[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5605135B2 - Self-propelled transport system using a capacitor and secondary battery as power source - Google Patents

Self-propelled transport system using a capacitor and secondary battery as power source Download PDF

Info

Publication number
JP5605135B2
JP5605135B2 JP2010220950A JP2010220950A JP5605135B2 JP 5605135 B2 JP5605135 B2 JP 5605135B2 JP 2010220950 A JP2010220950 A JP 2010220950A JP 2010220950 A JP2010220950 A JP 2010220950A JP 5605135 B2 JP5605135 B2 JP 5605135B2
Authority
JP
Japan
Prior art keywords
capacitor
converter
bidirectional
secondary battery
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010220950A
Other languages
Japanese (ja)
Other versions
JP2012080612A (en
Inventor
勝己 松下
英昭 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakanishi Metal Works Co Ltd
Original Assignee
Nakanishi Metal Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakanishi Metal Works Co Ltd filed Critical Nakanishi Metal Works Co Ltd
Priority to JP2010220950A priority Critical patent/JP5605135B2/en
Priority to CN201110222999.0A priority patent/CN102442217B/en
Publication of JP2012080612A publication Critical patent/JP2012080612A/en
Application granted granted Critical
Publication of JP5605135B2 publication Critical patent/JP5605135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、所定経路に沿って移動して搬送物を運搬する自走式キャリアにキャパシタ及び二次電池を備え、これらに充電された電力を用いて自走式キャリアを駆動する自走式搬送システムに関するものである。   The present invention includes a capacitor and a secondary battery in a self-propelled carrier that moves along a predetermined path and conveys a conveyed product, and uses the power charged in the self-propelled carrier to drive the self-propelled carrier. It is about the system.

自動搬送車に駆動輪を駆動する電動機及びその駆動制御装置並びに駆動用電源としての電気二重層キャパシタを備え、工場内の適宜位置に設置した充電ステーションの充電用電源から電気二重層キャパシタに充電した電力を駆動制御装置へ供給して電動機を駆動することにより自動搬送車を移動させる、電気二重層キャパシタを電源とした自走式搬送システムがあり(例えば、特許文献1の図1及び図4参照。)、電気二重層キャパシタの補助エネルギ源として電気二重層キャパシタと並列に接続した鉛二次電池を用いるものもある(特許文献1の図2参照。)。
また、無人搬送車に駆動輪を駆動する電動機及びその駆動制御装置並びにバッテリ及び該バッテリに並列接続されたキャパシタを備え、工場内の適宜位置に設置した充電ステーションの充電用電源(給電装置)からバッテリ及びキャパシタに充電し、急速充放電特性に優れたキャパシタの充電完了時点で充電を完了して無人搬送車の拘束を解くようにしたものがある(例えば、特許文献2参照。)。
The automatic transport vehicle is equipped with an electric motor for driving the driving wheel, its drive control device, and an electric double layer capacitor as a driving power source, and the electric double layer capacitor is charged from the charging power source of the charging station installed at an appropriate position in the factory. There is a self-propelled conveyance system using an electric double layer capacitor as a power source that moves an automatic conveyance vehicle by supplying electric power to a drive control device and driving an electric motor (see, for example, FIGS. 1 and 4 of Patent Document 1). In some cases, a lead secondary battery connected in parallel with the electric double layer capacitor is used as an auxiliary energy source for the electric double layer capacitor (see FIG. 2 of Patent Document 1).
In addition, an automatic motor for driving the driving wheel to the automatic guided vehicle, its drive control device, a battery and a capacitor connected in parallel to the battery, from a charging power source (power feeding device) of a charging station installed at an appropriate position in the factory There is a battery that charges a battery and a capacitor, and completes charging at the time of completion of charging of the capacitor excellent in rapid charge / discharge characteristics to release the restraint of the automatic guided vehicle (for example, see Patent Document 2).

特開平7−163016号公報(図1−2、図4)JP-A-7-163016 (FIGS. 1-2 and 4) 特開2008−137451号公報(図1)JP 2008-137451 A (FIG. 1)

キャパシタを電源とした自走式搬送システムにおいて、自走式キャリアの数が充電ステーションの数よりも多く、ラインを休日の間(例えば毎週の休日である2日間)停止させる場合においては、この停止期間中に充電ステーション以外の場所に待機する自走式キャリアが存在する。このように充電ステーション以外の場所に待機する自走式キャリアを休日明けに運転再開する際に、キャパシタは自然放電量が大きいとともに前記停止期間中における待機電力により、キャパシタの残電圧が定格値以下になって電池切れにより運転再開ができないことがある。
このような電池切れ対策として、充電ステーションの数を自走式キャリアの数と一致させるように多くの充電ステーションを設置すること、又は、キャパシタの容量を大きくすることが考えられるが、前者の対策ではコストが増大し、後者の対策ではコストが増大するとともにキャパシタの体積及び重量も増大するため、これら何れの対策によっても実用に不向きなものになってしまう。
In a self-propelled transport system using a capacitor as a power source, if the number of self-propelled carriers is larger than the number of charging stations and the line is stopped during a holiday (for example, two days that are weekly holidays), this stop There is a self-propelled carrier that waits at a place other than the charging station during the period. Thus, when the self-propelled carrier waiting in a place other than the charging station is restarted at the end of the holiday, the capacitor has a large amount of spontaneous discharge and the standby power during the stop period causes the remaining voltage of the capacitor to be less than the rated value. The operation may not be resumed due to battery exhaustion.
As measures against such battery exhaustion, it is conceivable to install a large number of charging stations so that the number of charging stations matches the number of self-propelled carriers, or to increase the capacity of the capacitor. However, the cost increases, and the latter measure increases the cost and the volume and weight of the capacitor. Therefore, any of these measures is not suitable for practical use.

上述のとおり、特許文献2にバッテリ及びキャパシタを並列接続する構成の開示があり、バッテリ及びキャパシタへの充電をキャパシタの充電完了時点で完了するようにして、例えば荷物の積み降ろし等の作業時における自走式キャリアの停止時間のみに充電用電源(給電装置)からの充電を行い、自走式キャリアの移動時等においてバッテリの電圧が低下している場合にはキャパシタからバッテリへ充電を行うようにしている。
ここで、特許文献2のような構成によりキャパシタからバッテリへ充電を行う際には、寿命に及ぼす影響を考慮して設定された充電電圧の上下限電圧の制約を受けるとともに、定電圧充電が基本であるバッテリの充電においてキャパシタの電圧は充電が進むにつれて低下することから、キャパシタからバッテリへ充電できる量は非常に少なくなるため、キャパシタのエネルギを有効に活用することができないものである。
As described above, Patent Document 2 discloses a configuration in which a battery and a capacitor are connected in parallel, so that charging of the battery and the capacitor is completed when charging of the capacitor is completed. Charging from the charging power supply (power supply device) only during the stop time of the self-propelled carrier, and charging from the capacitor to the battery when the voltage of the battery drops when the self-propelled carrier moves I have to.
Here, when charging from the capacitor to the battery with the configuration as in Patent Document 2, the upper and lower limit voltages of the charging voltage set in consideration of the effect on the lifetime are restricted, and constant voltage charging is basically used. In the charging of the battery, the voltage of the capacitor decreases as the charging proceeds. Therefore, the amount that can be charged from the capacitor to the battery becomes very small, and the energy of the capacitor cannot be effectively used.

よって、特許文献2のようなバッテリ及びキャパシタを並列接続する構成においてはバッテリが主電源であるとともに、充電用電源(給電装置)からの充電が急速充放電特性に優れたキャパシタの充電完了時点で終了するためバッテリにとっての充電時間が短いこと、上述のとおりキャパシタからバッテリへ充電できる量は非常に少ないこと、及び、電池切れの防止を考慮すると、容量の大きいバッテリを選択しておく必要があるため、重量及びコストが増大する。
その上、バッテリが主電源であることから、自ずとバッテリの充放電時間が増加し、充放電サイクル寿命(通常放電深度50%で500回程度)から短時間しか使用することができない。
さらに、上述のとおり、特許文献1に電気二重層キャパシタの補助エネルギ源として電気二重層キャパシタと並列に接続した鉛二次電池を用いる構成の開示があるが(図2及び段落[0014]参照。)、電気二重層キャパシタ及び鉛二次電池に対してどのように充電をし、充電された電力をどのように使用するのか不明であり、実用面での検討が全くなされていない。
Therefore, in the configuration in which the battery and the capacitor are connected in parallel as in Patent Document 2, the battery is the main power source, and the charging from the charging power source (power supply device) is completed at the time of completion of charging of the capacitor having excellent rapid charge / discharge characteristics. It is necessary to select a battery with a large capacity in consideration of the short charging time for the battery to complete the process, the very small amount that can be charged from the capacitor to the battery as described above, and the prevention of running out of the battery. Therefore, the weight and cost increase.
In addition, since the battery is the main power source, the charge / discharge time of the battery naturally increases, and the battery can be used only for a short time from the charge / discharge cycle life (normally about 500 times at a discharge depth of 50%).
Furthermore, as described above, Patent Document 1 discloses a configuration using a lead secondary battery connected in parallel with an electric double layer capacitor as an auxiliary energy source of the electric double layer capacitor (see FIG. 2 and paragraph [0014]). ), How to charge the electric double layer capacitor and the lead secondary battery and how to use the charged electric power is unclear, and no practical consideration has been made.

このような課題を解決するために、本願の発明者により、電気二重層キャパシタ及び駆動制御装置の間に接続された双方向DC−DCコンバータと、前記電気二重層キャパシタ及び前記駆動制御装置の間にあり、前記双方向DC−DCコンバータの出力側に、スイッチを介して出力側が接続された、前記二次電池を充電する二次電池充電器と、前記電気二重層キャパシタの出力電圧が前記双方向DC−DCコンバータの出力電圧以上である場合には前記スイッチを切り、前記電気二重層キャパシタの出力電圧が前記双方向DC−DCコンバータの出力電圧未満である場合には前記スイッチを入れるとともに、前記双方向DC−DCコンバータの出力側の電圧が回生開始設定電圧以上である場合に前記双方向DC−DCコンバータの内部回路を回生側に切り替え、前記双方向DC−DCコンバータの出力側の電圧が回生完了設定電圧以下である場合に前記内部回路を力行側へ切り替える制御回路を備えた自走式搬送システムについての発明がなされている(特願2010−174977号参照。以下において「先願発明」という。)。 In order to solve such a problem, the inventors of the present application provide a bidirectional DC-DC converter connected between the electric double layer capacitor and the drive control device, and between the electric double layer capacitor and the drive control device. located on the output side of the bidirectional DC-DC converter, the output side via the switch is connected, a secondary battery charger for charging said secondary battery, wherein both the output voltage of the electric double layer capacitor When the output voltage of the bidirectional DC-DC converter is equal to or higher than the output voltage, the switch is turned off. When the output voltage of the electric double layer capacitor is lower than the output voltage of the bidirectional DC-DC converter, the switch is turned on. When the voltage on the output side of the bidirectional DC-DC converter is equal to or higher than the regeneration start setting voltage, the internal circuit of the bidirectional DC-DC converter is An invention is made about a self-propelled conveyance system including a control circuit that switches to the power side and switches the internal circuit to the power running side when the voltage on the output side of the bidirectional DC-DC converter is equal to or lower than the regeneration completion set voltage. (See Japanese Patent Application No. 2010-174977. Hereinafter, it will be referred to as “prior invention”).

先願発明によれば、休日明け等の運転再開時に電池切れを生じることなく、寿命が比較的長く重量及びコストの増大を抑制することができるとともに、電気二重層キャパシタと駆動制御装置との間に双方向DC−DCコンバータを接続していることから、従来は回生抵抗ユニットにより熱エネルギに変換して捨てていた回生エネルギを双方向DC−DCコンバータを経由して電気二重層キャパシタへ蓄電して再利用し、エネルキーの無駄をなくすことができる。
しかしながら、回生エネルギを蓄電することができる反面、自走式キャリアの停止位置が例えば200〜300mm程度ばらつく場合があるため、自走式キャリアの停止精度を向上するという観点からは改良の余地があった。
According to the prior invention, the battery life is comparatively long and the increase in weight and cost can be suppressed without causing the battery to run out at the time of resuming operation such as the end of the holiday, and between the electric double layer capacitor and the drive control device. Since the bidirectional DC-DC converter is connected to the battery, the regenerative energy, which was conventionally converted into heat energy by the regenerative resistor unit and stored, is stored in the electric double layer capacitor via the bidirectional DC-DC converter. Can be reused to eliminate waste of energy.
However, although regenerative energy can be stored, the stopping position of the self-propelled carrier may vary, for example, by about 200 to 300 mm, so there is room for improvement from the viewpoint of improving the stopping accuracy of the self-propelled carrier. It was.

そこで本発明が前述の状況に鑑み、解決しようとするところは、回生エネルギを蓄電して再利用することができるとともに自走式キャリアの停止精度のばらつきを小さくすることができるキャパシタ及び二次電池を電源とした自走式搬送システムを提供する点にある。   Accordingly, in view of the above-described situation, the present invention intends to solve a capacitor and a secondary battery that can store and reuse regenerative energy and reduce variations in stopping accuracy of a self-propelled carrier. The point is to provide a self-propelled transport system powered by the power.

本願の発明者は、自走式キャリアの停止精度がばらつく場合について実験及び検討を行い、モータが減速停止する際に発生する回生エネルギを蓄電する際における前記スイッチの状態、すなわち前記スイッチがオフであってキャパシタを電源として運転している場合と、前記スイッチがオンであって二次電池を電源として運転している場合とで、停止精度のばらつきが大きくなっていることを見いだし、本発明を完成するに至った。   The inventor of the present application conducted experiments and studies on the case where the stopping accuracy of the self-propelled carrier varies, and the state of the switch when storing regenerative energy generated when the motor decelerates to a stop, that is, the switch is off. Thus, it is found that there is a large variation in stopping accuracy between when the capacitor is operated as a power source and when the switch is on and the secondary battery is operated as a power source. It came to be completed.

本発明に係るキャパシタ及び二次電池を電源とした自走式搬送システムは、前記課題解決のために、所定経路に沿って移動して搬送物を運搬する自走式キャリアに、モータ及びその駆動制御装置、前記モータの駆動用電源としてのキャパシタ及び二次電池並びに前記キャパシタに接続された受電体を備え、所定位置に設置した充電ステーションに前記受電体に電気的に接続される給電体及び充電用電源を備え、前記キャパシタ及び二次電池に充電された電力を前記駆動制御装置へ供給して前記モータを駆動することにより前記自走式キャリアを移動させる、キャパシタ及び二次電池を電源とした自走式搬送システムであって、前記キャパシタ及び前記駆動制御装置の間に接続された双方向DC−DCコンバータと、前記キャパシタ及び前記駆動制御装置の間にあり、前記双方向DC−DCコンバータの出力側に、スイッチを介して出力側が接続された、前記二次電池を充電する二次電池充電器と、前記キャパシタの出力電圧が前記双方向DC−DCコンバータの出力電圧又は所定閾値以上である場合には前記スイッチを切り、前記キャパシタの出力電圧が前記双方向DC−DCコンバータの出力電圧又は所定閾値未満である場合には前記スイッチを入れるとともに、前記双方向DC−DCコンバータの出力側の電圧が回生開始設定電圧以上である場合に前記双方向DC−DCコンバータの内部回路を回生側に切り替え、前記双方向DC−DCコンバータの出力側の電圧が回生完了設定電圧以下である場合に前記内部回路を力行側へ切り替える制御回路と、前記スイッチ及び前記二次電池の間に接続された、前記二次電池側から前記駆動制御装置側へは電流を流し、その反対方向へは電流を流さない整流手段とを備え、前記整流手段により、前記スイッチがオフで前記キャパシタを電源として前記モータを駆動している場合及び前記スイッチがオンで前記二次電池を電源として前記モータを駆動している場合のいずれの場合においても、前記モータが減速停止する際に発生する回生エネルギを前記キャパシタのみに蓄電するようにしたことを特徴とする。 In order to solve the above problems, a self-propelled conveyance system using a capacitor and a secondary battery as a power source according to the present invention is provided with a motor and its drive in a self-propelled carrier that moves along a predetermined path and conveys a conveyed item. A control device, a capacitor and a secondary battery as a power source for driving the motor, and a power receiver connected to the capacitor, and a power feeder and a charge electrically connected to the power receiver in a charging station installed at a predetermined position Power supply for the capacitor and the secondary battery is supplied to the drive control device to drive the motor, and the self-propelled carrier is moved by using the capacitor and the secondary battery as a power source. A self-propelled transport system comprising a bidirectional DC-DC converter connected between the capacitor and the drive control device, the capacitor and the drive Located between the control device, on the output side of the bidirectional DC-DC converter, the output side via the switch is connected, a secondary battery charger for charging the secondary battery, the output voltage of the capacitor is the The switch is turned off when the output voltage of the bidirectional DC-DC converter is equal to or higher than a predetermined threshold value, and the switch is turned off when the output voltage of the capacitor is lower than the output voltage of the bidirectional DC-DC converter or the predetermined threshold value. And switching the internal circuit of the bidirectional DC-DC converter to the regeneration side when the voltage on the output side of the bidirectional DC-DC converter is equal to or higher than the regeneration start set voltage, and the bidirectional DC-DC converter A control circuit for switching the internal circuit to the power running side when the voltage on the output side is equal to or lower than the regeneration completion set voltage, the switch and the secondary Connected between the pond, from said secondary battery side flowing current to the drive control apparatus, and a rectifying means passes no current is in the opposite direction, by said rectifying means, said switch is turned off Occurs when the motor decelerates to a stop when the motor is driven using the capacitor as a power source or when the motor is driven using the secondary battery as a power source when the switch is on. The regenerative energy to be stored is stored only in the capacitor .

このような構成によれば、双方向DC−DCコンバータの出力側の電圧が回生開始設定電圧以上である場合に双方向DC−DCコンバータの内部回路を回生側に切り替え、双方向DC−DCコンバータの出力側の電圧が回生完了設定電圧以下である場合に前記内部回路を力行側へ切り替えるため、力行運転時には電気二重層キャパシタから双方向DC−DCコンバータを経由して駆動制御装置へ電源を供給し、モータが減速停止する際等、回生電力が発生する場合には回生エネルギを双方向DC−DCコンバータを経由して電気二重層キャパシタへ蓄電して再利用することができる。
また、スイッチ及び二次電池の間に接続された、二次電池側から駆動制御装置側へは電流を流し、その反対方向へは電流を流さない整流手段を備えたので、スイッチがオンの状態であっても回生エネルギが二次電池に蓄電されることがない。
すなわち、スイッチがオフでキャパシタを電源としてモータを駆動している場合及びスイッチがオンで二次電池を電源としてモータを駆動している場合のいずれの場合においても、モータが減速停止する際に発生する回生エネルギをキャパシタのみに蓄電するため、キャパシタを電源としている場合又は二次電池を電源としている場合で自走式キャリアの停止精度がばらつくことがない。
According to such a configuration, when the voltage on the output side of the bidirectional DC-DC converter is equal to or higher than the regeneration start setting voltage, the internal circuit of the bidirectional DC-DC converter is switched to the regeneration side, and the bidirectional DC-DC converter When the output side voltage is below the regeneration completion set voltage, the internal circuit is switched to the power running side, so power is supplied from the electric double layer capacitor to the drive control device via the bidirectional DC-DC converter during power running operation. When regenerative electric power is generated, such as when the motor decelerates to a stop, the regenerative energy can be stored in the electric double layer capacitor via the bidirectional DC-DC converter and reused.
In addition, since a rectifier is connected between the switch and the secondary battery to pass current from the secondary battery side to the drive control device and not to flow in the opposite direction, the switch is turned on. Even so, regenerative energy is not stored in the secondary battery.
That is, it occurs when the motor decelerates to a stop both when the switch is off and the motor is driven with the capacitor as the power source, and when the switch is on and the motor is driven with the secondary battery as the power source. Since the regenerative energy to be stored is stored only in the capacitor, the stopping accuracy of the self-propelled carrier does not vary when the capacitor is used as the power source or when the secondary battery is used as the power source.

以上のように、本発明に係るキャパシタ及び二次電池を電源とした自走式搬送システムによれば、休日明け等の運転再開時に電池切れを生じることなく、寿命が比較的長く重量及びコストの増大を抑制することができるとともに、キャパシタと駆動制御装置との間に双方向DC−DCコンバータを接続していることから、従来は回生抵抗ユニットにより熱エネルギに変換して捨てていた回生エネルギを双方向DC−DCコンバータを経由してキャパシタへ蓄電して再利用し、エネルキーの無駄をなくすことができ、スイッチがオフでキャパシタを電源としてモータを駆動している場合及びスイッチがオンで二次電池を電源としてモータを駆動している場合のいずれの場合においても、モータが減速停止する際に発生する回生エネルギをキャパシタのみに蓄電するため、キャパシタを電源としている場合又は二次電池を電源としている場合で自走式キャリアの停止精度がばらつくことがないという顕著な効果を奏する。   As described above, according to the self-propelled transport system using the capacitor and the secondary battery as the power source according to the present invention, the battery life is relatively long without causing the battery to run out at the time of resuming operation such as after holidays, and the weight and cost are relatively long. Since the increase can be suppressed and a bidirectional DC-DC converter is connected between the capacitor and the drive control device, the regenerative energy conventionally converted to heat energy by the regenerative resistor unit and discarded. It can be stored and reused in the capacitor via the bi-directional DC-DC converter, eliminating the waste of energy, and when the switch is off and the motor is driven with the capacitor as the power source and when the switch is on and secondary In any case where the motor is driven by a battery, the regenerative energy generated when the motor decelerates to a stop is To power storage relied exhibits the remarkable effect of never stopping accuracy of the self-propelled carrier varies if you are power or if the secondary battery has a capacitor and the power supply.

本発明の実施の形態に係るキャパシタ及び二次電池を電源とした自走式搬送システムの全体構成の一例を示す概略平面図である。It is a schematic plan view which shows an example of the whole structure of the self-propelled conveyance system which used the capacitor and secondary battery which concern on embodiment of this invention as a power supply. 充電ステーションに停止した自動搬送車に対して充電を行っている状態を示すブロック図である。It is a block diagram which shows the state which is charging with respect to the automatic conveyance vehicle stopped in the charging station. 図2における双方向DC−DCコンバータ及び駆動制御装置等をより詳細に示したブロック図である。It is the block diagram which showed the bidirectional | two-way DC-DC converter in FIG. 2, a drive control apparatus, etc. in detail. (a)はキャパシタの出力電圧Viが双方向DC−DCコンバータの出力電圧Vo以上である場合のエネルギの流れを、(b)は出力電圧Viが出力電圧Vo未満である場合のエネルギの流れを示すブロック図である。(A) shows the flow of energy when the output voltage Vi of the capacitor is equal to or higher than the output voltage Vo of the bidirectional DC-DC converter, and (b) shows the flow of energy when the output voltage Vi is less than the output voltage Vo. FIG. 双方向DC−DCコンバータの出力側の電圧が回生開始設定電圧Vs以上である場合のエネルギの流れを示すブロック図であり、(a)はスイッチがオフの状態を、(b)はスイッチがオンの状態を示している。It is a block diagram which shows the flow of energy in case the voltage of the output side of a bidirectional | two-way DC-DC converter is more than the regeneration start setting voltage Vs, (a) is a switch-off state, (b) is a switch on. Shows the state.

次に本発明の実施の形態を添付図面に基づき詳細に説明するが、本発明は、添付図面に示された形態に限定されず特許請求の範囲に記載の要件を満たす実施形態の全てを含むものである。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments shown in the accompanying drawings, and includes all the embodiments that satisfy the requirements described in the claims. It is a waste.

図1に示す本発明の実施の形態に係るキャパシタ及び二次電池を電源とした自走式搬送システムは、例えば磁気ガイドテープにより形成された工場内の所定経路Rに沿って、前記ガイドテープの位置を検出しながら自走して搬送物を運搬する自走式キャリアである無人の自動搬送車1,1,…、所定経路Rの途中に設けられた、給電体である充電端子6A及び充電用電源3等からなる充電ステーション2A,2B、充電ステーション2A,2Bの位置に設置された、搬送物の積み降ろしを行う図示しない積込テーブルリフタ又は降しテーブルリフタ、並びに、各機器の動作を制御するとともに定電流電源である充電用電源3を制御する制御装置4等により構成され、所定経路R上に充電ステーション2A,2Bの数(2箇所)よりも多い自動搬送車1,1,…を備えている。   The self-propelled conveyance system using the capacitor and the secondary battery according to the embodiment of the present invention shown in FIG. 1 as a power source, for example, along the predetermined path R in the factory formed by a magnetic guide tape, A self-propelled carrier for detecting a position and carrying a transported object, an unmanned automatic transport vehicle 1, 1,..., A charging terminal 6A that is a power feeder provided in the middle of a predetermined route R, and charging The charging station 2A, 2B composed of the power source 3 and the like, and the loading table lifter or the unloading table lifter (not shown) for loading and unloading the transported objects installed at the positions of the charging stations 2A, 2B, and the operation of each device It is configured by a control device 4 or the like that controls the charging power source 3 that is a constant current power source, and more automatically than the number of charging stations 2A and 2B (two locations) on the predetermined route R. Okukuruma 1, 1, has a ....

充電ステーション2A,2Bの設置位置には上述のとおり積込テーブルリフタ又は降しテーブルリフタがあり、これらの位置に自動搬送車1が来ると、自動搬送車1は停止して位置決めされ、積込テーブルリフタ又は降しテーブルリフタにより搬送物の積み降ろし作業が行われ、この作業時間に相当する自動搬送車1の停止時間を利用して、充電用電源3により、自動搬送車1上のキャパシタ7(図2参照。)への充電が行われる。
ここで、キャパシタ7は急速充放電特性に優れるものであり、キャパシタ7には、電気二重層キャパシタ及びリチウムイオンキャパシタが含まれる他、急速充放電が可能な特性を持った2次電池も含まれる。
As described above, there are loading table lifters or lowering table lifters at the charging stations 2A and 2B. When the automatic transport vehicle 1 comes to these positions, the automatic transport vehicle 1 stops and is positioned for loading. The loading / unloading work of the conveyed product is performed by the table lifter or the lifting table lifter, and the capacitor 7 on the automatic conveyance vehicle 1 is used by the charging power source 3 by using the stop time of the automatic conveyance vehicle 1 corresponding to this work time. Charging to (see FIG. 2) is performed.
Here, the capacitor 7 is excellent in rapid charge / discharge characteristics. The capacitor 7 includes an electric double layer capacitor and a lithium ion capacitor, and also includes a secondary battery having characteristics capable of rapid charge / discharge. .

図2に示すように、自走式キャリアである自動搬送車1は、その基体に、駆動輪15,15及び従動輪16,16、駆動輪15,15を駆動するモータ14及びその駆動制御装置13、モータ14の駆動用電源としての主電源であるキャパシタ7、キャパシタ7に接続された、充電端子6Aと接触結合する、受電体である受電端子6B、並びに、キャパシタ7と駆動制御装置13との間に接続され、キャパシタ7の直流出力電圧(例えば54V以下)を負荷に合わせて別の一定直流電圧(例えば24V)へ変換する双方向DC−DCコンバータ8、キャパシタ7と駆動制御装置13との間にあり、双方向DC−DCコンバータ8の出力側に、例えばサイリスタであるスイッチ11を介して出力側が接続された、補助電源である鉛蓄電池10を充電する鉛蓄電池充電器9、電圧検出部12Aの電圧Viが双方向DC−DCコンバータ8の出力電圧Vo(例えば24V)以上である場合にはスイッチ11を切り(スイッチ11をオフにし)、電圧Viが電圧Vo未満である場合にはスイッチ11を入れる(スイッチ11をオンにする)制御回路12等を備えている。 As shown in FIG. 2, an automatic guided vehicle 1 that is a self-propelled carrier has, on its base, driving wheels 15 and 15, driven wheels 16 and 16, a motor 14 that drives the driving wheels 15 and 15, and a driving control device thereof. 13, a capacitor 7 that is a main power source as a power source for driving the motor 14, a power receiving terminal 6 B that is a power receiver connected to the charging terminal 6 A connected to the capacitor 7, and the capacitor 7 and the drive control device 13 , A bidirectional DC-DC converter 8 that converts a DC output voltage (for example, 54 V or less) of the capacitor 7 into another constant DC voltage (for example, 24 V) according to a load, the capacitor 7, and the drive control device 13. is between, on the output side of the bidirectional DC-DC converter 8, for example, the output side via the switch 11 is a thyristor are connected, the lead-acid battery 10 is an auxiliary power supply When the voltage Vi of the lead storage battery charger 9 and the voltage detector 12A to be charged is equal to or higher than the output voltage Vo (for example, 24V) of the bidirectional DC-DC converter 8, the switch 11 is turned off (the switch 11 is turned off), and the voltage When Vi is less than the voltage Vo, a control circuit 12 for turning on the switch 11 (turning on the switch 11) is provided.

なお、キャパシタ7の出力電圧(双方向DC−DCコンバータ8の入力電圧)である電圧検出部12Aの電圧Viを双方向DC−DCコンバータ8の出力電圧Vo(例えば24V)と比較して制御回路12によりスイッチ11の切り替え制御を行う構成以外に、電圧Viを双方向DC−DCコンバータ8の出力電圧Voと異なる所定閾値(例えば、23V)と比較して、電圧Viが所定閾値以上である場合にはスイッチ11を切り、電圧Viが所定閾値未満である場合にはスイッチ11を入れるように構成してもよい。   The control circuit compares the voltage Vi of the voltage detector 12A, which is the output voltage of the capacitor 7 (the input voltage of the bidirectional DC-DC converter 8), with the output voltage Vo (for example, 24V) of the bidirectional DC-DC converter 8. In addition to the configuration in which the switch 11 is controlled to be switched by 12, the voltage Vi is compared to a predetermined threshold (for example, 23V) different from the output voltage Vo of the bidirectional DC-DC converter 8, and the voltage Vi is equal to or higher than the predetermined threshold. Alternatively, the switch 11 may be turned off, and the switch 11 may be turned on when the voltage Vi is less than a predetermined threshold.

図2に示す充電用電源3に接続される給電体である充電端子6Aは、自動搬送車1側の受電体である受電端子6Bと接触結合を行うことができるとともに、この結合を解除することができるように、制御装置4により制御されるシリンダ5により、受電端子6Bに近づく方向及び離れる方向へ移動することができる。なお、給電体及び受電体は、電気的に接続される一対のコネクタ等であってもよいし、電磁誘導作用により給電体(給電側コイル)から受電体(受電側コイル)に電力を伝達する、非接触給電によりキャパシタ7を充電するものであってもよい。
自動搬送車1が図1に示す充電ステーション2A又は2Bに停止して、図2のように充電端子6Aが受電端子6Bと接触結合した状態で、制御装置4により充電用電源3への指令値が演算され、この指令値が充電用電源3へ与えられ、充電電流が充電用電源3から充電端子6A及び受電端子6Bを経由してキャパシタ7へ供給される。
The charging terminal 6A, which is a power feeding body connected to the charging power source 3 shown in FIG. 2, can be contact-coupled with the power receiving terminal 6B, which is a power receiving body on the side of the automatic transport vehicle 1, and release this coupling. Therefore, the cylinder 5 controlled by the control device 4 can move in the direction approaching and away from the power receiving terminal 6B. Note that the power feeding body and the power receiving body may be a pair of electrically connected connectors or the like, or transmit power from the power feeding body (power feeding side coil) to the power receiving body (power receiving side coil) by electromagnetic induction. The capacitor 7 may be charged by non-contact power feeding.
In the state in which the automatic transport vehicle 1 stops at the charging station 2A or 2B shown in FIG. 1 and the charging terminal 6A is in contact with the power receiving terminal 6B as shown in FIG. Is calculated, and this command value is supplied to the charging power source 3, and the charging current is supplied from the charging power source 3 to the capacitor 7 via the charging terminal 6A and the power receiving terminal 6B.

キャパシタ7への充電が完了した自動搬送車1は、制御装置4により制御されたシリンダ5により充電端子6A及び受電端子6Bの接触結合が解除された後、キャパシタ7からの放電電力が双方向DC−DCコンバータ8を介して駆動制御装置13へ供給され、駆動制御装置13により駆動制御されたモータ14の駆動トルクにより駆動輪15,15が駆動されるため所定経路Rに沿って移動する。
このようにキャパシタ7からの放電電力が双方向DC−DCコンバータ8を介して駆動制御装置13へ供給されるが(図4(a)の太線矢印A参照。)、その際の余剰電力が鉛蓄電池充電器9に供給され(図4(a)の太線矢印B参照。)、鉛蓄電池充電器9により一定の電圧(例えば27.3V〜29.1V)が鉛蓄電池10に供給されて鉛蓄電池10(例えば公称電圧24V)が充電される。
After the charging of the capacitor 7 is completed, after the contact coupling between the charging terminal 6A and the power receiving terminal 6B is released by the cylinder 5 controlled by the control device 4, the discharging power from the capacitor 7 is bi-directional DC. The drive wheels 15 and 15 are driven by the drive torque of the motor 14 that is supplied to the drive control device 13 through the DC converter 8 and is drive-controlled by the drive control device 13, and therefore moves along the predetermined route R.
In this way, the discharge power from the capacitor 7 is supplied to the drive control device 13 via the bidirectional DC-DC converter 8 (see the thick arrow A in FIG. 4A), but the surplus power at that time is lead. A lead-acid battery is supplied to the storage battery charger 9 (see the thick arrow B in FIG. 4A), and a constant voltage (for example, 27.3 V to 29.1 V) is supplied to the lead-acid battery 10 by the lead-acid battery charger 9. 10 (for example, nominal voltage 24V) is charged.

以上の説明における鉛蓄電池10は、ニッケル水素電池又はリチウムイオン電池等の他の二次電池であってもよい。
なお、鉛蓄電池10の場合、例えば数時間程度の充電時間を必要とするので、キャパシタ7の所定回数のサイクル放電における余剰電力により鉛蓄電池10を満充電することができるように、キャパシタ7の容量が選定される。
The lead storage battery 10 in the above description may be another secondary battery such as a nickel metal hydride battery or a lithium ion battery.
In the case of the lead storage battery 10, for example, a charging time of about several hours is required. Therefore, the capacity of the capacitor 7 is set so that the lead storage battery 10 can be fully charged by surplus power in a predetermined number of cycle discharges of the capacitor 7. Is selected.

また、鉛蓄電池10の充電電圧(例えば27.3V〜29.1V)は駆動制御装置13の電源電圧の許容範囲(例えば24V±10%)を超えるが、鉛蓄電池10を充電する際、すなわち自動搬送車1の通常運転(例えば平日のライン稼働時における運転)の際には制御回路12によりスイッチ11が切られることから、鉛蓄電池充電器9及び鉛蓄電池10と駆動制御装置13とは接続されないため、駆動制御装置13に対してその電源電圧の許容範囲を超える電圧が掛からないとともに、鉛蓄電池10はモータ14を駆動するために放電しない。   Moreover, although the charging voltage (for example, 27.3V-29.1V) of the lead storage battery 10 exceeds the allowable range (for example, 24V ± 10%) of the power supply voltage of the drive control device 13, when the lead storage battery 10 is charged, that is, automatically. Since the switch 11 is turned off by the control circuit 12 during normal operation of the transport vehicle 1 (for example, operation during weekday line operation), the lead storage battery charger 9 and the lead storage battery 10 are not connected to the drive control device 13. Therefore, a voltage exceeding the allowable range of the power supply voltage is not applied to the drive control device 13, and the lead storage battery 10 is not discharged to drive the motor 14.

上述のとおり自動搬送車1,1,…の数は充電ステーション2A,2Bの数(2箇所)よりも多いことから、ラインを休日の間(例えば毎週の休日である2日間)停止させる際に、この停止期間中に充電ステーション2A,2B以外の場所に待機する自動搬送車1,1,…が存在するため、充電ステーション2A,2B以外の場所に待機する自動搬送車1,1,…を休日明けに運転再開する際に、キャパシタ7の出力電圧(双方向DC−DCコンバータ8の入力電圧)である電圧検出部12Aの電圧Viが双方向DC−DCコンバータ8の出力電圧Vo(例えば24V)未満となり、双方向DC−DCコンバータ8から駆動制御装置13への電力供給が遮断される場合がある。   As described above, since the number of automatic transport vehicles 1, 1,... Is larger than the number of charging stations 2A, 2B (two places), the line is stopped during a holiday (for example, two days that are weekly holidays). Since there are automatic transport vehicles 1, 1,... Waiting in a place other than the charging stations 2A, 2B during this stop period, the automatic transport vehicles 1, 1,. When the operation is resumed at the end of the holiday, the voltage Vi of the voltage detector 12A, which is the output voltage of the capacitor 7 (the input voltage of the bidirectional DC-DC converter 8), is the output voltage Vo (for example, 24V) of the bidirectional DC-DC converter 8. The power supply from the bidirectional DC-DC converter 8 to the drive control device 13 may be interrupted.

この場合において、電圧検出部12Aの電圧Viが双方向DC−DCコンバータ8の出力電圧Vo未満であることから、上述のとおり制御回路12によりスイッチ11が入り、鉛蓄電池10からの放電電力が駆動制御装置13へ供給される(図4(b)の太線矢印C参照。)。
なお、鉛蓄電池10は、上記停止期間中において電圧検出部12Aの電圧Viが双方向DC−DCコンバータ8の出力電圧Vo未満となってから休日明けまで待機電力を供給し、停止位置から次の充電ステーションまで走行するだけの電力に対して、十分な容量を持ったものを選定している。
また、休日明けにおいてキャパシタ7の充電が再開された時点で鉛蓄電池充電器9も動作を再開するので、双方向DC−DCコンバータ8の出力側と鉛蓄電池充電器9の出力側とが並列接続にならないように制御回路12によりスイッチ11はオフにされる。
In this case, since the voltage Vi of the voltage detector 12A is less than the output voltage Vo of the bidirectional DC-DC converter 8, the switch 11 is turned on by the control circuit 12 as described above, and the discharge power from the lead storage battery 10 is driven. It is supplied to the control device 13 (see the thick line arrow C in FIG. 4B).
In addition, the lead storage battery 10 supplies standby power until the holiday ends after the voltage Vi of the voltage detection unit 12A becomes less than the output voltage Vo of the bidirectional DC-DC converter 8 during the stop period. A power supply with sufficient capacity is selected for the power required to travel to the charging station.
In addition, since the lead-acid battery charger 9 resumes operation when charging of the capacitor 7 is resumed at the end of the holiday, the output side of the bidirectional DC-DC converter 8 and the output side of the lead-acid battery charger 9 are connected in parallel. The switch 11 is turned off by the control circuit 12 so as not to become.

以上のような構成によれば、自動搬送車1の通常運転の際には、主電源であるキャパシタ7からの放電電力が双方向DC−DCコンバータ8を介して駆動制御装置13へ供給されてモータ14が駆動されるとともに、キャパシタ7からの放電電力の余剰電力が鉛蓄電池充電器9に供給され、鉛蓄電池充電器9により一定の電圧が鉛蓄電池10に供給されて鉛蓄電池10が充電されるため、キャパシタ7のエネルギを有効に活用することができる。
また、上述のとおり、電圧検出部12Aの電圧Viが双方向DC−DCコンバータ8の出力電圧Vo未満である場合には、制御回路12によりスイッチ11が入り、補助電源である鉛蓄電池10からの放電電力が駆動制御装置13へ供給されるため、例えば休日明けのようにラインが非稼働状態から稼働状態になる際において電池切れになることがない。
According to the configuration described above, during normal operation of the automatic guided vehicle 1, the discharge power from the capacitor 7 that is the main power source is supplied to the drive control device 13 via the bidirectional DC-DC converter 8. While the motor 14 is driven, surplus power of the discharge power from the capacitor 7 is supplied to the lead storage battery charger 9, and a constant voltage is supplied to the lead storage battery 10 by the lead storage battery charger 9 to charge the lead storage battery 10. Therefore, the energy of the capacitor 7 can be used effectively.
Further, as described above, when the voltage Vi of the voltage detection unit 12A is less than the output voltage Vo of the bidirectional DC-DC converter 8, the control circuit 12 turns on the switch 11, and the lead storage battery 10 serving as the auxiliary power supply Since the discharge power is supplied to the drive control device 13, the battery does not run out when the line changes from the non-operating state to the operating state, for example, after the holiday.

さらに、鉛蓄電池10は主電源ではなく補助電源であることから、鉛蓄電池10を主電源とする構成に対して鉛蓄電池10の充放電回数が少なくなるため、充放電サイクル寿命が短い鉛蓄電池10を用いた構成でありながら長時間の使用が可能になる。
さらにまた、鉛蓄電池10は主電源ではなく、休日明けに自動搬送車1を充電ステーション2A又は2Bまで移動させることができる容量を備えればよいので、重量及びコストの増大を抑制することができる。
また、充電ステーションの数を自動搬送車1,1,…の数と一致させるように多くの充電ステーションを設置する構成と比較してコストを低減することができ、キャパシタ7の容量を大きくする構成と比較してコスト並びにキャパシタ7の体積及び重量を低減することができる。
Furthermore, since the lead storage battery 10 is not a main power supply but an auxiliary power supply, the lead storage battery 10 has a short charge / discharge cycle life because the number of times of charge / discharge of the lead storage battery 10 is reduced with respect to the configuration using the lead storage battery 10 as the main power supply. It is possible to use it for a long time despite the configuration using
Furthermore, since the lead storage battery 10 is not a main power supply, it is only necessary to have a capacity capable of moving the automatic transport vehicle 1 to the charging station 2A or 2B at the end of the holiday, so that an increase in weight and cost can be suppressed. .
In addition, the cost can be reduced and the capacity of the capacitor 7 can be increased as compared with a configuration in which many charging stations are installed so that the number of charging stations matches the number of automatic transport vehicles 1, 1,. Compared to the above, the cost and the volume and weight of the capacitor 7 can be reduced.

以上においては、充電ステーション2A,2B以外の場所に待機する自動搬送車1,1,…において、電圧検出部12Aの電圧Viが双方向DC−DCコンバータ8の出力電圧Vo未満となり、双方向DC−DCコンバータ8から駆動制御装置13への電力供給が遮断されるのが休日明けの運転再開時である場合について説明したが、休日明けの運転再開時でなくても、例えば所定経路R内のストレージ部において充電器の無い位置で長時間待機する場合等においても同様に、双方向DC−DCコンバータ8から駆動制御装置13への電力供給が遮断された際には、制御回路12によりスイッチ11が入ることから鉛蓄電池10からの放電電力が駆動制御装置13へ供給されるため、電池切れを回避することができる。   In the above, in the automatic transport vehicles 1, 1,... Waiting in a place other than the charging stations 2A, 2B, the voltage Vi of the voltage detection unit 12A becomes less than the output voltage Vo of the bidirectional DC-DC converter 8, and the bidirectional DC -Although the case where the power supply from the DC converter 8 to the drive control device 13 is interrupted at the time of resuming the operation after the holiday has been described, even if it is not at the time of resuming the operation after the holiday, for example, in the predetermined route R Similarly, when the storage unit waits for a long time at a position where there is no charger, when the power supply from the bidirectional DC-DC converter 8 to the drive control device 13 is cut off, the control circuit 12 switches the switch 11. Since the discharge power from the lead storage battery 10 is supplied to the drive control device 13 because the battery is inserted, it is possible to avoid running out of the battery.

次に、回生エネルギを利用するための構成例及びその動作について説明する。
図2及び図3に示すように、キャパシタ7と駆動制御装置13との間に双方向DC−DCコンバータ8が接続されているとともに、電圧検出部12Bにより双方向DC−DCコンバータ8の出力側(駆動制御装置13側)の電圧を検出することができる。
したがって、電圧検出部12Bにより検出した電圧に応じて、制御回路12は、電圧検出部12Bの電圧が所定の回生開始設定電圧Vs(例えば、28V)以上である場合に双方向DC−DCコンバータ8の内部回路を回生側(図3の回生コンバータ8B参照。)に切り替え、電圧検出部12Bの電圧が所定の回生完了設定電圧Ve(例えば、24V)以下である場合に前記内部回路を力行側(図3の力行コンバータ8A参照。)へ切り替える。
Next, a configuration example for using regenerative energy and its operation will be described.
As shown in FIGS. 2 and 3, a bidirectional DC-DC converter 8 is connected between the capacitor 7 and the drive control device 13, and the output side of the bidirectional DC-DC converter 8 is detected by the voltage detection unit 12 </ b> B. The voltage on the drive control device 13 side can be detected.
Therefore, according to the voltage detected by the voltage detection unit 12B, the control circuit 12 causes the bidirectional DC-DC converter 8 when the voltage of the voltage detection unit 12B is equal to or higher than a predetermined regeneration start setting voltage Vs (for example, 28V). Is switched to the regenerative side (see regenerative converter 8B in FIG. 3), and when the voltage of the voltage detector 12B is equal to or lower than a predetermined regeneration completion set voltage Ve (for example, 24V), the internal circuit is switched to the power running side ( (See the powering converter 8A in FIG. 3).

このような構成及び動作により、力行運転時にはキャパシタ7から双方向DC−DCコンバータ8の力行コンバータ8Aを経由して駆動制御装置13へ電源を供給し、モータ14が減速停止する際等、回生電力が発生する場合には回生エネルギを双方向DC−DCコンバータ8の回生コンバータ8Bを経由してキャパシタ7へ蓄電して再利用することができる(図5の太線矢印D参照。)。
また、このように回生エネルギを利用する際において、図2及び図3に示すようにスイッチ11と鉛蓄電池10との間に、鉛蓄電池10側から駆動制御装置13側へは電流を流し、その反対方向へは電流を流さない整流手段であるダイオード17を備えているため、
図5(b)のようにスイッチ11がオンの場合であっても回生エネルギが鉛蓄電池10に蓄電されることがない。
すなわち、スイッチ11がオフでキャパシタ7を電源としてモータ14を駆動している場合及びスイッチ11がオンで鉛蓄電池10を電源としてモータ14を駆動している場合のいずれの場合においても、図5(a)及び(b)に示すように、モータ14が減速停止する際に発生する回生エネルギをキャパシタ7のみに蓄電するため、キャパシタ7を電源としている場合又は鉛蓄電池10を電源としている場合で自動搬送車1の停止精度がばらつくことがない。
With such a configuration and operation, during powering operation, power is supplied from the capacitor 7 to the drive control device 13 via the powering converter 8A of the bidirectional DC-DC converter 8, and regenerative power is generated when the motor 14 decelerates to a stop. If this occurs, the regenerative energy can be stored in the capacitor 7 via the regenerative converter 8B of the bidirectional DC-DC converter 8 and reused (see the thick arrow D in FIG. 5).
Moreover, when using regenerative energy in this way, as shown in FIG.2 and FIG.3, between the switch 11 and the lead storage battery 10, an electric current is sent from the lead storage battery 10 side to the drive control apparatus 13 side, Since the diode 17 that is a rectifying means that does not flow current in the opposite direction is provided,
Even if the switch 11 is on as shown in FIG. 5B, regenerative energy is not stored in the lead storage battery 10.
That is, in either case where the switch 11 is off and the motor 14 is driven with the capacitor 7 as a power source, and when the switch 11 is on and the motor 14 is driven with the lead storage battery 10 as a power source, FIG. As shown in a) and (b), since the regenerative energy generated when the motor 14 decelerates and stops is stored only in the capacitor 7, it is automatically detected when the capacitor 7 is used as a power source or when the lead storage battery 10 is used as a power source. The stopping accuracy of the transport vehicle 1 does not vary.

以上の説明においては、自走式搬送システムの自走式キャリアがガイドテープに沿って移動する自動搬送車1である場合を示したが、自走式キャリアはガイドレールに沿って移動するオーバーヘッドタイプ又はフロアタイプのものであってもよい。   In the above description, the case where the self-propelled carrier of the self-propelled conveyance system is the automatic conveyance vehicle 1 that moves along the guide tape is shown. However, the self-propelled carrier is an overhead type that moves along the guide rail. Or it may be of the floor type.

R 所定経路
Vi キャパシタの出力電圧
Vo 双方向DC−DCコンバータの出力電圧
Vs 回生開始設定電圧
Ve 回生完了設定電圧
1 自動搬送車(自走式キャリア)
2A,2B 充電ステーション
3 充電用電源
4 制御装置
5 シリンダ
6A 充電端子(給電体)
6B 受電端子(受電体)
7 キャパシタ
8 双方向DC−DCコンバータ
8A 力行コンバータ
8B 回生コンバータ
9 鉛蓄電池充電器(二次電池充電器)
10 鉛蓄電池(二次電池)
11 スイッチ
12 制御回路
12A,12B 電圧検出部
13 駆動制御装置
14 モータ
15 駆動輪
16 従動輪
17 ダイオード(整流手段)
R Predetermined path Vi Capacitor output voltage Vo Bidirectional DC-DC converter output voltage Vs Regeneration start set voltage Ve Regeneration complete set voltage 1 Automated guided vehicle (self-propelled carrier)
2A, 2B Charging station 3 Charging power supply 4 Control device 5 Cylinder 6A Charging terminal (feeding body)
6B Power receiving terminal (power receiving body)
7 Capacitor 8 Bidirectional DC-DC converter 8A Powering converter 8B Regenerative converter 9 Lead-acid battery charger (secondary battery charger)
10 Lead acid battery (secondary battery)
11 switch 12 control circuit 12A, 12B voltage detector 13 drive control device 14 motor 15 drive wheel 16 driven wheel 17 diode (rectifying means)

Claims (1)

所定経路に沿って移動して搬送物を運搬する自走式キャリアに、モータ及びその駆動制御装置、前記モータの駆動用電源としてのキャパシタ及び二次電池並びに前記キャパシタに接続された受電体を備え、所定位置に設置した充電ステーションに前記受電体に電気的に接続される給電体及び充電用電源を備え、前記キャパシタ及び二次電池に充電された電力を前記駆動制御装置へ供給して前記モータを駆動することにより前記自走式キャリアを移動させる、キャパシタ及び二次電池を電源とした自走式搬送システムであって、
前記キャパシタ及び前記駆動制御装置の間に接続された双方向DC−DCコンバータと、
前記キャパシタ及び前記駆動制御装置の間にあり、前記双方向DC−DCコンバータの出力側に、スイッチを介して出力側が接続された、前記二次電池を充電する二次電池充電器と、
前記キャパシタの出力電圧が前記双方向DC−DCコンバータの出力電圧又は所定閾値以上である場合には前記スイッチを切り、前記キャパシタの出力電圧が前記双方向DC−DCコンバータの出力電圧又は所定閾値未満である場合には前記スイッチを入れるとともに、前記双方向DC−DCコンバータの出力側の電圧が回生開始設定電圧以上である場合に前記双方向DC−DCコンバータの内部回路を回生側に切り替え、前記双方向DC−DCコンバータの出力側の電圧が回生完了設定電圧以下である場合に前記内部回路を力行側へ切り替える制御回路と、
前記スイッチ及び前記二次電池の間に接続された、前記二次電池側から前記駆動制御装置側へは電流を流し、その反対方向へは電流を流さない整流手段と、
を備え
前記整流手段により、前記スイッチがオフで前記キャパシタを電源として前記モータを駆動している場合及び前記スイッチがオンで前記二次電池を電源として前記モータを駆動している場合のいずれの場合においても、前記モータが減速停止する際に発生する回生エネルギを前記キャパシタのみに蓄電するようにしたことを特徴とするキャパシタ及び二次電池を電源とした自走式搬送システム。
A self-propelled carrier that moves along a predetermined path and carries a transported object includes a motor, a drive control device thereof, a capacitor and a secondary battery as a power source for driving the motor, and a power receiver connected to the capacitor. A charging station installed at a predetermined position, provided with a power feeding body electrically connected to the power receiving body and a charging power source, and supplying electric power charged in the capacitor and the secondary battery to the drive control device, and the motor A self-propelled transport system that uses a capacitor and a secondary battery as a power source to move the self-propelled carrier by driving
A bidirectional DC-DC converter connected between the capacitor and the drive control device;
A secondary battery charger for charging the secondary battery, which is located between the capacitor and the drive control device, and whose output side is connected to the output side of the bidirectional DC-DC converter via a switch ;
When the output voltage of the capacitor is equal to or higher than the output voltage of the bidirectional DC-DC converter or a predetermined threshold value, the switch is turned off, and the output voltage of the capacitor is less than the output voltage of the bidirectional DC-DC converter or the predetermined threshold value. And when the voltage on the output side of the bidirectional DC-DC converter is equal to or higher than the regeneration start set voltage, the internal circuit of the bidirectional DC-DC converter is switched to the regeneration side, A control circuit that switches the internal circuit to the power running side when the voltage on the output side of the bidirectional DC-DC converter is equal to or lower than the regeneration completion set voltage;
Rectifying means connected between the switch and the secondary battery, for causing a current to flow from the secondary battery side to the drive control device side, and not flowing a current in the opposite direction;
Equipped with a,
In either case where the switch is off and the motor is driven with the capacitor as a power source and the switch is on and the motor is driven with the secondary battery as a power source by the rectifying means. A self-propelled conveyance system using a capacitor and a secondary battery as a power source , wherein regenerative energy generated when the motor decelerates and stops is stored only in the capacitor.
JP2010220950A 2010-09-30 2010-09-30 Self-propelled transport system using a capacitor and secondary battery as power source Active JP5605135B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010220950A JP5605135B2 (en) 2010-09-30 2010-09-30 Self-propelled transport system using a capacitor and secondary battery as power source
CN201110222999.0A CN102442217B (en) 2010-09-30 2011-08-04 Self-propelled conveying system with capacitor and secondary battery as power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010220950A JP5605135B2 (en) 2010-09-30 2010-09-30 Self-propelled transport system using a capacitor and secondary battery as power source

Publications (2)

Publication Number Publication Date
JP2012080612A JP2012080612A (en) 2012-04-19
JP5605135B2 true JP5605135B2 (en) 2014-10-15

Family

ID=46005330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010220950A Active JP5605135B2 (en) 2010-09-30 2010-09-30 Self-propelled transport system using a capacitor and secondary battery as power source

Country Status (2)

Country Link
JP (1) JP5605135B2 (en)
CN (1) CN102442217B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014042404A (en) * 2012-08-22 2014-03-06 Sharp Corp Charging device, solar system, electrical system, and vehicle
JP6299096B2 (en) * 2012-09-27 2018-03-28 中西金属工業株式会社 Self-propelled transport system using a capacitor and secondary battery as power source
CN103692923B (en) * 2012-09-27 2017-05-10 中西金属工业株式会社 Self-propelled conveyor system as power supply by capacitor and secondary battery
JP2016010280A (en) * 2014-06-26 2016-01-18 スズキ株式会社 Control device for electric vehicles
FR3112904A1 (en) * 2020-07-23 2022-01-28 K-Motors FUEL SYSTEM OF A TRACTION MOTOR
KR102654165B1 (en) * 2020-07-28 2024-04-02 세메스 주식회사 Apparatus for managing power of article transport vehicle in article transport system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163016A (en) * 1993-11-30 1995-06-23 Matsushita Electric Ind Co Ltd Automatic carrying vehicle and driving system thereof
JPH09322314A (en) * 1996-05-31 1997-12-12 Isuzu Motors Ltd Electric motorcar power supply controller
JP2900309B2 (en) * 1996-08-30 1999-06-02 日晴金属株式会社 Electric vehicle regeneration system
JP3612572B2 (en) * 1996-09-10 2005-01-19 中国電力株式会社 Motor drive power supply
JPH11246404A (en) * 1998-03-04 1999-09-14 Taiho Yakuhin Kogyo Kk Pharmaceutical composition improved in absorbability
JP2005341667A (en) * 2004-05-25 2005-12-08 Motor Jidosha Kk Power unit and controller for electric vehicle
JP2007082375A (en) * 2005-09-16 2007-03-29 Toyota Motor Corp Power supply device for vehicles
JP4644163B2 (en) * 2006-07-04 2011-03-02 トヨタ自動車株式会社 Vehicle power control device
JP2008137451A (en) * 2006-11-30 2008-06-19 Toyota Motor Corp Automatic charging method and device of automated guided vehicle
JP2008253083A (en) * 2007-03-30 2008-10-16 Meidensha Corp Power supply device for mobile vehicle
CN201058578Y (en) * 2007-06-29 2008-05-14 合肥工业大学 Electric vehicle power source with fuel cell mixed super capacitor
CN201270429Y (en) * 2008-08-18 2009-07-08 沪东重机有限公司 Electricity supply device for electronic oil feeder control unit on ship diesel engine
JP2010213534A (en) * 2009-03-12 2010-09-24 Nakanishi Metal Works Co Ltd Carrier using electric double-layer capacitor power supply
CN101995881A (en) * 2009-08-05 2011-03-30 中西金属工业株式会社 Self-running carrying system adopting electric double-layer capacitor and secondary battery as power supply
JP5503957B2 (en) * 2009-12-15 2014-05-28 Udトラックス株式会社 Vehicle power supply

Also Published As

Publication number Publication date
JP2012080612A (en) 2012-04-19
CN102442217A (en) 2012-05-09
CN102442217B (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5605135B2 (en) Self-propelled transport system using a capacitor and secondary battery as power source
JP3900822B2 (en) A power supply circuit for a mobile unit that is powered without contact
TWI412485B (en) Traveling vehicle system and method of non-contact power feeding to traveling vehicle
JP2007236196A (en) Railroad train of battery drive
JP2008081219A (en) Movable body
JP2010004587A (en) Charging device and charging system for logistic transportation vehicle
JP6146472B2 (en) Ceiling transport vehicle and control method of ceiling transport vehicle
CN104619628A (en) Drive control device for drive system including vertical carrier machine
KR102398345B1 (en) Conveyance carrier
JP2014117067A (en) Conveyance system of automatic guided vehicle
JP4533852B2 (en) Overhead line-less traffic system and charging method for the overhead line-less traffic system
JP2015012638A (en) Running vehicle system and control method of running vehicle
JP5605063B2 (en) Self-propelled transport system using electric double layer capacitor and secondary battery as power source
JP2012239334A (en) Vehicle and non contact power supply system
JP4576465B2 (en) Charging method and charging system for overhead line-less traffic vehicle
CN113716280A (en) Automatic vehicle conveying system
CN114867627A (en) Method for operating an electric vehicle and electric vehicle
CN101997336B (en) Self-running carrying system adopting electric double-layer capacitor and secondary battery as power supply
JP2010187471A (en) Non-contact power receiving apparatus and automated guided vehicle
JP2018148658A (en) Automatic travelling mobile body and automatic travelling mobile body system
JP6299096B2 (en) Self-propelled transport system using a capacitor and secondary battery as power source
CN107458970B (en) Overhead traveling crane conveying system, conveying vehicle of overhead traveling crane conveying system and control method
JP2010213534A (en) Carrier using electric double-layer capacitor power supply
JP5413849B2 (en) Induction power receiving circuit
US20230021793A1 (en) An electric machine with hybrid energy storage devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R150 Certificate of patent or registration of utility model

Ref document number: 5605135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250