a hypervalent iodine reactant. As the hypervalent iodine reactant, the same ones as described below can be used.
前記カップリング反応において、超原子価ヨウ素反応剤の使用量は特に限定されず、1種類の原料1モルに対して、好ましくは0.1〜4モル、更に好ましくは0.2〜3モルの割合で用いられ、更に好ましくは0.3〜2モルの割合で用いられる。 In the coupling reaction, the amount of the hypervalent iodine reactant used is not particularly limited, and is preferably 0.1 to 4 mol, more preferably 0.2 to 3 mol, per 1 mol of one kind of raw material. It is used in a proportion, more preferably in a proportion of 0.3 to 2 mol.
前記カップリング反応では、原料として、置換又は無置換のチオフェン化合物、及び、置換又は無置換のピロール化合物からなる群より選択される化合物A−H、及び、置換又は無置換の炭化水素系芳香族化合物、置換又は無置換のチオフェン化合物、及び、置換又は無置換のピロール化合物からなる群より選択される化合物B−Hを使用する。ここで、A及びBは上記と同様である。これら化合物は、所望の生成物を得るために適宜選択すればよい。 In the coupling reaction, as a raw material, a compound AH selected from the group consisting of a substituted or unsubstituted thiophene compound and a substituted or unsubstituted pyrrole compound, and a substituted or unsubstituted hydrocarbon-based aromatic A compound BH selected from the group consisting of a compound, a substituted or unsubstituted thiophene compound, and a substituted or unsubstituted pyrrole compound is used. Here, A and B are the same as described above. These compounds may be appropriately selected in order to obtain a desired product.
前記カップリング反応は、通常、溶媒の存在下で実施される。本発明の製造方法で用いられる溶媒としては、原料、複素環含有芳香族化合物、及び、超原子価ヨウ素反応剤を溶解または分散させる溶媒であればよい。このような溶媒としては、水、有機溶媒(メタノール、エタノール、2−プロパノール、1−プロパノール、n−ブタノールなどのアルコール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどのエチレングリコール類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテルなどのグリコールエーテル類;エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどのグリコールエーテルアセテート類;プロピレングリコール、ジプロピレングリコール、トリプロピレングリコールなどのプロピレングリコール類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテルなどのプロピレングリコールエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテートなどのプロピレングリコールエーテルアセテート類;N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルピロリドン、ジメチルアセトアミド、ジメチルスルホキシド、アセトン、アセトニトリル、およびトルエン、キシレン(o−、m−、あるいはp−キシレン)、ベンゼン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、ジエチルエーテル、ジイソプロピルエーテル、メチル−t−ブチルエーテル、ヘキサン、ヘプタン、クロロメタン(塩化メチル)、ジクロロメタン(塩化メチレン)、トリクロロメタン(クロロホルム)、テトラクロロメタン(四塩化炭素)など)、水とこれらの有機溶媒との混合溶媒(含水有機溶媒)、および2種以上の有機溶媒の混合溶媒が挙げられる。 The coupling reaction is usually performed in the presence of a solvent. The solvent used in the production method of the present invention may be any solvent that dissolves or disperses the raw material, the heterocyclic ring-containing aromatic compound, and the hypervalent iodine reactant. Examples of such solvents include water, organic solvents (alcohols such as methanol, ethanol, 2-propanol, 1-propanol, and n-butanol; ethylene glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol; Glycol ethers such as ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether; glycol ether acetates such as ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate; Propylene glycol , Propylene glycols such as dipropylene glycol and tripropylene glycol; propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, propylene glycol diethyl Propylene glycol ethers such as ether and dipropylene glycol diethyl ether; propylene glycol such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate Ether acetates: N-methylformamide, N, N-dimethylformamide, N-methylpyrrolidone, dimethylacetamide, dimethyl sulfoxide, acetone, acetonitrile, and toluene, xylene (o-, m-, or p-xylene), benzene, acetic acid Ethyl, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, diethyl ether, diisopropyl ether, methyl-t-butyl ether, hexane, heptane, chloromethane (methyl chloride), dichloromethane (methylene chloride), trichloromethane (chloroform), tetrachloromethane ( Carbon tetrachloride)), a mixed solvent of water and these organic solvents (hydrous organic solvent), and a mixed solvent of two or more organic solvents.
カップリング反応の系中に添加剤を適宜添加しても良い。超原子価ヨウ素反応剤と添加剤とを併用することで、複素環含有芳香族化合物の収率を向上させることができ、また、超原子価ヨウ素反応剤の量を減らすことができる。添加剤としては、例えば、ブロモトリメチルシラン、クロロトリメチルシラン、トリメチルシリルトリフラート、三フッ化ホウ素、トリフルオロ酢酸、塩酸、硫酸などがあり、特にブロモトリメチルシランが好ましい。これらは単独で用いても良く、複数で用いても良い。添加剤の使用量は、複素環含有芳香族化合物1モルに対して、好ましくは0.1〜4モル、更に好ましくは0.2〜3モルの割合で用いられ、更に好ましくは0.5〜2モルの割合で用いられる。 You may add an additive suitably in the system of a coupling reaction. By using the hypervalent iodine reactant and the additive in combination, the yield of the heterocyclic ring-containing aromatic compound can be improved, and the amount of the hypervalent iodine reactant can be reduced. Examples of the additive include bromotrimethylsilane, chlorotrimethylsilane, trimethylsilyl triflate, boron trifluoride, trifluoroacetic acid, hydrochloric acid, and sulfuric acid, and bromotrimethylsilane is particularly preferable. These may be used alone or in combination. The amount of the additive used is preferably 0.1 to 4 mol, more preferably 0.2 to 3 mol, more preferably 0.5 to 1 mol per 1 mol of the heterocycle-containing aromatic compound. Used in a 2 mole ratio.
カップリング反応の系中に、フッ素系アルコールを添加しても良い。超原子価ヨウ素反応剤とフッ素系アルコールとを併用することで、複素環含有芳香族化合物の収率を向上させることができ、また、超原子価ヨウ素反応剤の量を減らすことができる。添加するフッ素系アルコールとしては、例えば、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、トリフルオロエタノール、ヘキサフルオロエタノールなどがあり、特に1,1,1,3,3,3−ヘキサフルオロ−2−プロパノールが好ましい。フッ素系アルコールの使用量は、特に特定されないが、用いる溶剤100重量部に対して1〜80重量部が好ましく、特に、10〜40重量部が好ましい。 A fluorinated alcohol may be added to the coupling reaction system. By using a hypervalent iodine reactant and a fluoroalcohol in combination, the yield of the heterocyclic ring-containing aromatic compound can be improved, and the amount of the hypervalent iodine reactant can be reduced. Examples of the fluorinated alcohol to be added include 1,1,1,3,3,3-hexafluoro-2-propanol, trifluoroethanol, hexafluoroethanol, and the like. , 3-hexafluoro-2-propanol is preferred. Although the usage-amount of a fluorine-type alcohol is not specifically specified, 1-80 weight part is preferable with respect to 100 weight part of solvents to be used, and 10-40 weight part is especially preferable.
当該カップリング反応は、通常、各原料、超原子価ヨウ素反応剤、及び、溶剤や他の試薬等を混合して、−50℃〜100℃の温度範囲で、10分から48時間の間行うことによって、前記複素環含有芳香族化合物を製造することができる。好ましくは、0〜50℃の温度範囲で30分〜8時間行われる。さらに好ましくは、10〜40℃の温度範囲で1〜4時間行われる。加える試薬の順序は問わない。 The coupling reaction is usually performed for 10 minutes to 48 hours in a temperature range of −50 ° C. to 100 ° C. by mixing each raw material, a hypervalent iodine reactant, a solvent and other reagents. Can produce the heterocycle-containing aromatic compound. Preferably, it is performed at a temperature range of 0 to 50 ° C. for 30 minutes to 8 hours. More preferably, it is performed in a temperature range of 10 to 40 ° C. for 1 to 4 hours. The order of the reagent to add is not ask | required.
本発明の複素環含有芳香族ポリマー(1)の製造方法としては、前記単量体を、各種酸化剤を用いた化学重合法により酸化重合することを特徴とする。化学重合法は、簡便で大量生産が可能なため、従来の電解重合法と比べ工業的製法に適した方法である。 The method for producing the heterocyclic ring-containing aromatic polymer (1) of the present invention is characterized in that the monomer is oxidatively polymerized by a chemical polymerization method using various oxidizing agents. Since the chemical polymerization method is simple and capable of mass production, it is a method suitable for an industrial production method as compared with the conventional electrolytic polymerization method.
化学重合方法に用いる酸化剤は特に限定されない。好ましい酸化剤としては、スルホン酸化合物をアニオンとし、高価数の遷移金属をカチオンとする酸化剤が挙げられる。この酸化剤を構成する高価数の遷移金属イオンとして、Ag+、Cu2+、Fe3+、Al3+、Ce4+、W6+、Mo6+、Cr6+、Mn7+、およびSn4+が挙げられる。特に、Fe3+およびCu2+が好ましい。具体的には、FeCl3、Fe(ClO4)3、K2CrO7、過硫酸アルカリまたはアンモニウム、過ホウ酸アルカリ、過マンガン酸カリウム、四フッ化ホウ酸銅が挙げられる。また、金属イオンを含まない酸化剤として、H2O2および過硫酸アンモニウムが挙げられる。さらに、超原子価ヨウ素反応剤に代表される超原子価化合物が挙げられる。 The oxidizing agent used for the chemical polymerization method is not particularly limited. Preferable oxidizing agents include oxidizing agents having a sulfonic acid compound as an anion and an expensive number of transition metals as a cation. Examples of the expensive transition metal ions constituting this oxidant include Ag + , Cu 2+ , Fe 3+ , Al 3+ , Ce 4+ , W 6+ , Mo 6+ , Cr 6+ , Mn 7+ , and Sn 4+ . In particular, Fe 3+ and Cu 2+ are preferable. Specific examples include FeCl 3 , Fe (ClO 4 ) 3 , K 2 CrO 7 , alkali or ammonium persulfate, alkali perborate, potassium permanganate, and copper tetrafluoroborate. Furthermore, as an oxidizing agent containing no metal ions include H 2 O 2 and ammonium persulfate. Furthermore, hypervalent compounds represented by hypervalent iodine reactants can be mentioned.
特に好ましい実施形態では、酸化剤が超原子価ヨウ素反応剤である。超原子価ヨウ素反応剤とは、3価または5価の超原子価状態にあるヨウ素原子を含む反応剤のことをいう。超原子価ヨウ素反応剤は、より安定なオクテット状態(1価のヨウ素)に戻ろうとする性質を有しているため、鉛(IV)、タリウム(III)、水銀(II)などの重金属酸化剤と類似の反応性を有する。さらに、超原子価ヨウ素反応剤は、このような重金属酸化剤に比べて低毒性であり、安全性に優れ、工業的な製法に適している。 In particularly preferred embodiments, the oxidizing agent is a hypervalent iodine reactant. A hypervalent iodine reactant refers to a reactant containing an iodine atom in a trivalent or pentavalent hypervalent state. Since the hypervalent iodine reactant has the property of returning to a more stable octet state (monovalent iodine), a heavy metal oxidizing agent such as lead (IV), thallium (III), mercury (II), etc. And similar reactivity. Furthermore, the hypervalent iodine reactant is less toxic than such a heavy metal oxidant, has excellent safety, and is suitable for an industrial production method.
本発明の製造方法に用いられ得る超原子価ヨウ素反応剤は、特に限定されない。3価の超原子価ヨウ素反応剤としては、例えば、フェニルイオジンビス(トリフルオロアセタート)又は(ビス(トリフルオロアセトキシ)ヨードベンゼン(以下、PIFAという場合がある))、フェニルイオジンジアセタート(ヨードソベンゼンジアセタート(以下、PIDAという場合がある))、ヒドロキシ(トシロキシ)ヨードベンゼン、ヨードシルベンゼンなどが挙げられる。これらの反応剤の構造式を以下に示す。 The hypervalent iodine reactant that can be used in the production method of the present invention is not particularly limited. Examples of the trivalent hypervalent iodine reactant include phenyliodine bis (trifluoroacetate) or (bis (trifluoroacetoxy) iodobenzene (hereinafter sometimes referred to as PIFA)), phenyliodine diacetate. (Iodosobenzene diacetate (hereinafter sometimes referred to as PIDA)), hydroxy (tosyloxy) iodobenzene, iodosylbenzene, and the like. The structural formulas of these reactants are shown below.
5価の超原子価ヨウ素反応剤としては、例えば、デスマーチンペルヨージナン(Dess-Martin periodinane(DMP))、o−ヨードキシ安息香酸(o-iodoxybenzoic acid(IBX))などが挙げられる。これらの反応剤の構造式を以下に示す。 Examples of the pentavalent hypervalent iodine reactant include Dess-Martin periodinane (DMP), o-iodoxybenzoic acid (IBX), and the like. The structural formulas of these reactants are shown below.
これらの超原子価ヨウ素反応剤の中でも、3価の超原子価ヨウ素反応剤が好ましく、PIFAが、安定で取り扱いやすく、十分に高い酸化能を有する点で、より好ましい。 Among these hypervalent iodine reactants, trivalent hypervalent iodine reactants are preferred, and PIFA is more preferred because it is stable and easy to handle and has a sufficiently high oxidizing ability.
また超原子価ヨウ素反応剤の中でも、アダマンタン構造を有する超原子価ヨウ素反応剤、テトラフェニルメタン構造を有する超原子価ヨウ素反応剤を選択すると回収再利用できることから好ましい。より具体的には、1,3,5,7−テトラキス−(4−(ジアセトキシヨード)フェニル)アダマンタン、1,3,5,7−テトラキス−((4−(ヒドロキシ)トシロキシヨード)フェニル)アダマンタン、1,3,5,7−テトラキス−(4−ビス(トリフルオロアセトキシヨード)フェニル)アダマンタンなどの3価のアダマンタン構造を有する超原子価ヨウ素反応剤、または、テトラキス−4−(ジアセトキシヨード)フェニルメタン、テトラキス−4−ビス(トリフルオロアセトキシヨード)フェニルメタンなどの3価のテトラフェニルメタン構造を有する超原子価ヨウ素反応剤は、安定で取り扱いやすく、十分に高い酸化能を有する上に、脂溶性が高く回収再利用可能なので、さらに好ましい。5価の超原子価ヨウ素反応剤を用いる場合は、デスマーチンペルヨージナン(DMP)が好ましい。 Further, among the hypervalent iodine reactants, it is preferable to select a hypervalent iodine reactant having an adamantane structure and a hypervalent iodine reactant having a tetraphenylmethane structure because they can be recovered and reused. More specifically, 1,3,5,7-tetrakis- (4- (diacetoxyiodo) phenyl) adamantane, 1,3,5,7-tetrakis-((4- (hydroxy) tosyloxyiodo) phenyl ) A hypervalent iodine reactant having a trivalent adamantane structure such as adamantane, 1,3,5,7-tetrakis- (4-bis (trifluoroacetoxyiodo) phenyl) adamantane, or tetrakis-4- (di Hypervalent iodine reactants having a trivalent tetraphenylmethane structure such as acetoxyiodo) phenylmethane and tetrakis-4-bis (trifluoroacetoxyiodo) phenylmethane are stable and easy to handle and have a sufficiently high oxidizing ability Furthermore, it is more preferable because it has high fat solubility and can be recovered and reused. When a pentavalent hypervalent iodine reactant is used, desmartin periodinane (DMP) is preferred.
このような超原子価ヨウ素反応剤は、合成により得られたものを用いてもよく、あるいは市販品を用いてもよい。例えば、PIFAは、PIDAにトリフルオロ酢酸を加えて反応させ、その結果、PIFAを反応生成物として析出させることにより得られる(J. Chem. Soc. Perkin Trans. 1, 1985, 757を参照のこと)。PIDAは、ヨードベンゼンを酢酸中、ペルオキソほう酸ナトリウム(4水和物)(NaBO3・4H2O)を用い酸化することにより得られる(Tetrahedron, 1989, 45, 3299およびChem. Rev., 1996, 96, 1123を参照のこと)。さらに、PIDAは、m−クロロ過安息香酸(mCPBA)を酸化剤としてヨードベンゼンから得られる(Angew. Chem. Int. Ed., 2004, 43, 3595を参照のこと)。1,3,5,7−テトラキス−(4−(ジアセトキシヨード)フェニル)アダマンタン、1,3,5,7−テトラキス−((4−(ヒドロキシ)トシロキシヨード)フェニル)アダマンタン、1,3,5,7−テトラキス−(4−ビス(トリフルオロアセトキシヨード)フェニル)アダマンタン、テトラキス−4−(ジアセトキシヨード)フェニルメタン、テトラキス−4−ビス(トリフルオロアセトキシヨード)フェニルメタンは、例えば特開2005−220122に記載の方法で合成できる。 As such a hypervalent iodine reactant, one obtained by synthesis may be used, or a commercially available product may be used. For example, PIFA can be obtained by adding trifluoroacetic acid to PIDA and reacting, so that PIFA is precipitated as a reaction product (see J. Chem. Soc. Perkin Trans. 1, 1985, 757). ). PIDA is obtained by oxidizing iodobenzene with sodium peroxoborate (tetrahydrate) (NaBO 3 .4H 2 O) in acetic acid (Tetrahedron, 1989, 45, 3299 and Chem. Rev., 1996, 96, 1123). In addition, PIDA is obtained from iodobenzene using m-chloroperbenzoic acid (mCPBA) as an oxidizing agent (see Angew. Chem. Int. Ed., 2004, 43, 3595). 1,3,5,7-tetrakis- (4- (diacetoxyiodo) phenyl) adamantane, 1,3,5,7-tetrakis-((4- (hydroxy) tosyloxyiodo) phenyl) adamantane, 1,3 , 5,7-tetrakis- (4-bis (trifluoroacetoxyiodo) phenyl) adamantane, tetrakis-4- (diacetoxyiodo) phenylmethane, tetrakis-4-bis (trifluoroacetoxyiodo) phenylmethane, for example It can be synthesized by the method described in Kaikai 2005-220122.
本発明の製造方法における酸化剤の使用量は特に限定されないが、上記単量体1モルあたり1〜5モルの範囲が好ましく、より好ましくは2〜4モルの範囲である。特に酸化剤として超原子価ヨウ素反応剤を使用する場合、上記単量体1モルに対して、好ましくは1〜4モル、更に好ましくは1.5〜4モルの割合で用いられ、より好ましくは2〜2.5モルの割合で用いられる。超原子価ヨウ素反応剤の量が少ない場合、酸化重合反応が進みにくくなることがある。一方、超原子価ヨウ素反応剤の量が多すぎる場合、過剰酸化が起こり溶媒に全く不溶な生成物が得られることがあり、所望のポリマーの収率が低下することがある。 Although the usage-amount of the oxidizing agent in the manufacturing method of this invention is not specifically limited, The range of 1-5 mol per 1 mol of said monomers is preferable, More preferably, it is the range of 2-4 mol. In particular, when a hypervalent iodine reactant is used as an oxidizing agent, it is preferably used in a proportion of 1 to 4 mol, more preferably 1.5 to 4 mol, more preferably 1 mol of the monomer. It is used in a proportion of 2 to 2.5 mol. When the amount of the hypervalent iodine reactant is small, the oxidative polymerization reaction may be difficult to proceed. On the other hand, if the amount of the hypervalent iodine reactant is too large, excessive oxidation may occur and a product that is completely insoluble in the solvent may be obtained, and the yield of the desired polymer may be reduced.
本発明の製造方法では、超原子価ヨウ素反応剤と金属を含まない酸化剤とを併用してもよい。超原子価ヨウ素反応剤と金属を含まない酸化剤とを併用することで、超原子価ヨウ素反応剤の使用量を減らすことができる。金属を含まない酸化剤としては、例えば、ペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、過酸化水素、メタクロロ過安息香酸などが挙げられる。 In the production method of the present invention, a hypervalent iodine reactant and a metal-free oxidizing agent may be used in combination. The combined use of a hypervalent iodine reactant and an oxidizing agent that does not contain a metal can reduce the amount of hypervalent iodine reactant used. Examples of the oxidizing agent not containing metal include peroxodisulfuric acid, ammonium peroxodisulfate, hydrogen peroxide, and metachloroperbenzoic acid.
超原子価ヨウ素反応剤と金属を含まない酸化剤とを併用する場合、超原子価ヨウ素反応剤は酸化触媒として作用し、上記単量体1モルに対して、好ましくは0.001〜0.3モル、より好ましくは0.01〜0.1モルの割合で用いられる。一方、金属を含まない酸化剤は、上記単量体1モルに対して、好ましくは1〜4モル当量、より好ましくは1.5〜2.5モル当量の割合で用いられる。 When a hypervalent iodine reactant and an oxidizing agent not containing a metal are used in combination, the hypervalent iodine reactant acts as an oxidation catalyst, and preferably 0.001 to 0.00 with respect to 1 mol of the monomer. It is used in a proportion of 3 mol, more preferably 0.01 to 0.1 mol. On the other hand, the metal-free oxidizing agent is preferably used in a proportion of 1 to 4 molar equivalents, more preferably 1.5 to 2.5 molar equivalents, relative to 1 mol of the monomer.
金属を含まない酸化剤と超原子価ヨウ素反応剤とを併用する場合、超原子価ヨウ素反応剤の量が少なすぎると、重合反応が十分に進行しないことがある。一方、超原子価ヨウ素反応剤の量が多すぎても、重合度は、ある一定の重合度より大きくならず、超原子価ヨウ素反応剤が無駄になる。 When the oxidizing agent not containing a metal and the hypervalent iodine reactant are used in combination, the polymerization reaction may not sufficiently proceed if the amount of the hypervalent iodine reactant is too small. On the other hand, if the amount of the hypervalent iodine reactant is too large, the degree of polymerization will not be greater than a certain degree of polymerization, and the hypervalent iodine reactant will be wasted.
なお、超原子価ヨウ素反応剤と金属を含まない酸化剤とを併用する場合は、重合反応を始める際は、超原子価ヨウ素反応剤の前駆体を用いても良い。例えば、1,3,5,7−テトラキス−(4−(ジアセトキシヨード)フェニル)アダマンタンの前駆体である1,3,5,7−テトラキス−(4−ヨードフェニル)アダマンタンを触媒量と、化学量論量のメタクロロ過安息香酸を加えることで、反応系中で超原子価ヨウ素反応剤を発生させればよい。 In the case where a hypervalent iodine reactant and an oxidizing agent not containing a metal are used in combination, a precursor of the hypervalent iodine reactant may be used when starting the polymerization reaction. For example, a catalytic amount of 1,3,5,7-tetrakis- (4-iodophenyl) adamantane, which is a precursor of 1,3,5,7-tetrakis- (4- (diacetoxyiodo) phenyl) adamantane, A hypervalent iodine reactant may be generated in the reaction system by adding a stoichiometric amount of metachloroperbenzoic acid.
本発明の製造方法によって得られる複素環含有芳香族ポリマー(1)には、ドーパントがドープされていてもよい。ドーパントをドープすることによって、得られる複素環含有芳香族ポリマー(1)に導電性が付与され得る。ドーパントは、重合反応前に原料として仕込んでもよく、重合反応中に添加してもよく、あるいは重合反応後に得られる複素環含有芳香族ポリマーに添加してもよい。 The heterocyclic ring-containing aromatic polymer (1) obtained by the production method of the present invention may be doped with a dopant. By doping the dopant, conductivity can be imparted to the resulting heterocyclic ring-containing aromatic polymer (1). The dopant may be charged as a raw material before the polymerization reaction, may be added during the polymerization reaction, or may be added to the heterocyclic ring-containing aromatic polymer obtained after the polymerization reaction.
ドーパントとしては、特に限定されないが、Cl2、Br2、I2、IClなどのハロゲン;PF5、BF3、トリフルオロメタンスルホン酸トリメチルシリルなどのルイス酸;HF、HCl、HNO3、H2SO4などのプロトン酸;p−トルエンスルホン酸、ポリスチレンスルホン酸、ポリビニルスルホン酸、ビニルスルホン-スチレンコポリマー、スチレン−アクリルアミドスルホン酸コポリマーなどの有機酸などが挙げられる。 The dopant is not particularly limited, Cl 2, Br 2, I 2, halogen such as ICl; PF 5, BF 3, Lewis acids such as trimethylsilyl trifluoromethanesulfonate; HF, HCl, HNO 3, H 2 SO 4 And proton acids such as p-toluenesulfonic acid, polystyrenesulfonic acid, polyvinylsulfonic acid, vinylsulfone-styrene copolymer, and organic acid such as styrene-acrylamidesulfonic acid copolymer.
導電性の付与を目的として用いられるドーパントは、上記単量体1モルに対して、好ましくは0.05〜6モルの割合で用いられ、より好ましくは0.2〜4モルの割合で用いられる。 The dopant used for the purpose of imparting conductivity is preferably used in a proportion of 0.05 to 6 mol, more preferably in a proportion of 0.2 to 4 mol, with respect to 1 mol of the monomer. .
ドーパントの量が0.05モルよりも少ない場合、複素環含有芳香族ポリマー(1)に、十分な導電性を付与し得ないおそれがある。一方、ドーパントの量が6モルよりも多い場合、複素環含有芳香族ポリマー(1)に添加したすべてのドーパントがドープされず、添加量に比例した効果を望めない。また、余剰のドーパントも無駄になる。 When the amount of the dopant is less than 0.05 mol, there is a possibility that sufficient conductivity cannot be imparted to the heterocyclic ring-containing aromatic polymer (1). On the other hand, when the amount of the dopant is more than 6 mol, all the dopants added to the heterocyclic ring-containing aromatic polymer (1) are not doped, and an effect proportional to the addition amount cannot be expected. Also, excess dopant is wasted.
なお、ルイス酸は、ドーパントとして作用するだけではなく、酸化重合反応を促進させる作用も有する。酸化重合反応を促進させる目的でルイス酸を用いる場合、特に、トリフルオロメタンスルホン酸トリメチルシリルが好ましく用いられる。 The Lewis acid not only acts as a dopant, but also has an effect of promoting an oxidative polymerization reaction. When a Lewis acid is used for the purpose of promoting the oxidative polymerization reaction, trimethylsilyl trifluoromethanesulfonate is particularly preferably used.
本発明の製造方法における酸化重合反応は、通常、溶媒の存在下で実施される。本発明の製造方法で用いられる溶媒としては、上記単量体、酸化剤、及び、ドーパントを溶解または分散させる溶媒であればよい。このような溶媒としては、水、有機溶媒(メタノール、エタノール、2−プロパノール、1−プロパノール、n−ブタノールなどのアルコール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどのエチレングリコール類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテルなどのグリコールエーテル類;エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどのグリコールエーテルアセテート類;プロピレングリコール、ジプロピレングリコール、トリプロピレングリコールなどのプロピレングリコール類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテルなどのプロピレングリコールエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテートなどのプロピレングリコールエーテルアセテート類;N−メチルホルムアミド、N,N-ジメチルホルムアミド、N−メチルピロリドン、ジメチルアセトアミド、ジメチルスルホキシド、アセトン、アセトニトリル、およびトルエン、キシレン(o−、m−、あるいはp−キシレン)、ベンゼン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、ジエチルエーテル、ジイソプロピルエーテル、メチル-t-ブチルエーテル、ヘキサン、ヘプタン、クロロメタン(塩化メチル)、ジクロロメタン(塩化メチレン)、トリクロロメタン(クロロホルム)、 テトラクロロメタン(四塩化炭素)など)、水とこれらの有機溶媒との混合溶媒(含水有機溶媒)、および2種以上の有機溶媒の混合溶媒が挙げられる。 The oxidative polymerization reaction in the production method of the present invention is usually carried out in the presence of a solvent. The solvent used in the production method of the present invention may be any solvent that dissolves or disperses the monomer, the oxidizing agent, and the dopant. Examples of such solvents include water, organic solvents (alcohols such as methanol, ethanol, 2-propanol, 1-propanol, and n-butanol; ethylene glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol; Glycol ethers such as ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether; glycol ether acetates such as ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate; Propylene glycol , Propylene glycols such as dipropylene glycol and tripropylene glycol; propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, propylene glycol diethyl Propylene glycol ethers such as ether and dipropylene glycol diethyl ether; propylene glycol such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate Ether acetates: N-methylformamide, N, N-dimethylformamide, N-methylpyrrolidone, dimethylacetamide, dimethyl sulfoxide, acetone, acetonitrile, and toluene, xylene (o-, m-, or p-xylene), benzene, acetic acid Ethyl, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, diethyl ether, diisopropyl ether, methyl-t-butyl ether, hexane, heptane, chloromethane (methyl chloride), dichloromethane (methylene chloride), trichloromethane (chloroform), tetrachloromethane ( Carbon tetrachloride)), a mixed solvent of water and these organic solvents (hydrous organic solvent), and a mixed solvent of two or more organic solvents.
本発明の酸化重合反応の温度は、−100℃〜100℃が好ましい。溶媒として有機溶媒を用いる場合および水を用いる場合のいずれの場合も、より好ましくは0℃〜40℃である。反応温度が−100℃よりも低い場合、反応速度が遅くなったり、溶媒によっては凍結したりし、複素環含有芳香族ポリマー(1)の収率が低下するおそれがある。一方、反応温度が100℃よりも高い場合、副反応や過剰酸化が起こり、複素環含有芳香族ポリマー(1)の収率が低下するおそれがある。 The temperature of the oxidative polymerization reaction of the present invention is preferably -100 ° C to 100 ° C. In either case of using an organic solvent as the solvent and water, the temperature is more preferably 0 ° C to 40 ° C. When the reaction temperature is lower than −100 ° C., the reaction rate becomes slow, or depending on the solvent, the yield of the heterocycle-containing aromatic polymer (1) may be lowered. On the other hand, when the reaction temperature is higher than 100 ° C., side reaction or excessive oxidation occurs, and the yield of the heterocyclic ring-containing aromatic polymer (1) may be reduced.
本発明の製造方法において、酸化重合反応の反応時間は、特に制限されない。酸化重合反応を促進させるためにルイス酸を用いた場合、12時間程度が好ましく、ルイス酸を用いない場合は、20時間程度が好ましい。 In the production method of the present invention, the reaction time of the oxidative polymerization reaction is not particularly limited. When a Lewis acid is used to promote the oxidative polymerization reaction, about 12 hours are preferable, and when a Lewis acid is not used, about 20 hours are preferable.
このようにして得られた複素環含有芳香族ポリマー(1)は、精製することができる。精製方法(精製工程)は特に限定されないが、例えば、反応後、溶媒をグラスフィルターでろ過し、得られたポリマーを、メタノール、エタノール、2−プロパノール、n−ヘキサン、ジエチルエーテル、アセトニトリル、酢酸エチル、トルエンなどで洗浄する方法が挙げられる。その他の精製方法としては、ソックスレー抽出などによる精製が挙げられる。 The heterocycle-containing aromatic polymer (1) thus obtained can be purified. The purification method (purification step) is not particularly limited. For example, after the reaction, the solvent is filtered through a glass filter, and the resulting polymer is methanol, ethanol, 2-propanol, n-hexane, diethyl ether, acetonitrile, ethyl acetate. And a method of washing with toluene or the like. Other purification methods include purification by Soxhlet extraction or the like.
洗浄後、得られた複素環含有芳香族ポリマー(1)は、必要に応じて、通常の手段により乾燥される(乾燥工程)。乾燥方法は、重合度、置換基、含まれるドーパントによって適宜決定可能であり、例えば、室温下(約25℃)での減圧(約0.5mmHg)乾燥、常圧下での加熱送風(約60℃)乾燥などが挙げられる。乾燥温度は、100℃以下が好ましく、200℃を超えると、複素環含有芳香族ポリマー(1)が分解する危険性が高くなる。 After washing, the obtained heterocycle-containing aromatic polymer (1) is dried by a usual means as necessary (drying step). The drying method can be appropriately determined depending on the degree of polymerization, the substituent, and the contained dopant. For example, drying under reduced pressure (about 0.5 mmHg) at room temperature (about 25 ° C.), heating air blowing under normal pressure (about 60 ° C. ) Drying and the like. The drying temperature is preferably 100 ° C. or lower, and if it exceeds 200 ° C., the risk of the heterocyclic ring-containing aromatic polymer (1) being decomposed increases.
アダマンタン構造およびテトラフェニルメタン構造の超原子価ヨウ素反応剤を用いた場合、下記のような方法で回収される。例えば、反応を終えた溶液を減圧濃縮し、残渣(ポリマー、アダマンタン構造もしくはテトラフェニルメタン構造の超原子価ヨウ素反応剤、金属を含まない酸化剤、未反応の単量体)にメタノールを加えて混合し、グラスフィルターを用いてろ過することにより、金属を含まない酸化剤及び未反応の単量体はメタノール溶液として除去できる。残渣として残ったポリマー及びアダマンタン構造又はテトラフェニルメタン構造の超原子価ヨウ素反応剤は、ジエチルエーテルを加えて混合しグラスフィルター用いてろ過することにより、残渣のポリマーと、ジエチルエーテル溶液のアダマンタン構造およびテトラフェニルメタン構造の超原子価ヨウ素反応剤とに分離することができる。そのジエチルエーテルを濃縮することで、アダマンタン構造およびテトラフェニルメタン構造の超原子価ヨウ素反応剤を回収することができる。アダマンタン構造およびテトラフェニルメタン構造の超原子価ヨウ素反応剤の回収方法は、上記の例に限定されないが、ポリマー、アダマンタン構造又はテトラフェニルメタン構造の超原子価ヨウ素反応剤、金属を含まない酸化剤および未反応の単量体の、溶媒種による溶解性の違いを利用し、適当な溶媒を選択することで、各々の成分を分離することができる。 When a hypervalent iodine reactant having an adamantane structure and a tetraphenylmethane structure is used, it is recovered by the following method. For example, the solution after the reaction is concentrated under reduced pressure and methanol is added to the residue (polymer, adamantane or tetraphenylmethane structure hypervalent iodine reactant, metal-free oxidant, unreacted monomer). By mixing and filtering using a glass filter, the metal-free oxidizing agent and unreacted monomer can be removed as a methanol solution. The polymer remaining as a residue and a hypervalent iodine reactant having an adamantane structure or a tetraphenylmethane structure are mixed with diethyl ether and filtered using a glass filter, whereby the polymer in the residue and the adamantane structure of the diethyl ether solution and It can be separated into a hypervalent iodine reactant having a tetraphenylmethane structure. By concentrating the diethyl ether, the hypervalent iodine reactant having an adamantane structure and a tetraphenylmethane structure can be recovered. The recovery method of the hypervalent iodine reactant having an adamantane structure and a tetraphenylmethane structure is not limited to the above example, but the polymer, the hypervalent iodine reactant having the adamantane structure or the tetraphenylmethane structure, and the oxidizing agent not containing a metal. Each component can be separated by selecting an appropriate solvent using the difference in solubility between the unreacted monomer and the solvent species.
本発明の導電性樹脂組成物は、樹脂成分として、複素環含有芳香族ポリマー(1)を含有する導電性樹脂材料である。複素環含有芳香族ポリマー(1)は1種のみを単独で使用してもよいし、2種以上の混合物として使用してもよい。本発明の本発明の導電性樹脂組成物は、さらに、目的に応じて(i)バインダー、(ii)添加剤、(iii)溶剤等を含有することができる。 The conductive resin composition of the present invention is a conductive resin material containing a heterocyclic ring-containing aromatic polymer (1) as a resin component. The heterocycle-containing aromatic polymer (1) may be used alone or as a mixture of two or more. The conductive resin composition of the present invention of the present invention can further contain (i) a binder, (ii) an additive, (iii) a solvent and the like depending on the purpose.
上記(i)のバインダーとしては、特に限定されないが、ポリエステル、ポリ(メタ)アクリレート、ポリウレタン、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアミド、ポリイミド、並びに、スチレン、塩化ビニリデン、塩化ビニル及びアルキル(メタ)アクリレートからなる群より選択される2種以上のモノマーから構成された共重合体などが挙げられる。本発明の導電性樹脂組成物は、複素環含有芳香族ポリマー(1)100重量部に対してバインダーを、好ましくは1〜5000重量部、より好ましくは10〜3000重量部含有する。 The binder of (i) is not particularly limited, but polyester, poly (meth) acrylate, polyurethane, polyvinyl acetate, polyvinylidene chloride, polyamide, polyimide, styrene, vinylidene chloride, vinyl chloride, and alkyl (meth). Examples thereof include a copolymer composed of two or more monomers selected from the group consisting of acrylates. The conductive resin composition of the present invention preferably contains 1 to 5000 parts by weight, more preferably 10 to 3000 parts by weight of the binder with respect to 100 parts by weight of the heterocyclic ring-containing aromatic polymer (1).
上記(ii)の添加剤としては、基板との密着性を向上させたり、塗膜の耐久性を向上させるためのシランカップリング剤、塗布性を向上させるためのレベリング剤や界面活性剤が挙げられる。シランカップリング剤の例としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)メチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)メチルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン等の(メタ)アクリロキシトリアルコキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p−スチリルトリメトキシシラン等が挙げられる。これらは1種又は複数種類を使用することができる。本発明の導電性樹脂組成物に、シランカップリング剤を配合する場合、複素環含有芳香族ポリマー(1)100重量部に対してシランカップリング剤を、好ましくは0.1〜1000重量部、より好ましくは1〜500重量部含有する。界面活性剤の例としては、非イオン性界面活性剤(例えば、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ソルビタン脂肪酸エステル、脂肪酸アルキロールアミドなど)、フッ素系界面活性剤(例えば、フルオロアルキルカルボン酸、パーフルオロアルキルベンゼンスルホン酸、パーフルオロアルキル4級アンモニウム、パーフルオロアルキルポリオキシエチレンエタノールなど)が挙げられる。本発明の導電性樹脂組成物は、導電性樹脂組成物100重量部に対して界面活性剤を、好ましくは0.01〜30重量部、より好ましくは0.05〜10重量部含有する。 Examples of the additive (ii) include a silane coupling agent for improving the adhesion to the substrate and improving the durability of the coating film, and a leveling agent and a surfactant for improving the coating property. It is done. Examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) methyltrimethoxysilane, 2- (3,4 -Epoxycyclohexyl) methyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-methacryloxypropyltriethoxysilane, 3- (Meth) acryloxytrialkoxysilanes such as methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, p-styryl Trimethoxysilane, and the like. These can use 1 type or multiple types. When a silane coupling agent is blended in the conductive resin composition of the present invention, the silane coupling agent is preferably 0.1 to 1000 parts by weight with respect to 100 parts by weight of the heterocyclic-containing aromatic polymer (1), More preferably, it contains 1 to 500 parts by weight. Examples of the surfactant include nonionic surfactants (for example, polyoxyethylene alkylphenyl ether, polyoxyethylene alkyl ether, sorbitan fatty acid ester, fatty acid alkylolamide, etc.), fluorosurfactants (for example, fluorosurfactant) Alkylcarboxylic acid, perfluoroalkylbenzenesulfonic acid, perfluoroalkyl quaternary ammonium, perfluoroalkyl polyoxyethylene ethanol, etc.). The conductive resin composition of the present invention contains 0.01 to 30 parts by weight, more preferably 0.05 to 10 parts by weight of a surfactant with respect to 100 parts by weight of the conductive resin composition.
上記(iii)の溶剤としては、特に限定されないが、水、有機溶媒(メタノール、エタノール、2−プロパノール、1−プロパノール、n−ブタノールなどのアルコール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどのエチレングリコール類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテルなどのグリコールエーテル類;エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどのグリコールエーテルアセテート類;プロピレングリコール、ジプロピレングリコール、トリプロピレングリコールなどのプロピレングリコール類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテルなどのプロピレングリコールエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテートなどのプロピレングリコールエーテルアセテート類;N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルピロリドン、ジメチルアセトアミド、ジメチルスルホキシド、アセトン、アセトニトリル、およびトルエン、キシレン(o−、m−、あるいはp−キシレン)、ベンゼン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、ジエチルエーテル、ジイソプロピルエーテル、メチル−t−ブチルエーテル、ヘキサン、ヘプタン、クロロメタン(塩化メチル)、ジクロロメタン(塩化メチレン)、トリクロロメタン(クロロホルム)、テトラクロロメタン(四塩化炭素)など)、水とこれらの有機溶媒との混合溶媒(含水有機溶媒)、および2種以上の有機溶媒の混合溶媒が挙げられる。本発明の導電性樹脂組成物は、複素環含有芳香族ポリマー(1)100重量部に対して溶剤を、好ましくは100〜5000重量部、より好ましくは500〜3000重量部含有する。これらは、単独で用いても良いし、2種以上を組み合わせて含有させても良い。 The solvent of (iii) is not particularly limited, but water, organic solvents (alcohols such as methanol, ethanol, 2-propanol, 1-propanol, n-butanol; ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene Ethylene glycols such as glycol; glycol ethers such as ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether; ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate Glycol ether acete Propylene glycols such as propylene glycol, dipropylene glycol, tripropylene glycol; propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, propylene glycol dimethyl ether, dipropylene glycol Propylene glycol ethers such as dimethyl ether, propylene glycol diethyl ether, dipropylene glycol diethyl ether; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate Any propylene glycol ether acetate; N-methylformamide, N, N-dimethylformamide, N-methylpyrrolidone, dimethylacetamide, dimethylsulfoxide, acetone, acetonitrile, and toluene, xylene (o-, m-, or p-xylene) , Benzene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, diethyl ether, diisopropyl ether, methyl-t-butyl ether, hexane, heptane, chloromethane (methyl chloride), dichloromethane (methylene chloride), trichloromethane (chloroform), Tetrachloromethane (carbon tetrachloride, etc.), a mixed solvent of water and these organic solvents (hydrous organic solvent), and a mixed solvent of two or more organic solvents. The conductive resin composition of the present invention contains a solvent, preferably 100 to 5000 parts by weight, more preferably 500 to 3000 parts by weight with respect to 100 parts by weight of the heterocyclic ring-containing aromatic polymer (1). These may be used alone or in combination of two or more.
本発明の導電性樹脂組成物は、例えば、ポリエステル、アクリル、ポリウレタン等のプラスチック基板やガラス基板上に、種々のコーティング方法により0.1〜30μm程度の厚みに塗布し、必要により乾燥、硬化することで、導電性の薄膜、フィルムを得ることが出来、該基板に帯電防止や電極、電磁波シールド等機能を付与することが出来る。さらに、固体電解コンデンサの製造のために、酸化皮膜を有するアルミニウムや焼結タンタル等の金属表面などに塗布することで、固体電解コンデンサに必要な導電層を形成することも出来る。 The conductive resin composition of the present invention is applied to a thickness of about 0.1 to 30 μm by various coating methods on, for example, a plastic substrate such as polyester, acrylic or polyurethane, or a glass substrate, and is dried and cured as necessary. Thus, conductive thin films and films can be obtained, and functions such as antistatic, electrodes, and electromagnetic wave shielding can be imparted to the substrate. Furthermore, in order to manufacture a solid electrolytic capacitor, a conductive layer necessary for the solid electrolytic capacitor can be formed by applying it to a metal surface such as aluminum having an oxide film or sintered tantalum.
以下、実施例および比較例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited to these Examples.
(製造例1)
窒素雰囲気下、室温で、ジクロロメタン(10ml)、3,4−エチレンジオキシチオフェン(EDOT)(7)(4mmol、0.43ml)、ブロモトリメチルシラン(4mmol、0.53ml)、ヨードベンゼンジアセタート(PIDA)(6mmol、1.93g)、N−フェニルピロール(8)(4mmol、572.7mg)、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール(1ml)、トリフルオロ酢酸(4mmol、0.3ml)を100mL三口フラスコに加え、4時間攪拌した。4時間後、飽和重曹水(約40ml)を加え、塩化メチレンを用い分液抽出を行い、有機層をNa2SO4を用い乾燥後、ろ過し、ろ液を減圧濃縮した。得られた粗生成物をカラムクロマトグラフィーを用いて精製することにより、EDOT−N−フェニルピロールカップリング体(9)788.4mgを得た。
1H NMR (CDCl3): 3.81-3.84 (2H, m), 3.99-4.01 (2H, m), 6.16 (1H, s), 6.33 (1H, dd, J = 3.2, 2.7 Hz), 6.50 (1H, dd, J = 3.2, 1.8 Hz), 6.90 (1H, dd, J = 2.7, 1.8 Hz). 7.20-7.36 (5H, m)
13C NMR (CDCl3): 64.20, 64.24, 98.21, 108.72, 109.21, 111.67, 123.47, 124.19, 125.66, 126.79, 128.56, 137.83, 140.33, 141.08.
EI-MS; 283.00 (100 %), 186.00 (76.0 %), 154.00 (35.0 %), 77.00 (26.1 %)
(Production Example 1)
Dichloromethane (10 ml), 3,4-ethylenedioxythiophene (EDOT) (7) (4 mmol, 0.43 ml), bromotrimethylsilane (4 mmol, 0.53 ml), iodobenzene diacetate at room temperature under nitrogen atmosphere (PIDA) (6 mmol, 1.93 g), N-phenylpyrrole (8) (4 mmol, 572.7 mg), 1,1,1,3,3,3-hexafluoro-2-propanol (1 ml), trifluoro Acetic acid (4 mmol, 0.3 ml) was added to a 100 mL three-necked flask and stirred for 4 hours. After 4 hours, saturated aqueous sodium hydrogen carbonate (about 40 ml) was added, liquid separation extraction was performed using methylene chloride, the organic layer was dried using Na 2 SO 4 and filtered, and the filtrate was concentrated under reduced pressure. The resulting crude product was purified using column chromatography to obtain 788.4 mg of EDOT-N-phenylpyrrole coupling product (9).
1 H NMR (CDCl 3 ): 3.81-3.84 (2H, m), 3.99-4.01 (2H, m), 6.16 (1H, s), 6.33 (1H, dd, J = 3.2, 2.7 Hz), 6.50 (1H , dd, J = 3.2, 1.8 Hz), 6.90 (1H, dd, J = 2.7, 1.8 Hz). 7.20-7.36 (5H, m)
13 C NMR (CDCl 3 ): 64.20, 64.24, 98.21, 108.72, 109.21, 111.67, 123.47, 124.19, 125.66, 126.79, 128.56, 137.83, 140.33, 141.08.
EI-MS; 283.00 (100%), 186.00 (76.0%), 154.00 (35.0%), 77.00 (26.1%)
(製造例2)
製造例1において、N−フェニルピロール(8)の代わりにピロール(10)(4mmol、268.4mg)を用い、トリフルオロ酢酸を無添加としたこと以外は、製造例1と同様にしてEDOT−ピロールカップリング体(11)179.9mgを得た。
1H-NMR (CDCl3) δ: 4.21-4.25 (2H, m), 4.29-4.32 (2H, m), 6.11 (1H, s), 6.20-6.23(1H, m), 6.31 (1H, s), 6.79 (1H, s), 9.10 (1H, bs).
EI-MS; 207.00 (99.5 %), 151.00 (12.8 %), 110.00 (100 %)
(Production Example 2)
In Production Example 1, EDOT- was used in the same manner as in Production Example 1 except that pyrrole (10) (4 mmol, 268.4 mg) was used instead of N-phenylpyrrole (8) and trifluoroacetic acid was not added. A pyrrole coupling body (11) 179.9 mg was obtained.
1 H-NMR (CDCl 3 ) δ: 4.21-4.25 (2H, m), 4.29-4.32 (2H, m), 6.11 (1H, s), 6.20-6.23 (1H, m), 6.31 (1H, s) , 6.79 (1H, s), 9.10 (1H, bs).
EI-MS; 207.00 (99.5%), 151.00 (12.8%), 110.00 (100%)
(製造例3)
製造例1において、N−フェニルピロール(8)の代わりに3−フェニルピロール(12)を用いたこと以外は、製造例1と同様にしてEDOT−3-フェニルピロールカップリング体(13)を得た。
1H-NMR (CDCl3) : 4.16-4.27 (4H, m), 6.04 (1H, s), 6.26 (1H, t, J = 2.7 Hz), 6.82 (1H, t, J = 2.7 Hz), 7.25-7.52 (5H, m), 9.15 (1H, brs).
IR (KBr) 3427 m, 2927 w, 1602 w, 1553 m, 1493 s, 1441 s, 1366 s, 1265 w, 1165 s, 910 m, 885 m, 737 m, 700 s, 569 w.
HRFABMS Calcd for C16H13NO2S (M):283.0667, Found 283.0668
(Production Example 3)
In Production Example 1, an EDOT-3-phenylpyrrole coupling product (13) was obtained in the same manner as in Production Example 1 except that 3-phenylpyrrole (12) was used instead of N-phenylpyrrole (8). It was.
1 H-NMR (CDCl 3 ): 4.16-4.27 (4H, m), 6.04 (1H, s), 6.26 (1H, t, J = 2.7 Hz), 6.82 (1H, t, J = 2.7 Hz), 7.25 -7.52 (5H, m), 9.15 (1H, brs).
IR (KBr) 3427 m, 2927 w, 1602 w, 1553 m, 1493 s, 1441 s, 1366 s, 1265 w, 1165 s, 910 m, 885 m, 737 m, 700 s, 569 w.
HRFABMS Calcd for C16H13NO2S (M): 283.0667, Found 283.0668
(13)
(13)
(製造例4)
製造例1においてEDOTの代わりにピロール(10)を用いたこと以外は、製造例1と同様にしてピロール-N−フェニルピロール(14)を得た。
1H-NMR (CDCl3):5.81-5.84 (1H, m), 6.07-6.11 (1H, m), 6.30-6.36 (2H, m), 6.63 (1H, m), 6.85 (1H, dd, J = 2.7, 1.8 Hz), 7.23-7.37 (5H, m), 7.83 (1H, brs).
13C NMR (CDCl3) :107.5, 108.4, 108.8, 109.0, 117.5, 123.2, 124.2, 125.9, 126.8, 127.2, 129.0, 140.3.
IR (KBr) :3389 m, 3103 w, 3001 w, 2926 w, 2853 w, 1597 m, 1499 s, 1400 m ,1219 m, 1034 m, 907, w, 772 s, 719 s, 667 m.
HRFABMS Calcd for C14H12N2 [M]+ 208.1000, Found 208.0995.
(Production Example 4)
A pyrrole-N-phenylpyrrole (14) was obtained in the same manner as in Production Example 1 except that pyrrole (10) was used instead of EDOT in Production Example 1.
1 H-NMR (CDCl 3 ): 5.81-5.84 (1H, m), 6.07-6.11 (1H, m), 6.30-6.36 (2H, m), 6.63 (1H, m), 6.85 (1H, dd, J = 2.7, 1.8 Hz), 7.23-7.37 (5H, m), 7.83 (1H, brs).
13C NMR (CDCl 3 ): 107.5, 108.4, 108.8, 109.0, 117.5, 123.2, 124.2, 125.9, 126.8, 127.2, 129.0, 140.3.
IR (KBr): 3389 m, 3103 w, 3001 w, 2926 w, 2853 w, 1597 m, 1499 s, 1400 m, 1219 m, 1034 m, 907, w, 772 s, 719 s, 667 m.
HRFABMS Calcd for C14H12N2 [M] + 208.1000, Found 208.0995.
(製造例5)
製造例1において、N−フェニルピロールの代わりに3−メチル‐4−メトキシカルボニルピロール(15)を用いたこと以外は、製造例1と同様にしてEDOT−3-メチルー4−メトキシカルボニルピロールカップリング体(16)を得た。
1H-NMR (CDCl3) : 2.50 (3H, s), 3.80 (3H, s), 4.23-4.26 (2H, m), 4.32-4.35 (2H, m), 6.28 (1H, s), 7.40 (1H, d, J = 3.6 Hz), 9.40 (1H, brs).
13C NMR (CDCl3) :11.02, 50.73, 64.47, 65.10, 96.78, 109.83, 115.10, 117.29, 123.27, 123.38, 136.16, 141.36, 165.72.
HRFABMS Calcd for C13H13NO4S [M]+ 279.0565, Found 279.0553.
(Production Example 5)
EDOT-3-methyl-4-methoxycarbonylpyrrole coupling as in Production Example 1 except that 3-methyl-4-methoxycarbonylpyrrole (15) was used instead of N-phenylpyrrole in Production Example 1. Body (16) was obtained.
1 H-NMR (CDCl 3 ): 2.50 (3H, s), 3.80 (3H, s), 4.23-4.26 (2H, m), 4.32-4.35 (2H, m), 6.28 (1H, s), 7.40 ( 1H, d, J = 3.6 Hz), 9.40 (1H, brs).
13C NMR (CDCl 3 ): 11.02, 50.73, 64.47, 65.10, 96.78, 109.83, 115.10, 117.29, 123.27, 123.38, 136.16, 141.36, 165.72.
HRFABMS Calcd for C13H13NO4S [M] + 279.0565, Found 279.0553.
(16)
(16)
(実施例1)
200mLのナスフラスコに、25gのイオン交換水、2.6gの12.8質量%ポリスチレンスルホン酸水溶液、40mg(0.0932mmol)のPIFAを1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール(3ml)に溶解して加えた。次いで、275mg(0.932mmol)のEDOT−N−フェニルピロールのカップリング体(9)を3mlのアセトニトリルに溶解して加え、さらに1.8gの10.9質量%ペルオキソ二硫酸水溶液を加えた。その後、室温下(約25℃)で24時間撹拌し、HPLCにてEDOT−N−フェニルピロールのカップリング体(9)の消失を確認した、ポリスチレンスルホン酸ドープのポリ(EDOT−N−フェニルピロール)水分散体35g(固形分1.7%)を得た。
Example 1
In a 200 mL eggplant flask, 25 g of ion-exchanged water, 2.6 g of 12.8 mass% polystyrene sulfonic acid aqueous solution, 40 mg (0.0932 mmol) of PIFA were added to 1,1,1,3,3,3-hexafluoro- Dissolved in 2-propanol (3 ml) and added. Next, 275 mg (0.932 mmol) of the EDOT-N-phenylpyrrole coupling product (9) was dissolved in 3 ml of acetonitrile and added, and 1.8 g of 10.9 mass% peroxodisulfuric acid aqueous solution was further added. Thereafter, the mixture was stirred at room temperature (about 25 ° C.) for 24 hours, and the disappearance of the EDOT-N-phenylpyrrole coupling product (9) was confirmed by HPLC. Polystyrene (EDOT-N-phenylpyrrole) doped with polystyrene sulfonate ) 35 g of an aqueous dispersion (1.7% solid content) was obtained.
本ポリ(EDOT−N−フェニルピロール)水分散体については、ドーパントとしてポリスチレンスルホン酸を使用しているため、GPC測定では、ポリ(EDOT−N−フェニルピロール)そのものの分子量を測定することは困難であった。しかし、上記重合反応において、EDOT−N−フェニルピロールのカップリング体(9)が完全に消失していることと、以下に示す本発明の導電性樹脂組成物の試験結果により本水分散体が導電性を示す結果が得られたことから、ポリ(EDOT−N−フェニルピロール)が生成していることが明らかである。 About this poly (EDOT-N-phenylpyrrole) aqueous dispersion, since polystyrene sulfonic acid is used as a dopant, it is difficult to measure the molecular weight of poly (EDOT-N-phenylpyrrole) itself by GPC measurement. Met. However, in the above polymerization reaction, the EDOT-N-phenylpyrrole coupling body (9) has completely disappeared and the results of the test of the conductive resin composition of the present invention described below show that From the result showing conductivity, it is clear that poly (EDOT-N-phenylpyrrole) is produced.
(実施例2)
2000mLの三口フラスコに、3.10g(10.9mmol)のEDOT−N−フェニルピロールのカップリング体(9)、410gのイオン交換水、253gの12.8質量%ポリスチレンスルホン酸水溶液、16.5g(0.41mmol)の1%硫酸鉄(III)水溶液を加えた。次いで、11.8g(5.7mmol)の10.9質量%ペルオキソ二硫酸水溶液を加えた。その後、室温下(約25℃)で24時間撹拌し、HPLCにてEDOT−N−フェニルピロールカップリング体(9)の消失を確認し、ポリスチレンスルホン酸ドープのポリ(EDOT−N−フェニルピロール)水分散体を650g(固形分1.1%)得た。
(Example 2)
In a 2000 mL three-necked flask, 3.10 g (10.9 mmol) of EDOT-N-phenylpyrrole coupling body (9), 410 g of ion-exchanged water, 253 g of 12.8 mass% polystyrenesulfonic acid aqueous solution, 16.5 g (0.41 mmol) of 1% iron (III) sulfate aqueous solution was added. Next, 11.8 g (5.7 mmol) of 10.9 mass% peroxodisulfuric acid aqueous solution was added. Thereafter, the mixture was stirred at room temperature (about 25 ° C.) for 24 hours, and disappearance of the EDOT-N-phenylpyrrole coupling product (9) was confirmed by HPLC. Poly (EDOT-N-phenylpyrrole) doped with polystyrene sulfonate 650 g (solid content 1.1%) of an aqueous dispersion was obtained.
本ポリ(EDOT−N−フェニルピロール)水分散体については、ドーパントとしてポリスチレンスルホン酸を使用しているため、GPC測定では、ポリ(EDOT−N−フェニルピロール)そのものの分子量を測定することは困難であった。しかし、上記重合反応において、EDOT−N−フェニルピロールのカップリング体(9)が完全に消失していることと、以下に示す本発明の導電性樹脂組成物の試験結果により本水分散体が導電性を示す結果が得られたことから、ポリ(EDOT−N−フェニルピロール)が生成していることが明らかである。 About this poly (EDOT-N-phenylpyrrole) aqueous dispersion, since polystyrene sulfonic acid is used as a dopant, it is difficult to measure the molecular weight of poly (EDOT-N-phenylpyrrole) itself by GPC measurement. Met. However, in the above polymerization reaction, the EDOT-N-phenylpyrrole coupling body (9) has completely disappeared and the results of the test of the conductive resin composition of the present invention described below show that From the result showing conductivity, it is clear that poly (EDOT-N-phenylpyrrole) is produced.
(実施例3)
30mLのナスフラスコに、100mg(0.48mmol)のEDOT−ピロールのカップリング体(11)および10mLの塩化メチレンを加えて、窒素雰囲気下、室温下(約25℃)で攪拌し、次いで、213.4mgのトリフルオロメタンスルホン酸トリメチルシリルを加え、その後、15.4mgのフェニルイオジンジアセタート(PIDA)、メタクロロ過安息香酸(60%)を138mg(0.72mmol)、および酢酸27.3μl(0.72mmol)を加えた。その後、さらに12時間撹拌を行った。HPLCにてEDOT−ピロールのカップリング体(11)の消失を確認後、この反応溶液を減圧濃縮し、残渣に20mLのメタノールを加えた。次いで、グラスフィルターによって、黒色の不溶物をろ取し、メタノール30mlを用いて洗浄した。さらに30mlのヘキサンを用いて洗浄しポリ(EDOT−ピロール)85.4mgを得た。
Example 3
To a 30 mL eggplant flask, 100 mg (0.48 mmol) of EDOT-pyrrole coupling (11) and 10 mL of methylene chloride were added and stirred at room temperature (about 25 ° C.) under a nitrogen atmosphere, then 213 .4 mg trimethylsilyl trifluoromethanesulfonate was added, followed by 15.4 mg phenyliodine diacetate (PIDA), 138 mg (0.72 mmol) metachloroperbenzoic acid (60%), and 27.3 μl acetic acid (0. 72 mmol) was added. Thereafter, the mixture was further stirred for 12 hours. After confirming disappearance of the EDOT-pyrrole coupling product (11) by HPLC, the reaction solution was concentrated under reduced pressure, and 20 mL of methanol was added to the residue. Subsequently, the black insoluble matter was collected by filtration with a glass filter and washed with 30 ml of methanol. Furthermore, it was washed with 30 ml of hexane to obtain 85.4 mg of poly (EDOT-pyrrole).
得られたポリ(EDOT−ピロール)の分子量を測定すると、重量平均分子量(Mw)は7137、数平均分子量(Mn)は7072、そして重量平均分子量と数平均分子量との比Mw/Mnは1.009であった。 When the molecular weight of the obtained poly (EDOT-pyrrole) was measured, the weight average molecular weight (Mw) was 7137, the number average molecular weight (Mn) was 7072, and the ratio Mw / Mn between the weight average molecular weight and the number average molecular weight was 1. 009.
(実施例4)
300mLの三口フラスコに、0.6g(2.9mmol)のEDOT−ピロールのカップリング体(11)、140gのイオン交換水、65gの12.8質量%ポリスチレンスルホン酸水溶液、5.0g(0.13mmol)の1%硫酸鉄(III)水溶液を加えた。
Example 4
In a 300 mL three-necked flask, 0.6 g (2.9 mmol) of EDOT-pyrrole coupling body (11), 140 g of ion exchange water, 65 g of 12.8 mass% polystyrene sulfonic acid aqueous solution, 5.0 g (. 13 mmol) of 1% iron (III) sulfate aqueous solution was added.
次いで、7.3g(3.3mmol)の10.9質量%ペルオキソ二硫酸ナトリウム水溶液を加えた。その後、室温下(約25℃)で24時間撹拌し、HPLCにてEDOT−ピロールのカップリング体(11)の消失を確認し、ポリスチレンスルホン酸ドープのポリ(EDOT−ピロール)水分散体を200g(固形分0.9%)得た。 Then, 7.3 g (3.3 mmol) of 10.9 mass% sodium peroxodisulfate aqueous solution was added. Thereafter, the mixture was stirred at room temperature (about 25 ° C.) for 24 hours, and disappearance of the EDOT-pyrrole coupling product (11) was confirmed by HPLC. Polystyrene sulfonate-doped poly (EDOT-pyrrole) aqueous dispersion was 200 g. (Solid content 0.9%) was obtained.
本ポリ(EDOT−ピロール)水分散体については、ドーパントとしてポリスチレンスルホン酸を使用しているため、GPC測定では、ポリ(EDOT−ピロール)そのものの分子量を測定することは困難であった。しかし、上記重合反応において、EDOT−ピロールのカップリング体(11)が完全に消失していることと、以下に示す本発明の導電性樹脂組成物の試験結果により本水分散体が導電性を示す結果が得られたことから、ポリ(EDOT−ピロール)が生成していることが明らかである。 About this poly (EDOT-pyrrole) aqueous dispersion, since polystyrene sulfonic acid is used as a dopant, it was difficult to measure the molecular weight of poly (EDOT-pyrrole) itself in GPC measurement. However, in the above polymerization reaction, the EDOT-pyrrole coupling body (11) has completely disappeared, and the aqueous dispersion has conductivity due to the following test results of the conductive resin composition of the present invention. From the obtained results, it is clear that poly (EDOT-pyrrole) is produced.
(実施例5)
20mLのスクリュー管に、0.025g(0.088mmol)のEDOT−3-フェニルピロールカップリング体(13)、7.2gのイオン交換水、0.2gの30質量%ポリスチレンスルホン酸水溶液、0.12g(0.004mmol)の1.0質量%PIDAのメチルエチルケトン溶液を加えた。
(Example 5)
In a 20 mL screw tube, 0.025 g (0.088 mmol) of EDOT-3-phenylpyrrole coupling body (13), 7.2 g of ion exchange water, 0.2 g of 30% by mass polystyrenesulfonic acid aqueous solution, 12 g (0.004 mmol) of 1.0 wt% PIDA in methyl ethyl ketone was added.
次いで、0.10g(0.056mmol)の10.9質量%ペルオキソ二硫酸水溶液を加えた。その後、室温下(約15℃)で24時間撹拌し、HPLCにてEDOT−3-フェニルピロールカップリング体(13)の消失を確認し、ポリスチレンスルホン酸ドープのポリ(EDOT−3−フェニルピロール)水分散体を8.20g(固形分0.73%)得た。 Subsequently, 0.10 g (0.056 mmol) of 10.9 mass% peroxodisulfuric acid aqueous solution was added. Thereafter, the mixture was stirred at room temperature (about 15 ° C.) for 24 hours, and disappearance of the EDOT-3-phenylpyrrole coupling product (13) was confirmed by HPLC. Polystyrene sulfonate-doped poly (EDOT-3-phenylpyrrole) 8.20 g (0.73% solid content) of an aqueous dispersion was obtained.
本ポリ(EDOT−3−フェニルピロール)水分散体については、ドーパントとしてポリスチレンスルホン酸を使用しているため、GPC測定では、ポリ(EDOT−3−フェニルピロール)そのものの分子量を測定することは困難であった。しかし、上記重合反応において、EDOT−3−フェニルピロールのカップリング体(13)が完全に消失していることと、以下に示す本発明の導電性樹脂組成物の試験結果により本水分散体が導電性を示す結果が得られたことから、ポリ(EDOT−3−フェニルピロール)が生成していることが明らかである。 About this poly (EDOT-3-phenylpyrrole) aqueous dispersion, since polystyrene sulfonic acid is used as a dopant, it is difficult to measure the molecular weight of poly (EDOT-3-phenylpyrrole) itself by GPC measurement. Met. However, in the above polymerization reaction, the EDOT-3-phenylpyrrole coupling body (13) has completely disappeared and the results of the test of the conductive resin composition of the present invention shown below show that this water dispersion is From the result showing conductivity, it is clear that poly (EDOT-3-phenylpyrrole) is produced.
(実施例6)
20mLのスクリュー管に、0.05g(0.24mmol)のピロール-N−フェニルピロール(14)、14.2gのイオン交換水、0.42gの30質量%ポリスチレンスルホン酸水溶液、0.29g(0.0072mmol)の1%硫酸鉄(III)水溶液を加えた。
(Example 6)
In a 20 mL screw tube, 0.05 g (0.24 mmol) of pyrrole-N-phenylpyrrole (14), 14.2 g of ion-exchanged water, 0.42 g of 30% by mass polystyrenesulfonic acid aqueous solution, 0.29 g (0 0072 mmol) of 1% aqueous iron (III) sulfate solution.
次いで、0.20g(0.11mmol)の10.9質量%ペルオキソ二硫酸水溶液を加えた。その後、室温下(約25℃)で24時間撹拌し、HPLCにてピロール-N−フェニルピロール(14)の消失を確認し、ポリスチレンスルホン酸ドープのポリ(ピロール-N−フェニルピロール)水分散体を14.78g(固形分0.78%)得た。 Subsequently, 0.20 g (0.11 mmol) of 10.9 mass% peroxodisulfuric acid aqueous solution was added. Thereafter, the mixture was stirred at room temperature (about 25 ° C.) for 24 hours, and disappearance of pyrrole-N-phenylpyrrole (14) was confirmed by HPLC. Polystyrene (sulfonic acid) -doped poly (pyrrole-N-phenylpyrrole) aqueous dispersion 14.78 g (0.78% solid content) was obtained.
本ポリ(ピロール-N−フェニルピロール)水分散体については、ドーパントとしてポリスチレンスルホン酸を使用しているため、GPC測定では、ポリ(ピロール-N−フェニルピロール)そのものの分子量を測定することは困難であった。しかし、上記重合反応において、ピロール-N−フェニルピロールのカップリング体(14)が完全に消失していることと、以下に示す本発明の導電性樹脂組成物の試験結果により本水分散体が導電性を示す結果が得られたことから、ポリ(ピロール-N−フェニルピロール)が生成していることが明らかである。 Since the poly (pyrrole-N-phenylpyrrole) aqueous dispersion uses polystyrene sulfonic acid as a dopant, it is difficult to measure the molecular weight of poly (pyrrole-N-phenylpyrrole) itself by GPC measurement. Met. However, in the above polymerization reaction, the pyrrole-N-phenylpyrrole coupling body (14) has completely disappeared and the results of the test of the conductive resin composition of the present invention described below show that From the obtained results showing conductivity, it is clear that poly (pyrrole-N-phenylpyrrole) is produced.
(実施例7)
20mLのスクリュー管に、0.025g(0.089mmol)のEDOT−3-メチル−4−メトキシカルボニルピロールカップリング体(16)、13.4gのトルエン、0.117gのスチレン−アクリルアミドスルホン酸コポリマー、0.29g(0.0072mmol)の1.0質量%硫酸鉄(III)水−メタノール溶液を加えた。
次いで0.536g(0.18mmol)の7.6質量%過硫酸アンモニウム水−メタノール溶液を加えた。その後、室温下(約25℃)で24時間撹拌し、HPLCにてEDOT−3-メチルー4−メトキシピロールカップリング体(16)の消失を確認し、スチレン−アクリルアミドスルホン酸コポリマードープのポリ(EDOT−3-メチルー4−メトキシカルボニルピロール)トルエン分散体を12.31g(固形分0.79%)得た。
(Example 7)
In a 20 mL screw tube, 0.025 g (0.089 mmol) EDOT-3-methyl-4-methoxycarbonylpyrrole coupling (16), 13.4 g toluene, 0.117 g styrene-acrylamide sulfonic acid copolymer, 0.29 g (0.0072 mmol) of 1.0 mass% iron (III) sulfate water-methanol solution was added.
Subsequently, 0.536 g (0.18 mmol) of 7.6 mass% ammonium persulfate water-methanol solution was added. Thereafter, the mixture was stirred at room temperature (about 25 ° C.) for 24 hours, and disappearance of EDOT-3-methyl-4-methoxypyrrole coupling product (16) was confirmed by HPLC. Poly (EDOT with styrene-acrylamide sulfonic acid copolymer dope) 12.31 g (solid content 0.79%) of 3-methyl-4-methoxycarbonylpyrrole) toluene dispersion was obtained.
本ポリ(EDOT−3-メチルー4−メトキシカルボニルピロール)トルエン分散体については、ドーパントとしてスチレン−アクリルアミドスルホン酸コポリマーを使用しているため、GPC測定では、ポリ(EDOT−3-メチルー4−メトキシカルボニルピロールそのものの分子量を測定することは困難であった。しかし、上記重合反応において、EDOT−3-メチルー4−メトキシカルボニルピロールのカップリング体(16)が完全に消失していることと、以下に示す本発明の導電性樹脂組成物の試験結果により本トルエン分散体が導電性を示す結果が得られたことから、ポリ(EDOT−3-メチルー4−メトキシカルボニルピロール)が生成していることが明らかである。 Since the poly (EDOT-3-methyl-4-methoxycarbonylpyrrole) toluene dispersion uses a styrene-acrylamide sulfonic acid copolymer as a dopant, poly (EDOT-3-methyl-4-methoxycarbonyl) is measured by GPC measurement. It was difficult to measure the molecular weight of pyrrole itself, but in the above polymerization reaction, the coupling body (16) of EDOT-3-methyl-4-methoxycarbonylpyrrole had completely disappeared, and From the test results of the conductive resin composition of the present invention shown, it was confirmed that poly (EDOT-3-methyl-4-methoxycarbonylpyrrole) was produced because the toluene dispersion obtained conductivity. it is obvious.
(実施例8)
300mLの三口フラスコに、0.10g(0.36mmol)のEDOT−3-メチル−4−メトキシカルボニルピロールカップリング体(16)、48.8gのイオン交換水、0.87gの30質量%ポリスチレンスルホン酸水溶液、0.58g(0.01mmol)の1%硫酸鉄(III)水溶液を加えた。
(Example 8)
In a 300 mL three-necked flask, 0.10 g (0.36 mmol) of EDOT-3-methyl-4-methoxycarbonylpyrrole coupling product (16), 48.8 g of ion-exchanged water, 0.87 g of 30% by mass polystyrene sulfone. An acid aqueous solution, 0.58 g (0.01 mmol) of 1% iron (III) sulfate aqueous solution was added.
次いで、0.38g(0.21mmol)の10.9質量%ペルオキソ二硫酸水溶液を加えた。その後、室温下(約25℃)で24時間撹拌し、HPLCにてEDOT−3-メチル−4−メトキシカルボニルピロール(16)の消失を確認し、ポリスチレンスルホン酸ドープのポリ(EDOT−3-メチルー4−メトキシカルボニルピロール)水分散体を40.11g(固形分0.48%)得た。 Subsequently, 0.38 g (0.21 mmol) of 10.9 mass% peroxodisulfuric acid aqueous solution was added. Thereafter, the mixture was stirred at room temperature (about 25 ° C.) for 24 hours, and disappearance of EDOT-3-methyl-4-methoxycarbonylpyrrole (16) was confirmed by HPLC. Polystyrene (EDOT-3-methyl-polystyrene-doped poly (EDOT-3-methyl) was confirmed. 40.11 g (solid content 0.48%) of 4-methoxycarbonylpyrrole) aqueous dispersion was obtained.
本ポリ(EDOT−3-メチル−4−メトキシカルボニルピロール)水分散体については、ドーパントとしてポリスチレンスルホン酸を使用しているため、GPC測定では、ポリ(EDOT−3-メチル−4−メトキシカルボニルピロールそのものの分子量を測定することは困難であった。しかし、上記重合反応において、EDOT−3-メチル−4−メトキシカルボニルピロールのカップリング体(16)が完全に消失していることと、以下に示す本発明の導電性樹脂組成物の試験結果により本水分散体が導電性を示す結果が得られたことから、ポリ(EDOT−3-メチルー4−メトキシカルボニルピロール)が生成していることが明らかである。 Since the poly (EDOT-3-methyl-4-methoxycarbonylpyrrole) aqueous dispersion uses polystyrenesulfonic acid as a dopant, poly (EDOT-3-methyl-4-methoxycarbonylpyrrole) is measured by GPC measurement. However, in the above polymerization reaction, the EDOT-3-methyl-4-methoxycarbonylpyrrole coupling product (16) had disappeared completely, and From the test results of the conductive resin composition of the present invention shown, it was confirmed that poly (EDOT-3-methyl-4-methoxycarbonylpyrrole) was produced because the water dispersion showed conductivity. it is obvious.
(実施例9〜16)
まず、上記実施例1〜8で得られたポリマーの溶剤溶解性を調べた。水分散体である実施例1、2、4〜6、8、および、溶剤分散体である実施例7で得られたポリマーについては、No.4のワイヤーバーを使用してガラス基板上に塗布し、100℃で2分間送風乾燥させ、得られたポリマーの薄膜をカミソリで剥ぎ取り、ポリマーのサンプルを得た。実施例3のポリマーは、固形であるためそのまま評価に供した。これら実施例1〜8のポリマーのサンプル1mgを1mlのスクリュー瓶に計量し、100mgの溶媒(NMP(N−メチルピロリドン)、MEK(メチルエチルケトン)、又は、トルエン)を加えた。本サンプルを30分振盪し、よく混合した。得られた溶液を、40mm×50mmのカバーグラス上に数滴のせ、さらに、その上から40mm×50mmのカバーグラスを載せ、溶液を挟み込み、外観を目視観察し、下記の通り溶媒溶解性を判定した。
○:溶解:溶媒が着色し、透明感があり、且つ固形物(不溶物)が観測されない。
△:一部溶解:固形物(不溶物)が観測されるが、溶媒が着色している。
×:不溶:溶媒が着色せず、固形物(不溶物)が観測される。
(Examples 9 to 16)
First, the solvent solubility of the polymers obtained in Examples 1 to 8 was examined. For the polymers obtained in Examples 1, 2, 4 to 6, 8 which are water dispersions and Example 7 which is a solvent dispersion, No. The sample was coated on a glass substrate using a wire bar of No. 4 and dried by blowing air at 100 ° C. for 2 minutes. The resulting polymer thin film was peeled off with a razor to obtain a polymer sample. Since the polymer of Example 3 was solid, it was subjected to evaluation as it was. A 1 mg sample of these polymers of Examples 1-8 was weighed into a 1 ml screw bottle and 100 mg of solvent (NMP (N-methylpyrrolidone), MEK (methyl ethyl ketone) or toluene) was added. The sample was shaken for 30 minutes and mixed well. Place a few drops of the obtained solution on a 40 mm x 50 mm cover glass, place a 40 mm x 50 mm cover glass on top of it, sandwich the solution, visually observe the appearance, and determine solvent solubility as follows did.
○: Dissolution: The solvent is colored, transparent, and no solid matter (insoluble matter) is observed.
Δ: Partially dissolved: Solid matter (insoluble matter) is observed, but the solvent is colored.
X: Insoluble: The solvent is not colored and a solid (insoluble) is observed.
次に、実施例1〜8で得られたポリマーを用いて、表1に示した配合比率にて、各原料を混合した。完全に混和させた後、各配合物を0.5μmのメンブレンフィルターでろ過、不溶物を除去し、本発明の導電性樹脂組成物を調製し、以下の手順で薄膜を形成した。調製した導電性樹脂組成物を、No.4のワイヤーバー(塗布量:湿潤状態で9μmの厚み)を用いてガラス板(JIS R3202)に塗布した。次いで、100℃で2分間、送風乾燥して薄膜を得た。得られた薄膜の厚みは、表2にまとめたとおりであった。 Next, each raw material was mixed at the blending ratio shown in Table 1 using the polymers obtained in Examples 1-8. After mixing completely, each compound was filtered with a 0.5 μm membrane filter to remove insoluble matters, and a conductive resin composition of the present invention was prepared. A thin film was formed by the following procedure. The prepared conductive resin composition was changed to No. It applied to the glass plate (JIS R3202) using the wire bar of 4 (application quantity: thickness of 9 micrometers in the wet state). Next, the film was blown and dried at 100 ° C. for 2 minutes to obtain a thin film. The thickness of the obtained thin film was as summarized in Table 2.
次いで、得られた薄膜の表面抵抗率を、ハイレスタ−UP(MCP−HT450)(三菱化学株式会社製)を用いて、JIS K6911に準じて測定した。 Subsequently, the surface resistivity of the obtained thin film was measured according to JIS K6911 using Hiresta UP (MCP-HT450) (Mitsubishi Chemical Corporation).
得られた薄膜の全光線透過率を、JIS K7150に従い、スガ試験機(株)製ヘイズコンピュータHGM−2Bを用いて測定した。 The total light transmittance of the obtained thin film was measured according to JIS K7150 using a haze computer HGM-2B manufactured by Suga Test Instruments Co., Ltd.
さらに、上記で得られた薄膜の耐候性を調べた。すなわち薄膜を、10分間紫外線露光した後、薄膜の表面抵抗率を測定した。 Furthermore, the weather resistance of the thin film obtained above was examined. That is, after the thin film was exposed to ultraviolet rays for 10 minutes, the surface resistivity of the thin film was measured.
さらに、上記で得られた薄膜の耐熱性を調べた。すなわち薄膜を、200℃で1時間加熱した後、薄膜の表面抵抗率を測定した。 Furthermore, the heat resistance of the thin film obtained above was examined. That is, after the thin film was heated at 200 ° C. for 1 hour, the surface resistivity of the thin film was measured.
得られた薄膜の膜厚、表面抵抗率、全光線透過率、溶剤溶解性、耐候性、及び、耐熱性の結果を表2に示した。 Table 2 shows the results of film thickness, surface resistivity, total light transmittance, solvent solubility, weather resistance, and heat resistance of the obtained thin film.
(比較製造例1)
50mLのナスフラスコに、67mg(1mmol)のピロール(10)および10mLのアセトニトリルを加えた。次いで、644mg(2mmol)のPIDAと392mg(2 mmol)のパラトルエンスルホン酸を加えて、室温で20時間撹拌した。
(Comparative Production Example 1)
To a 50 mL eggplant flask, 67 mg (1 mmol) of pyrrole (10) and 10 mL of acetonitrile were added. Next, 644 mg (2 mmol) of PIDA and 392 mg (2 mmol) of paratoluenesulfonic acid were added, and the mixture was stirred at room temperature for 20 hours.
HPLCにてピロール(10)の消失を確認後、この反応溶液の不溶物を、グラスフィルターによって、ろ取した。次いで、不溶物をメタノールで洗浄後、さらにn−ヘキサンで洗浄し、110mgの微粉末状のポリピロールを得た。得られたピロールは各種溶剤に不溶であったため、GPCによる分子量測定は不可能であった。 After confirming disappearance of pyrrole (10) by HPLC, the insoluble matter of this reaction solution was collected by filtration with a glass filter. Next, the insoluble material was washed with methanol, and further washed with n-hexane to obtain 110 mg of finely powdered polypyrrole. Since the obtained pyrrole was insoluble in various solvents, molecular weight measurement by GPC was impossible.
(比較例1)
比較製造例1で得られたポリピロール34mgをクロロホルム2700mgに分散させ、ポリエステルバインダー150mg、界面活性剤32mgを添加し、更に、溶媒として、N−メチルピロリドン115mgを加え、導電性樹脂組成物を調製した。この導電性樹脂組成物について、実施例5〜8と同様の手法で各種試験を行い、それらの結果を、表2に示した。
(Comparative Example 1)
34 mg of polypyrrole obtained in Comparative Production Example 1 was dispersed in 2700 mg of chloroform, 150 mg of a polyester binder and 32 mg of a surfactant were added, and 115 mg of N-methylpyrrolidone was further added as a solvent to prepare a conductive resin composition. . This conductive resin composition was subjected to various tests in the same manner as in Examples 5 to 8, and the results are shown in Table 2.
実施例9、10、12〜16の導電性ポリマーは、分散液の仕込み量を示す。溶媒において、80%エタノールとは、20%の水を含む含水エタノール、NMPとは、N−メチルピロリドン、MEKとはメチルエチルケトンの事を示す。ポリエステルバインダーは、ナガセケムテックス株式会社製 ガブセン ES−901A、ウレタンアクリレートバインダーは、新中村化学工業株式会社製 NKオリゴU−15HA、界面活性剤は、互応化学工業製 フッ素系界面活性剤 プラスコート RY−2、シランカップリング剤はモメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製Silquest A−187、重合開始剤は、チバ・ジャパン株式会社製 ラジカル系光重合開始剤 イルガキュア(R)907を使用した。 The conductive polymers of Examples 9, 10, and 12 to 16 indicate the amount of the dispersion charged. In the solvent, 80% ethanol means water-containing ethanol containing 20% water, NMP means N-methylpyrrolidone, and MEK means methyl ethyl ketone. The polyester binder is Gabsen ES-901A manufactured by Nagase ChemteX Corporation, the urethane acrylate binder is NK Oligo U-15HA manufactured by Shin-Nakamura Chemical Co., Ltd., the surfactant is Fluorosurfactant Plus Coat RYCO -2, Silquest A-187 manufactured by Momentive Performance Materials Japan GK, and a radical photopolymerization initiator Irgacure (R) 907 manufactured by Ciba Japan Co., Ltd. were used as the silane coupling agent.
表2より、実施例1〜8で得られた導電性ポリマーを用いて配合した実施例9〜16の導電性組成物から得られた薄膜は、比較例1の導電性組成物から得られた薄膜より高い導電性と、透明性を持つことが分かる。 From Table 2, the thin film obtained from the electrically conductive composition of Examples 9-16 mix | blended using the electrically conductive polymer obtained in Examples 1-8 was obtained from the electrically conductive composition of Comparative Example 1. It can be seen that it has higher conductivity and transparency than the thin film.
比較例1のポリマーはNMP、MEK、トルエン等の有機溶剤に良好な溶解性を示さないのに対し、実施例9〜16に記載のポリマーはこれらの有機溶剤のいずれに対しても可溶性を有することが分かる。このように広範囲の溶剤に可溶性を示すため、導電性塗料として均一塗布が可能であり、成形加工性に優れることが分かる。 While the polymer of Comparative Example 1 does not show good solubility in organic solvents such as NMP, MEK, and toluene, the polymers described in Examples 9-16 are soluble in any of these organic solvents. I understand that. Since it is soluble in a wide range of solvents as described above, it can be seen that it can be uniformly applied as a conductive paint and is excellent in molding processability.
比較例1の薄膜は、紫外線照射後又は200℃加熱後の表面抵抗率の上昇率が高く、厳しい環境で使用されるとその導電性を失うことが分かる。それに対して、実施例5〜8の薄膜は、紫外線照射後又は200℃加熱後も導電性を維持しており、環境に左右されない、安定した導電性を示すことが分かる。 It can be seen that the thin film of Comparative Example 1 has a high rate of increase in surface resistivity after ultraviolet irradiation or after heating at 200 ° C., and loses its conductivity when used in a severe environment. On the other hand, it can be seen that the thin films of Examples 5 to 8 maintain conductivity even after ultraviolet irradiation or after heating at 200 ° C., and show stable conductivity that is not influenced by the environment.
本発明によれば、新規の複素環含有導電性ポリマー、その簡便な製造方法、及び、同ポリマーを含む導電性樹脂組成物が提供される。従来の単一の複素環式芳香族化合物を単量体とした導電性ポリマーは、一般的に有機溶媒に対する溶解性が低く、また、透明性が低いために、工業的に利用できる分野が限られていた。本発明では、異なる2つの芳香族化合物の構造を適宜選択することで、安定性、溶剤溶解性、透明性、導電性などに優れる、様々な種類のポリマーを合成することができる。またその製造方法は、電解重合方法に比べ簡便で大量生産が可能であり、工業的製法として優れている。従って、本発明により提供される複素環含有芳香族ポリマー、及び、その導電性樹脂組成物は、各種電子部品(導電性フィルム、固体電解コンデンサ、液晶パネルやタッチパネル等に用いられる透明電極など)や太陽電池などの導電性材料、帯電防止剤等として用いることができる。 ADVANTAGE OF THE INVENTION According to this invention, the novel heterocyclic containing conductive polymer, its simple manufacturing method, and the conductive resin composition containing the polymer are provided. Conventional conductive polymers composed of a single heterocyclic aromatic compound as a monomer generally have low solubility in organic solvents and low transparency, so that there are limited fields that can be used industrially. It was done. In the present invention, various types of polymers excellent in stability, solvent solubility, transparency, conductivity, etc. can be synthesized by appropriately selecting the structures of two different aromatic compounds. Further, the production method is simpler and can be mass-produced than the electrolytic polymerization method, and is excellent as an industrial production method. Therefore, the heterocyclic ring-containing aromatic polymer and the conductive resin composition provided by the present invention are various electronic components (such as conductive films, solid electrolytic capacitors, transparent electrodes used in liquid crystal panels and touch panels), It can be used as a conductive material such as a solar cell, an antistatic agent, or the like.
Claims (9)
(式中、R 1 とR 2 は、それぞれ独立して、水素原子又は有機基を表すが、少なくとも一方は有機基を表し、かつ、R 3 とR 4 は、それぞれ独立して、水素原子又は有機基を表す。あるいは、R 1 とR 2 がともに水素原子を表し、かつ、R 3 とR 4 は、それぞれ独立して、有機基を表す。R 1 とR 2 の双方が有機基を表す場合、これらは互いに結合して環構造を形成してもよい。R 3 とR 4 の双方が有機基を表す場合、これらは互いに結合して環構造を形成してもよい。)
(式中、R 5 とR 6 は、それぞれ独立して、水素原子又は有機基を表すが、少なくとも一方は有機基を表し、かつ、R 7 とR 8 は、それぞれ独立して、水素原子又は有機基を表す。あるいは、R 5 とR 6 がともに水素原子を表し、かつ、R 7 とR 8 は、それぞれ独立して、有機基を表す。R 5 とR 6 の双方が有機基を表す場合、これらは互いに結合して環構造を形成してもよい。R 7 とR 8 の双方が有機基を表す場合、これらは互いに結合して環構造を形成してもよい。Rn 1 は有機基を表す。) A heterocycle-containing aromatic compound represented by the following general formula (2) configured by combining a thiophene ring group and a pyrrole ring group, or configured by combining a thiophene ring group and an N-substituted pyrrole ring group. Characterized by conducting oxidative polymerization by a chemical polymerization method using a hypervalent iodine reactant as an oxidant using a heterocyclic ring-containing aromatic compound represented by the following general formula (3) as a monomer. Of producing a conductive polymer.
(Wherein R 1 and R 2 each independently represent a hydrogen atom or an organic group, at least one of them represents an organic group, and R 3 and R 4 each independently represent a hydrogen atom or Represents an organic group, or R 1 and R 2 both represent a hydrogen atom, and R 3 and R 4 each independently represent an organic group, and both R 1 and R 2 represent an organic group. In some cases, they may combine with each other to form a ring structure. When both R 3 and R 4 represent an organic group, they may combine with each other to form a ring structure.)
(Wherein R 5 and R 6 each independently represent a hydrogen atom or an organic group, at least one of them represents an organic group, and R 7 and R 8 each independently represent a hydrogen atom or Represents an organic group, or R 5 and R 6 both represent a hydrogen atom, and R 7 and R 8 each independently represent an organic group, and both R 5 and R 6 represent an organic group. If, when these are both bound to may form a ring structure .R 7 and R 8 represents an organic group with one another, they .Rn 1 may be bonded to form a ring structure of the organic Represents a group.)
(式中、Rx は、水素原子、有機基又はハロゲン原子を表す。)(In the formula, Rx represents a hydrogen atom, an organic group or a halogen atom.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009165239A JP5618175B2 (en) | 2008-07-16 | 2009-07-14 | New heterocyclic aromatic polymers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008185328 | 2008-07-16 | ||
JP2008185328 | 2008-07-16 | ||
JP2009165239A JP5618175B2 (en) | 2008-07-16 | 2009-07-14 | New heterocyclic aromatic polymers |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010043249A JP2010043249A (en) | 2010-02-25 |
JP5618175B2 true JP5618175B2 (en) | 2014-11-05 |
Family
ID=42014874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009165239A Expired - Fee Related JP5618175B2 (en) | 2008-07-16 | 2009-07-14 | New heterocyclic aromatic polymers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5618175B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5569090B2 (en) * | 2010-03-26 | 2014-08-13 | 浩司 瀬川 | Dye for dye-sensitized solar cell and dye-sensitized solar cell |
JP5740893B2 (en) * | 2010-05-12 | 2015-07-01 | ナガセケムテックス株式会社 | Hard coat composition, hard coat film and display device |
JP5565620B2 (en) * | 2010-07-07 | 2014-08-06 | ナガセケムテックス株式会社 | Antistatic pressure-sensitive adhesive composition, pressure-sensitive adhesive layer, pressure-sensitive adhesive sheet, surface protective film, and polarizing plate |
JP2012017398A (en) * | 2010-07-07 | 2012-01-26 | Nagase Chemtex Corp | Conductive resin composition, print ink, transparent electrode substrate, and electromagnetic wave-shielding material |
JP2012064498A (en) * | 2010-09-17 | 2012-03-29 | Nagase Chemtex Corp | Transparent electrode substrate |
JP2014031433A (en) * | 2012-08-02 | 2014-02-20 | Ritsumeikan | π-CONJUGATED POLYMER, CONDUCTIVE POLYMER COMPLEX, ORGANIC SOLVENT DISPERSION, CONDUCTIVE COATING, THIN FILM AND ANTISTATIC FILM |
TWI532783B (en) * | 2013-05-20 | 2016-05-11 | 長興材料工業股份有限公司 | Conductive material formulation and use thereof |
JP6580436B2 (en) * | 2015-09-16 | 2019-09-25 | テイカ株式会社 | Conductive polymer composition and use thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6284115A (en) * | 1985-10-09 | 1987-04-17 | Mitsubishi Chem Ind Ltd | Electrically conductive material |
DE3843412A1 (en) * | 1988-04-22 | 1990-06-28 | Bayer Ag | NEW POLYTHIOPHENES, METHOD FOR THEIR PRODUCTION AND THEIR USE |
JPH06104716B2 (en) * | 1990-08-24 | 1994-12-21 | 工業技術院長 | Conductive polymer composition and method for producing the same |
JP2001508121A (en) * | 1997-11-05 | 2001-06-19 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Conjugated polymer in oxidized state |
US6197921B1 (en) * | 1999-06-01 | 2001-03-06 | The United States Of America As Represented By The Secretary Of The Air Force | Polymers of 1-(bithien-2-yl)-4-aminobenzene |
DE10140666C2 (en) * | 2001-08-24 | 2003-08-21 | Univ Braunschweig Tech | Process for producing a conductive structured polymer film and use of the process |
JP2003231738A (en) * | 2002-02-08 | 2003-08-19 | Matsushita Electric Ind Co Ltd | Conductive organic thin film and its production process |
FR2852320B1 (en) * | 2003-03-14 | 2005-05-20 | NOVEL POLYMERS BASED ON NOVEL BITHIOPHENE MONOMERS, PROCESS FOR THEIR PREPARATION, AND APPLICATIONS THEREOF | |
DE102006002797A1 (en) * | 2006-01-20 | 2007-08-02 | H. C. Starck Gmbh & Co. Kg | Preparation of polythiophene, useful e.g. in telecommunication technology, for the preparation of solid electrolytes and electrodes, comprises oxidative polymerization of thiophene using hypervalent iodine compound as oxidizing agent |
US20080042127A1 (en) * | 2006-08-17 | 2008-02-21 | Watson Mark D | Transition metal free coupling of highly fluorinated and non-fluorinated pi-electron systems |
-
2009
- 2009-07-14 JP JP2009165239A patent/JP5618175B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010043249A (en) | 2010-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5618175B2 (en) | New heterocyclic aromatic polymers | |
KR100969422B1 (en) | Process for the Preparation of Neutral Polyethylenedioxythiophene, and Corresponding Polyethylenedioxythiophenes | |
EP1028136B1 (en) | A method of forming poly-(3-substituted) thiophenes | |
JP2009046653A (en) | Method for producing polymer of aromatic compound and heterocyclic aromatic compound by using hypervalent iodine reagent | |
WO2010007648A1 (en) | Novel heterocyclic aromatic compound and polymer | |
US7358326B2 (en) | Multifunctional 3,4-alkylenedioxythiophene derivatives and electrically conductive polymers containing them | |
EP1951786B1 (en) | Process of preparing regioregular polymers | |
JP5779231B2 (en) | π-electron conjugated block copolymer and photoelectric conversion device | |
JP6024264B2 (en) | Thiophene derivative, water-soluble conductive polymer and aqueous solution thereof, and production method thereof | |
KR20120106795A (en) | Copolymers of 3,4-dialkoxythiophenes and methods for making and devices | |
JP2015168793A (en) | Thiophene copolymer, aqueous solution thereof, thiophene monomer composition and method for producing the same | |
JP2012017398A (en) | Conductive resin composition, print ink, transparent electrode substrate, and electromagnetic wave-shielding material | |
CN108586496A (en) | Zigzag type middle width strip gap small molecule electron donor materials based on the different chromene of thieno and its application | |
KR101007864B1 (en) | New thiophen compounds, thiophen polymer,conductive high polymer film and forming method of conductive high polymer pattern using thereof | |
JP6912060B2 (en) | A phosphothiophene-containing compound, a phosphopolythiophene-containing compound thereof, and a method for producing them. | |
JP2014028760A (en) | Thiophene compound, water-soluble conductive polymer, aqueous solution thereof, and method for producing the same | |
JP5492413B2 (en) | Conductive polyaniline composition and method for producing the same | |
JP4225820B2 (en) | Alkylenedioxythiophenes and poly (alkylenedioxythiophenes) having urethane-containing side groups, processes and starting compounds for the preparation of the thiophenes, cross-linked products obtained using the thiophenes and the use of new compounds and cross-linked products | |
US8168671B2 (en) | Synthesis of thieno[3,4-b]thiophene, thieno[3,4-b]furan, related compounds and their derivatives and use thereof | |
JP2018188424A (en) | Sulfonic acid ester with 3,4-ethylenedioxythiophene structure, and method of synthesizing poly(3,4-ethylenedioxythiophene) derivative derived therefrom | |
JP5618174B2 (en) | Method for producing heterocycle-containing aromatic compound | |
JP7406751B2 (en) | Linthiophene-containing copolymer and method for producing the same | |
JP2014031433A (en) | π-CONJUGATED POLYMER, CONDUCTIVE POLYMER COMPLEX, ORGANIC SOLVENT DISPERSION, CONDUCTIVE COATING, THIN FILM AND ANTISTATIC FILM | |
JP3164671B2 (en) | Arylene vinylene polymer and method for producing the same | |
CN116444539A (en) | Asymmetric condensed ring unit based on naphthalene dithiadiazole derivative, small molecule containing unit, polymer and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140819 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140904 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5618175 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |