JP5610572B2 - Steelmaking slag treatment method - Google Patents
Steelmaking slag treatment method Download PDFInfo
- Publication number
- JP5610572B2 JP5610572B2 JP2010200770A JP2010200770A JP5610572B2 JP 5610572 B2 JP5610572 B2 JP 5610572B2 JP 2010200770 A JP2010200770 A JP 2010200770A JP 2010200770 A JP2010200770 A JP 2010200770A JP 5610572 B2 JP5610572 B2 JP 5610572B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- steelmaking
- steelmaking slag
- content
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002893 slag Substances 0.000 title claims description 102
- 238000009628 steelmaking Methods 0.000 title claims description 55
- 238000000034 method Methods 0.000 title claims description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 127
- 229910052742 iron Inorganic materials 0.000 claims description 54
- 239000002994 raw material Substances 0.000 claims description 37
- 239000004568 cement Substances 0.000 claims description 26
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 18
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 16
- 239000001569 carbon dioxide Substances 0.000 claims description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 12
- 229910000831 Steel Inorganic materials 0.000 claims description 8
- 239000010959 steel Substances 0.000 claims description 8
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 239000011707 mineral Substances 0.000 claims description 5
- 238000003672 processing method Methods 0.000 claims description 5
- 229910021532 Calcite Inorganic materials 0.000 claims description 4
- 238000010298 pulverizing process Methods 0.000 description 22
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 18
- 238000006703 hydration reaction Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 230000036571 hydration Effects 0.000 description 17
- 239000000292 calcium oxide Substances 0.000 description 9
- 235000012255 calcium oxide Nutrition 0.000 description 9
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 8
- 239000000920 calcium hydroxide Substances 0.000 description 8
- 235000011116 calcium hydroxide Nutrition 0.000 description 8
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 8
- 229910052918 calcium silicate Inorganic materials 0.000 description 8
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 8
- 235000012241 calcium silicate Nutrition 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000004927 clay Substances 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 238000000634 powder X-ray diffraction Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- WETINTNJFLGREW-UHFFFAOYSA-N calcium;iron;tetrahydrate Chemical compound O.O.O.O.[Ca].[Fe].[Fe] WETINTNJFLGREW-UHFFFAOYSA-N 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 230000000887 hydrating effect Effects 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- -1 calcium hydroxide Chemical class 0.000 description 1
- 229910001576 calcium mineral Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910001719 melilite Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011802 pulverized particle Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Furnace Details (AREA)
Description
本発明は、製鋼工程で大量に副生する製鋼スラグの処理方法に関する。 The present invention relates to a method for treating steelmaking slag that is by-produced in large quantities in a steelmaking process.
製鋼産業においては、種々のプロセスや設備によって、また、製造する鋼種によって様々な組成や性状を有するスラグが副生する。例えば、銑鉄を調製するプロセスで用いる高炉からは高炉スラグが、銑鉄から製鋼するプロセスで用いる溶銑予備処理設備、転炉、及び電気炉からは、それぞれ、溶銑予備処理スラグ、転炉スラグ、及び電気炉スラグが副生する。そして、高炉スラグには水砕スラグ及び徐冷スラグがあり、溶銑予備処理スラグ或いは転炉スラグには、脱珪スラグ、脱リンスラグ、脱硫スラグ、及び脱炭スラグがあり、電気炉スラグにも酸化期スラグと還元期スラグが存在する。また、鋼種の違いで、普通炭素鋼、極低炭素鋼、特殊合金鋼、及びステンレス鋼等がある。 In the steelmaking industry, slag having various compositions and properties is produced as a by-product by various processes and facilities and by the steel type to be manufactured. For example, blast furnace slag from the blast furnace used in the process of preparing pig iron, hot metal pretreatment equipment, converter, and electric furnace used in the process of steelmaking from pig iron, respectively, hot metal pretreatment slag, converter slag, and electric Furnace slag is by-produced. The blast furnace slag includes granulated slag and slow-cooled slag. The hot metal pretreatment slag or converter slag includes desiliconized slag, dephosphorized slag, desulfurized slag, and decarburized slag. Period slag and reduction period slag exist. Also, there are ordinary carbon steel, ultra-low carbon steel, special alloy steel, stainless steel, etc., depending on the type of steel.
上記スラグのうち、高炉より副生する高炉水砕スラグは、セメント・コンクリート用混和材や路盤材等として利用されている。また、高炉水砕スラグ以外の製鋼スラグをセメント用混和材として使用することも提案されている(特許文献1)。 Among the slags, granulated blast furnace slag produced as a by-product from the blast furnace is used as a cement / concrete admixture or roadbed material. It has also been proposed to use steelmaking slag other than blast furnace granulated slag as an admixture for cement (Patent Document 1).
しかしながら、高炉水砕スラグ以外の製鋼スラグはメーカー及びロットによる組成、物性が大きく異なるために、これをセメント混和材として使用するとセメント組成物の品質変動が大きくなる虞があり、現状では充分に再利用されていない。そのため、高炉水砕スラグ以外の製鋼スラグを有効利用できる処理方法が求められている。加えて、製綱スラグは、ウスタイトのような鉄分に富む成分と、ビーライトのようなカルシウム分に富む成分が複雑に混在する焼きしまった状態であり、いわゆる被粉砕性が悪く、粉砕機の摩耗が激しく、大きな粉砕エネルギーを要し、粉砕コストが高くなるという問題もある。
なお、本発明でいう製鋼スラグとは、製鋼プロセスで生じるスラグの総称であり、具体的には溶銑予備処理スラグ、転炉スラグ、電気炉スラグ、溶融還元炉スラグ、二次精錬スラグやステンレススラグを指すものであり、高炉水砕スラグ及び高炉徐冷スラグは含まない。
However, since steelmaking slag other than granulated blast furnace slag varies greatly in composition and physical properties depending on the manufacturer and lot, the use of this as a cement admixture may increase the quality of the cement composition. Not used. Therefore, the processing method which can utilize effectively steelmaking slag other than blast furnace granulated slag is calculated | required. In addition, the steelmaking slag is a baked state in which an iron-rich component such as wustite and a calcium-rich component such as belite are complicatedly mixed, so-called grindability is poor, and the grinding machine There is also a problem that the wear is severe, a large pulverization energy is required, and the pulverization cost is high.
The steelmaking slag as used in the present invention is a general term for slag generated in the steelmaking process. Specifically, hot metal pretreatment slag, converter slag, electric furnace slag, smelting reduction furnace slag, secondary refining slag, and stainless slag. It does not include blast furnace granulated slag and blast furnace annealed slag.
本発明者らは、斯かる実情に鑑み、鋭意検討した結果、製鋼スラグを、水和させ、及び/又は、炭酸化させることにより、被粉砕性が向上すること、そして、前記処理物を粉砕・分級処理することにより、Fe2O3含有量が多い高鉄分含有物と、Fe2O3含有量が少ない低鉄分含有物とに分離・回収でき、該高鉄分含有物と低鉄分含有物をそれぞれ有効利用できることを見いだし、本発明を完成させたものである。 すなわち、本発明は、
[1] 製鋼スラグを加水後、粉砕し、分級して、Fe2O3含有量がもとの製綱スラグより多い高鉄分含有物及び/又はFe2O3含有量がもとの製綱スラグより少ない低鉄分含有物を回収することを特徴とする製鋼スラグの処理方法(請求項1)。
[2]製鋼スラグを加水後、あるいは加水と同時に二酸化炭素と接触させ、粉砕し、分級して、Fe2O3含有量がもとの製綱スラグより多い高鉄分含有物及び/又はFe2O3含有量がもとの製綱スラグより少ない低鉄分含有物とを回収することを特徴とする製鋼スラグの処理方法(請求項2)。
[3]上記低鉄分含有物をセメントクリンカー原料、及び/又はコンクリート用混和材として使用することを特徴とする請求項1〜2のいずれかに記載の製鋼スラグの処理方法(請求項3)。
[4]上記高鉄分含有物を製鋼原料、セメントクリンカー用鉄原料、及び/又はコンクリート用混和材として使用することを特徴とする請求項1〜3のいずれかに記載の製鋼スラグの処理方法(請求項4)。
As a result of intensive studies in view of such circumstances, the present inventors have improved the pulverizability by hydrating and / or carbonizing steelmaking slag, and pulverizing the treated product. by and classifying process, Fe 2 O 3 content is more high iron inclusions and, Fe 2 O 3 can be separated and recovered in the content is less low iron inclusions, the high iron content thereof and the low iron content product The present invention has been completed by finding that each can be effectively used. That is, the present invention
[1] After the steel slag hydrolysis, pulverized and classified, Fe 2 O 3 content is more than the original Seitsuna slag high iron content product and / or Fe 2 O 3 content of the original Seitsuna A method for treating steelmaking slag, wherein a low iron content less than slag is recovered (claim 1).
[2] After the steelmaking slag is added or simultaneously with the addition of carbon dioxide, it is crushed and classified to have a high iron content and / or Fe 2 having a Fe 2 O 3 content higher than that of the original steelmaking slag. O 3 treatment method steelmaking slag content and recovering the less than the original Seitsuna slag low iron-containing material (claim 2).
[3] The steelmaking slag treatment method according to any one of claims 1 to 2, wherein the low iron content is used as a cement clinker raw material and / or a concrete admixture (claim 3).
[4] The method for treating steelmaking slag according to any one of claims 1 to 3, wherein the high iron content is used as a steelmaking raw material, an iron raw material for cement clinker, and / or an admixture for concrete ( Claim 4).
本発明では、製鋼スラグを水和させ、及び/又は、炭酸化させることにより、製鋼スラグの被粉砕性を向上させることができる。また、製鋼スラグから高鉄分含有物と低鉄分含有物を回収し、該高鉄分含有物は製鋼原料等として再使用し、低鉄分含有物(高カルシウム分含有物)は、セメントクリンカー用原料及び/又はコンクリート用混和材などとして使用することができるので、従来、有効利用が困難であった製鋼スラグの有効利用を可能とし、埋め立て処分量を大幅に減少することができる。 In this invention, the pulverization property of steelmaking slag can be improved by hydrating and / or carbonating steelmaking slag. In addition, high iron content and low iron content are recovered from steelmaking slag, the high iron content is reused as a steelmaking raw material, etc., and the low iron content (high calcium content) is used as a raw material for cement clinker and Since it can be used as an admixture for concrete, etc., steelmaking slag that has been difficult to use effectively can be used effectively, and the amount of landfill disposal can be greatly reduced.
以下、本発明について詳細に説明する。
本発明で対象とする製鋼スラグは、溶銑予備処理スラグ、転炉スラグ、電気炉スラグ、溶融還元炉スラグ、二次精錬スラグやステンレススラグである。これらのスラグは、CaO、Fe2O3、SiO2を主要な化学成分とし、その他に、Al2O3、MnO、MgO、P2O5等を含んでいる。また、化合物としては、ビーライト、メリライト、ウスタイト、カルシウムフェライトなどを主要化合物として含んでいる。
Hereinafter, the present invention will be described in detail.
Steelmaking slag targeted in the present invention is hot metal pretreatment slag, converter slag, electric furnace slag, smelting reduction furnace slag, secondary refining slag, and stainless steel slag. These slags contain CaO, Fe 2 O 3 and SiO 2 as main chemical components, and additionally contain Al 2 O 3 , MnO, MgO, P 2 O 5 and the like. The compounds include belite, melilite, wustite, calcium ferrite and the like as main compounds.
製鋼スラグ中の鉄は、金属鉄として粒径100μm以上の塊で存在する他に、ビーライトなど及びその間隙を埋めるウスタイト、カルシウムフェライトなどの鉱物が10〜100μmの粒子径で存在している。製鋼スラグから高鉄分含有物を回収するには、製鋼スラグ中のビーライトなどのセメント系鉱物を選択的に除去する必要がある。そのために、本発明においては、ビーライトなどのセメント系鉱物を選択的に水和させ、水酸化カルシウムなどの水和物とし、スラグ粒を脆弱化させ、被粉砕性を改善させる。続いて、上記水酸化カルシウムなどの水和物を炭酸化させ、炭酸カルシウムとし、更にスラグ粒を脆弱化させ、被粉砕性を更に改善できることを見出した。上記の製綱スラグは、粉砕して、脆弱化された低鉄分含有物(炭酸化カルシウムなど)と未反応の高鉄分含有物(ウスタイト、カルシウムフェライトなど)での被粉砕性の相違により、高鉄分含有物は粗粒に、低鉄分含有物は、細粒となる。次いで、高鉄分含有物と低鉄分含有物の粒径、及び/又は比重の相違を利用して分級し、分離できることを見出した。
なお、本願においては、スラグ中の鉄は、すべてFe2O3換算で表示する。該Fe2O3中にはFeやFeOの形態のものも含まれる。
Iron in the steelmaking slag is present as a metal iron in a lump having a particle size of 100 μm or more, and belite, etc. and minerals such as wustite and calcium ferrite filling the gap are present in a particle size of 10 to 100 μm. In order to recover high iron content from steelmaking slag, it is necessary to selectively remove cementitious minerals such as belite in the steelmaking slag. Therefore, in the present invention, cementitious minerals such as belite are selectively hydrated to form hydrates such as calcium hydroxide, weakening slag grains and improving grindability. Subsequently, it was found that the above hydrates such as calcium hydroxide can be carbonated to form calcium carbonate, further fragile slag grains and further improve the pulverizability. The above steelmaking slag is pulverized and has high pulverization due to the difference in pulverization between the weakened low iron content (calcium carbonate, etc.) and the unreacted high iron content (wustite, calcium ferrite, etc.). The iron content is coarse and the low iron content is fine. Next, it was found that the particles can be classified and separated using the difference in particle size and / or specific gravity between the high iron content and the low iron content.
In the present application, all iron in the slag is expressed in terms of Fe 2 O 3 . The Fe 2 O 3 includes those in the form of Fe or FeO.
製綱スラグは、まずは粗粉砕を行うことが好ましく、その粒径は10mm以下であることが好ましく、5mm以下であることがより好ましい。続いて行う水和処理、及び/又は炭酸化処理の反応を促進できるからである。粉砕機は、ボールミル、竪型ミル、ジョークラッシャー、ハンマクラッシャー、パルベライザー等、10mm以下に粉砕できるものであれば、種類を選ばない。 The steelmaking slag is preferably first coarsely pulverized, and the particle size thereof is preferably 10 mm or less, more preferably 5 mm or less. This is because the subsequent hydration treatment and / or carbonation reaction can be promoted. Any type of pulverizer can be used as long as it can pulverize to 10 mm or less, such as a ball mill, a vertical mill, a jaw crusher, a hammer crusher, or a pulverizer.
次いで、前段粗粉砕を行った製鋼スラグに加水する。加水は、粗粉砕と同時に、加湿、湿式粉砕によっても良い。加水量は、濡れ過ぎず、炭酸化反応を妨げない量、又は後に行う処理において乾燥を必要としない量とすることが好ましく、具体的には、製綱スラグ100重量部に対して、30重量部未満が好ましく、5重量部未満がより好ましい。最少量は、製綱スラグ全体が、濡れわたる量であり、粗粉砕された粒径に依存するが、1重量部程度である。加水後の水和処理は、温度5〜90℃で行う。より好ましくは、温度30〜80℃で行う。温度が5℃未満であると水和反応の進行が遅く、90℃より高いと水分が蒸発し水和が進行しないために加水が必要となる虞がある。該加水に使用する水は、後述する回収物を製鋼原料、セメントクリンカー原料やコンクリート用混和材として使用する場合に望ましくない成分を含まないものであれば、炭酸水、アルカリ水、鉱酸水等、種類を選ばない。 Subsequently, it is added to steelmaking slag that has been coarsely pulverized in the previous stage. The hydration may be performed by humidification or wet pulverization simultaneously with coarse pulverization. The amount of water added is preferably an amount that is not excessively wet and does not interfere with the carbonation reaction, or an amount that does not require drying in the subsequent treatment. Specifically, 30 wt. Less than 5 parts by weight is preferable, and less than 5 parts by weight is more preferable. The minimum amount is the amount that the entire steelmaking slag wets, and is about 1 part by weight although it depends on the coarsely pulverized particle size. Hydration after the addition is performed at a temperature of 5 to 90 ° C. More preferably, it is performed at a temperature of 30 to 80 ° C. If the temperature is lower than 5 ° C, the hydration reaction proceeds slowly. If the temperature is higher than 90 ° C, the water evaporates and hydration does not proceed. Water used for the water is carbonated water, alkaline water, mineral acid water, etc. as long as it does not contain undesirable components when the recovered material described later is used as a steelmaking raw material, a cement clinker raw material or a concrete admixture. , Choose any type.
加水による水和処理は、粉末エックス線回折において、水酸化カルシウムのピークが認められるまで行なうことが好ましい。水酸化カルシウムのピークが認められるまで水和処理を行なうことにより、製鋼スラグの被粉砕性を向上させることができる。
なお、水和処理は、例えば、製鐵メーカー等の敷地で野積みにして、空気中で加水をして、所定時間経過させること(いわゆるエージング)で行うこともできる。
The hydration treatment with water is preferably carried out until a calcium hydroxide peak is observed in powder X-ray diffraction. By performing the hydration treatment until a calcium hydroxide peak is observed, the pulverizability of the steelmaking slag can be improved.
The hydration treatment can also be performed, for example, by laying in a site such as a steel maker, adding water in the air, and allowing a predetermined time to elapse (so-called aging).
本発明においては、上記加水を行った製鋼スラグをさらに炭酸化することにより、被粉砕性をより向上させることができる。二酸化炭素との接触による炭酸化は、加水と同時、あるいは炭酸水、加湿二酸化炭素ガスによることもできる。二酸化炭素との接触による炭酸化処理は、工業用二酸化炭素ガスの供給により行うこともできるが、鉄鋼、セメント製造等からの排ガスを用いるのがよい。炭酸化処理の二酸化炭素ガス濃度は30体積%以下で行うことが好ましい。二酸化炭素ガス濃度が、30体積%を超えると二酸化炭素ガスの濃縮にかかるコストが必要となる。また、加湿二酸化炭素ガスは、鉄鋼、セメント製造からの排ガスで、水分ガス濃度を5体積%以上含有するものが好ましい。水分ガス濃度が5体積%未満であると炭酸化反応の進行が遅い、或いは水分が蒸発し炭酸化が進行しないために加水が必要となる。炭酸化温度は、50〜90℃である。より好ましくは、60〜80℃である。炭酸化温度が50℃未満であると、炭酸化反応の進行が遅く、90℃より高いと水分が蒸発し炭酸化が進行しないために加水が必要となる虞がある。
なお、排ガスの二酸化炭素ガス濃度は、セメント製造および鉄鋼高炉において20体積%、水分ガス濃度は、セメント製造において10体積%以上、鉄鋼高炉において7体積%程度である。排ガス温度は、送風量などを制御して調整することができる。
炭酸化処理は、粉末エックス線回折において、炭酸カルシウム(カルサイト,アラゴナイト)のピークが認められるまで行なうことが好ましい。炭酸カルシウム(カルサイト,アラゴナイト)のピークが認められるまで水和処理を行なうことにより、製鋼スラグの被粉砕性をより向上させることができる。
In this invention, grindability can be improved more by carbonating the steelmaking slag which performed the said water addition. Carbonation by contact with carbon dioxide can be performed simultaneously with water addition, or with carbonated water or humidified carbon dioxide gas. Carbonation treatment by contact with carbon dioxide can be performed by supplying industrial carbon dioxide gas, but it is preferable to use exhaust gas from steel, cement production or the like. The carbon dioxide gas concentration in the carbonation treatment is preferably 30% by volume or less. If the carbon dioxide gas concentration exceeds 30% by volume, the cost for concentration of carbon dioxide gas is required. Further, the humidified carbon dioxide gas is preferably an exhaust gas from the manufacture of steel and cement, and contains a moisture gas concentration of 5% by volume or more. If the moisture gas concentration is less than 5% by volume, the carbonation reaction proceeds slowly, or the water evaporates and the carbonation does not proceed, so water is required. Carbonation temperature is 50-90 degreeC. More preferably, it is 60-80 degreeC. If the carbonation temperature is less than 50 ° C., the carbonation reaction proceeds slowly, and if it is higher than 90 ° C., the water evaporates and the carbonation does not proceed.
The carbon dioxide gas concentration of the exhaust gas is 20% by volume in cement production and steel blast furnace, and the moisture gas concentration is about 10% by volume or more in cement production and about 7% by volume in steel blast furnace. The exhaust gas temperature can be adjusted by controlling the air flow rate.
The carbonation treatment is preferably performed until a peak of calcium carbonate (calcite, aragonite) is observed in powder X-ray diffraction. By performing the hydration treatment until a peak of calcium carbonate (calcite, aragonite) is observed, the pulverizability of the steelmaking slag can be further improved.
次いで、水和、及び/又は炭酸化を行った製鋼スラグを粉砕する。水和、及び/又は炭酸化により脆弱化された低鉄分含有物はより粉砕され、未反応の高鉄分含有物は粉砕されず、低鉄分含有物は細粒に、高鉄分含有物は粗粒になる。
粉砕は、全粒子の95質量%が篩を通過する粒径で10〜100μmまで行うことが好ましい。粒度が10μm未満であると粉砕に大きなエネルギーを要し、100μmより粗いと鉱物の粒径より大きいために必要な分離効果が得られない。粉砕機は、ボールミル、竪型ミル等、最終的に100μm以下に粉砕できるものであれば、種類を選ばない。
Subsequently, the steelmaking slag which performed hydration and / or carbonation is grind | pulverized. Low iron content weakened by hydration and / or carbonation is pulverized more, unreacted high iron content is not pulverized, low iron content is fine, high iron content is coarse become.
The pulverization is preferably performed up to 10 to 100 μm with a particle size at which 95% by mass of all particles pass through the sieve. When the particle size is less than 10 μm, a large amount of energy is required for pulverization. Any type of pulverizer can be used as long as it can finally be pulverized to 100 μm or less, such as a ball mill or a vertical mill.
最後に、水和、及び/又は炭酸化、粉砕を行った製鋼スラグを粒径、及び/又は比重の相違を利用して、できるだけ分離効率の高い条件において分級し、比重が大きく粗粉分である高鉄分含有物と、比重が小さく微粉分である低鉄分含有物をそれぞれ回収する。分級機としては、サイクロン等の気流分級機、遠心力式分級機や慣性力式分級機等の慣用の分級機を使用することができ、湿式、乾式の別を問わない。 Finally, the steelmaking slag that has been hydrated and / or carbonated and pulverized is classified under conditions of high separation efficiency as much as possible by utilizing the difference in particle size and / or specific gravity. A high iron content and a low iron content having a small specific gravity and a fine powder are recovered. As the classifier, an air classifier such as a cyclone, a conventional classifier such as a centrifugal classifier or an inertial classifier can be used, regardless of whether it is a wet type or a dry type.
上記の粉砕、分級は、必ずしもすべての粒子が目的の粒径となるまで粉砕を行った後に分級するのではなく、途中で分級し、粗粒分はさらに粉砕処理に戻してもよいし、加水処理から繰り返してもよい。また、粉砕と分級機能が一体となった粉砕機により連続的に行ってもよく、粗粒分はさらに粉砕処理に戻してもよいし、加水処理から繰り返してもよい。 The above pulverization and classification are not necessarily performed after pulverization until all the particles have the desired particle size, but are classified in the middle, and the coarse particles may be further returned to the pulverization treatment. You may repeat from a process. Moreover, it may be carried out continuously by a pulverizer in which the pulverization and classification functions are integrated, and the coarse particles may be returned to the pulverization treatment or repeated from the hydration treatment.
本発明において、回収した低鉄分含有物は、有効利用率の向上を図るため、Fe2O3含有量が25質量%以下であることが好ましく、23質量%以下であることがより好ましく、21質量%以下であることが更に好ましく、20質量%以下であることが特に好ましい。 In the present invention, the recovered low iron inclusions, effective for achieving utilization improvements, preferably Fe 2 O 3 content is more than 25 wt%, more preferably at most 23 mass%, 21 The content is more preferably no more than mass%, and particularly preferably no more than 20 mass%.
上記低鉄分含有物は、セメントクリンカー用原料、裏込め充填材や、セメント・コンクリート用混和材として使用することができるが、本発明においては、低鉄分含有物の有効利用促進の観点から、セメントクリンカー用原料として使用することがより好ましい。低鉄分含有物は、CaO含有量が多く、また、ある程度のFe2O3を含むことや、マンガン、マグネシウムやクロムの含有量が少ないことから、セメントクリンカー用原料として好適に使用することができる。
該低鉄分含有物をセメントクリンカー用原料として使用する場合はCaO原料やFe2O3原料として使用することができ、石灰石、生石灰、消石灰などの他のCaO原料、珪石、粘土などのSiO2原料、粘土、石炭灰などのA12O3原料、銅カラミや製鍼所副産ダストなどの他のFe2O3原料と併用して使用し、成分調整すれば良い。
The low iron content can be used as a raw material for cement clinker, a backfill filler, and an admixture for cement and concrete. In the present invention, from the viewpoint of promoting effective utilization of the low iron content, More preferably, it is used as a raw material for clinker. The low iron content can be suitably used as a raw material for cement clinker because it contains a large amount of CaO and contains a certain amount of Fe 2 O 3 and a small content of manganese, magnesium and chromium. .
When the low iron content is used as a raw material for cement clinker, it can be used as a CaO raw material or an Fe 2 O 3 raw material, and other CaO raw materials such as limestone, quicklime and slaked lime, and SiO 2 raw materials such as silica and clay. It can be used in combination with other Fe 2 O 3 raw materials such as A1 2 O 3 raw materials such as clay and coal ash, copper calami and ironworks by-product dust.
本発明において、回収した高鉄分含有物は、有効利用率の向上を図るため、Fe2O3含有量が30質量%以上であることが好ましく、35質量%以上であることがより好ましく、38質量%以上であることが更に好ましく、40質量%以上であることが特に好ましい。 In the present invention, the recovered high iron inclusions, effective for achieving utilization improvements, preferably Fe 2 O 3 content is more than 30 mass%, more preferably at least 35 wt%, 38 The content is more preferably at least 40% by mass, and particularly preferably at least 40% by mass.
上記高鉄分含有物は、製鋼原料、セメントクリンカー用原料や、コンクリート用混和材として使用することができるが、本発明においては、製鋼原料として使用することがより好ましい。その理由は、(1)製鋼スラグは、一般にマンガン、マグネシウムやクロム (セメントクリンカー用原料やコンクリート用混和材としては望ましくない成分)を含んでおり、該マンガン、マグネシウムやクロムはウスタイトに非常に多く固溶しているので、マンガン、マグネシウムやクロムは高鉄分含有物中に多く含まれることになること、また、(2)製鋼スラグは、リン(製鋼原料としては望ましくない成分)を含んでおり、該リンはほぼ全量がビーライトに固溶しているので、高鉄分含有物中のリン含有量が少なくなること、からである。
なお、該高鉄分含有物のマンガン、マグネシウムやクロム含有量が少ない場合は、セメントクリンカー用原料やコンクリート(特に重量コンクリート)用混和材として使用できることは言うまでもない。セメントクリンカー用鉄原料として使用する使用する場合は、CaO原料やFe2O3原料として使用することができ、石灰石、生石灰、消石灰などのCaO原料、珪石、粘土などのSiO2原料や粘土、石炭灰などのAl2O3原料と併用して使用し、成分調整すれば良い。
Although the said high iron content thing can be used as a steelmaking raw material, the raw material for cement clinker, and the admixture for concrete, in this invention, it is more preferable to use as a steelmaking raw material. The reason is as follows: (1) Steelmaking slag generally contains manganese, magnesium and chromium (undesirable ingredients for cement clinker raw materials and concrete admixtures), and the amount of manganese, magnesium and chromium is very high in wustite. Since it is a solid solution, manganese, magnesium and chromium will be contained in high iron content, and (2) steelmaking slag contains phosphorus (an undesirable component for steelmaking raw materials). This is because almost all of the phosphorus is dissolved in belite, so that the phosphorus content in the high iron content is reduced.
Needless to say, when the content of manganese, magnesium or chromium in the high iron content is small, it can be used as a raw material for cement clinker or an admixture for concrete (particularly heavy concrete). When used as an iron raw material for cement clinker, it can be used as a CaO raw material or an Fe 2 O 3 raw material, CaO raw materials such as limestone, quicklime and slaked lime, SiO 2 raw materials such as silica and clay, clay, coal It may be used in combination with an Al 2 O 3 raw material such as ash to adjust the components.
次に、実施例を挙げて本発明をさらに説明するが、本発明は、これら実施例により限定されるものではない。
1.使用転炉スラグ(水和・炭酸化処理用)
使用した転炉スラグの化学成分(質量%)は、CaO:39.0%、Fe2O3:28.0%、SiO2:15.5%、Al2O3:2.3%であった。この転炉スラグに以下の処理をした。
(1)
上記転炉スラグを5mm以下に粗粉砕した。
(2)
上記転炉スラグを5mm以下に粗粉砕した後、水/スラグ比15質量%で加水し、密封状態で、80℃で3日水和を行った(水和処理)
(3)
上記転炉スラグを5mm以下に粗粉砕した後、水/スラグ比5質量%で加水し、その後60℃、相対湿度95%に保持して、二酸化炭素ガス(10体積%の空気希釈ガス)を5日間流通させ、炭酸化を行った(炭酸化処理)。
EXAMPLES Next, although an Example is given and this invention is further demonstrated, this invention is not limited by these Examples.
1. Used converter slag (for hydration and carbonation treatment)
Chemical composition of the converter slag used (mass%), CaO: 39.0%, Fe 2 O 3: 28.0%, SiO 2: 15.5%, Al 2 O 3: met 2.3% It was. This converter slag was processed as follows.
(1)
The converter slag was coarsely pulverized to 5 mm or less.
(2)
After roughly pulverizing the converter slag to 5 mm or less, it was hydrated at a water / slag ratio of 15% by mass and hydrated at 80 ° C. for 3 days in a sealed state (hydration treatment).
(3)
After roughly pulverizing the converter slag to 5 mm or less, water is added at a water / slag ratio of 5% by mass, and then maintained at 60 ° C. and a relative humidity of 95%. It was circulated for 5 days to perform carbonation (carbonation treatment).
上記無処理(粗粉砕試料)、試料1(水和処理)、試料2(炭酸化処理)について、振動ミルで、1分間の振動粉砕を行い、その粒度分布を測定した結果を表1に示す。なお、粒径は、日機装株式会社製のマイクロトラック等を用いて測定した。 Table 1 shows the results of measuring the particle size distribution of the untreated (coarse crushed sample), sample 1 (hydration treatment), and sample 2 (carbonation treatment) using a vibration mill for 1 minute of vibration pulverization. . The particle size was measured using a Nikkiso Co., Ltd. microtrack.
図1には、上記3試料について、粒径の大きな分画の質量から順次、小さな分画まで、累積質量を棒グラフで示した。無処理、試料1、試料2の順に、300μm以上の粒径部分が減少し、それ以下の4分画の粒径部分が、いずれも増加した。水和処理のみでも被粉砕性の改善がみられ、炭酸化処理をすることで、更に被粉砕性が改善された。 In FIG. 1, the cumulative mass of the above three samples from the mass of the fraction with a large particle size to the small fraction in order is shown as a bar graph. In the order of untreated, Sample 1 and Sample 2, the particle size portion of 300 μm or more decreased, and the particle size portion of the 4 fractions below that increased. The pulverization was improved only by the hydration treatment, and the pulverization was further improved by the carbonation treatment.
図2には、上記3試料の粉末エックス線回折図を示した。水和処理により、ビーライトといったカルシウム系鉱物が減り、水酸化カルシウムのピークが顕著になる。また、炭酸化処理により、ビーライトといったカルシウム系鉱物がさらに減り、炭酸カルシウム(カルサイト,アラゴナイト)のピークが顕著になり、水酸化カルシウムは減少した。 FIG. 2 shows powder X-ray diffraction patterns of the above three samples. By hydration treatment, calcium-based minerals such as belite are reduced, and the peak of calcium hydroxide becomes remarkable. Further, the carbonation treatment further reduced calcium minerals such as belite, the peak of calcium carbonate (calcite, aragonite) became prominent, and calcium hydroxide decreased.
表2には、無処理の転炉スラグ、水和試料1、更に炭酸化した試料2について、63μm篩を全体の95質量%の試料が通過するまで、ボールミル粉砕を行い、粉砕物を太平洋エンジニアリング社製クラシールで、気流分級により細粉と粗粉にわけ、これらの主要4成分を化学分析した結果を示す。比較のために、もとのスラグの未分級原料の主要4成分の化学組成も併記した。なお、細粉分(低鉄分含有物)と粗粉分(高鉄分含有物)の粒径は、日機装株式会社製のマイクロトラックを用いて測定した。 Table 2 shows that unprocessed converter slag, hydrated sample 1, and carbonated sample 2 were ball milled until a total of 95% by mass of the sample passed through a 63 μm sieve. The result of chemical analysis of these four main components is shown by the company's Kura-Seal, divided into fine powder and coarse powder by air classification. For comparison, the chemical composition of the four main components of the unclassified raw material of the original slag is also shown. The particle sizes of the fine powder (low iron content) and the coarse powder (high iron content) were measured using a microtrack manufactured by Nikkiso Co., Ltd.
気流分級による、Fe2O3分の粗粉への濃縮が顕著であり、水和処理、続いて炭酸化処理を行うことでその細粉との含有率の相違が大きくなり、より大きな分離効果を得ることができ、細粉では、セメント原料化での製造での使用原単位を大きくするために必要なFe2O3含有量を十分な量(20質量%以下がより好ましい)まで低減できた。この結果は、1回の粉砕、分級の結果で実現したものであるが、粉砕、分級を繰り返し、より分離したものを原料化しても良い。 Concentration to Fe 2 O 3 min coarse powder by airflow classification is remarkable, and by performing hydration treatment followed by carbonation treatment, the difference in content with the fine powder becomes large, and a greater separation effect In the case of fine powder, the Fe 2 O 3 content necessary for increasing the basic unit used in the production of cement raw materials can be reduced to a sufficient amount (more preferably 20% by mass or less). It was. This result is realized by the result of one pulverization and classification. However, the pulverization and classification may be repeated to further separate the material.
低コストで製鋼スラグを有効利用できる処理方法を提供し、高鉄分含有物は、製鋼原料、又はセメントクリンカー用鉄原料、コンクリート用混和材として使用し、低鉄分含有物は、セメントクリンカー原料、又はコンクリート用混和材として、積極的に再資源化が可能となった。 A processing method capable of effectively utilizing steelmaking slag at low cost is provided, and the high iron content is used as a steelmaking raw material, or iron raw material for cement clinker, or an admixture for concrete, and the low iron content is used as a cement clinker raw material, or As an admixture for concrete, it has become possible to actively recycle.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010200770A JP5610572B2 (en) | 2010-09-08 | 2010-09-08 | Steelmaking slag treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010200770A JP5610572B2 (en) | 2010-09-08 | 2010-09-08 | Steelmaking slag treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012056790A JP2012056790A (en) | 2012-03-22 |
JP5610572B2 true JP5610572B2 (en) | 2014-10-22 |
Family
ID=46054333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010200770A Active JP5610572B2 (en) | 2010-09-08 | 2010-09-08 | Steelmaking slag treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5610572B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6004880B2 (en) * | 2012-10-11 | 2016-10-12 | 株式会社トクヤマ | Method for producing Portland cement clinker |
JP6252438B2 (en) * | 2014-11-06 | 2017-12-27 | Jfeスチール株式会社 | Apparatus and method for separating iron from high temperature slag |
KR101964975B1 (en) * | 2017-08-29 | 2019-04-02 | 서경산업주식회사 | Method of producing calcium carbinate and iron oxide from steel making slag |
CN107540250B (en) * | 2017-10-13 | 2020-01-14 | 武汉理工大学 | Pre-separation steel slag split-phase clinker cement production process |
CN115365274B (en) * | 2022-09-20 | 2024-05-28 | 中南大学 | A method for improving steel slag grinding efficiency and iron resource recovery rate |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5912613B2 (en) * | 1980-08-21 | 1984-03-24 | 新日本製鐵株式会社 | Stabilization method using hot water treatment for steelmaking slag |
JPS57152411A (en) * | 1981-03-17 | 1982-09-20 | Nippon Steel Corp | Treatment for stabilization of slag in steel making |
JPH0611657B2 (en) * | 1985-07-19 | 1994-02-16 | 日本鋼管株式会社 | Method for recovering lime from dephosphorized slag |
JPS6335442A (en) * | 1986-07-30 | 1988-02-16 | 新日本製鐵株式会社 | Steel slag stabilization treatment |
JP4719082B2 (en) * | 2006-05-29 | 2011-07-06 | 新日本製鐵株式会社 | High temperature slag treatment method |
JP4719091B2 (en) * | 2006-07-03 | 2011-07-06 | 新日本製鐵株式会社 | High temperature slag treatment equipment |
JP2009126748A (en) * | 2007-11-26 | 2009-06-11 | Nippon Steel Corp | Slag processing method |
JP4913023B2 (en) * | 2007-11-28 | 2012-04-11 | 新日本製鐵株式会社 | Slag manufacturing method |
JP4992778B2 (en) * | 2008-03-19 | 2012-08-08 | Jfeスチール株式会社 | Method for producing slag for mixed cement |
JP2011236115A (en) * | 2010-04-14 | 2011-11-24 | Taiheiyo Cement Corp | Treatment method of steel slag |
-
2010
- 2010-09-08 JP JP2010200770A patent/JP5610572B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012056790A (en) | 2012-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Das et al. | An overview of utilization of slag and sludge from steel industries | |
US10584060B2 (en) | Process and system for eliminating the potential for LD and EAF steel slag expansion | |
KR101903438B1 (en) | Non-roasting Pellet Composition Prepared By Using Melted Iron slags and Melted Iron Process By-products, and Pellet Preparation Method | |
JP7450409B2 (en) | Method for producing cement mixture, mixed cement and carbon dioxide adsorbent | |
JP5610572B2 (en) | Steelmaking slag treatment method | |
CN100503852C (en) | Steelsmelting dust-mud pelletizing slag-melting agent compounding method | |
CN102114379A (en) | Desulfurizing agent and preparation and application thereof | |
WO2018099558A1 (en) | Metallic ore pellets | |
WO2013127320A1 (en) | Method for modifying high-temperature steel slag by using compound materials of tailings | |
KR101569490B1 (en) | Neutralizing method for waste sulfuric acid using De-Sulfurized slag | |
CN104212931A (en) | Method for producing metal iron powder by using deep reduction of rotary kiln | |
JP2011236115A (en) | Treatment method of steel slag | |
KR101315350B1 (en) | Treating method of byproduct | |
Ryu et al. | Utilization of steelmaking slag in cement clinker production: A review | |
KR101168681B1 (en) | Portland cement clinker and manufacturing method thereof | |
KR101839251B1 (en) | Aklaline gypsum and method for producing alkaline gypsum using de-sulfurized slag, admixture, slagcement and conctete composition comprising the aklaline gypsum | |
CN108178530A (en) | A kind of slag base mineral admixture and preparation method and application | |
JP3554389B2 (en) | Manufacturing method of cement clinker | |
WO2018099559A1 (en) | Metallic ore pellets | |
JP5467939B2 (en) | Steelmaking slag treatment method | |
KR101366835B1 (en) | Cement composition using desulphurizing dust | |
JP2835467B2 (en) | Method for producing alumina cement from electric furnace slag | |
CN118019862A (en) | Method for treating steel slag of steel mill | |
CN114163148A (en) | A kind of solid waste-based cementitious material for desulfurization tailings containing molten iron and preparation method thereof | |
Ambasta et al. | Utilization of solid waste from steel melting shop |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130411 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140829 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5610572 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |