[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5610521B2 - Method for forming cured film of siloxane resin composition - Google Patents

Method for forming cured film of siloxane resin composition Download PDF

Info

Publication number
JP5610521B2
JP5610521B2 JP2010177140A JP2010177140A JP5610521B2 JP 5610521 B2 JP5610521 B2 JP 5610521B2 JP 2010177140 A JP2010177140 A JP 2010177140A JP 2010177140 A JP2010177140 A JP 2010177140A JP 5610521 B2 JP5610521 B2 JP 5610521B2
Authority
JP
Japan
Prior art keywords
group
siloxane resin
film
cured film
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010177140A
Other languages
Japanese (ja)
Other versions
JP2012035190A (en
Inventor
高志 關藤
高志 關藤
裕治 田代
裕治 田代
崇司 福家
崇司 福家
大志 横山
大志 横山
野中 敏章
敏章 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Performance Materials IP Japan GK
Original Assignee
AZ Electronic Materials IP Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AZ Electronic Materials IP Japan Co Ltd filed Critical AZ Electronic Materials IP Japan Co Ltd
Priority to JP2010177140A priority Critical patent/JP5610521B2/en
Priority to KR1020110078205A priority patent/KR101790493B1/en
Priority to CN201110227500.5A priority patent/CN102399372B/en
Priority to TW100127853A priority patent/TWI495687B/en
Publication of JP2012035190A publication Critical patent/JP2012035190A/en
Application granted granted Critical
Publication of JP5610521B2 publication Critical patent/JP5610521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)
  • Formation Of Insulating Films (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、シラノール基またはアルコキシシリル基含有シロキサン樹脂組成物の硬化被膜を形成する方法に関し、更に詳細には、透明性に優れ、高引っかき傷硬度、高絶縁性、低誘電率を有し、さらに平坦性に優れ、厚膜にしてもクラックの発生がなく、かつ基板界面での膜剥れがなく、密着性に優れている、シラノール基またはアルコキシシリル基含有シロキサン樹脂組成物の硬化被膜を形成する方法に関する。   The present invention relates to a method for forming a cured film of a silanol group or alkoxysilyl group-containing siloxane resin composition, and more specifically, it has excellent transparency, high scratch hardness, high insulation, and low dielectric constant, Further, a cured coating of a silanol group or alkoxysilyl group-containing siloxane resin composition having excellent flatness, no occurrence of cracks even at a thick film, no film peeling at the substrate interface, and excellent adhesion. It relates to a method of forming.

シロキサン樹脂は、高耐熱性、高硬度、高絶縁性、高透明性の材料として知られており、各種用途において使用されている。このような用途の一つとして、シロキサン樹脂を含有する組成物の硬化(以下では、「焼成硬化」ということもある。)被膜が、耐久性、低誘電性で絶縁性に優れ、高硬度を有することを利用して、半導体素子や液晶表示素子等における絶縁膜や平坦化膜、保護膜、さらには半導体封止材などとして使用されている。また、高透明性であることから、このような電子材料分野だけでなく、光学部材や車などの表面保護膜としても利用されている。   Siloxane resins are known as materials having high heat resistance, high hardness, high insulation, and high transparency, and are used in various applications. As one of such applications, a cured film of a composition containing a siloxane resin (hereinafter sometimes referred to as “baked and cured”) has a durability, low dielectric property, excellent insulation, and high hardness. By utilizing this, it is used as an insulating film, a planarizing film, a protective film, and a semiconductor sealing material in a semiconductor element, a liquid crystal display element or the like. Moreover, since it is highly transparent, it is used not only in the field of electronic materials, but also as a surface protective film for optical members and cars.

シロキサン樹脂をバインダーとして用いたシロキサン樹脂組成物を用いて硬化被膜を形成する場合、アルコキシ基や水酸基を有する多官能ポリシロキサンを含む組成物を調製し、これを塗布し、加熱乾燥する等して硬化させることにより被膜を形成する方法が知られている(特許文献1参照)。このとき、硬化剤(「触媒」ともいわれている。)としては、酸性化合物や塩基性化合物、金属アルコキシド、金属キレート化合物などが用いられるが、多官能ポリシロキサンの粘度が高かったり、固形分濃度が高い場合には、上記硬化剤を多官能ポリシロキサンに添加するとすぐに増粘したりゲル化したりするという問題があった。また、添加後すぐに増粘やゲル化が起こらない場合でも、保管中に増粘することがあり、触媒が弱酸性であれば硬化しにくいといった問題もあった。さらに、このような材料を用いた硬化被膜を形成するには、塗膜を高温で処理する必要があり、またその際膜減り量が大きいといった問題もあった。   When a cured film is formed using a siloxane resin composition using a siloxane resin as a binder, a composition containing a polyfunctional polysiloxane having an alkoxy group or a hydroxyl group is prepared, applied, heated and dried, etc. A method of forming a film by curing is known (see Patent Document 1). At this time, as the curing agent (also referred to as “catalyst”), an acidic compound, a basic compound, a metal alkoxide, a metal chelate compound, or the like is used. However, the polyfunctional polysiloxane has a high viscosity or a solid content concentration. When the hardness is high, there is a problem that when the curing agent is added to the polyfunctional polysiloxane, the viscosity increases or gels immediately. Further, even when thickening or gelation does not occur immediately after the addition, there is a problem that thickening may occur during storage, and if the catalyst is weakly acidic, it is difficult to cure. Furthermore, in order to form a cured coating using such a material, it is necessary to treat the coating at a high temperature, and there is also a problem that the amount of film reduction is large.

このような問題を解決するため、硬化剤として酸性化合物および該酸性化合物と沸点が異なる塩基性化合物を用いることも提案されている(特許文献2参照)。この組成物は、アルコキシ基および/または水酸基を複数有する多官能ポリシロキサンに、酸性化合物および該酸性化合物と沸点が異なる塩基性化合物を含有する硬化剤を添加してもすぐには硬化しないこと、さらに酸性化合物と塩基性化合物の沸点が異なる場合にこれらの沸点の間の温度にポリシロキサン化合物を加熱することによって酸性化合物または塩基性化合物が硬化剤として作用することを利用した保存安定性に優れたポリシロキサン組成物であり、低温で縮合させ且つ膜の硬化を図ることが可能とされるが、硬化剤を用いるためにクラック現象が起こりやすくなるといった問題や経時安定性の低下抑止が不十分であるという問題がある。   In order to solve such problems, it has also been proposed to use an acidic compound and a basic compound having a boiling point different from that of the acidic compound as a curing agent (see Patent Document 2). This composition does not cure immediately even when an acidic compound and a curing agent containing a basic compound having a boiling point different from that of the acidic compound are added to a polyfunctional polysiloxane having a plurality of alkoxy groups and / or hydroxyl groups. Furthermore, when the boiling point of an acidic compound and a basic compound is different, it is excellent in storage stability utilizing the fact that the acidic compound or the basic compound acts as a curing agent by heating the polysiloxane compound to a temperature between these boiling points. The polysiloxane composition can be condensed at a low temperature and the film can be cured. However, the use of a curing agent tends to cause a crack phenomenon and insufficient suppression of deterioration in stability over time. There is a problem that.

ところで、シラノール基硬化型シロキサン樹脂は、塗膜を低温で硬化でき、硬度が高いといった特性を有する。さらに、これに加え、シラノール基硬化型シロキサン樹脂は、被膜の透明性が高く、高耐熱性、低誘電性、絶縁性といった特性をも有することから注目されている。中でも、ケイ素原子の4つの結合手に1つの炭素原子と3つの酸素原子が結合するシルセスキオキサン樹脂およびケイ素原子の4つの結合手全てに酸素原子が結合しているシリカ樹脂は、ケイ素と酸素による強固な3次元架橋を形成し、上述の特性をより顕著に示すため、特にフレキシブルディスプレイ向けのプラスチック基板上のコーティング剤や薄膜トランジスタ(以下、TFTと略すことがある)上のバリヤ膜や平坦化剤として期待されるが、250℃以上で硬化被膜を形成すると、特にTFTの電気特性が下がるため、硬化は250℃未満で行う必要がある。これまでに、アルコキシシランの加水分解生成物とシリコーン系界面活性剤を含有するシリカ系被膜形成用塗布液を、250〜500℃の温度で熱処理してシリカ系皮膜を形成する方法が開示されている(特許文献3参照)が、この方法によれば平坦性、クラック限界の特性を損なうことなく、密着性に優れた被膜を形成できるとされるものの、250℃以上の高温で硬化を行うことが必要とされるし、シリコーン系界面活性剤が必須であり、また厚膜とする場合、重量平均分子量(Mw)の大きい材料しか選択できないという問題を有している。他方、薄膜であれば、Mwが小さくてもよいが、焼成中の昇華物が増え、膜減り量が大きくなってしまい、硬化はするが昇華しないといったMw範囲が狭く、実用化に適したものではない。   By the way, the silanol group curable siloxane resin has such characteristics that the coating film can be cured at a low temperature and the hardness is high. In addition, silanol group curable siloxane resins are attracting attention because of their high transparency and high heat resistance, low dielectric properties, and insulating properties. Among these, silsesquioxane resins in which one carbon atom and three oxygen atoms are bonded to four bonds of silicon atoms and silica resins in which oxygen atoms are bonded to all four bonds of silicon atoms are silicon and In order to form a strong three-dimensional bridge with oxygen and to show the above-mentioned characteristics more remarkably, a coating film on a plastic substrate for a flexible display, a barrier film on a thin film transistor (hereinafter abbreviated as TFT) or a flat film Although it is expected as an agent, when a cured film is formed at 250 ° C. or higher, the electrical characteristics of the TFT in particular are lowered, so that it is necessary to perform curing at less than 250 ° C. So far, a method for forming a silica-based film by heat-treating a coating liquid for forming a silica-based film containing a hydrolysis product of an alkoxysilane and a silicone-based surfactant at a temperature of 250 to 500 ° C. has been disclosed. However, according to this method, a film having excellent adhesion can be formed without impairing the flatness and crack limit characteristics, but curing is performed at a high temperature of 250 ° C. or higher. In addition, a silicone-based surfactant is essential, and when a thick film is used, only a material having a large weight average molecular weight (Mw) can be selected. On the other hand, if it is a thin film, the Mw may be small, but the sublimate during firing increases, the amount of film loss increases, the Mw range is narrow, such as curing but not sublimation, and suitable for practical use is not.

3次元のシロキサン樹脂の被膜は、生成された膜厚が厚い程、また高温下(250℃未満であっても)にさらされる程、膜を常温に戻した時の応力が増加し、クラック現象が起こり易い傾向にある。シロキサン樹脂の硬化被膜のクラック現象を起こし難くするため、ケイ素原子の4つの結合手のうち、2つに炭素原子、2つに酸素原子が結合しているシリコーン樹脂を用いる、あるいはシロキサン樹脂に有機樹脂(例えばアクリル樹脂)を加えるといった方法があるが、これらの方法はいずれも上述の被膜特性を阻害してしまう傾向にある。また、シリコーン樹脂を別途添加する又はシロキサン樹脂の高分子の繰り返し単位中に加えると、流動性が上がるとともに昇華性も高くなることから、成膜時のオーブンの汚染、流動跡による皺が形成されてしまうし、硬化後の膜硬度が低くなるという問題があった。   As the three-dimensional siloxane resin coating film is thicker and exposed to high temperatures (even below 250 ° C), the stress increases when the film is returned to room temperature, and cracking phenomenon occurs. Tends to occur. In order to make it difficult for the cured film of the siloxane resin to cause a crack phenomenon, a silicone resin in which two carbon atoms and two oxygen atoms are bonded is used among the four bonds of silicon atoms, or an organic siloxane resin is used as the siloxane resin. Although there is a method of adding a resin (for example, an acrylic resin), all of these methods tend to inhibit the above-described film characteristics. In addition, if silicone resin is added separately or added to the repeating unit of the polymer of siloxane resin, the fluidity increases and the sublimation property also increases. In addition, there is a problem that the film hardness after curing is lowered.

特開2004−99879号公報JP 2004-99879 A 特開2008−208200号公報JP 2008-208200 A 特許第4079383号公報Japanese Patent No. 4079383

本発明の目的は、上記従来の問題点がない、すなわち半導体素子や液晶素子などにシロキサン樹脂硬化被膜を形成する際に、250℃未満あるいは250℃を超える温度での焼成を行っても、透明性に優れ、高引っかき傷硬度、高絶縁性、低誘電率を有し、膜減りがなく、さらに平坦性に優れ、厚膜にしてもクラックの発生がなく、かつ基板界面での膜剥れがなく、密着性に優れている被膜を形成することのできる、シロキサン樹脂組成物の硬化被膜形成方法を提供することである。   The object of the present invention is not to have the above-mentioned conventional problems, that is, when a siloxane resin cured film is formed on a semiconductor element or a liquid crystal element, it is transparent even if firing is performed at a temperature of less than 250 ° C. or more than 250 ° C. Excellent scratch resistance, high insulation, low dielectric constant, no reduction in film thickness, excellent flatness, no cracks even when thick, and film peeling at the substrate interface There is provided a method for forming a cured film of a siloxane resin composition, which is capable of forming a film having excellent adhesion.

本発明者らは、鋭意検討の結果、シラノール基またはアルコキシシリル基含有シロキサン樹脂組成物を基材に塗布した後、プリベークを行い、このプリベーク膜をアルカリ水溶液で処理した後焼成硬化することにより、250℃以下あるいは250℃を超える温度で焼成を行っても、また膜の厚さに関係なく、透明性に優れ、高引っかき傷硬度、高絶縁性、低誘電率を有し、厚膜塗布した場合においてもクラックの発生のない、密着性に優れた硬化膜を形成することができることを見出し、この知見に基づいて本発明を成したものである。   As a result of intensive studies, the present inventors applied a silanol group or alkoxysilyl group-containing siloxane resin composition to a substrate, then pre-baked, treated this pre-baked film with an aqueous alkaline solution, and then cured by baking. Even when firing at a temperature of 250 ° C. or less or over 250 ° C., regardless of the thickness of the film, it has excellent transparency, high scratch hardness, high insulation, and low dielectric constant. In some cases, it has been found that a cured film having no adhesiveness and excellent adhesion can be formed, and the present invention has been made based on this finding.

すなわち、本発明は、シラノール基またはアルコキシシリル基含有シロキサン樹脂組成物を用いて少なくともシラノール基またはアルコキシシリル基の重合により硬化し被膜を形成するシロキサン樹脂組成物の硬化被膜形成方法において、前記組成物を基材に塗布し、プリベーク処理した後、0.1〜10%の水酸化テトラメチルアンモニウム水溶液で処理してから水を用いてリンス処理し、焼成を行うことを特徴とするシロキサン樹脂組成物の硬化被膜形成方法に関する。
That is, the present invention relates to a cured film forming method for a siloxane resin composition, wherein a film is formed by curing at least by silanol group or alkoxysilyl group polymerization using a silanol group or alkoxysilyl group-containing siloxane resin composition. was applied to a substrate, after prebaking, and rinsing with water after treatment with 0.1% to 10% tetramethylammonium hydroxide aqueous solution, a siloxane resin composition which is characterized in that the firing The present invention relates to a method for forming a cured film.

また、本発明は、上記方法において、前記水酸化テトラメチルアンモニウム水溶液での処理が、水酸化テトラメチルアンモニウム水溶液への浸漬、パドルまたはシャワーにより行われることを特徴とする。
Further, the present invention provides the above method, treatment with the aqueous solution of tetramethylammonium hydroxide is immersed into a tetramethylammonium hydroxide aqueous solution, characterized in that it is performed by a paddle or shower.

また、本発明は、上記方法において、前記焼成が、120〜400℃の温度で行われることを特徴とする。   Moreover, this invention is characterized by the said baking being performed at the temperature of 120-400 degreeC in the said method.

本発明においては、シロキサン樹脂としてシラノール基またはアルコキシシリル基含有樹脂を用い、またシラノール基またはアルコキシシリル基含有シロキサン樹脂組成物を塗布後、塗布膜のプリベークを行い、このプリベーク膜を0.1〜10%の水酸化テトラメチルアンモニウム水溶液で処理することにより、その後の焼成温度、膜厚に関係なく、透明性に優れ、高引っかき傷硬度、高絶縁性、低誘電率を有し、また膜減りせず、厚膜塗布した場合においてもクラックの発生のない、密着性に優れた硬化膜を形成することができる。このため、半導体素子や液晶表示素子等における絶縁膜や平坦化膜、保護膜、光学部材や車などの表面保護膜などの形成に好ましく用いることができる。
In the present invention, using the silanol groups or alkoxysilyl group-containing resin as a siloxane resin, also after coating a silanol group or alkoxysilyl group-containing siloxane resin composition, pre-baked coating film, 0.1 the prebaked film By treating with 10% tetramethylammonium hydroxide aqueous solution, regardless of the subsequent firing temperature and film thickness, it has excellent transparency, high scratch hardness, high insulation, low dielectric constant, and reduced film thickness. In addition, even when a thick film is applied, it is possible to form a cured film having no adhesiveness and excellent adhesion. For this reason, it can be preferably used for forming an insulating film, a planarizing film, a protective film, a surface protective film such as an optical member or a car in a semiconductor element or a liquid crystal display element.

以下、本発明のシラノール基またはアルコキシシリル基含有シロキサン樹脂組成物の硬化被膜形成方法を更に詳細に説明する。   Hereinafter, the method for forming a cured film of the silanol group- or alkoxysilyl group-containing siloxane resin composition of the present invention will be described in more detail.

上記したように、本発明のシラノール基またはアルコキシシリル基含有シロキサン樹脂組成物の硬化被膜形成方法は、シラノール基またはアルコキシシリル基含有シロキサン樹脂組成物を基材に塗布し、プリベーク処理した後、アルカリ水溶液で処理してから膜のリンス、焼成を行うことを特徴とするものであるが、本発明のシロキサン樹脂組成物の硬化被膜形成方法で使用される材料、方法について、以下、順次詳細に説明する。   As described above, the method for forming a cured film of a silanol group or alkoxysilyl group-containing siloxane resin composition of the present invention comprises applying a silanol group or alkoxysilyl group-containing siloxane resin composition to a substrate, prebaking, The film is rinsed and fired after being treated with an aqueous solution. The materials and methods used in the method for forming a cured film of the siloxane resin composition of the present invention will be described in detail below. To do.

(i)シラノール基またはアルコキシシリル基含有シロキサン樹脂組成物
まず、本発明の硬化被膜を形成するために用いられるシラノール基またはアルコキシシリル基含有シロキサン樹脂組成物であるが、当該組成物は、(a)シラノール基またはアルコキシシリル基含有シロキサン樹脂、(b)有機溶剤、(c)必要に応じ用いられる添加剤からなる。
(I) Silanol group or alkoxysilyl group-containing siloxane resin composition First, the silanol group or alkoxysilyl group-containing siloxane resin composition used to form the cured film of the present invention, the composition is (a A) a silanol group- or alkoxysilyl group-containing siloxane resin; (b) an organic solvent; and (c) an additive used as necessary.

(a)シラノール基またはアルコキシシリル基含有シロキサン樹脂
本発明において用いられるシラノール基またはアルコキシシリル基含有シロキサン樹脂としては、従来知られたシラノール基および/またはアルコキシシリル基を反応性基として含むシロキサン樹脂であれば何れのものであってよく、ポリシロキサンの構造は特に制限されない。本発明で用いることのできる代表的なシラノール基またはアルコキシシリル基含有シロキサン樹脂を例示すると、例えば、下記一般式(1)で表されるアルコキシシランの1種以上を有機溶剤中、加水分解して得られるシロキサン樹脂(ポリシロキサン)が挙げられる。
(A) Silanol group or alkoxysilyl group-containing siloxane resin The silanol group or alkoxysilyl group-containing siloxane resin used in the present invention is a siloxane resin containing a conventionally known silanol group and / or alkoxysilyl group as a reactive group. Any structure may be used, and the structure of the polysiloxane is not particularly limited. Examples of typical silanol group or alkoxysilyl group-containing siloxane resins that can be used in the present invention include, for example, hydrolysis of one or more alkoxysilanes represented by the following general formula (1) in an organic solvent. Examples of the resulting siloxane resin (polysiloxane).

Figure 0005610521
Figure 0005610521

(式中、Rは水素原子、置換基を有していてもよい、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、炭素数15以下のα位の炭素原子に水素原子が結合していないアラルキル基、炭素数6〜15のアリール基または炭素数1〜6のアルケニル基を表し、Rは置換基を有していてもよい炭素数1〜6のアルキル基を表し、nは0〜3の整数である。) (In the formula, R 1 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or a carbon atom at α-position having 15 or less carbon atoms. Represents an aralkyl group to which no hydrogen atom is bonded, an aryl group having 6 to 15 carbon atoms, or an alkenyl group having 1 to 6 carbon atoms, and R 2 is an optionally substituted alkyl group having 1 to 6 carbon atoms. And n is an integer of 0 to 3.)

上記一般式中、Rの置換基を有していてもよい炭素数1〜6のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、n−デシル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、3,3,3−トリフルオロプロピル基、3−ヒドロキシプロピル基、3−グリシドキシプロピル基、2−(3、4−エポキシシクロヘキシル)エチル基、3−アミノプロピル基、3−メルカプトプロピル基、3−イソシアネートプロピル基、4−ヒドロキシ−5−(p−ヒドロキシフェニルカルボニルオキシ)ペンチル基などが挙げられる。また、置換基を有していてもよい炭素数3〜6のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが、置換基を有していてもよい、α位の炭素原子に水素原子が結合していない炭素数15以下のアラルキル基としては、フェニルイソプロピル基などが、置換基を有していてもよいアリール基としては、フェニル基、トリル基、p−ヒドロキシフェニル基、ナフチル基などが、置換基を有していてもよい炭素数1〜6のアルケニル基としては、ビニル基、アリル基、3−アクリロキシプロピル基、3−メタクリロキシプロピル基などが挙げられる。 In the above general formula, examples of the alkyl group having 1 to 6 carbon atoms which may have a substituent of R 1 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t- Butyl group, n-hexyl group, n-decyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 3,3,3-trifluoropropyl group, 3-hydroxypropyl group, 3-glycid Xoxypropyl group, 2- (3,4-epoxycyclohexyl) ethyl group, 3-aminopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group, 4-hydroxy-5- (p-hydroxyphenylcarbonyloxy) pentyl Group and the like. In addition, as the cycloalkyl group having 3 to 6 carbon atoms which may have a substituent, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, or the like may have a substituent, α-position As the aralkyl group having 15 or less carbon atoms in which no hydrogen atom is bonded to the carbon atom, phenylisopropyl group or the like may be substituted, and as the aryl group which may have a substituent, phenyl group, tolyl group, p-hydroxy group Examples of the C1-C6 alkenyl group that may be substituted by a phenyl group, a naphthyl group, and the like include a vinyl group, an allyl group, a 3-acryloxypropyl group, and a 3-methacryloxypropyl group. It is done.

一方、Rの置換基を有していてもよい炭素数1〜6のアルキル基としては、Rの置換基を有していてもよいアルキル基として例示したと同様の基が例示でき、置換基を有さない炭素数1〜4のアルキル基が好ましい。 On the other hand, examples of the alkyl group having 1 to 6 carbon atoms which may have a substituent of R 2 include the same groups as exemplified as the alkyl group which may have a substituent of R 1 . A C1-C4 alkyl group which does not have a substituent is preferable.

上記一般式(1)で示されるアルコキシシラン化合物の具体例としては、例えば下記の化合物が例示される。   Specific examples of the alkoxysilane compound represented by the general formula (1) include the following compounds.

(イ)テトラアルコキシシラン:テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等
(ロ)モノアルキルトリアルコキシシラン:モノメチルトリメトキシシラン、モノメチルトリエトキシシラン、モノエチルトリメトキシシラン、モノエチルトリエトキシシラン、モノプロピルトリメトキシシラン、モノプロピルトリエトキシシラン等
(ハ)モノアリールトリアルコキシシラン:モノフェニルトリメトキシシラン、モノフェニルトリエトキシシラン、モノナフチルトリメトキシシラン等
(ニ)トリアルコキシシラン:トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリブトキシシラン等
(ホ)ジアルキルジアルコキシシラン:ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン等
(ヘ)ジフェニルジアルコキシシラン:ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等
(ト)アルキルフェニルジアルコキシシラン:メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、エチルフェニルジメトキシシラン、エチルフェニルジエトキシシラン、プロピルフェニルジメトキシシラン、プロピルフェニルジエトキシシラン等
(チ)トリアルキルアルコキシシシラン:トリメチルメトキシシラン、トリn−ブチルエトキシシラン等
(A) Tetraalkoxysilane: tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, etc. (b) Monoalkyltrialkoxysilane: monomethyltrimethoxysilane, monomethyltriethoxysilane, monoethyltrimethoxysilane, monoethyltriethoxysilane, Monopropyltrimethoxysilane, monopropyltriethoxysilane, etc. (c) monoaryltrialkoxysilane: monophenyltrimethoxysilane, monophenyltriethoxysilane, mononaphthyltrimethoxysilane, etc. (d) trialkoxysilane: trimethoxysilane, Triethoxysilane, tripropoxysilane, tributoxysilane, etc. (e) Dialkyl dialkoxysilane: dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldi Toxisilane, diethyldiethoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, etc. (f) Diphenyl dialkoxysilane: diphenyldimethoxysilane, diphenyldiethoxysilane, etc. (g) Alkylphenyldialkoxysilane: methylphenyldimethoxysilane, methyl Phenyldiethoxysilane, ethylphenyldimethoxysilane, ethylphenyldiethoxysilane, propylphenyldimethoxysilane, propylphenyldiethoxysilane, etc. (h) Trialkylalkoxysilane: trimethylmethoxysilane, tri-n-butylethoxysilane, etc.

これらの中で好ましい化合物は、テトラメトキシシラン、テトラエトキシシラン、モノメチルトリメトキシシラン、モノメチルトリエトキシシラン、モノナフチルトリメトキシシラン、モノフェニルトリメトキシシランである。   Among these, preferred compounds are tetramethoxysilane, tetraethoxysilane, monomethyltrimethoxysilane, monomethyltriethoxysilane, mononaphthyltrimethoxysilane, and monophenyltrimethoxysilane.

本発明において用いられるシラノール基またはアルコキシシリル基を含有するシロキサン樹脂は、反応性基がシラノール基のみからなるまたはシラノール基とアルコキシシリル基からなるシロキサン樹脂(ポリシロキサン)が好ましい。すなわち、シロキサン樹脂中には、シロキサン樹脂を合成した際の未反応のアルコキシシリル基が含まれていてもよい。このような反応性基がシラノール基のみからなるまたはシラノール基とアルコキシシリル基からなるシラノール基含有シロキサン樹脂は、前記一般式(1)で示されるアルコキシシランの1種または2種以上を用いで製造することができる。また、本発明において用いられるシラノール基またはアルコキシシリル基含有シロキサン樹脂は、必要であればアルコキシシランとして、前記RおよびRに水酸基などの反応基を含まないアルコキシシランの1種または2種以上とRおよび/またはRに水酸基などの反応基を有するアルコキシシランの1種または2種以上との混合物を用い、これらを加水分解縮合することによって得られるシロキサン樹脂が用いられてもよい。また、本発明においては、原料アルコキシシランとして、上記一般式(1)において、nが0または1であるアルコキシシランを用いることが好ましく、このとき必要に応じnが2または3のアルコキシシランがさらに用いられてもよい。 The siloxane resin containing a silanol group or an alkoxysilyl group used in the present invention is preferably a siloxane resin (polysiloxane) in which a reactive group consists of only a silanol group or a silanol group and an alkoxysilyl group. That is, the siloxane resin may contain an unreacted alkoxysilyl group when the siloxane resin is synthesized. A silanol group-containing siloxane resin in which such a reactive group is composed only of a silanol group or a silanol group and an alkoxysilyl group is produced by using one or more of the alkoxysilanes represented by the general formula (1). can do. Moreover, the silanol group or alkoxysilyl group-containing siloxane resin used in the present invention is one or more of alkoxysilanes that do not contain a reactive group such as a hydroxyl group in R 1 and R 2 as an alkoxysilane if necessary. A siloxane resin obtained by hydrolyzing and condensing a mixture of one or two or more alkoxysilanes having a reactive group such as a hydroxyl group in R 1 and / or R 2 may be used. In the present invention, as the raw material alkoxysilane, it is preferable to use an alkoxysilane in which n is 0 or 1 in the general formula (1). May be used.

分子量は、重量平均分子量(Mw)が400〜20,000であるものが好ましく、より好ましくは400〜10,000である。重量平均分子量が400未満では、プリベーク時溶剤と一緒に揮発してしまう可能性があり、20,000より大きいと硬化し難くい。   The molecular weight is preferably a weight average molecular weight (Mw) of 400 to 20,000, more preferably 400 to 10,000. If the weight average molecular weight is less than 400, it may volatilize together with the solvent during pre-baking, and if it is greater than 20,000, it is difficult to cure.

アルコキシシランの加水分解縮合反応は、通常有機溶剤中で行なわれる。アルコキシシラン溶液の溶剤成分としては、形成される樹脂を溶解又は分散することのできる有機溶剤であれば特に限定されない。このような溶剤としては、公知の有機溶剤を適宜使用でき、例えばメチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコールイソブチルアルコール、イミアミルアルコール等の一価アルコール;エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ヘキサントリオール等の多価アルコール;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、3−メチル−3−メトキシブタノール等の多価アルコールのモノエーテル類およびそれらのアセテート類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルイソアミルケトン等のケトン類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールの水酸基をすべてアルキルエーテル化した多価アルコールエーテル類等が挙げられる。アルコキシシランの反応において用いられる溶剤は、引き続き基材に塗布されるシロキサン樹脂組成物の溶剤としても利用されることが一般的である。   The hydrolysis condensation reaction of alkoxysilane is usually performed in an organic solvent. The solvent component of the alkoxysilane solution is not particularly limited as long as it is an organic solvent capable of dissolving or dispersing the formed resin. As such a solvent, known organic solvents can be used as appropriate, for example, monohydric alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol isobutyl alcohol, and imamyl alcohol; ethylene glycol, diethylene glycol, propylene glycol, glycerin, Polyhydric alcohols such as trimethylolpropane and hexanetriol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol mono Butyl ether, propylene glycol Monoethers of polyhydric alcohols such as monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, 3-methyl-3-methoxybutanol and their acetates; methyl acetate, ethyl acetate, acetic acid Esters such as butyl; Ketones such as acetone, methyl ethyl ketone, methyl isoamyl ketone; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol Dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol Lumpur methyl ethyl ether, diethylene polyhydric alcohol ethers any polyhydric alcohol hydroxyl groups have alkyl etherification such as diethyl ether and the like. The solvent used in the alkoxysilane reaction is generally used as a solvent for the siloxane resin composition subsequently applied to the substrate.

有機溶剤は、沸点100〜300℃の液体であることが好ましく、また、分子内に少なくとも一個の水酸基および/またはエーテル結合を有する液体、あるいは分子内に少なくとも一個のエーテル結合を有する酢酸エステルであることが好ましい。これら有機溶剤は、単独で用いられてもよく、あるいは2種以上が組み合わせて用いてられてもよい。なお、シロキサン樹脂の硬化被膜をフラットパネルディスプレイなどに形成する際、従来プロピレングリコールモノメチルエーテル(PGME)などの多価アルコールのエーテル類、プロピレングリコールモノメチルエーテルアセテート(PGMEA)などの多価アルコールのエーテルエステル類が一般的に用いられていることから、このような分野でシロキサン樹脂組成物を用いる場合には、PGMEあるいはPGMEAなどの多価アルコールのエーテル類、エーテルエステル類を用いることが好ましい。また、3−メチル−3−メトキシブタノール、3−メチル−3−メトキシブチルアセテートなども好ましい溶剤として挙げられる。有機溶剤は、通常アルコキシシラン1モルに対し、10〜30モル倍量の割合で用いられる。   The organic solvent is preferably a liquid having a boiling point of 100 to 300 ° C., and is a liquid having at least one hydroxyl group and / or ether bond in the molecule, or an acetate ester having at least one ether bond in the molecule. It is preferable. These organic solvents may be used alone or in combination of two or more. When forming a cured film of a siloxane resin on a flat panel display or the like, an ether of a polyhydric alcohol such as propylene glycol monomethyl ether (PGME) or an ether ester of a polyhydric alcohol such as propylene glycol monomethyl ether acetate (PGMEA) is conventionally used. In general, when using a siloxane resin composition in such a field, it is preferable to use ethers or ether esters of polyhydric alcohols such as PGME or PGMEA. Moreover, 3-methyl-3-methoxybutanol, 3-methyl-3-methoxybutyl acetate, etc. are mentioned as a preferable solvent. The organic solvent is usually used at a ratio of 10 to 30 moles per mole of alkoxysilane.

アルコキシシランの加水分解縮合反応は、触媒なしでもある程度進行するが、塗布性、保存安定性を付与するためには、触媒を用いることが好ましい。触媒としては、従来公知のいずれの触媒をも用いることができるが、樹脂の安定性から酸触媒を用いることが好ましい。酸触媒としては、有機酸、無機酸のいずれも使用することができる。有機酸としては、酢酸、プロピオン酸、酪酸等の有機カルボン酸が挙げられる。無機酸としては、塩酸、硝酸、硫酸、リン酸等の無機酸が挙げられる。酸触媒は、水を液中に添加した後に加えてもよく、あるいは水と混合して酸水溶液として添加してもよい。酸触媒の添加量は、適宜選択される。加水分解反応は通常5〜100時間程度で完了するが、60〜70℃を超えない温度で加熱し、アルコキシシラン化合物を含む有機溶媒に酸触媒水溶液を滴下して反応させることにより、短い反応時間で反応を完了させることもできる。   The hydrolysis-condensation reaction of alkoxysilane proceeds to some extent without a catalyst, but a catalyst is preferably used in order to impart coatability and storage stability. As the catalyst, any conventionally known catalyst can be used, but an acid catalyst is preferably used in view of the stability of the resin. As the acid catalyst, either an organic acid or an inorganic acid can be used. Examples of the organic acid include organic carboxylic acids such as acetic acid, propionic acid, and butyric acid. Examples of the inorganic acid include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid. The acid catalyst may be added after adding water to the solution, or may be mixed with water and added as an acid aqueous solution. The addition amount of the acid catalyst is appropriately selected. The hydrolysis reaction is usually completed in about 5 to 100 hours, but the reaction time is short by heating at a temperature not exceeding 60 to 70 ° C. and causing the acid catalyst aqueous solution to drop and react with the organic solvent containing the alkoxysilane compound. To complete the reaction.

加水分解度は触媒の存在下、水の添加量により調整することができる。一般に、一般式(1)で表されるアルコキシシラン化合物のアルコキシ基の総モル数に対し、水を20〜1000モル%、好ましくは50〜500モル%の割合で反応させることが望ましい。水の添加量が上記範囲より少な過ぎると加水分解度が低くなり、被膜形成が困難となるので好ましくなく、一方、多過ぎるとゲル化を起こし易いので好ましくない。   The degree of hydrolysis can be adjusted by the amount of water added in the presence of a catalyst. Generally, it is desirable to react water at a ratio of 20 to 1000 mol%, preferably 50 to 500 mol%, based on the total number of alkoxy groups of the alkoxysilane compound represented by the general formula (1). If the amount of water added is less than the above range, the degree of hydrolysis will be low and it will be difficult to form a film, while it will be difficult to form a film.

また、他の代表的なシラノール基またはアルコキシシリル基含有シロキサン樹脂としては、下記一般式(2)で表されるハロシランの1種以上を有機溶剤中、加水分解して得られるシロキサン樹脂(ポリシロキサン)が挙げられる。   As another typical silanol group or alkoxysilyl group-containing siloxane resin, a siloxane resin (polysiloxane) obtained by hydrolyzing one or more halosilanes represented by the following general formula (2) in an organic solvent: ).

Figure 0005610521
Figure 0005610521

(式中、Rは水素原子、置換基を有していてもよい、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、炭素数15以下のα位の炭素原子に水素原子が結合していないアラルキル基、炭素数6〜15のアリール基または炭素数1〜6のアルケニル基を表し、Xはハロゲン原子を表し、nは0〜3の整数である。) (In the formula, R 1 represents a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or a carbon atom at α-position having 15 or less carbon atoms. An aralkyl group to which no hydrogen atom is bonded, an aryl group having 6 to 15 carbon atoms, or an alkenyl group having 1 to 6 carbon atoms is represented, X represents a halogen atom, and n is an integer of 0 to 3.)

なお、一般式(2)中のRとしては、上記一般式(1)のRとして示されたものと同様のものが好ましいものとして挙げられる。またXとしては、塩素原子、臭素原子、沃素原子が挙げられる。また、nも上記一般式(1)同様、0〜1が好ましいもので、必要に応じこれとともにnが2または3のハロシラン化合物が用いられればよい。このようなハロシラン化合物を用いることにより、一般式(1)で示されるようなアルコキシシランを用いる場合と同様の方法で、シラノール基含有シロキサン樹脂を製造することができる。例えば、トリクロロシラン化合物では、一部のクロロシリル基が加水分解・縮合反応してSi−O―Siの結合を形成し、残りは加水分解し、クロロシリル基がシラノール基となる。形成されるシロキサン樹脂中のシラノール基の含有量は、使用するハロシラン化合物の種類、量、反応条件などを制御することにより調整可能である。ハロシラン化合物を用いる場合には、得られたシラノール基含有シロキサン樹脂の反応基は全部がシラノール基となる。 As the R 1 in the general formula (2), the same as that shown as R 1 in the general formula (1) it may be mentioned as preferred. Examples of X include a chlorine atom, a bromine atom, and an iodine atom. Further, n is preferably 0 to 1 as in the general formula (1), and a halosilane compound in which n is 2 or 3 may be used as necessary. By using such a halosilane compound, a silanol group-containing siloxane resin can be produced in the same manner as in the case of using an alkoxysilane represented by the general formula (1). For example, in a trichlorosilane compound, a part of chlorosilyl group undergoes hydrolysis / condensation reaction to form a Si—O—Si bond, and the rest is hydrolyzed, and the chlorosilyl group becomes a silanol group. The content of silanol groups in the siloxane resin to be formed can be adjusted by controlling the type, amount, reaction conditions, and the like of the halosilane compound used. When a halosilane compound is used, all of the reactive groups of the resulting silanol group-containing siloxane resin are silanol groups.

(b)有機溶剤
本発明のシラノール基またはアルコキシシリル基含有シロキサン樹脂組成物には、シラノール基またはアルコキシシリル基含有シロキサン樹脂を溶解あるいは分散させるために有機溶剤が用いられる。有機溶剤としては、上記アルコキシシランの加水分解縮合反応を行う際に用いられた有機溶剤と同様のものを用いることができる。前記したように、本発明のシラノール基またはアルコキシシリル基含有シロキサン樹脂組成物の有機溶剤としては、アルコキシシランの加水分解縮合反応の際の溶剤を、そのままシラノール基またはアルコキシシリル基含有シロキサン樹脂組成物の有機溶剤として利用してもよいし、これに更に他の溶剤を加えてもよいし、反応で得られるシロキサン樹脂を溶剤から単離し、溶剤を含まないシロキサン樹脂を新たな溶剤に溶解あるいは分散するなどして組成物として用いてもよい。前記したように、PGMEAなどのエーテルエステル系、PGMEなどのエーテル系が一般的なフラットパネルディスプレイ向けに使用されているので、このような分野でシロキサン樹脂組成物を用いる場合には、PGMEあるいはPGMEAなどのエーテル系、あるいはエーテルエステル系溶剤を用いることが好ましい。また、3−メチル−3−メトキシブタノール、3−メチル−3−メトキシブチルアセテートなども好ましい溶剤として挙げられる。
(B) Organic solvent In the silanol group or alkoxysilyl group-containing siloxane resin composition of the present invention, an organic solvent is used for dissolving or dispersing the silanol group or alkoxysilyl group-containing siloxane resin. As the organic solvent, those similar to the organic solvent used when the hydrolysis-condensation reaction of the alkoxysilane can be used. As described above, as the organic solvent of the silanol group or alkoxysilyl group-containing siloxane resin composition of the present invention, the solvent in the hydrolytic condensation reaction of alkoxysilane is used as it is as the silanol group or alkoxysilyl group-containing siloxane resin composition. It may be used as an organic solvent, or another solvent may be added to this, or the siloxane resin obtained by the reaction is isolated from the solvent, and the siloxane resin containing no solvent is dissolved or dispersed in a new solvent. For example, it may be used as a composition. As described above, ether esters such as PGMEA and ethers such as PGME are used for general flat panel displays. Therefore, when a siloxane resin composition is used in such a field, PGMEA or PGMEA is used. It is preferable to use an ether solvent such as ether or an ether ester solvent. Moreover, 3-methyl-3-methoxybutanol, 3-methyl-3-methoxybutyl acetate, etc. are mentioned as a preferable solvent.

(c)添加剤
添加剤としては、例えば、界面活性剤、増粘剤などが挙げられる。界面活性剤は、シラノール基またはアルコキシシリル基含有シロキサン樹脂組成物の塗布特性、基材への濡れ特性などを改善するために用いられる。界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などが知られているが、アニオン・カチオン系界面活性剤、両性界面活性剤は、触媒作用としてシロキサン樹脂組成物の経年劣化を促進してしまうため、ノニオン系界面活性剤が好ましい。ノニオン系界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンセチルエーテルなどのポリオキシエチレンアルキルエーテル類やポリオキシエチレン脂肪酸ジエステル、ポリオキシ脂肪酸モノエステル、ポリオキシエチレンポリオキシピロピレンブロックポリマー、アセチレンアルコール、アセチレングリコール、アセチレンアルコールのポリエトキシレート、アセチレングリコールのポリエトキシレートなどのアセチレングリコール誘導体、フッ素含有界面活性剤、例えばフロラード(商品名、住友3M(株)製)、メガファック(商品名、DIC(株)製)、スルフロン(商品名、旭硝子(株)製)、または有機シロキサン界面活性剤、例えばKF−53、KF−54(いずれも信越化学工業(株)製)、SH7PA、SH21PA、SH28PA、SH30PA、ST94PA(いずれも東レ・ダウコーニング(株)製)等が挙げられる。前記アセチレングリコールとしては、3−メチル−1−ブチン−3−オール、3−メチル−1−ペンチン−3−オール、3,6−ジメチル−4−オクチン−3,6−ジオール、2,4,7,9−テトラメチル−5−デシン−4,7−ジオール、3,5−ジメチル−1−ヘキシン−3−オール、2,5−ジメチル−3−ヘキシン−2,5−ジオール、2,5−ジメチル−2,5−ヘキサンジオールなどが挙げられる。
(C) Additives Examples of additives include surfactants and thickeners. The surfactant is used to improve the coating characteristics of the silanol group- or alkoxysilyl group-containing siloxane resin composition, the wetting characteristics to the substrate, and the like. As surfactants, nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants and the like are known, but anionic / cationic surfactants, amphoteric surfactants, Nonionic surfactants are preferred because they promote aging degradation of the siloxane resin composition as a catalytic action. Nonionic surfactants include, for example, polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene oleyl ether, polyoxyethylene cetyl ether, polyoxyethylene fatty acid diester, polyoxy fatty acid monoester, polyoxyethylene Polyoxypropylene block polymer, acetylene alcohol, acetylene glycol, polyethoxylate of acetylene alcohol, acetylene glycol derivatives such as polyethoxylate of acetylene glycol, fluorine-containing surfactants such as Fluorard (trade name, manufactured by Sumitomo 3M Co., Ltd.) ), Megafuck (trade name, manufactured by DIC Corporation), Sulflon (trade name, manufactured by Asahi Glass Co., Ltd.), or organosiloxane surfactants such as KF-53, K -54 (all manufactured by Shin-Etsu Chemical (Co.)), SH7PA, SH21PA, SH28PA, SH30PA, ST94PA (all manufactured by Dow Corning Toray Co.), and the like. Examples of the acetylene glycol include 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, 3,6-dimethyl-4-octyne-3,6-diol, 2,4, 7,9-tetramethyl-5-decyne-4,7-diol, 3,5-dimethyl-1-hexyne-3-ol, 2,5-dimethyl-3-hexyne-2,5-diol, 2,5 -Dimethyl-2,5-hexanediol etc. are mentioned.

シラノール基またはアルコキシシリル基含有シロキサン樹脂組成物におけるシラノール基またはアルコキシシリル基含有シロキサン樹脂の含有量は、溶剤100重量部に対し、1〜40重量部であることが好ましい。40重量部を超えると、樹脂の経年劣化速度が上がり、好ましくない。   The content of the silanol group or alkoxysilyl group-containing siloxane resin in the silanol group or alkoxysilyl group-containing siloxane resin composition is preferably 1 to 40 parts by weight with respect to 100 parts by weight of the solvent. If it exceeds 40 parts by weight, the aging deterioration rate of the resin increases, which is not preferable.

また、界面活性剤の含有量は、組成物中50ppm〜100,000ppm、好ましくは100ppm〜50,000ppmの範囲である。少なすぎると界面活性が得られにくく濡れが良くならないし、多すぎると泡立ちが激しく、塗布機に泡噛みなどが起こり、取り扱いが困難である。   Moreover, content of surfactant is 50 ppm-100,000 ppm in a composition, Preferably it is the range of 100 ppm-50,000 ppm. If the amount is too small, it is difficult to obtain the surface activity and the wettability is not improved. If the amount is too large, foaming is severe, foaming occurs in the coating machine, and handling is difficult.

(ii)塗布
シラノール基またはアルコキシシリル基含有シロキサン樹脂組成物は、基材に塗布され、シラノール基またはアルコキシシリル基含有シロキサン樹脂被膜とされる。基材としては、特に限定されるものではないが、シリコン基板、ガラス板、金属板、セラミックス板等の各種基板が挙げられ、特に、絶縁膜を必要とする液晶ディスプレーのTFT表面等は、本発明の基板として好ましいものである。塗布方法は、特に限定されず、例えばスピンコート法、ディップコート法、ナイフコート法、ロールコート法、スプレーコート法、スリットコート法等の各種の方法を採用することができる。なお、塗布溶液におけるシラノール基またはアルコキシシリル基含有シロキサン樹脂の濃度は、用いられるシラノール基またはアルコキシシリル基含有シロキサン樹脂の種類(例えば、Rの種類、分子量などの違い)や塗布方法、所望の塗布膜厚などにより変わり、特に限定されるものではなく、任意でよい。
(Ii) The coated silanol group or alkoxysilyl group-containing siloxane resin composition is coated on a substrate to form a silanol group or alkoxysilyl group-containing siloxane resin film. The substrate is not particularly limited, and examples include various substrates such as a silicon substrate, a glass plate, a metal plate, and a ceramic plate. In particular, the TFT surface of a liquid crystal display that requires an insulating film, etc. It is preferable as the substrate of the invention. The application method is not particularly limited, and various methods such as spin coating, dip coating, knife coating, roll coating, spray coating, and slit coating can be employed. The concentration of the silanol group or alkoxysilyl group-containing siloxane resin in the coating solution depends on the type of silanol group or alkoxysilyl group-containing siloxane resin to be used (for example, the difference in the type of R 1 , molecular weight, etc.), the coating method, It varies depending on the coating film thickness and the like and is not particularly limited and may be arbitrary.

(iii)プリベーク
こうして基板上に形成されたシラノール基またはアルコキシシリル基含有シロキサン樹脂組成物被膜は、次いでプリベークされて、組成物中の有機溶剤が除去される。プリベーク温度は、組成物に用いられた有機溶剤の種類によっても異なるが、温度が低すぎると、有機溶剤の残留分が多くなり、基板運搬機器などをおかす原因となる場合があり、一方、温度が高すぎると急激に乾燥され、もやムラが生じてしまう、またはシラノール基またはアルコキシシリル基含有シロキサン樹脂が昇華する場合があることから、60〜200℃が好ましく、70〜180℃が更に好ましい。プリベークは、例えばホットプレート、オーブンなどの加熱装置を用いて行われ、プリベークの時間は、使用した有機溶剤の種類とプリベークの温度により異なるが、30秒〜10分が好ましく、1〜5分が更に好ましい。
(Iii) Prebaking The silanol group or alkoxysilyl group-containing siloxane resin composition film thus formed on the substrate is then prebaked to remove the organic solvent in the composition. The pre-baking temperature varies depending on the type of organic solvent used in the composition. However, if the temperature is too low, the residual amount of the organic solvent increases, which may cause damage to the substrate transporting equipment. If it is too high, it will be dried rapidly, resulting in some unevenness, or the silanol group or alkoxysilyl group-containing siloxane resin may be sublimated, so that it is preferably 60 to 200 ° C, more preferably 70 to 180 ° C. . Prebaking is performed using a heating device such as a hot plate or an oven, and the prebaking time varies depending on the type of organic solvent used and the temperature of the prebaking, but is preferably 30 seconds to 10 minutes, and preferably 1 to 5 minutes. Further preferred.

(iv)水酸化テトラメチルアンモニウム水溶液処理
プリベーク後、被膜は0.1〜10%の水酸化テトラメチルアンモニウム水溶液(以下、「アルカリ水溶液」ということもある。)処理に付される。該水酸化テトラメチルアンモニウム水溶液処理は、特に限定されず、水酸化テトラメチルアンモニウム水溶液への浸漬(ディップ)、パドル、シャワー、スリット、キャップコート、スプレーといった一般的方法で行うことができる。当該組成物が界面活性剤を含む場合は、浸漬(ディップ)で行うことが好ましい。また、界面活性剤を含んでいても、浸水処理を施していれば他の方法、例えばパドル塗布も可能である。
(Iv) Tetramethylammonium hydroxide aqueous solution treatment After pre-baking, the coating is subjected to a 0.1-10% tetramethylammonium hydroxide aqueous solution (hereinafter sometimes referred to as "alkaline aqueous solution") treatment . . The tetramethylammonium hydroxide aqueous solution treatment is not particularly limited, and can be performed by a general method such as immersion (dip) in a tetramethylammonium hydroxide aqueous solution, paddle, shower, slit, cap coat, or spray. When the said composition contains surfactant, it is preferable to carry out by immersion (dip). Even if a surfactant is included, other methods such as paddle coating are possible as long as the surface is subjected to water immersion treatment.

手経路や生体毒性、また硬化すれば気化するといった利便性から、水酸化テトラメチルアンモニウム水溶液での処理が好ましい。
Input Hand routes and biological toxicity, and from convenience, such vaporize when curing, treatment with aqueous tetramethylammonium hydroxide solution is preferred.

本発明においては、水酸化テトラメチルアンモニウム水溶液の濃度は、0.1〜10%であり、好ましくは0.1〜7.5%、より好ましくは0.1〜5%である。シラノール基またはアルコキシシリル基含有シロキサン樹脂分子量に対するシラノール基の割合が高い場合は、樹脂がアルカリ水溶液に溶解するため、その濃度を低くすることが好ましい。なお、水酸化テトラメチルアンモニウム水溶液処理による膜減りは、10%以下が好ましい。10%を超えると、被膜内の溶解量差が大きくなり、ムラにつながるので好ましくない。
In the present invention, the concentration of the tetramethylammonium hydroxide aqueous solution is 0 . 1 to 10% good Mashiku is 0.1 to 7.5%, more preferably from 0.1 to 5%. When the proportion of the silanol groups is high for shea silanol groups or alkoxysilyl group-containing siloxane resin molecular weight, the resin is dissolved in an aqueous alkali solution, it is preferable to reduce the concentration of it. The film loss due to the treatment with tetramethylammonium hydroxide aqueous solution is preferably 10% or less. If it exceeds 10%, the difference in the amount of dissolution in the film becomes large, leading to unevenness, which is not preferable.

処理時間も、水酸化テトラメチルアンモニウム水溶液の濃度、処理されるシラノール基またはアルコキシシリル基含有シロキサン樹脂の種類や膜厚などにより大きく変わり、特に限定されるものではないが、一般的には、15秒〜3分程度の処理時間とされることが好ましい。処理時間が短いとプロセスのブレがあり、長いと効率が悪い。また、処理温度は常温で行うことができる。
Processing time, every concentrated tetramethylammonium hydroxide aqueous solution, vary greatly by the type and thickness of the silanol groups or alkoxysilyl group-containing siloxane resin is processed, but are not particularly limited, in general, The treatment time is preferably about 15 seconds to 3 minutes. If the processing time is short, there is a process blur, and if the processing time is long, the efficiency is poor. The processing temperature can be performed at room temperature.

本発明において、アルカリ処理により、前記したように、塗布膜厚に関係なく、透明性に優れ、高引っかき傷硬度、高絶縁性、低誘電率を有し、また膜減りせず、厚膜塗布した場合においてもクラックの発生のない、密着性に優れた硬化膜を形成することができるが、これは膜中に残留しているアルコキシシリル基をシラノール基とし、また十分に重合化されていない化合物が重合化されることにより分子量が増大され、小さな分子量の化合物がなくなり、これにより焼成硬化する際の加熱による塗膜中の化合物の昇華量が減少されることによって硬化膜の膜減り量が減少することがその一因になっているものと推測されるが、本発明がこれにより限定されるものではない。   In the present invention, by alkali treatment, as described above, regardless of the coating film thickness, it has excellent transparency, high scratch hardness, high insulation, low dielectric constant, and it does not reduce the film thickness. In this case, it is possible to form a cured film having no adhesiveness and excellent adhesion. However, the alkoxysilyl group remaining in the film is a silanol group and is not sufficiently polymerized. When the compound is polymerized, the molecular weight is increased and there is no compound with a small molecular weight, thereby reducing the sublimation amount of the compound in the coating film due to heating during baking and curing, thereby reducing the amount of film loss of the cured film. Although it is speculated that the decrease is one of the causes, the present invention is not limited thereby.

(v)リンス処理
リンス処理は、水酸化テトラメチルアンモニウム水溶液処理された被膜面に残留する水酸化テトラメチルアンモニウム水溶液を水で洗い流すために行われる。したがって、被膜面の水酸化テトラメチルアンモニウム水溶液が洗い流されればいずれの方法によってもよい。例えば、被膜を水中に浸漬する、あるいは被膜面に水を流す、水をシャワー状に掛けるなど、従来リンス方法として知られた適宜の方法を採用することができる。リンス処理時間は、被膜上の水酸化テトラメチルアンモニウム水溶液が除去される時間であればよく特に限定されるものではないが、例えば浸漬による場合では、30秒〜5分程度、流水による場合では15秒〜3分程度行えばよい。また、リンス処理で用いられる水としては、電気特性や半導体特性を必要とする用途であれば、イオン交換水または純水が好ましいものである。なお、浸漬によるリンスにおいては、浴を変えて複数回浸漬リンスを行ってもよい。
(V) rinsing the rinsing process, the aqueous solution of tetramethylammonium hydroxide remaining on the coating surface that is tetramethylammonium hydroxide aqueous solution process is carried out to wash away with water. Therefore, any method may be used as long as the tetramethylammonium hydroxide aqueous solution on the coating surface is washed away. For example, an appropriate method known as a conventional rinsing method can be employed, such as immersing the film in water, flowing water over the surface of the film, or pouring water into a shower. The rinse treatment time is not particularly limited as long as the tetramethylammonium hydroxide aqueous solution on the film is removed. For example, the rinse treatment time is about 30 seconds to 5 minutes in the case of immersion, and 15 in the case of running water. What is necessary is just to carry out for about 2 to 3 minutes. In addition, as water used in the rinsing treatment, ion-exchanged water or pure water is preferable for applications that require electrical characteristics and semiconductor characteristics. In addition, in rinse by immersion, you may change immersion bath and perform immersion rinse several times.

(vi)焼成(硬化)処理
焼成処理は、好ましくは、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下または空気中で、ホットプレート、オーブンなどの加熱装置を用いて、120〜400℃の温度で15分〜3時間行うことが好ましく、150〜350℃の温度で30分〜2時間行うことが更に好ましい。焼成時の膜厚の減少はできるだけ少ない方がよく、一般的には、焼成前後の膜厚減少率は7.5%以下、好ましくは5%以下、更に好ましくは3%以下である。焼成膜厚減少率が7.5%より大きいと、膜ムラが大きく、また焼成時に膜からの化合物の昇華が多いことから、昇華した化合物により機器が汚れるという問題がある。
(Vi) Firing (curing) treatment The firing treatment is preferably performed at a temperature of 120 to 400 ° C. using a heating device such as a hot plate or an oven in an inert gas atmosphere such as nitrogen, helium or argon or in the air. For 15 minutes to 3 hours, and more preferably for 30 minutes to 2 hours at a temperature of 150 to 350 ° C. The film thickness reduction during firing is preferably as small as possible. Generally, the film thickness reduction rate before and after firing is 7.5% or less, preferably 5% or less, more preferably 3% or less. When the reduction rate of the fired film thickness is greater than 7.5%, the film unevenness is large, and the compound is sublimated from the film at the time of firing.

硬化後の膜厚は用途により異なり特に限定されないが、20μm以下、好ましくは15μm以下であれば良い。そしてこのような硬化膜厚となるよう、シラノール基またはアルコキシシリル基含有シロキサン樹脂組成物中のシロキサン樹脂の濃度および組成物の塗布量が決定される。膜厚が分厚すぎると、硬化(キュア)中に膜中の樹脂同士が層分離を起こすこともあるため、好ましくない。   The film thickness after curing varies depending on the application and is not particularly limited. And the density | concentration of the siloxane resin in the silanol group or alkoxysilyl group containing siloxane resin composition and the application quantity of a composition are determined so that it may become such a cured film thickness. If the film thickness is too thick, the resins in the film may cause layer separation during curing (curing), which is not preferable.

このようにして形成されたシラノール基またはアルコキシシリル基含有シロキサン樹脂焼成被膜は、焼成による膜減りがほとんどなく、透明性に優れ、高引っかき傷硬度、高絶縁性、低誘電率を有し、さらに平坦性に優れ、厚膜にしてもクラックの発生がなく、かつ基板界面での膜剥れがなく、密着性に優れている。   The silanol group- or alkoxysilyl group-containing siloxane resin fired film thus formed has almost no film loss due to firing, is excellent in transparency, has high scratch hardness, high insulation, and low dielectric constant, It is excellent in flatness, and even if it is a thick film, there is no generation of cracks, no film peeling at the substrate interface, and excellent adhesion.

以下に実施例、参考例、比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例、参考例、比較例により何ら限定されるものではない。
The present invention will be described more specifically with reference to the following examples, reference examples and comparative examples. However, the present invention is not limited to these examples, reference examples and comparative examples.

製造例1
メチルトリメトキシシラン47.6g(0.35モル)、フェニルトリメトキシシラン29.7g(0.15モル)、3,3´,4,4´−ベンゾフェノンテトラカルボン酸2無水物4.83g(0.015モル)を3−メチル−3−メトキシブタノ−ル200gに溶解し、45℃で撹拌しながら、34.2gの蒸留水を加え、1時間加熱撹拌し、加水分解・縮合を行なった。その後、水で5回以上洗浄し、酢酸エチル油層を回収した。次に、その酢酸エチル油層を濃縮し、プロピレングリコールモノメチルエーテルアセテートに置換し、メチルフェニルシルセスキオキサン縮重合物40%溶液を得た。
Production Example 1
47.6 g (0.35 mol) of methyltrimethoxysilane, 29.7 g (0.15 mol) of phenyltrimethoxysilane, 4.83 g of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (0 .015 mol) was dissolved in 200 g of 3-methyl-3-methoxybutanol, and 34.2 g of distilled water was added while stirring at 45 ° C., followed by heating and stirring for 1 hour to perform hydrolysis and condensation. Then, it wash | cleaned 5 times or more with water, and the ethyl acetate oil layer was collect | recovered. Next, the ethyl acetate oil layer was concentrated and replaced with propylene glycol monomethyl ether acetate to obtain a 40% solution of methyl phenylsilsesquioxane polycondensate.

得られたシロキサン樹脂は、重量平均分子量(Mw)1,000のメチルフェニルシルセスキオキサン(メチル基:フェニル基=7:3mol比)であった。   The obtained siloxane resin was methylphenylsilsesquioxane (methyl group: phenyl group = 7: 3 mol ratio) having a weight average molecular weight (Mw) of 1,000.

重量平均分子量(Mw)の測定は、以下の装置、条件で行われた(なお、以下の例においても、同様の条件で測定が行われた。)。
使用装置、使用方法:島津製作所製HPLC(GPCシステム)
カラム:東ソー(株)製GPCカラム(G2000HXL 1本、G4000HXL 1本)
上記装置を用い、流量0.7ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した。
The measurement of the weight average molecular weight (Mw) was performed with the following apparatus and conditions (in the following examples, the measurement was performed under the same conditions).
Equipment and method of use: Shimadzu HPLC (GPC system)
Column: Tosoh Co., Ltd. GPC column (one G2000HXL, one G4000HXL)
Using the above apparatus, measurement was performed by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard under the analysis conditions of a flow rate of 0.7 ml / min, an elution solvent tetrahydrofuran, and a column temperature of 40 ° C.

製造例2
製造例1において、反応温度を45℃から60℃とすることを除き製造例1と同様の方法を行った。これにより、重量平均分子量(Mw)2,000のメチルフェニルシルセスキオキサン(メチル基:フェニル基=7:3mol比)を得た。
Production Example 2
In Production Example 1, the same method as in Production Example 1 was carried out except that the reaction temperature was changed from 45 ° C to 60 ° C. Thereby, methylphenylsilsesquioxane (methyl group: phenyl group = 7: 3 mol ratio) having a weight average molecular weight (Mw) of 2,000 was obtained.

製造例3
製造例1において、反応温度を45℃から60℃、反応時間を1時間から6時間とすることを除き製造例1と同様の方法を行い、重量平均分子量(Mw)4,000のメチルフェニルシルセスキオキサン(メチル基:フェニル基=7:3mol比)を得た。
Production Example 3
In Preparation Example 1, methylphenylsil having a weight average molecular weight (Mw) of 4,000 was carried out in the same manner as in Preparation Example 1 except that the reaction temperature was 45 ° C. to 60 ° C. and the reaction time was 1 hour to 6 hours. Sesquioxane (methyl group: phenyl group = 7: 3 mol ratio) was obtained.

製造例4
撹拌機、環流冷却器、滴下ろう斗、および温度計を備えた300mL4つ口フラスコに、水14.8gと、35質量%塩酸1.4gと、トルエン44.8gとを仕込み、該4つ口フラスコに、3−アセトキシプロピルトリメトキシシラン11.1g(0.05モル)とメチルトリメトキシシラン40.8g(0.3モル)、フェニルトリメトキシシラン29.7g(0.15モル)をトルエン30gに溶解させ、その混合液15〜25℃で滴下した。滴下終了後、同温度で30分間攪拌後、水を加えて静置後、分液を行い、油層を回収した。
Production Example 4
A 300 mL four-necked flask equipped with a stirrer, a reflux condenser, a dropping funnel, and a thermometer was charged with 14.8 g of water, 1.4 g of 35% by mass hydrochloric acid, and 44.8 g of toluene. In a flask, 11.1 g (0.05 mol) of 3-acetoxypropyltrimethoxysilane, 40.8 g (0.3 mol) of methyltrimethoxysilane, and 29.7 g (0.15 mol) of phenyltrimethoxysilane were added to 30 g of toluene. And the solution was added dropwise at 15 to 25 ° C. After completion of the dropwise addition, the mixture was stirred at the same temperature for 30 minutes, then water was added and the mixture was allowed to stand, followed by liquid separation to recover the oil layer.

その後、水で3回洗浄し、トルエン油層を回収した。次に、そのトルエン油層をナス型フラスコに入れ、エバポレーターで濃縮、メタノールで希釈することで溶媒をメタノールに置換し、全体量が250gになる様調整した。本溶液に、水50gを加えて、室温で炭酸カリウム30.8g(0.22モル)を投入した。その後、1時間攪拌した。攪拌終了後、酢酸エチルと水とを加えて分液を行い、油層を回収した。   Then, it wash | cleaned 3 times with water and collect | recovered toluene oil layers. Next, the toluene oil layer was placed in an eggplant type flask, concentrated with an evaporator, and diluted with methanol to replace the solvent with methanol, and the total amount was adjusted to 250 g. To this solution, 50 g of water was added, and 30.8 g (0.22 mol) of potassium carbonate was added at room temperature. Then, it stirred for 1 hour. After completion of the stirring, ethyl acetate and water were added for liquid separation, and the oil layer was recovered.

その後、水で5回以上洗浄し、酢酸エチル油層を回収した。次に、その酢酸エチル油層を濃縮し、プロピレングリコールモノメチルエーテルアセテートに置換し、3−ヒドロキシプロピルシルセスキオキサン縮重合物40%溶液を得た。   Then, it wash | cleaned 5 times or more with water and collect | recovered the ethyl acetate oil layer. Next, the ethyl acetate oil layer was concentrated and replaced with propylene glycol monomethyl ether acetate to obtain a 40% solution of 3-hydroxypropylsilsesquioxane condensation polymer.

得られた3−ヒドロキシプロピルシルセスキオキサン縮重合物は、重量平均分子量(Mw)3,000のメチル、3−ヒドロキシプロピル、フェニルシルセスキオキサン(メチル基:3−ヒドロキシプロピル:フェニル基=6:1:3mol比)であった。   The resulting 3-hydroxypropylsilsesquioxane polycondensate was a methyl, 3-hydroxypropyl, phenylsilsesquioxane (methyl group: 3-hydroxypropyl: phenyl group) having a weight average molecular weight (Mw) of 3,000. 6: 1: 3 mol ratio).

製造例5
反応器に600mlの水を仕込み30℃で撹拌しながらp−メトキシベンジルトリクロロシラン283.5g(1モル)およびトルエン300mlの混合液を2時間かけて滴下し、加水分解を行った。その後、分液操作により水層を除去し、有機層をエバポレーターにより溶媒留去した。その濃縮液を減圧下200℃で2時間加熱し、重合反応を行った。得られた重合物にアセトニトリル200gを加えて溶解し、p−メトキシベンジルシルセスキオキサンの溶液を得た。
Production Example 5
600 ml of water was charged into the reactor, and a mixture of 283.5 g (1 mol) of p-methoxybenzyltrichlorosilane and 300 ml of toluene was added dropwise over 2 hours while stirring at 30 ° C. to effect hydrolysis. Thereafter, the aqueous layer was removed by a liquid separation operation, and the solvent was distilled off from the organic layer by an evaporator. The concentrated solution was heated at 200 ° C. under reduced pressure for 2 hours to carry out a polymerization reaction. 200 g of acetonitrile was added to the obtained polymer and dissolved to obtain a solution of p-methoxybenzylsilsesquioxane.

こうして得た溶液中に、60℃以下でトリメチルシリルアイオダイド240gを滴下し、60℃で10時間反応させた。反応終了後、水200gを加えて加水分解を行い、次いでデカントによりポリマー層を得た。そのポリマー層を真空乾燥することにより、p−ヒドロキシベンジルシルセスキオキサン165gを得た。このポリマーの分子量をGPC(ゲルパーミエィションクロマトグラフィー)を用いて測定したところ、ポリスチレン換算でMw=3,000であった。   In the solution thus obtained, 240 g of trimethylsilyl iodide was dropped at 60 ° C. or less, and the reaction was carried out at 60 ° C. for 10 hours. After completion of the reaction, hydrolysis was performed by adding 200 g of water, and then a polymer layer was obtained by decanting. The polymer layer was vacuum dried to obtain 165 g of p-hydroxybenzylsilsesquioxane. When the molecular weight of this polymer was measured using GPC (gel permeation chromatography), it was Mw = 3,000 in terms of polystyrene.

製造例6
還流冷却管、滴下ロート、および攪拌器を備えた反応容器に、水400mlを入れて攪拌し、これにn−酢酸ブチル400mlを加えた。反応容器外部を氷冷し、攪拌速度は有機層と水層が保持できる程度に低速にした。次いで、メチルトリクロロシラン52.2g(0.35モル)、フェニルトリクロロシラン31.7g(0.15モル)を滴下ロートから10分かけて滴下した。この際反応混合物の温度は40℃まで上昇した。さらにそのまま30分間攪拌した。反応終了後、有機層を洗浄水が中性になるまで洗浄し、次いで有機層の溶媒を減圧で留去し、PGMEAで40%へ希釈して、目的となるメチルフェニルシルセスキオキサンを得た。このポリマーの分子量をGPC(ゲルパーミエィションクロマトグラフィー)を用いて測定したところ、ポリスチレン換算でMw=2,000(メチル基:フェニル基=7:3mol比)であった。
Production Example 6
In a reaction vessel equipped with a reflux condenser, a dropping funnel, and a stirrer, 400 ml of water was added and stirred, and 400 ml of n-butyl acetate was added thereto. The outside of the reaction vessel was ice-cooled, and the stirring speed was low enough to hold the organic layer and the aqueous layer. Subsequently, 52.2 g (0.35 mol) of methyltrichlorosilane and 31.7 g (0.15 mol) of phenyltrichlorosilane were dropped from the dropping funnel over 10 minutes. At this time, the temperature of the reaction mixture rose to 40 ° C. The mixture was further stirred for 30 minutes. After completion of the reaction, the organic layer is washed until the washing water becomes neutral, and then the solvent of the organic layer is distilled off under reduced pressure and diluted to 40% with PGMEA to obtain the target methylphenylsilsesquioxane. It was. When the molecular weight of this polymer was measured using GPC (gel permeation chromatography), it was Mw = 2,000 (methyl group: phenyl group = 7: 3 mol ratio) in terms of polystyrene.

実施例1
プロピレングリコールモノメチルエーテルアセテート(PGMEA)に、製造例1で製造された重量平均分子量(Mw)1,000のメチルフェニルシルセスキオキサン(メチル基:フェニル基=7:3mol比)溶液10g、界面活性剤KF−54(信越化学工業社製)(5%PGMEA溶液)0.08gを1,000ppmとなる量加えて攪拌溶解し、これにより35%溶液を作成した。この溶液をアドバンテック東洋(株)製シリンジフィルター(25mmφ、PTFE、ろ過精度0.20μm)でろ過し、シロキサン組成物を調製した。この組成物を、ミカサスピンコーター(ミカサ株式会社製)を用い、6インチシリコンウェハー上に600rpm/10secでスピンコートを行い、110℃、2分間ホットプレートにてプリベーク後、5μm厚のシロキサン樹脂膜を得た。この樹脂膜を0.4重量%水酸化テトラメチルアンモニウム(TMAH)水溶液に30秒間浸漬した後、イオン交換水によりリンス処理を行い、よく水を切った後、オーブンにて250℃で60分間焼成処理した。
Example 1
10 g of a methylphenylsilsesquioxane (methyl group: phenyl group = 7: 3 mol ratio) solution of propylene glycol monomethyl ether acetate (PGMEA) having a weight average molecular weight (Mw) of 1,000 produced in Production Example 1, surface activity Agent KF-54 (manufactured by Shin-Etsu Chemical Co., Ltd.) (5% PGMEA solution) 0.08 g was added in an amount of 1,000 ppm and dissolved by stirring to prepare a 35% solution. This solution was filtered through a syringe filter (25 mmφ, PTFE, filtration accuracy 0.20 μm) manufactured by Advantech Toyo Co., Ltd. to prepare a siloxane composition. This composition was spin-coated on a 6-inch silicon wafer at 600 rpm / 10 sec using a Mikasa spin coater (manufactured by Mikasa Co., Ltd.), prebaked on a hot plate at 110 ° C. for 2 minutes, and then a 5 μm thick siloxane resin film Got. This resin film was immersed in a 0.4 wt% tetramethylammonium hydroxide (TMAH) aqueous solution for 30 seconds, rinsed with ion-exchanged water, thoroughly drained, and then baked in an oven at 250 ° C. for 60 minutes. Processed.

得られた膜について行った透過率(400nm)、鉛筆硬度、焼成による膜厚の減少率(以下、「焼成膜減少率」という。)、焼成膜のクラックの有無の評価結果を表1に示す。なお、各評価は、以下の方法で行われた。   Table 1 shows the evaluation results of the transmittance (400 nm), pencil hardness, film thickness reduction rate (hereinafter referred to as “fired film reduction rate”), and presence / absence of cracks in the fired film. . In addition, each evaluation was performed with the following method.

(透過率)
得られた硬化膜の紫外可視吸収スペクトルを(株)島津製作所製MultiSpec−1500を用いて測定し、波長400nmでの透過率を求めた。
(Transmittance)
The ultraviolet-visible absorption spectrum of the obtained cured film was measured using MultiSpec-1500 manufactured by Shimadzu Corporation and the transmittance at a wavelength of 400 nm was determined.

(鉛筆硬度)
JIS K5600−5−4に準拠して測定した。鉛筆硬度がHB以下であると、基板搬送等の際傷つく可能性があることから、鉛筆硬度はH以上、好ましくは3H以上であることが望ましい。
(Pencil hardness)
It measured based on JISK5600-5-4. If the pencil hardness is HB or lower, the pencil hardness may be H or higher, preferably 3H or higher, since it may be damaged during substrate transportation.

(焼成膜厚減少率)
焼成前の膜厚と焼成後の膜厚を、ラムダエースVM−1200(大日本スクリーン製)を用いて行い、予めパラメータを絶対膜厚が既知のサンプルを用いて計測し、そのパラメータを使用して光学的に測定し、下式により、焼成による膜厚の減少率を算出した。
焼成膜厚減少率(%)=〔(焼成前の膜厚−焼成後の膜厚)/焼成前の膜厚〕×100
(Firing film thickness reduction rate)
The film thickness before firing and the film thickness after firing are measured using Lambda Ace VM-1200 (Dainippon Screen), and the parameters are measured in advance using a sample whose absolute film thickness is known, and the parameters are used. Then, the reduction rate of the film thickness by firing was calculated by the following formula.
Firing film thickness reduction rate (%) = [(film thickness before firing−film thickness after firing) / film thickness before firing] × 100

(焼成膜のクラックの有無)
焼成膜のクラックの有無は、膜を焼成した後1昼夜静置し、4インチウェハの中心4cmφの円内において、クラックがあるかどうか目視により確認を行った。
(Presence or absence of cracks in the fired film)
The presence or absence of cracks in the fired film was left to stand for a day and night after the film was fired, and it was visually confirmed whether or not there was a crack in the center 4 cmφ circle of a 4-inch wafer.

実施例2
シロキサン樹脂として製造例2で得られた分子量2,000のメチルフェニルシルセスキオキサンを用い、またアルカリ処理液として2.38重量%水酸化テトラメチルアンモニウム(TMAH)水溶液を用いることを除き実施例1と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Example 2
Example except that methylphenylsilsesquioxane having a molecular weight of 2,000 obtained in Production Example 2 was used as the siloxane resin, and an aqueous 2.38 wt% tetramethylammonium hydroxide (TMAH) solution was used as the alkali treatment liquid. In the same manner as in No. 1, a siloxane resin fired cured film was formed. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

実施例3
シロキサン樹脂として製造例4で得られた分子量3,000のメチル、3−ヒドロキプロピル、フェニルシルセスキオキサン(メチル基:3−ヒドロキシプロピル基:フェニル基=6:1:3mol比)を用い、またアルカリ処理液として2.38重量%水酸化テトラメチルアンモニウム(TMAH)水溶液を用いることを除き実施例1と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Example 3
Using 3,000 molecular weight methyl, 3-hydroxypropyl, phenylsilsesquioxane (methyl group: 3-hydroxypropyl group: phenyl group = 6: 1: 3 mol ratio) obtained in Production Example 4 as a siloxane resin, Further, a siloxane resin fired cured film was formed in the same manner as in Example 1 except that a 2.38 wt% tetramethylammonium hydroxide (TMAH) aqueous solution was used as the alkali treatment liquid. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

参考例4
0.4重量%水酸化テトラメチルアンモニウム水溶液に替えて0.3重量%エタノールアミン水溶液を用いることを除き実施例1と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Reference example 4
A siloxane resin fired cured film was formed in the same manner as in Example 1 except that a 0.3 wt% ethanolamine aqueous solution was used instead of the 0.4 wt% tetramethylammonium hydroxide aqueous solution. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

実施例5
界面活性剤KF−54を用いないことを除き実施例1と同様にして、シロキサン焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Example 5
A siloxane fired cured film was formed in the same manner as in Example 1 except that the surfactant KF-54 was not used. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

実施例6
シロキサン樹脂として製造例3で得られた分子量4,000のメチルフェニルシルセスキオキサンを用い、アルカリ水溶液として5重量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用いること、および焼成温度を300℃とすることを除き実施例1と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Example 6
The methylphenylsilsesquioxane having a molecular weight of 4,000 obtained in Production Example 3 was used as the siloxane resin, a 5 wt% tetramethylammonium hydroxide (TMAH) aqueous solution was used as the alkaline aqueous solution, and the firing temperature was 300 ° C. A siloxane resin fired cured film was formed in the same manner as in Example 1 except that. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

実施例7
焼成温度を180℃とすることを除き実施例1と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Example 7
A siloxane resin fired cured film was formed in the same manner as in Example 1 except that the firing temperature was 180 ° C. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

実施例8
焼成温度を300℃とすることを除き実施例1と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Example 8
A siloxane resin fired cured film was formed in the same manner as in Example 1 except that the firing temperature was 300 ° C. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

実施例9
膜厚を7μmとすることを除き実施例2と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Example 9
A siloxane resin fired cured film was formed in the same manner as in Example 2 except that the film thickness was 7 μm. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

実施例10
シロキサン樹脂として製造例6で得られた分子量2,000のメチルフェニルシルセスキオキサンを用いることを除き実施例2と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Example 10
A siloxane resin fired cured film was formed in the same manner as in Example 2 except that methylphenylsilsesquioxane having a molecular weight of 2,000 obtained in Production Example 6 was used as the siloxane resin. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

比較例1
アルカリ水溶液での処理を行わないことを除き実施例1と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Comparative Example 1
A siloxane resin fired cured film was formed in the same manner as in Example 1 except that the treatment with the alkaline aqueous solution was not performed. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

比較例2
アルカリ水溶液での処理を行わないことを除き実施例2と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Comparative Example 2
A siloxane resin fired cured film was formed in the same manner as in Example 2 except that the treatment with the alkaline aqueous solution was not performed. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

比較例3
アルカリ水溶液での処理を行わないこと、および製造例5で得た重量平均分子量3,000のシロキサン樹脂を用いることを除き実施例1と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Comparative Example 3
A siloxane resin fired and cured film was formed in the same manner as in Example 1 except that the treatment with the alkaline aqueous solution was not performed and the siloxane resin having a weight average molecular weight of 3,000 obtained in Production Example 5 was used. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

比較例4
アルカリ水溶液での処理を行わないことを除き実施例6と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Comparative Example 4
A siloxane resin fired cured film was formed in the same manner as in Example 6 except that the treatment with the alkaline aqueous solution was not performed. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

比較例5
テトラメチルアンモニウムヒドロキシド(TMAH)水溶液処理に代えて1N塩酸水溶液処理を行うことを除き実施例1と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Comparative Example 5
A siloxane resin fired cured film was formed in the same manner as in Example 1 except that a 1N hydrochloric acid aqueous solution treatment was performed instead of the tetramethylammonium hydroxide (TMAH) aqueous solution treatment. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

比較例6
アルカリ水溶液での処理を行わないことを除き実施例10と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Comparative Example 6
A siloxane resin fired cured film was formed in the same manner as in Example 10 except that the treatment with the alkaline aqueous solution was not performed. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

比較例7
テトラメチルアンモニウムヒドロキシド(TMAH)水溶液処理に代えてイオン交換水による処理とすることを除き実施例1と同様にして、シロキサン樹脂焼成硬化被膜を形成した。得られた焼成硬化膜の評価を実施例1と同様に行い、表1の結果を得た。
Comparative Example 7
A siloxane resin fired cured film was formed in the same manner as in Example 1 except that the treatment with ion-exchanged water was used instead of the tetramethylammonium hydroxide (TMAH) aqueous solution treatment. The obtained fired cured film was evaluated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

Figure 0005610521
Figure 0005610521

表1から明らかなように、アルカリ水溶液処理を行うことにより、透明性に優れ、高引っかき傷硬度、高絶縁性、低誘電率を有し、さらに平坦性に優れ、厚膜にしてもクラックの発生がなく、かつ基板界面での膜剥れがなく、密着性に優れている、シラノール基またはアルコキシシリル基含有シロキサン樹脂組成物の硬化被膜を形成することができる。   As is apparent from Table 1, by performing the alkaline aqueous solution treatment, it has excellent transparency, high scratch hardness, high insulation, low dielectric constant, excellent flatness, and even if it is a thick film, it has cracks. It is possible to form a cured film of a silanol group or alkoxysilyl group-containing siloxane resin composition that does not occur, does not peel off at the substrate interface, and has excellent adhesion.

Claims (3)

シラノール基またはアルコキシシリル基含有シロキサン樹脂組成物を用いて少なくともシラノール基またはアルコキシシリル基の重合により硬化し被膜を形成するシロキサン樹脂組成物の硬化被膜形成方法において、前記組成物を基材に塗布し、プリベーク処理した後、0.1〜10%の水酸化テトラメチルアンモニウム水溶液で処理してから水を用いてリンス処理し、焼成を行うことを特徴とするシロキサン樹脂組成物の硬化被膜形成方法。 In the method for forming a cured film of a siloxane resin composition, which is cured by polymerization of at least a silanol group or an alkoxysilyl group using a silanol group or alkoxysilyl group-containing siloxane resin composition, the composition is applied to a substrate. after prebaking, and rinsing with water after treatment with 0.1% to 10% tetramethylammonium hydroxide aqueous solution, a cured film forming method of the siloxane resin composition characterized by performing firing. 前記水酸化テトラメチルアンモニウム水溶液での処理が、水酸化テトラメチルアンモニウム水溶液への浸漬、パドルまたはシャワーにより行われることを特徴とする請求項1に記載のシロキサン樹脂組成物の硬化被膜形成方法。 The treatment with tetramethylammonium hydroxide aqueous solution, the cured film forming method of the siloxane resin composition according to claim 1, wherein the immersion, to be performed by the paddle or shower to aqueous tetramethylammonium hydroxide solution. 前記焼成が、120〜400℃の温度で行われることを特徴とする請求項1または2に記載のシロキサン樹脂組成物の硬化被膜形成方法。 The method for forming a cured film of a siloxane resin composition according to claim 1 or 2 , wherein the baking is performed at a temperature of 120 to 400 ° C.
JP2010177140A 2010-08-06 2010-08-06 Method for forming cured film of siloxane resin composition Active JP5610521B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010177140A JP5610521B2 (en) 2010-08-06 2010-08-06 Method for forming cured film of siloxane resin composition
KR1020110078205A KR101790493B1 (en) 2010-08-06 2011-08-05 Method of forming a cured coating film of siloxane resin composition
CN201110227500.5A CN102399372B (en) 2010-08-06 2011-08-05 Method for forming curing laminated film of siloxane resin compound
TW100127853A TWI495687B (en) 2010-08-06 2011-08-05 Method of forming a cured coating film of siloxane resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010177140A JP5610521B2 (en) 2010-08-06 2010-08-06 Method for forming cured film of siloxane resin composition

Publications (2)

Publication Number Publication Date
JP2012035190A JP2012035190A (en) 2012-02-23
JP5610521B2 true JP5610521B2 (en) 2014-10-22

Family

ID=45847805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177140A Active JP5610521B2 (en) 2010-08-06 2010-08-06 Method for forming cured film of siloxane resin composition

Country Status (4)

Country Link
JP (1) JP5610521B2 (en)
KR (1) KR101790493B1 (en)
CN (1) CN102399372B (en)
TW (1) TWI495687B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897190B (en) * 2012-12-25 2017-07-18 深圳市嘉达高科产业发展有限公司 A kind of organic siliconresin and preparation method thereof
JP6523780B2 (en) * 2014-09-29 2019-06-05 東京応化工業株式会社 Film-forming composition and method for producing cured film using the same
EP3656890A4 (en) * 2017-07-19 2021-06-09 Okuno Chemical Industries Co., Ltd. Treatment solution for film formation
KR102381639B1 (en) 2018-11-16 2022-04-01 주식회사 엘지화학 Photosensitive resin composition, photo resist, display device and method of low temperature curing photosensitive resin composition
KR20210052878A (en) 2019-11-01 2021-05-11 주식회사 엘지화학 Thermosetting overcoat resin composition, overcoat film, color filter and display device
KR20220152640A (en) 2021-05-10 2022-11-17 주식회사 엘지화학 Photosensitive resin composition, photo resist comprising same, display device comprising same and method of low temperature curing photosensitive resin composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6318124B1 (en) * 1999-08-23 2001-11-20 Alliedsignal Inc. Nanoporous silica treated with siloxane polymers for ULSI applications
JP4553113B2 (en) * 2004-06-10 2010-09-29 信越化学工業株式会社 Porous film-forming composition, pattern-forming method, and porous sacrificial film
JP2006055700A (en) * 2004-08-17 2006-03-02 Hitachi Chem Co Ltd Method for forming silica based hardened coating film, liquid for improving silica based hardened coating film, silica based hardened coating film and electronic component
JP2006061762A (en) * 2004-08-24 2006-03-09 Hitachi Chem Co Ltd Method of forming silica type hardened coat, liquid for improving silica type hardened coat, the silica type hardened coat and electronic part
US8158981B2 (en) * 2006-09-25 2012-04-17 Hitachi Chemical Company, Ltd. Radiation-sensitive composition, method of forming silica-based coating film, silica-based coating film, apparatus and member having silica-based coating film and photosensitizing agent for insulating film

Also Published As

Publication number Publication date
CN102399372A (en) 2012-04-04
TWI495687B (en) 2015-08-11
JP2012035190A (en) 2012-02-23
CN102399372B (en) 2014-12-31
TW201211158A (en) 2012-03-16
KR20120022616A (en) 2012-03-12
KR101790493B1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
CN103562793B (en) Photosensitive siloxane resin composition
JP5610521B2 (en) Method for forming cured film of siloxane resin composition
JP5775231B1 (en) Addition-curing silicone composition
KR102441819B1 (en) Water/oil-repellent treatment agent having heat resistance, method of preparation, and treated article
KR102092523B1 (en) Composite of metal oxide nanoparticles and silsesquioxane polymer, method for producing same, and composite material produced using composite thereof
JP5999096B2 (en) Method for manufacturing substrate with coating
JP5863266B2 (en) Siloxane resin-containing coating composition
JP2007270056A (en) Metal oxide particulate-containing polysiloxane composition and method for producing the same
JP5409695B2 (en) Organopolysiloxane, temporary adhesive composition containing organopolysiloxane, and thin wafer manufacturing method using the same
JP6273980B2 (en) Plate glass with ultraviolet shielding film, method for producing the same, and coating solution for coating film of sheet glass with ultraviolet shielding film
TWI709595B (en) Manufacturing method of polysiloxane polymer
JPWO2015118992A1 (en) Addition-curing silicone composition
JP2016212193A (en) Optical functional film and manufacturing method therefor
JP2008050490A (en) Method for producing siloxane-based surface coating agent
KR20160122056A (en) Polysiloxane formulations and coatings for optoelectronic applications
TW202126724A (en) Fluorine-containing curable composition and article
JP6022870B2 (en) Photosensitive resin composition
JP4883269B2 (en) Method for producing curable polymethylsiloxane resin
JP4079383B2 (en) Silica-based coating solution
JPWO2011099505A1 (en) Outdoor installation device and antireflection layer for outdoor installation device
JP5967035B2 (en) Method for producing silyl phosphate and method for producing UV-absorbing silicone coating composition
JP7177889B2 (en) Liquid composition for film formation
JP2021143220A (en) Organopolysiloxane, coating composition, and coated article
JP2009148670A (en) Manufacturing method of coating film, and coating film
KR20160135884A (en) Organic-inorganic hybrid siloxane resin with excellent adhesion, heat resistance and chemical resistance and hybrid organic layer including the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140828

R150 Certificate of patent or registration of utility model

Ref document number: 5610521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250