[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5615792B2 - Titanium plate, method for producing titanium plate, and method for producing heat exchange plate of plate heat exchanger - Google Patents

Titanium plate, method for producing titanium plate, and method for producing heat exchange plate of plate heat exchanger Download PDF

Info

Publication number
JP5615792B2
JP5615792B2 JP2011239574A JP2011239574A JP5615792B2 JP 5615792 B2 JP5615792 B2 JP 5615792B2 JP 2011239574 A JP2011239574 A JP 2011239574A JP 2011239574 A JP2011239574 A JP 2011239574A JP 5615792 B2 JP5615792 B2 JP 5615792B2
Authority
JP
Japan
Prior art keywords
plate
titanium plate
crystal grains
titanium
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011239574A
Other languages
Japanese (ja)
Other versions
JP2013095964A (en
Inventor
良規 伊藤
良規 伊藤
松本 克史
克史 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011239574A priority Critical patent/JP5615792B2/en
Publication of JP2013095964A publication Critical patent/JP2013095964A/en
Application granted granted Critical
Publication of JP5615792B2 publication Critical patent/JP5615792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

本発明は、プレート式熱交換器の熱交換プレートに適用するチタン板、チタン板の製造方法、およびプレート式熱交換器の熱交換プレートの製造方法に関する。   The present invention relates to a titanium plate applied to a heat exchange plate of a plate heat exchanger, a method of manufacturing the titanium plate, and a method of manufacturing a heat exchange plate of the plate heat exchanger.

チタン板は、耐食性に優れているため、化学、電力、食品製造プラント等の熱交換器用部材や、カメラボディ、厨房機器等の民生品、さらには、オートバイ、自動車等の輸送機器部材、家電機器等の外装材といったものにまで広く使用されている。
その中でもプレート式の熱交換器は、熱交換効率を高めるため、チタン板をプレス成形することによって波目状に加工し表面積を増やす必要がある。したがって、チタン板をプレート式熱交換器に適用する場合は、チタン板に優れた成形性が要求される。
Titanium plates have excellent corrosion resistance, so they are used for heat exchangers such as chemical, electric power, and food manufacturing plants, consumer products such as camera bodies and kitchen equipment, transportation equipment for motorcycles and automobiles, and home appliances. It is widely used even for things such as exterior materials.
Among them, in order to increase the heat exchange efficiency, the plate type heat exchanger needs to be processed into a wave pattern by press forming a titanium plate to increase the surface area. Therefore, when a titanium plate is applied to a plate heat exchanger, excellent formability is required for the titanium plate.

また、チタン板をプレート式熱交換器に適用する場合は、前記した成形性以外にも、プレート式熱交換器として必要とされる耐久性の向上や軽量化を実現するために、チタン板に一定以上の強度も要求される。   In addition, when applying a titanium plate to a plate heat exchanger, in addition to the above-described formability, in order to realize the durability improvement and weight reduction required as a plate heat exchanger, A certain level of strength is also required.

ここで、チタン板(工業用純チタン)は、JIS H4600の規格で規定されており、Fe、Oなどの含有量や強度等によって、JIS1種、2種、3種等の等級に分類される。
この等級が大きくなる程、Fe、Oなどの含有量が多く、強度が高くなるため、高い強度が要求される用途にチタン板を使用する場合は、大きな等級のものが用いられている。
一方、等級が小さいチタン板、例えば、JIS1種のチタン板はFe、Oなどの含有量が少なく、延性が高くなる(成形性が向上する)ため、優れた成形性が要求される用途にチタン板を使用する場合は、JIS1種のものが用いられている。
Here, the titanium plate (industrial pure titanium) is stipulated in the standard of JIS H4600, and is classified into JIS class 1, class 2, class 3, etc. according to the content, strength, etc. of Fe, O, etc. .
As this grade increases, the content of Fe, O, etc. increases, and the strength increases. Therefore, when a titanium plate is used for an application that requires high strength, those of a large grade are used.
On the other hand, titanium plates with low grades, such as JIS Class 1 titanium plates, have a low content of Fe, O, etc. and have high ductility (improving formability), so titanium is used for applications that require excellent formability. When using a board, the thing of JIS1 type is used.

しかし、Fe、Oなどの含有量を多くし、チタン板の強度を向上させた場合は、成形性が低下し、Fe、Oなどの含有量を少なくし、チタン板の成形性を向上させた場合は、強度が低下してしまう。   However, when the content of Fe, O, etc. was increased and the strength of the titanium plate was improved, the moldability decreased, the content of Fe, O, etc. was decreased, and the formability of the titanium plate was improved. In such a case, the strength decreases.

また、チタン板の強度を向上させる方法として、チタン板の結晶粒を微細化する方法も存在するが、結晶粒の微細化に伴い、チタン板の成形性は低下してしまう。   Moreover, as a method for improving the strength of the titanium plate, there is a method of refining the crystal grain of the titanium plate, but the formability of the titanium plate is lowered with the refinement of the crystal grain.

前記したとおり、チタン板をプレート式熱交換器に適用する場合、チタン板には一定以上の強度(JIS2種、3種の強度)、および優れた成形性が要求されているという実情があるにもかかわらず、強度の低下を回避しつつ、成形性を向上させるのは、非常に困難であった。   As described above, when a titanium plate is applied to a plate heat exchanger, the titanium plate is required to have a certain level of strength (JIS 2 or 3 types of strength) and excellent formability. Nevertheless, it has been very difficult to improve moldability while avoiding strength reduction.

なお、チタン板について、強度および成形性の向上に着目した以下のような様々な技術が開示されている。
例えば、特許文献1には、Fe、Ni、Crの含有量を特定し、平均結晶粒径を20〜80μmに規制するとともに、酸洗処理の条件を特定したチタン板の製造方法が開示されている。
また、特許文献2には、FeがOよりも多く含有すると特定するとともに、平均結晶粒径を10μm以下に特定したチタン板が開示されている。
In addition, regarding the titanium plate, the following various technologies that focus on improving the strength and formability are disclosed.
For example, Patent Document 1 discloses a titanium plate manufacturing method that specifies the content of Fe, Ni, and Cr, regulates the average crystal grain size to 20 to 80 μm, and specifies the conditions for pickling treatment. Yes.
Patent Document 2 discloses a titanium plate that specifies that Fe contains more than O and that has an average crystal grain size of 10 μm or less.

また、特許文献3には、化学組成を特定するとともに、β相の平均結晶粒径を3μm以下に特定したチタン板が開示されている。
また、特許文献4には、Fe、Oの含有量を規制し、結晶粒のずれ角を特定したチタン板が開示されている。
Patent Document 3 discloses a titanium plate in which the chemical composition is specified and the average crystal grain size of the β phase is specified to be 3 μm or less.
Patent Document 4 discloses a titanium plate that regulates the content of Fe and O and specifies the deviation angle of crystal grains.

特開平10−30160号公報Japanese Patent Laid-Open No. 10-30160 特開2009−228092号公報JP 2009-228092 A 特開2010−209462号公報JP 2010-209462 A 特開2011−26649号公報JP 2011-26649 A

しかしながら、特許文献1〜3に係る技術は、製造工程が従来のものとほとんど変わりがないため、得られたチタン板は、通常の均一な粒度分布を有する結晶粒の組織で構成されていると判断できる。その結果、特許文献1〜3に係る技術では、十分な成形性が得られない。
特許文献4に係る技術は、FeとOの含有量の上限値が低く規制されており、十分な強度が得られない。また、FeとOを規制された上限値以上含有させてしまうと、冷延中に耳割れが発生してしまい、歩留まりが低下してしまうことから生産性の点で好ましくない。
However, since the techniques according to Patent Documents 1 to 3 are almost the same as the conventional manufacturing process, the obtained titanium plate is composed of a crystal grain structure having a normal uniform particle size distribution. I can judge. As a result, with the techniques according to Patent Documents 1 to 3, sufficient moldability cannot be obtained.
In the technique according to Patent Document 4, the upper limit values of the Fe and O contents are regulated low, and sufficient strength cannot be obtained. Further, if Fe and O are contained in excess of the regulated upper limit value, ear cracks occur during cold rolling, and the yield decreases, which is not preferable in terms of productivity.

本発明は、前記の問題に鑑みてなされたものであり、その課題は、強度が低下することなく、優れた成形性を発揮するチタン板、チタン板の製造方法、およびプレート式熱交換器の熱交換プレートの製造方法を提供することにある。   The present invention has been made in view of the above problems, and the problem is that a titanium plate, a titanium plate manufacturing method, and a plate-type heat exchanger exhibit excellent formability without lowering strength. It is in providing the manufacturing method of a heat exchange plate.

前記課題を解決するため、本発明の発明者らは、チタン板の結晶粒組織と成形性との関係について、以下のような検討を行った。
本発明のチタン板を構成する工業用純チタンは、例えば、JIS H4600の規格で規定されているチタンであり、六方晶結晶構造(HCP構造)からなるα相の結晶粒組織を主体として構成された金属材料である。
ここで、金属材料を適切に成形するためには、塑性変形させる必要があり、そのためには、転位によるすべり変形、もしくは双晶変形させる必要がある。そして、α相の結晶粒組織において活動するすべり系としては、最も活動し易い{10−10}<11−20>柱面すべりの他、{0001}<11−20>底面すべり、錐面すべりが存在し、双晶変形としては、{11−22}<11−23>双晶が存在する。
In order to solve the above-mentioned problems, the inventors of the present invention have made the following studies on the relationship between the crystal grain structure and formability of a titanium plate.
The industrial pure titanium that constitutes the titanium plate of the present invention is, for example, titanium specified in the standard of JIS H4600, and is mainly composed of an α phase crystal grain structure composed of a hexagonal crystal structure (HCP structure). Metal material.
Here, in order to form the metal material appropriately, it is necessary to plastically deform, and for that purpose, it is necessary to cause slip deformation due to dislocation or twin deformation. As a slip system that operates in the α phase grain structure, {0001} <11-20> bottom surface slide, conical surface slip, in addition to {10-10} <11-20> column surface slip, which is most likely to be active. There exists {11-22} <11-23> twins as twin deformation.

しかしながら、工業用純チタンは、BCC構造の鉄鋼材料やFCC構造のアルミニウムと比較し、活動するすべり系の数が少ないとともに、複数のすべり系が活動し難いと言われており、これを誘因として、工業用純チタンからなるチタン板の成形性の向上は困難であると考えられている。
そのため、本発明の発明者らは、チタン板の成形性を向上させるために、前記誘因を解消すること、つまり、複数のすべり系および双晶系を活動させることが重要であると考えた。そして、チタン板のα相の結晶粒組織を微細結晶粒と粗大結晶粒との混合組織とすることにより、複数のすべり系および双晶系を活動させることができることを見出し、本発明を完成するに至った。
However, compared with steel materials with BCC structure and aluminum with FCC structure, industrial pure titanium is said to have fewer sliding systems and multiple sliding systems are difficult to operate. It is considered difficult to improve the formability of a titanium plate made of industrial pure titanium.
Therefore, the inventors of the present invention considered that it is important to eliminate the incentive, that is, to activate a plurality of slip systems and twin systems in order to improve the formability of the titanium plate. Then, the present inventors have found that a plurality of slip systems and twin systems can be activated by setting the α phase crystal grain structure of the titanium plate to a mixed structure of fine crystal grains and coarse crystal grains, thereby completing the present invention. It came to.

すなわち、本発明に係るチタン板は、α相(HCP構造)の結晶粒組織を含む工業用純チタンからなるチタン板であって、Fe:0.040〜0.300質量%、O:0.05〜0.25質量%を含有し、残部がチタン及び不可避的不純物からなるとともに、前記Oの含有量に対する前記Feの含有量の比(Feの含有量/Oの含有量)が1.1以下であり、前記結晶粒の平均粒径の4倍以上の粒径の粗大結晶粒が、前記結晶粒100個中0.5個以上の割合で含まれていることを特徴とする。 That is, the titanium plate according to the present invention is a titanium plate made of industrial pure titanium containing an α phase (HCP structure) crystal grain structure, Fe: 0.040 to 0.300 mass%, O: 0.0. 0.5 to 0.25% by mass, the balance being titanium and inevitable impurities, and the ratio of the Fe content to the O content (Fe content / O content) is 1.1. In the following, coarse crystal grains having a grain size of 4 times or more the average grain size of the crystal grains are contained in a ratio of 0.5 or more out of 100 crystal grains.

このように、本発明に係るチタン板は、粗大結晶粒が所定の割合で含まれていることから、成形の際、当該粗大結晶粒に対し、周囲に存在する微細結晶粒(粗大結晶粒以外の結晶粒)から、さまざまな方向に応力が加えられることとなる。その結果、粗大結晶粒において、一次すべり系だけでなく、複数のすべり系および双晶系(以下、適宜、二次すべり系という)が活動し易くなり、全体として均一な塑性変形が起こることとなる。したがって、本発明に係るチタン板は、優れた成形性を発揮することができる。
また、上記特許文献4のような従来技術では、チタン板の成形性を向上させるために不純物元素(特に酸素)の含有量を低くするという方法が用いられているが、当該方法では、チタン板の成形性が向上する一方、強度は低下してしまう。これに対して、本発明によれば、不純物元素の含有量を低くする必要がないため、チタン板の強度の低下を招くことなく、成形性を向上させることができる。
また、このように、本発明に係るチタン板は、Fe、Oの含有量が所定量であることから、強度の低下を回避しつつ、成形性の向上という効果をより確実なものとすることができる。
As described above, the titanium plate according to the present invention includes coarse crystal grains at a predetermined ratio, and therefore, when forming, the fine crystal grains (other than the coarse crystal grains) existing around the coarse crystal grains are formed. Stress is applied in various directions. As a result, not only the primary slip system but also multiple slip systems and twin crystal systems (hereinafter referred to as secondary slip systems as appropriate) are likely to be active in the coarse crystal grains, resulting in uniform plastic deformation as a whole. Become. Therefore, the titanium plate according to the present invention can exhibit excellent formability.
Further, in the conventional technique such as Patent Document 4 described above, a method of reducing the content of impurity elements (particularly oxygen) is used in order to improve the formability of the titanium plate. While the moldability of is improved, the strength is reduced. On the other hand, according to the present invention, since it is not necessary to reduce the content of the impurity element, the formability can be improved without causing a decrease in the strength of the titanium plate.
In addition, as described above, the titanium plate according to the present invention has a certain amount of Fe and O, so that the effect of improving the formability is further ensured while avoiding the decrease in strength. Can do.

また、本発明に係るチタン板は、前記粗大結晶粒の面積率が90%以下であることが好ましい。
このように、本発明に係るチタン板は、粗大結晶粒の面積率が所定値以下であることから、粗大結晶粒における二次すべり系をより適切に活動させ、成形性の向上という効果を確実なものとすることができる。
In the titanium plate according to the present invention, the area ratio of the coarse crystal grains is preferably 90% or less.
As described above, the titanium plate according to the present invention has an area ratio of coarse crystal grains of a predetermined value or less, so that the secondary slip system in the coarse crystal grains can be more appropriately activated to ensure the effect of improving the formability. Can be.

また、本発明に係るチタン板は、前記チタン板に成形加工を施し、プレート式熱交換器の熱交換プレートとして使用されることが好ましい。
このように、本発明に係るチタン板は、強度が低下することなく、優れた成形性を発揮することから、適切にプレート式熱交換器の熱交換プレートとして使用することができる。
In addition, the titanium plate according to the present invention is preferably used as a heat exchange plate of a plate heat exchanger by forming the titanium plate.
Thus, since the titanium plate according to the present invention exhibits excellent formability without lowering the strength, it can be appropriately used as a heat exchange plate of a plate heat exchanger.

また、本発明に係るチタン板の製造方法は、α相(HCP構造)の結晶粒組織を含む工業用純チタンについて、少なくとも、冷間圧延、および焼鈍を施すことでチタン板を製造するチタン板の製造方法であって、前記チタン板は、Fe:0.040〜0.300質量%、O:0.05〜0.25質量%を含有し、残部がチタン及び不可避的不純物からなるとともに、前記Oの含有量に対する前記Feの含有量の比(Feの含有量/Oの含有量)が1.1以下であり、前記焼鈍の後、前記チタン板に0.5〜7.0%の圧下率で軽圧下圧延を行う軽圧下圧延工程と、前記軽圧下圧延工程の後、前記チタン板に600〜880℃の保持温度で焼鈍を行う焼鈍工程と、を含むことを特徴とする。 Moreover, the manufacturing method of the titanium plate which concerns on this invention is a titanium plate which manufactures a titanium plate by giving at least cold rolling and annealing about the industrial pure titanium containing the crystal grain structure of alpha phase (HCP structure). The titanium plate contains Fe: 0.040-0.300% by mass, O: 0.05-0.25% by mass, and the balance is made of titanium and inevitable impurities, The ratio of the Fe content to the O content (Fe content / O content) is 1.1 or less, and 0.5% to 7.0% of the titanium plate after the annealing. It includes a light reduction rolling process in which light reduction rolling is performed at a reduction ratio, and an annealing process in which annealing is performed on the titanium plate at a holding temperature of 600 to 880 ° C. after the light reduction rolling process.

このように、本発明に係るチタン板の製造方法は、チタン板に軽圧下圧延を行うことにより、α相の結晶粒界に存在するβ相によるピン止め(結晶粒の成長の抑制)を外すことができる。そして、軽圧下圧延後の焼鈍により、ピン止めが外れたα相の結晶粒を粗大結晶粒に成長させることができる。その結果、本発明に係るチタン板の製造方法により製造されたチタン板は、強度が低下することなく、優れた成形性を発揮することができる。   Thus, the titanium plate manufacturing method according to the present invention removes pinning (suppression of crystal grain growth) due to the β phase existing in the crystal grain boundary of the α phase by performing light rolling on the titanium plate. be able to. And the crystal grain of the alpha phase from which pinning was removed can be made into a coarse crystal grain by annealing after light rolling. As a result, the titanium plate produced by the method for producing a titanium plate according to the present invention can exhibit excellent formability without a decrease in strength.

また、本発明に係るプレート式熱交換器の熱交換プレートの製造方法は、前記チタン板に成形加工を施すことを特徴とする。
このように、本発明に係るプレート式熱交換器の熱交換プレートの製造方法は、所定のチタン板に成形加工を施して製造することから、強度が低下することなく、優れた成形性を発揮する熱交換プレートを製造することができる。
Moreover, the manufacturing method of the heat exchange plate of the plate type heat exchanger which concerns on this invention is characterized by performing a shaping | molding process to the said titanium plate.
As described above, the method for producing a heat exchange plate of a plate heat exchanger according to the present invention is produced by subjecting a predetermined titanium plate to a molding process, and therefore exhibits excellent formability without a decrease in strength. The heat exchange plate can be manufactured.

本発明に係るチタン板は、粗大結晶粒が所定の割合で含まれていることから、強度が低下することなく、優れた成形性を発揮することができる。
また、本発明に係るチタン板の製造方法は、チタン板に軽圧下圧延および焼鈍を施すことから、強度が低下することなく、優れた成形性を発揮するチタン板を製造することができる。
また、本発明に係るプレート式熱交換器の熱交換プレートの製造方法は、所定のチタン板に成形加工を施して製造することから、強度が低下することなく、優れた成形性を発揮する熱交換プレートを製造することができる。
Since the titanium plate according to the present invention contains coarse crystal grains at a predetermined ratio, it can exhibit excellent formability without a decrease in strength.
Moreover, since the manufacturing method of the titanium plate which concerns on this invention performs light rolling and annealing to a titanium plate, the titanium plate which exhibits the outstanding moldability can be manufactured, without intensity | strength falling.
In addition, the method for producing a heat exchange plate of a plate heat exchanger according to the present invention is produced by subjecting a predetermined titanium plate to a molding process. Therefore, heat that exhibits excellent formability without lowering the strength. An exchange plate can be manufactured.

本発明の実施形態に係るチタン板について、電界放出型走査顕微鏡(FESEM)を用いて後方錯乱電子回折像(EBSP)により観察を行った結果である。It is the result of having observed about the titanium plate which concerns on embodiment of this invention by a back-scattered electron diffraction image (EBSP) using the field emission scanning microscope (FESEM). 本発明の実施例で成形性の評価を行うために用いた成形金型を示し、(a)は平面図、(b)は(a)の一点鎖線の断面図である。The molding die used in order to evaluate moldability in the Example of this invention is shown, (a) is a top view, (b) is sectional drawing of the dashed-dotted line of (a). 本発明の実施形態に係るチタン板およびプレート式熱交換器の熱交換プレートの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the heat exchanger plate of the titanium plate which concerns on embodiment of this invention, and a plate type heat exchanger.

以下、本発明に係るチタン板、チタン板の製造方法、およびプレート式熱交換器の熱交換プレートの製造方法を実施するための形態について、詳細に説明する。   Hereinafter, the form for implementing the titanium plate which concerns on this invention, the manufacturing method of a titanium plate, and the manufacturing method of the heat exchange plate of a plate-type heat exchanger is demonstrated in detail.

[チタン板]
本発明に係るチタン板は、α相(HCP構造)の結晶粒組織を含む工業用純チタンからなるチタン板であって、結晶粒の平均粒径の4倍以上の粒径の粗大結晶粒が、結晶粒100個中0.5個以上の割合で含まれていることを特徴とする。
また、本発明に係るチタン板は、粗大結晶粒の面積率、FeとOの含有量、Oの含有量に対するFeの含有量の比、および用途、に関して好ましい条件を有する。
[Titanium plate]
The titanium plate according to the present invention is a titanium plate made of industrial pure titanium containing an α-phase (HCP structure) crystal grain structure, and coarse crystal grains having a grain size of 4 times or more of the average grain size of the crystal grains. , And contained at a ratio of 0.5 or more in 100 crystal grains.
Moreover, the titanium plate according to the present invention has preferable conditions regarding the area ratio of coarse crystal grains, the content of Fe and O, the ratio of the content of Fe to the content of O, and the application.

まず、本発明に係るチタン板のα相の結晶粒組織と成形性との関係を説明した後、各特定事項の説明を行う。
(α相の結晶粒組織と成形性との関係)
本発明に係るチタン板のα相の結晶粒組織は、図1に示すような、粗大結晶粒と微細結晶粒(粗大結晶粒以外の結晶粒)との混合組織となっている。
まず、チタン板の成形の初期段階について説明すると、結晶粒径が大きく強度(YS)が低い粗大結晶粒領域から塑性変形が始まる。ここで、粗大結晶粒では、柱面すべりが一次すべり系(主すべり系)として活動すると想定されるが、粗大結晶粒の周囲に存在する各微細結晶粒は粗大結晶粒と結晶方位が異なるため、試料座標系で考えると、微細結晶粒において、一次すべり系とは異なる方向にすべり系が活動することとなる。したがって、粗大結晶粒に対し、隣接する複数の微細結晶粒から、粒界に沿った各ミクロ領域に複数方向の応力が加えられることとなる。その結果、粗大結晶粒において、複数のすべり系および双晶系(二次すべり系)が活動し易くなり、チタン板全体として均一な塑性変形が起こることで、チタン板の成形性が向上すると考えられる。
First, after explaining the relationship between the α phase crystal grain structure and formability of the titanium plate according to the present invention, each specific matter will be explained.
(Relation between α phase crystal grain structure and formability)
The α phase crystal grain structure of the titanium plate according to the present invention is a mixed structure of coarse crystal grains and fine crystal grains (crystal grains other than coarse crystal grains) as shown in FIG.
First, the initial stage of forming the titanium plate will be described. Plastic deformation starts from a coarse crystal grain region having a large crystal grain size and a low strength (YS). Here, in coarse crystal grains, it is assumed that the column face slip acts as a primary slip system (main slip system), but each fine crystal grain around the coarse crystal grains has a different crystal orientation from the coarse crystal grains. Considering the sample coordinate system, the slip system acts in a direction different from the primary slip system in the fine crystal grains. Accordingly, a plurality of directions of stress are applied to coarse crystal grains from a plurality of adjacent fine crystal grains to each micro region along the grain boundary. As a result, in coarse crystal grains, multiple slip systems and twin systems (secondary slip systems) are likely to be active, and uniform plastic deformation occurs throughout the titanium plate, which improves the formability of the titanium plate. It is done.

さらにチタン板の成形が進み、微細結晶粒領域が変形し始めた後であっても、粗大結晶粒領域の周辺には結晶方位の異なる微細結晶粒が存在するため、上記と同様、粗大結晶粒に対し、隣接する複数の微細結晶粒から、粒界に沿った各ミクロ領域に複数方向の応力が加えられ、二次すべり系の活動を誘発すると考えられる。   Even after the formation of the titanium plate and the fine crystal grain region starts to deform, fine crystal grains with different crystal orientations exist around the coarse crystal grain region. On the other hand, it is considered that stress in a plurality of directions is applied to each micro region along the grain boundary from a plurality of adjacent fine crystal grains to induce the activity of the secondary slip system.

また、チタン板の成形の初期、後期段階にかかわらず、微細結晶粒領域が負担する応力レベルは粗大結晶粒領域に比べて高く、均一なサイズの粗大結晶粒で構成されているチタン板と比較して、本発明に係るチタン板は、二次すべり系を誘発する効果が高いと考えられる。   Regardless of the initial and late stages of forming the titanium plate, the stress level borne by the fine crystal grain region is higher than that of the coarse crystal grain region, and compared with a titanium plate composed of coarse crystal grains of uniform size. Thus, the titanium plate according to the present invention is considered to have a high effect of inducing a secondary slip system.

なお、チタン板のα相の結晶粒組織が、微細結晶粒を含まず粗大結晶粒のみで構成されている場合、隣接する粗大結晶粒同士の結晶方位が同じである(配向性が高い)ことから、ほぼ一方向のすべり系が活動することになってしまう。したがって、粗大結晶粒に対し、隣接する粗大結晶粒から、粒界に沿った各ミクロ領域に複数ではなく特定方向のみの応力が加えられることとなる。その結果、二次すべり系が活性化され難く、成形性が向上しないと考えられる。   In addition, when the α phase crystal grain structure of the titanium plate is composed only of coarse crystal grains without containing fine crystal grains, the crystal orientations of adjacent coarse crystal grains are the same (highly oriented). Therefore, a slip system in almost one direction will be active. Therefore, with respect to the coarse crystal grains, stress in only a specific direction is applied to each micro region along the grain boundary from adjacent coarse crystal grains. As a result, it is considered that the secondary sliding system is hardly activated and the moldability is not improved.

(粗大結晶粒)
粗大結晶粒とは、チタン板に存在する結晶粒の平均粒径の4倍以上の粒径を有する結晶粒である。このように規定した理由は、4倍未満の粒径の結晶粒では表面積が十分に大きくなく、当該結晶粒に隣接する結晶粒の数が減少するため、二次すべり系を活性化させる効果があまり得られないからである。
なお、粒径とは、円相当直径である。
(Coarse crystal grains)
Coarse crystal grains are crystal grains having a grain size that is at least four times the average grain size of the crystal grains present in the titanium plate. The reason specified in this way is that the surface area of a crystal grain having a particle size of less than 4 times is not sufficiently large, and the number of crystal grains adjacent to the crystal grain is reduced, so that the effect of activating the secondary slip system is effective. It is because it is not obtained so much.
The particle size is a circle equivalent diameter.

(粗大結晶粒の存在割合)
チタン板の粗大結晶粒が、結晶粒100個中0.5個未満の場合、たとえ粗大結晶粒における二次すべり系が活性化されたとしても、粗大結晶粒が少ないことから、チタン板の成形性を向上させる効果が十分に得られない。
したがって、チタン板の粗大結晶粒は、結晶粒100個中0.5個以上である。
(Ratio of coarse crystal grains)
When the coarse crystal grain of the titanium plate is less than 0.5 out of 100 crystal grains, even if the secondary slip system in the coarse crystal grain is activated, there are few coarse crystal grains. The effect of improving the property cannot be sufficiently obtained.
Therefore, the coarse crystal grain of the titanium plate is 0.5 or more out of 100 crystal grains.

チタン板の粗大結晶粒の存在割合の上限値については、後記する面積率で規定することもできるが、微細結晶粒の存在割合が少なくなることによって、二次すべり系を活性化し難くなるのを防止するため、粗大結晶粒の存在割合は結晶粒100個中15個以下であることが好ましい。
なお、チタン板の粗大結晶粒の存在割合の算出方法については、例えば、実施例に記載する方法で行えばよい。
The upper limit of the proportion of coarse crystal grains in the titanium plate can be defined by the area ratio described later. However, it is difficult to activate the secondary slip system by reducing the proportion of fine grains. In order to prevent this, the proportion of coarse crystal grains is preferably 15 or less per 100 crystal grains.
In addition, what is necessary is just to perform by the method described in an Example about the calculation method of the abundance ratio of the coarse crystal grain of a titanium plate, for example.

(粗大結晶粒の面積率)
粗大結晶粒の面積率が90%を超えると、粗大結晶粒の周辺に存在する微細結晶粒の個数が少なくなってしまい、粗大結晶粒における二次すべり系が活性化し難くなる。
したがって、粗大結晶粒の面積率は90%以下である。
そして、粗大結晶粒における二次すべり系の活性化をより確実なものとするため、粗大結晶粒の面積率は80%以下とするのが好ましく、さらに70%以下とするのが好ましい。
(Area ratio of coarse crystal grains)
If the area ratio of the coarse crystal grains exceeds 90%, the number of fine crystal grains present around the coarse crystal grains decreases, and the secondary slip system in the coarse crystal grains is difficult to activate.
Therefore, the area ratio of coarse crystal grains is 90% or less.
And in order to ensure the activation of the secondary slip system in the coarse crystal grains, the area ratio of the coarse crystal grains is preferably 80% or less, and more preferably 70% or less.

チタン板の粗大結晶粒の面積率の下限値については、前記した粗大結晶粒の存在割合で規定することもできるが、粗大結晶粒が少ないことにより、チタン板の成形性を向上させる効果が小さくなるのを防止するため、面積率は20%以上であることが好ましい。
なお、チタン板の粗大結晶粒の面積率の算出方法については、例えば、実施例に記載する方法で行えばよい。
The lower limit of the area ratio of the coarse crystal grains of the titanium plate can be defined by the abundance ratio of the coarse crystal grains described above, but the effect of improving the formability of the titanium plate is small due to the small number of coarse crystal grains. In order to prevent this, the area ratio is preferably 20% or more.
In addition, what is necessary is just to perform by the method described in an Example about the calculation method of the area ratio of the coarse crystal grain of a titanium plate, for example.

(成分組成)
チタン板は、不可避的不純物として、C、H、O、N、Fe、Si、Cr、Ni等を微量に含有するが、本発明では、その中でも含有量が比較的多く、発明の効果に影響を及ぼすFeとOの含有量の好ましい範囲を規定した。
(Component composition)
The titanium plate contains a small amount of C, H, O, N, Fe, Si, Cr, Ni, etc. as unavoidable impurities, but in the present invention, the content is relatively large, and the effect of the invention is affected. The preferable range of the Fe and O contents that affect the above is defined.

(成分組成 Fe:0.040〜0.300質量%)
Feの含有量が0.040質量%未満であると、所望の混粒組織(微細結晶粒と粗大結晶粒との混合組織)が得られなくなる。一方、Feの含有量が0.300質量%を超えると、インゴットの偏析が大きくなり生産性が悪くなってしまう。また、β相による結晶粒成長抑制効果が強くなりすぎ、後記する軽圧下圧延および焼鈍を施しても、粗大結晶粒が発生し難くなる。
したがって、Feの含有量は、0.040〜0.300質量%であることが好ましい。
(Component composition Fe: 0.040-0.300 mass%)
When the Fe content is less than 0.040% by mass, a desired mixed grain structure (mixed structure of fine crystal grains and coarse crystal grains) cannot be obtained. On the other hand, if the Fe content exceeds 0.300% by mass, the segregation of the ingot increases and the productivity deteriorates. In addition, the effect of suppressing the growth of crystal grains by the β phase becomes too strong, and even when light rolling and annealing described later are performed, coarse crystal grains are hardly generated.
Therefore, the content of Fe is preferably 0.040 to 0.300 mass%.

(成分組成 O:0.05〜0.25質量%)
Oの含有量が0.05質量%未満であると、強度が低くなってしまう。一方、Oの含有量が0.25質量%を超えると、チタン板が脆くなりすぎ、冷間圧延時の割れが生じ易く、その結果、生産性を低下させてしまう。
したがって、Oの含有量は、0.05〜0.25質量%であることが好ましい。
(Component composition O: 0.05-0.25 mass%)
If the O content is less than 0.05% by mass, the strength is lowered. On the other hand, if the content of O exceeds 0.25% by mass, the titanium plate becomes too brittle, and cracks during cold rolling tend to occur, resulting in a decrease in productivity.
Therefore, the content of O is preferably 0.05 to 0.25% by mass.

(Oの含有量に対するFeの含有量の比)
Oの含有量に対するFeの含有量の比(Feの含有量/Oの含有量)が1.1を超えると、Feの存在割合が多くなりすぎ、所望の混粒組織(微細結晶粒と粗大結晶粒との混合組織)が得られなくなる。
したがって、Oの含有量に対するFeの含有量の比は1.1以下であることが好ましい。さらに好ましくは1.0以下である。
(Ratio of Fe content to O content)
When the ratio of the Fe content to the O content (Fe content / O content) exceeds 1.1, the Fe content is too high and the desired mixed grain structure (fine crystal grains and coarse grains) A mixed structure with crystal grains) cannot be obtained.
Therefore, the ratio of the Fe content to the O content is preferably 1.1 or less. More preferably, it is 1.0 or less.

[プレート式熱交換器の熱交換プレート]
プレート式熱交換器とは、凹凸を設けた金属板からなるプレートを積層し、各プレート間にシール用のガスケットを挟んでプレート状管路を形成し、積層形成されたプレート状管路に流体を貫流させて相互間で熱交換を行わせる熱交換器である。
そして、本発明に係るプレート式熱交換器の熱交換プレートとは、前記したプレート式熱交換器に適用できるようにチタン板を成形加工した熱交換プレートのことである。
[Heat exchange plate of plate heat exchanger]
A plate-type heat exchanger is a method of laminating plates made of metal plates with unevenness, forming a plate-like pipe line with a sealing gasket between each plate, and then adding fluid to the laminated plate-like line. This is a heat exchanger that allows heat to flow between them.
And the heat exchange plate of the plate type heat exchanger which concerns on this invention is a heat exchange plate which shape | molded the titanium plate so that it could apply to an above described plate type heat exchanger.

次に、本発明に係るチタン板およびプレート式熱交換器の熱交換プレートの製造方法を説明する。
[チタン板の製造方法]
まず、従来のチタン板を製造する場合と同様、図3に示すように、インゴット(工業用純チタン)を分塊圧延S1し、その後、熱間圧延S2、中間圧延S3、冷間圧延S4、焼鈍S5を行う。
ここで、分塊圧延S1〜焼鈍S5の詳細な条件については、特に限定されるものではなく、従来の方法により行えばよい。
Next, the manufacturing method of the heat exchanger plate of the titanium plate and plate type heat exchanger which concerns on this invention is demonstrated.
[Production method of titanium plate]
First, as in the case of manufacturing a conventional titanium plate, as shown in FIG. 3, an ingot (industrial pure titanium) is subjected to ingot rolling S1, and then hot rolling S2, intermediate rolling S3, cold rolling S4, Annealing S5 is performed.
Here, the detailed conditions of the partial rolling S1 to the annealing S5 are not particularly limited, and may be performed by a conventional method.

例えば、冷間圧延S4については、素材の冷間圧延性(耳割れの発生し易さ、変形荷重等)に応じて、適切な圧下率と焼鈍条件を選択し、冷間圧延と焼鈍とを繰り返し行えばよい。また、焼鈍S5の直前に実施する冷間圧延の圧下率は、焼鈍S5で素材が再結晶するのに十分な加工量、例えば、50%以上の圧下率を確保すればよい。そして、焼鈍S5の内、仕上焼鈍については、α相とβ相の2相域で行えばよい。
なお、焼鈍S5の後にチタン板表面にスケールが付着している場合は、スケールを除去する工程、例えば、ソルト熱処理工程、酸洗処理工程等を行えばよい。
For example, for cold rolling S4, an appropriate reduction ratio and annealing conditions are selected according to the cold rolling properties of the material (ease of occurrence of ear cracks, deformation load, etc.), and cold rolling and annealing are performed. You can do it repeatedly. Moreover, the rolling reduction of the cold rolling performed just before annealing S5 should just secure the processing amount sufficient for a raw material to recrystallize by annealing S5, for example, the rolling reduction of 50% or more. And among annealing S5, about finish annealing, what is necessary is just to carry out in the two-phase area | region of (alpha) phase and (beta) phase.
In addition, when the scale has adhered to the titanium plate surface after annealing S5, the process of removing a scale, for example, a salt heat treatment process, a pickling process process, etc. may be performed.

次に、冷間圧延S4および焼鈍S5を施した際のチタン板の結晶粒組織の状態を説明する。
例えば、チタン板に圧下率50%程度の冷間圧延S4を施した後、再結晶温度以上で焼鈍S5を施すと、チタン板中に再結晶組織が形成される(核生成・成長型の再結晶組織)。
ここで、チタン板にFe(広義にはβ安定化元素)が多く含有していればいるほど、焼鈍S5後の結晶粒の粒径が小さくなることが知られている。これは、Feがβ相(BCC構造)を形成し、焼鈍S5時のα相の結晶粒の成長を抑制(ピン止め)するためと考えられる。具体的には、850℃で数分間焼鈍する場合において、チタン板がFeを0.04質量%含有するものについては、結晶粒の粒径は50μm程度となり、Feを0.06質量%含有するものについては、結晶粒の粒径は15μm程度となる。
また、得られる結晶粒の粒径は、焼鈍S5条件等により左右され、焼鈍S5時間を長くすればするほど、結晶粒の粒径は大きくなる。
なお、焼鈍S5の終了時点において、結晶粒の平均粒径が数〜数十μmとなるように、分塊圧延S1〜焼鈍S5(特に、冷間圧延S4および焼鈍S5)の条件を調整することが好ましい。
Next, the state of the crystal grain structure of the titanium plate when the cold rolling S4 and the annealing S5 are performed will be described.
For example, when cold rolling S4 with a reduction rate of about 50% is applied to a titanium plate, and then annealing S5 is performed at a recrystallization temperature or higher, a recrystallized structure is formed in the titanium plate (nucleation / growth type recrystallization). Crystal structure).
Here, it is known that the more Fe (β-stabilizing element in a broad sense) contained in the titanium plate, the smaller the grain size of the crystal grains after annealing S5. This is presumably because Fe forms a β phase (BCC structure) and suppresses (pins) growth of α phase crystal grains during annealing S5. Specifically, in the case of annealing at 850 ° C. for several minutes, when the titanium plate contains 0.04% by mass of Fe, the grain size of the crystal grains is about 50 μm and contains 0.06% by mass of Fe. For those, the grain size of the crystal grains is about 15 μm.
In addition, the grain size of the obtained crystal grain depends on the annealing S5 condition and the like, and the longer the annealing S5 time, the larger the grain size of the crystal grain.
In addition, at the time of completion | finish of annealing S5, adjusting the conditions of partial rolling S1-annealing S5 (especially cold rolling S4 and annealing S5) so that the average particle diameter of a crystal grain may be several to several dozen micrometer. Is preferred.

(軽圧下圧延と焼鈍)
本発明に係るチタン板の製造方法では、焼鈍S5の後に、軽圧下圧延S6と焼鈍S7とを行うことを特徴とする。
まず、軽圧下圧延S6および焼鈍S7により混粒組織(微細結晶粒と粗大結晶粒との混合組織)が形成されるメカニズムについて説明する。
焼鈍S5の終了時点のチタン板は、前記のとおり、α相の結晶粒界にβ相が析出しており、当該β相により結晶粒の成長が抑制された状態となっている。その後、チタン板に対し、再結晶が起こらないような十分に小さな圧下率で軽圧下圧延S6を施すと、チタン板内の変形し易い複数の領域にひずみが加えられる。詳細には、当該ひずみは、主に、不均一変形が生じやすい箇所であるα相の結晶粒界周辺、および、β相の析出物周辺において複数領域に偏って加えられる。その結果、α相の結晶粒界に存在していたβ相によるピン止めの一部が外れることとなる。
その後、チタン板に焼鈍S7が施されることにより、ピン止めが外れた一部のα相の結晶粒が大きく成長する。さらに(または)、β相の析出物周辺にひずみのエネルギーが蓄積し、焼鈍S7により一部のβ相が再固溶することで、再固溶したβ相に隣接するα相の結晶粒が大きく成長する。
以上のようなメカニズムにより、軽圧下圧延S6および焼鈍S7を施すことで、チタン板に混粒組織(微細結晶粒と粗大結晶粒との混合組織)が形成されると考える。
(Light rolling and annealing)
The titanium plate manufacturing method according to the present invention is characterized in that after the annealing S5, the light reduction rolling S6 and the annealing S7 are performed.
First, the mechanism by which a mixed grain structure (mixed structure of fine crystal grains and coarse crystal grains) is formed by light rolling under S6 and annealing S7 will be described.
As described above, in the titanium plate at the end of the annealing S5, the β phase is precipitated at the α phase grain boundaries, and the growth of crystal grains is suppressed by the β phase. Thereafter, when the light reduction rolling S6 is performed on the titanium plate at a sufficiently small reduction rate so that recrystallization does not occur, strain is applied to a plurality of regions that are easily deformed in the titanium plate. Specifically, the strain is applied mainly to a plurality of regions in the vicinity of the grain boundary of the α phase and the vicinity of the precipitate of the β phase, which are places where non-uniform deformation is likely to occur. As a result, a part of pinning by the β phase existing at the crystal grain boundary of the α phase is released.
Thereafter, annealing S7 is applied to the titanium plate, so that some α-phase crystal grains that are not pinned grow greatly. Further, (or) strain energy is accumulated around the precipitate of the β phase, and a part of the β phase is re-dissolved by annealing S7, so that the α-phase crystal grains adjacent to the re-dissolved β phase are formed. Grows greatly.
It is considered that a mixed grain structure (mixed structure of fine crystal grains and coarse crystal grains) is formed on the titanium plate by performing the light reduction rolling S6 and the annealing S7 by the mechanism as described above.

(軽圧下圧延の条件)
軽圧下圧延S6については、圧下率が0.5%未満であると、十分なひずみをチタン板に加えることができないため、粗大結晶粒の存在割合が一定以上とならない。一方、圧下率が7.0%を超えると、β相によるピン止めの大半が外れることで、後の焼鈍S7においてほとんどの結晶粒が大きく成長してしまい、結晶粒の粒度分布が均一になってしまう。その結果、成形性の向上の効果があまり得られなくなってしまう。
したがって、軽圧下圧延S6の圧下率は、0.5〜7.0%であることが好ましい。
(Conditions for light rolling)
As for the light reduction rolling S6, if the reduction ratio is less than 0.5%, sufficient strain cannot be applied to the titanium plate, so that the existence ratio of coarse crystal grains does not exceed a certain level. On the other hand, when the rolling reduction exceeds 7.0%, most of the pinning due to the β phase is released, so that most crystal grains grow greatly in the subsequent annealing S7, and the grain size distribution becomes uniform. End up. As a result, the effect of improving moldability cannot be obtained much.
Therefore, the rolling reduction of the light rolling S6 is preferably 0.5 to 7.0%.

(焼鈍の条件)
焼鈍S7については、保持温度が600℃未満であると、α相の結晶粒が十分に粗大化せず、粗大結晶粒の存在割合が一定以上とならない。また、粗大結晶粒が所定以上の大きさまで成長しない。一方、保持温度が880℃を超えると、粗大結晶粒の存在割合が多くなりすぎる結果、微細結晶粒の存在割合が少なくなることによって、粗大結晶粒における二次すべり系が活性化し難くなる。
したがって、焼鈍S7の保持温度は、600〜880℃であることが好ましい。
なお、焼鈍S7の時間については、軽圧下率によって適切な範囲が異なるが、例えば圧下率2%の軽圧下を施し600℃で焼鈍する場合は2h程度、800℃では4分程度であることが好ましい。また、焼鈍S7の手法は特に限定されず、雰囲気は大気、真空、還元性ガス雰囲気のいずれでも良く、手法もバッチ炉や連続炉のいずれでもよい。
(Annealing conditions)
Regarding the annealing S7, if the holding temperature is less than 600 ° C., the α-phase crystal grains are not sufficiently coarsened, and the existence ratio of the coarse crystal grains does not exceed a certain level. In addition, coarse crystal grains do not grow to a predetermined size or more. On the other hand, when the holding temperature exceeds 880 ° C., the existence ratio of the coarse crystal grains is increased too much, and as a result, the existence ratio of the fine crystal grains is reduced, so that the secondary slip system in the coarse crystal grains is hardly activated.
Therefore, it is preferable that the holding temperature of annealing S7 is 600-880 degreeC.
In addition, about the time of annealing S7, although the suitable range changes with light reduction ratios, for example, when performing light reduction of 2% reduction ratio and annealing at 600 degreeC, it may be about 2 hours at 800 degreeC, and it may be about 4 minutes. preferable. Further, the method of annealing S7 is not particularly limited, and the atmosphere may be any of air, vacuum, and reducing gas atmosphere, and the method may be either a batch furnace or a continuous furnace.

[プレート式熱交換器の熱交換プレートの製造方法]
なお、焼鈍S7の後、公知の方法、例えば成形金型を用いてチタン板に成形加工S8を施すことで、プレート式熱交換器の熱交換プレートを製造することができる。
[Method for producing heat exchange plate of plate heat exchanger]
In addition, the heat exchange plate of a plate-type heat exchanger can be manufactured by performing shaping | molding process S8 to a titanium plate using a well-known method, for example, a shaping die, after annealing S7.

次に、チタン板について、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを比較して具体的に説明する。   Next, the titanium plate will be specifically described by comparing an example satisfying the requirements of the present invention with a comparative example not satisfying the requirements of the present invention.

[供試材の作製]
表1に示す組成(JIS H4600)の純チタン熱延板(板厚3.5mm)に対して、通常のa.冷間圧延、b.中間焼鈍、c.冷間圧延、d.仕上焼鈍、e.酸洗工程を施すことにより、供試材となる冷延材を得た。
なお、供試材となる冷延材にα相が再結晶し且つβ相が析出するよう、d.仕上焼鈍はα相とβ相の2相域で実施するとともに、大気雰囲気下で実施した。また、後記する軽圧下圧延、焼鈍および酸洗処理の後に板厚が0.5mmとなるように、c.冷間圧延の圧下率を調整した。
[Production of test materials]
For a pure titanium hot-rolled sheet (thickness 3.5 mm) having the composition shown in Table 1 (JIS H4600), a normal a. Cold rolling, b. Intermediate annealing, c. Cold rolling, d. Finish annealing, e. By performing the pickling process, a cold-rolled material as a test material was obtained.
In addition, d. So that the α phase recrystallizes and the β phase precipitates on the cold-rolled material to be tested. Finish annealing was performed in the two-phase region of the α phase and the β phase, and in an air atmosphere. In addition, c. So that the plate thickness becomes 0.5 mm after light rolling under rolling, annealing and pickling treatment described later. The rolling reduction of cold rolling was adjusted.

[試験材の作製]
供試材に対して、表1に示す圧下率の軽圧下圧延を施し、表1に示す保持温度および保持時間の焼鈍を施した後、酸洗処理を行い、板厚0.5mmの試験材を得た。
なお、焼鈍の雰囲気は大気もしくは真空雰囲気で実施した。真空雰囲気での焼鈍は、昇温時間36h、真空度4×10−5 torrの条件で実施した。
[Production of test materials]
The test material was subjected to light rolling at the rolling reduction shown in Table 1, annealed at the holding temperature and holding time shown in Table 1, and then pickled to give a test material having a thickness of 0.5 mm. Got.
The annealing atmosphere was performed in air or vacuum. Annealing in a vacuum atmosphere was performed under conditions of a temperature rising time of 36 h and a degree of vacuum of 4 × 10 −5 torr.

[α相の結晶粒の測定]
試験材の縦断面について、圧延方向に1mm、板厚方向に0.45mmの領域を、電界放出型走査顕微鏡(FESEM)を用いて後方錯乱電子回折像(EBSP)による組織観察を行い、α相の結晶粒の粒径、結晶粒100個中の粗大結晶粒の存在割合、および粗大結晶粒の面積率を測定した。なお、前記領域に含まれる結晶粒の個数が200個未満の場合、200個以上になるまで測定領域を増やして測定を行った。
詳細には、方位差15°以上の境界を結晶粒界と認識し、各結晶粒の円相当直径及び平均円相当直径を算出した。その後、結晶粒100個中の粗大結晶粒の存在割合(=測定領域に存在する粗大結晶粒の個数/測定領域に存在する全ての結晶粒の個数×100)、および粗大結晶粒の面積率(=測定領域に存在する粗大結晶粒の面積/測定領域の面積×100)を算出した。その際、円相当直径が4μm未満の結晶粒はノイズの可能性があることから、4μm以上の結晶粒を対象に算出を行った。
[Measurement of α phase crystal grains]
Regarding the longitudinal section of the test material, a region of 1 mm in the rolling direction and 0.45 mm in the thickness direction is subjected to structure observation by a back-scattered electron diffraction image (EBSP) using a field emission scanning microscope (FESEM), and α phase The crystal grain size, the presence ratio of coarse crystal grains in 100 crystal grains, and the area ratio of coarse crystal grains were measured. Note that when the number of crystal grains included in the region was less than 200, measurement was performed by increasing the measurement region until the number of crystal grains reached 200 or more.
Specifically, a boundary having an orientation difference of 15 ° or more was recognized as a crystal grain boundary, and the equivalent circle diameter and average equivalent circle diameter of each crystal grain were calculated. Thereafter, the presence ratio of coarse crystal grains in 100 crystal grains (= number of coarse crystal grains present in measurement region / number of all crystal grains present in measurement region × 100), and area ratio of coarse crystal grains ( = Area of coarse crystal grains present in measurement region / area of measurement region × 100). At that time, since a crystal grain having an equivalent circle diameter of less than 4 μm may cause noise, the calculation was performed on a crystal grain of 4 μm or more.

[強度の評価]
試験材から、試験材の圧延方向が荷重軸と一致する方向にJISZ2201に規定される13号試験片を採取し、室温でJISH4600に基づいて引張試験を実施し、0.2%耐力(YS)を測定した。
なお、0.2%耐力(YS)が250MPa以上の場合を合格と判断した。
[Evaluation of strength]
A No. 13 test piece defined in JISZ2201 was taken from the test material in a direction in which the rolling direction of the test material coincides with the load axis, and a tensile test was performed at room temperature based on JIS 4600. 0.2% proof stress (YS) Was measured.
In addition, the case where 0.2% yield strength (YS) was 250 Mpa or more was judged to be a pass.

[成形性の評価]
成形性の評価は、各試験材に対してプレート式熱交換器の熱交換部分(プレート)を模擬した成形金型を用いたプレス成形を行い、成形性を評価した。
図2(a)に示すように、成形金型の形状は、成形部が100mm×100mmで、ピッチ10mm、最大高さ4mmの綾線部を6本有し、各綾線部は頂点に、図2(a)の上から下に向かって順にR=0.8、1.6、1.2、1.0、2.0、0.6の6種のR形状を有している。
この成形金型を用いて80tonプレス機によってプレス成形を行った。プレス成形は各試験材の両面を潤滑のために厚み0.03mmのポリエチレンシートで挟んだうえで、各試験材の圧延方向が図2(a)の上下方向と一致するように下側の金型の上に配置し、フランジ部を板押さえで拘束した後、プレス速度1mm/秒の条件で金型を押込んだ。0.1mm間隔で押込み、割れが発生しない最大の押し込み深さ量(Y:単位mm)を実験で求めた。
なお、L方向(圧延方向)のYS(単位はMPa)を用い、下記式(1)で規定される成形性指標(F)が正の値となる場合に合格とした。
F=Y−(A−B×X)・・・(1)
A=4.5、B=0.006、X=L方向のYSを無次元化した数値
Y=最大押込み深さ量を無次元化した数値
[Evaluation of formability]
The moldability was evaluated by performing press molding using a molding die simulating the heat exchange part (plate) of the plate heat exchanger for each test material, and the moldability was evaluated.
As shown in FIG. 2 (a), the shape of the molding die is such that the molding part is 100 mm × 100 mm, the pitch is 10 mm, the maximum height is 4 mm, and there are six twill lines, each twill line being at the apex, It has six types of R shapes of R = 0.8, 1.6, 1.2, 1.0, 2.0, and 0.6 in order from the top to the bottom of FIG.
Using this molding die, press molding was performed by an 80-ton press. In press molding, both surfaces of each test material are sandwiched between polyethylene sheets having a thickness of 0.03 mm for lubrication, and then the lower gold is so aligned that the rolling direction of each test material coincides with the vertical direction in FIG. After placing on the mold and restraining the flange portion with a plate press, the mold was pushed in under the condition of a press speed of 1 mm / sec. The maximum indentation depth (Y: unit mm) at which the indentation and cracking did not occur at intervals of 0.1 mm were obtained by experiments.
In addition, it was set as the pass when YS (unit is MPa) in the L direction (rolling direction) and the formability index (F) defined by the following formula (1) is a positive value.
F = Y− (A−B × X) (1)
A = 4.5, B = 0.006, X = Numerical value obtained by making YS in the L direction dimensionless Y = Numerical value obtained by making the maximum indentation depth dimensionless

Figure 0005615792
Figure 0005615792

[結果の検討]
試験材2〜6、8、11は本発明で規定する要件を満たすチタン板であり、強度および成形性のいずれも合格と判断でき、強度と成形性のバランスに優れていることがわかる。
[Examination of results]
Test materials 2 to 6, 8, and 11 are titanium plates that satisfy the requirements defined in the present invention, and it can be determined that both strength and formability are acceptable, and the balance between strength and formability is excellent.

これに対して試験材1、7、9、10は本発明で規定する要件を満たしていないため、強度および成形性の少なくとも一方が合格の基準を満たさず、強度とプレス成形性のバランスが悪いことがわかる。
試験材1および10は軽圧下圧延を施さずに、最終の焼鈍を施したため、結晶粒が均一な粒度分布を示し、粗大結晶粒が存在しなかった。その結果、優れた強度を有するものの成形性が優れなかった。
試験材7は軽圧下圧延での圧下率が高すぎる例である。比較的大きな結晶粒が形成されるが、結晶粒の粒度分布が均一となってしまい粗大結晶粒が存在しなかったため、成形性が優れなかった。
試験材9はFeの含有量が少なく、β相が十分に析出しなかったため、軽圧下圧延+焼鈍工程後に通常の粒成長が起こってしまった。その結果、結晶粒は均一な粒度分布を示し、強度、成形性共に優れなかった。
On the other hand, since the test materials 1, 7, 9, and 10 do not satisfy the requirements defined in the present invention, at least one of strength and formability does not satisfy the acceptance standard, and the balance between strength and press formability is poor. I understand that.
Since the test materials 1 and 10 were subjected to final annealing without being subjected to light rolling, the crystal grains showed a uniform grain size distribution, and there were no coarse crystal grains. As a result, although it had excellent strength, the moldability was not excellent.
Test material 7 is an example in which the rolling reduction in light rolling is too high. Although relatively large crystal grains were formed, the grain size distribution of the crystal grains became uniform and there were no coarse crystal grains, so the moldability was not excellent.
Since the test material 9 had a low Fe content and the β phase was not sufficiently precipitated, normal grain growth occurred after the light rolling and annealing process. As a result, the crystal grains showed a uniform particle size distribution, and neither strength nor moldability was excellent.

Claims (5)

α相(HCP構造)の結晶粒組織を含む工業用純チタンからなるチタン板であって、
Fe:0.040〜0.300質量%、O:0.05〜0.25質量%を含有し、残部がチタン及び不可避的不純物からなるとともに、前記Oの含有量に対する前記Feの含有量の比(Feの含有量/Oの含有量)が1.1以下であり、
前記結晶粒の平均粒径の4倍以上の粒径の粗大結晶粒が、前記結晶粒100個中0.5個以上の割合で含まれていることを特徴とするチタン板。
It is a titanium plate made of industrial pure titanium containing an α phase (HCP structure) crystal grain structure,
Fe: 0.040-0.300% by mass, O: 0.05-0.25% by mass, the balance is made of titanium and inevitable impurities, and the content of Fe relative to the content of O The ratio (content of Fe / content of O) is 1.1 or less,
A titanium plate, wherein coarse crystal grains having a grain size of 4 times or more of an average grain size of the crystal grains are contained in a ratio of 0.5 or more out of 100 crystal grains.
前記粗大結晶粒の面積率が90%以下であることを特徴とする請求項1に記載のチタン板。   The titanium plate according to claim 1, wherein the area ratio of the coarse crystal grains is 90% or less. 前記チタン板に成形加工を施し、プレート式熱交換器の熱交換プレートとして使用されることを特徴とする請求項1または請求項2に記載のチタン板。 3. The titanium plate according to claim 1, wherein the titanium plate is molded and used as a heat exchange plate of a plate heat exchanger. 4. α相(HCP構造)の結晶粒組織を含む工業用純チタンについて、少なくとも、冷間圧延、および焼鈍を施すことでチタン板を製造するチタン板の製造方法であって、
前記チタン板は、Fe:0.040〜0.300質量%、O:0.05〜0.25質量%を含有し、残部がチタン及び不可避的不純物からなるとともに、前記Oの含有量に対する前記Feの含有量の比(Feの含有量/Oの含有量)が1.1以下であり、
前記焼鈍の後、前記チタン板に0.5〜7.0%の圧下率で軽圧下圧延を行う軽圧下圧延工程と、
前記軽圧下圧延工程の後、前記チタン板に600〜880℃の保持温度で焼鈍を行う焼鈍工程と、
を含むことを特徴とするチタン板の製造方法。
For industrial pure titanium containing a crystal grain structure of α phase (HCP structure), at least cold rolling, and a titanium plate manufacturing method for manufacturing a titanium plate by annealing,
The titanium plate contains Fe: 0.040-0.300% by mass, O: 0.05-0.25% by mass, the balance is made of titanium and inevitable impurities, and the content of the O with respect to the content of O Fe content ratio (Fe content / O content) is 1.1 or less,
After the annealing, a light reduction rolling step of performing light reduction rolling on the titanium plate at a reduction rate of 0.5 to 7.0%,
After the light rolling process, an annealing process for annealing the titanium plate at a holding temperature of 600 to 880 ° C .;
The manufacturing method of the titanium plate characterized by the above-mentioned.
請求項1または請求項2に記載のチタン板に成形加工を施すことを特徴とするプレート式熱交換器の熱交換プレートの製造方法。 A method for producing a heat exchange plate of a plate heat exchanger, wherein the titanium plate according to claim 1 or 2 is molded.
JP2011239574A 2011-10-31 2011-10-31 Titanium plate, method for producing titanium plate, and method for producing heat exchange plate of plate heat exchanger Expired - Fee Related JP5615792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239574A JP5615792B2 (en) 2011-10-31 2011-10-31 Titanium plate, method for producing titanium plate, and method for producing heat exchange plate of plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239574A JP5615792B2 (en) 2011-10-31 2011-10-31 Titanium plate, method for producing titanium plate, and method for producing heat exchange plate of plate heat exchanger

Publications (2)

Publication Number Publication Date
JP2013095964A JP2013095964A (en) 2013-05-20
JP5615792B2 true JP5615792B2 (en) 2014-10-29

Family

ID=48618242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239574A Expired - Fee Related JP5615792B2 (en) 2011-10-31 2011-10-31 Titanium plate, method for producing titanium plate, and method for producing heat exchange plate of plate heat exchanger

Country Status (1)

Country Link
JP (1) JP5615792B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6577707B2 (en) * 2014-11-28 2019-09-18 株式会社神戸製鋼所 Titanium plate, heat exchanger plate, fuel cell separator, and titanium plate manufacturing method
EP3276017A4 (en) * 2015-03-23 2018-08-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium plate, plate for heat exchanger, and separator for fuel cell
CN105772503A (en) * 2015-12-27 2016-07-20 佛山市领卓科技有限公司 Preparation method for high-strength pure titanium
KR102340036B1 (en) * 2018-04-10 2021-12-16 닛폰세이테츠 가부시키가이샤 Titanium alloy and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591661A (en) * 1982-06-25 1984-01-07 Sumitomo Metal Ind Ltd Manufacture of pure titanium plate with little anisotropy in yield strength
JP3802683B2 (en) * 1998-07-27 2006-07-26 新日本製鐵株式会社 High purity titanium plate for titanium target material and method for producing the same
JP3500072B2 (en) * 1998-07-27 2004-02-23 新日本製鐵株式会社 Titanium material for drum for producing electrolytic metal foil and method for producing the same
JP4065644B2 (en) * 2000-03-16 2008-03-26 新日本製鐵株式会社 Cold work hardened titanium product for impact resistance with excellent impact resistance characteristics and method for producing the same
JP2006274392A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd BOLT MADE OF TITANIUM ALLOY AND METHOD FOR PRODUCING BOLT MADE OF TITANIUM ALLOY HAVING TENSILE STRENGTH OF AT LEAST 800 MPa
JP5112723B2 (en) * 2007-03-26 2013-01-09 株式会社神戸製鋼所 Titanium alloy material excellent in strength and formability and manufacturing method thereof
JP4681663B2 (en) * 2009-07-15 2011-05-11 株式会社神戸製鋼所 Titanium plate and method for manufacturing titanium plate

Also Published As

Publication number Publication date
JP2013095964A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5700650B2 (en) Pure titanium plate with excellent balance between press formability and strength
CN106103760B (en) Aluminum alloy sheet for DR can body and method for producing same
WO2014168147A1 (en) Aluminum alloy sheet for press forming, process for manufacturing same, and press-formed product thereof
UA120868C2 (en) Titanium alloy
WO2016152935A1 (en) Titanium plate, plate for heat exchanger, and separator for fuel cell
KR20090061604A (en) Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet
JP6263040B2 (en) Titanium plate
WO2002079533A1 (en) Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
KR20130137553A (en) Titanium sheet and manufacturing method thereof
JP5973975B2 (en) Titanium plate
JP5615792B2 (en) Titanium plate, method for producing titanium plate, and method for producing heat exchange plate of plate heat exchanger
JP5988899B2 (en) Titanium plate and method for producing titanium plate
JP6402246B2 (en) Alloys for highly formed aluminum products and methods for making the same
JP5379883B2 (en) Aluminum alloy plate and manufacturing method thereof
JP2007254825A (en) Method for manufacturing aluminum alloy sheet superior in bendability
JP6577707B2 (en) Titanium plate, heat exchanger plate, fuel cell separator, and titanium plate manufacturing method
JP3833574B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JP5875965B2 (en) Titanium plate and manufacturing method thereof
WO2017175569A1 (en) Titanium plate, heat exchanger plate, and fuel cell separator
JP2017190480A (en) Titanium sheet
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
KR101412905B1 (en) Titanium steel and manufacturing method of the same
JP2019173069A (en) Al-CONTAINING FERRITIC STAINLESS STEEL MATERIAL EXCELLENT IN FABRICABILITY AND HIGH TEMPERATURE OXIDATION RESISTANCE
JP2016023315A (en) Titanium plate and manufacturing method therefor
TWI646205B (en) Aluminum magnesium alloy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140910

R150 Certificate of patent or registration of utility model

Ref document number: 5615792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees