[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5690015B1 - Heating method of molten steel in tundish - Google Patents

Heating method of molten steel in tundish Download PDF

Info

Publication number
JP5690015B1
JP5690015B1 JP2014183798A JP2014183798A JP5690015B1 JP 5690015 B1 JP5690015 B1 JP 5690015B1 JP 2014183798 A JP2014183798 A JP 2014183798A JP 2014183798 A JP2014183798 A JP 2014183798A JP 5690015 B1 JP5690015 B1 JP 5690015B1
Authority
JP
Japan
Prior art keywords
molten steel
tundish
heating
temperature
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014183798A
Other languages
Japanese (ja)
Other versions
JP2016055316A (en
Inventor
榮子 山田
榮子 山田
山田 勝彦
勝彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014183798A priority Critical patent/JP5690015B1/en
Application granted granted Critical
Publication of JP5690015B1 publication Critical patent/JP5690015B1/en
Publication of JP2016055316A publication Critical patent/JP2016055316A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

【課題】 鋼の連続鋳造において、タンディシュ内溶鋼を加熱する方法を提供する。【解決手段】 タンディシュを底部に連通孔を持つ隔壁により受鋼部と鋳込部に分け、鋳込部には気密性の蓋を設けて溶鋼上に気密性空間を形成し、該空間に黒鉛発熱体を配置し、スラグを浮遊させ、発熱体に通電して加熱し、スラグ層を放射加熱する。底部に設けた通気性プラグから不活性ガスを吹き込みスラグと溶鋼を撹拌して伝熱の促進と均熱化を進めると共に雰囲気を不活性として発熱体を耐久させる。精密鋳込温度制御が容易になり且つ精錬終了温度を低位に誘導して省エネルギーに寄与する。【選択図】 図1PROBLEM TO BE SOLVED: To provide a method of heating molten steel in tundish in continuous casting of steel. SOLUTION: A tundish is divided into a steel receiving part and a cast part by a partition wall having a communication hole in the bottom part, and an airtight cover is provided in the cast part to form an airtight space on the molten steel, and graphite is formed in the space. A heating element is arranged, the slag is floated, the heating element is energized and heated, and the slag layer is radiantly heated. An inert gas is blown from a breathable plug provided at the bottom, and the slag and molten steel are agitated to promote heat transfer and soaking, and make the atmosphere inactive to make the heating element durable. Precision casting temperature control becomes easy, and the refining end temperature is guided to a low level to contribute to energy saving. [Selection] Figure 1

Description

本発明は鋼の連続鋳造においてタンディシュ内の溶鋼を加熱する方法に関している。   The present invention relates to a method for heating molten steel in a tundish in continuous casting of steel.

鋼の連続鋳造において取鍋中の溶鋼は流量と鋳込温度を調節するところの中間容器であるタンディシュを介して連続的に鋳型に鋳込まれる。
その際高級機種ではタンディシュ中の溶鋼を適時再加熱する装置を備え、精密温度制御により操業の安定(低温による事故防止)と品質の安定(偏析・非金属介在物の軽減)のみならず溶解工程の熱負荷を軽減する等手堅い効果を得ている。
In the continuous casting of steel, the molten steel in the ladle is continuously cast into a mold through a tundish which is an intermediate container for adjusting the flow rate and casting temperature.
In this case, the high-end model is equipped with a device that reheats the molten steel in the tundish in a timely manner, and not only stable operation (prevents accidents due to low temperatures) and quality (reduction of segregation and non-metallic inclusions) through precision temperature control, but also the melting process It has a solid effect such as reducing the heat load.

タンディシュにおける溶鋼の加熱方法・装置について以下説明する。
特許文献1には、『タンディシュ加熱』のオリジナルである高周波誘導加熱による鋳込温度制御方法が開示されている。単ストランドの連続鋳造においてタンディシュ形状を坩堝型にすることにより高周波ソレノイド・コイルの適用を可能にする。タンディシュ加熱の世界的先駆けとして長く効果的に使用された。
取鍋からの注入流は時間とともにその温度が低下する。注入時間の後半において傾斜的に入力を増加させあたかも注入流温度が一定であるような加熱を行い、鋳込み温度を一定にする。誘導撹拌も生ずるので均熱性に優れる。
レードル溶鋼を再加熱する通称LF炉による加熱と比較すると設備能力(kW)は約1/5と小さく消費電力も格段に少ない。
問題は多ストランドの場合、タンディシュは通常変な多角形容器であってソレノイド・コイルを旨く備えることが設計上・作業上困難であることである。
A method and apparatus for heating molten steel in Tundish will be described below.
Patent Document 1 discloses a casting temperature control method by high-frequency induction heating, which is an original of “tundish heating”. By making the tundish shape into a crucible type in continuous casting of a single strand, it is possible to apply a high frequency solenoid coil. It has long been used effectively as a global pioneer of tundish heating.
The temperature of the pouring flow from the ladle decreases with time. In the latter half of the pouring time, the input is increased in a gradient so that heating is performed as if the pouring flow temperature is constant, and the casting temperature is made constant. Induction agitation also occurs, so heat uniformity is excellent.
Compared with the heating by the so-called LF furnace which reheats the ladle molten steel, the equipment capacity (kW) is as small as about 1/5 and the power consumption is remarkably small.
The problem is that in the case of multiple strands, the tundish is usually a strange polygonal container, and it is difficult to design and work with a solenoid coil.

多ストランドに使用される異形タンディシュにおいて誘導加熱する例がある。タンディシュを受鋼部と鋳込部とに分け、2本の連通部を介して誘導回路とする低周波誘導加熱装置が組み込まれている。当該原理は古くからある溝型低周波誘導溶解炉をタンディシュに付設したものと見なされる。前記先行例と同様の効果が得られる。均熱性も悪くない。
問題は、前記先行例と同様誘導装置部はタンディシュ本体と一体となっており、保有タンディシュ全てに誘導装置が必要で高価な設備となる。
また容器が複雑な形状になって耐火物の耐久に問題がある。
There is an example of induction heating in a modified tundish used for multi-strands. A tundish is divided into a steel receiving part and a cast-in part, and a low-frequency induction heating device that incorporates an induction circuit through two communicating parts is incorporated. The principle is considered to be an old groove type low frequency induction melting furnace attached to tundish. The same effect as the previous example can be obtained. Soaking is not bad.
The problem is that, as in the previous example, the guidance device unit is integrated with the tundish main body, and all the owned tundishes require guidance devices and are expensive equipment.
In addition, the container has a complicated shape and there is a problem in durability of the refractory.

特許文献2には、超高温(約10000℃)のプラズマトーチを使用し、タンディシュ内溶鋼上面に加熱室を設け、該室内を加熱する方法が開示されている。本方法でも先行2例と同様の効果が得られる。タンディシュ交換に際して1式の装置で行えると言う長所がある。
問題の一つは、超高温ジェットにより液面を加熱するので均熱性が極めて劣る。そのため適切な形状設計を要する。
他の問題は、装置が高価でありArガスの消費等コストが高く、その上非特許文献1に詳細が示されているように複雑且つ使用と補修(メンテナンスコストが大きい)には高度の技能と費用と管理を要することである。
Patent Document 2 discloses a method of using a plasma torch at an extremely high temperature (about 10,000 ° C.), providing a heating chamber on the upper surface of molten steel in the tundish, and heating the chamber. Even in this method, the same effect as the preceding two examples can be obtained. There is an advantage that it can be done with one set of equipment when changing tundish.
One of the problems is that the soaking property is extremely inferior because the liquid surface is heated by an ultra-high temperature jet. Therefore, an appropriate shape design is required.
Another problem is that the equipment is expensive and the cost of Ar gas consumption is high, and moreover, as shown in detail in Non-Patent Document 1, it is complicated and highly skilled in use and repair (high maintenance cost). And cost and management.

公開特許公報昭55−161554Published Patent Publication No. 55-161554 公開特許公報平11−291023Published Patent Publication No. 11-291023

新日鐵技報382号(2005),p16 新日本製鐵ツイントーチ式タンディシュプラズマ加熱装置Nippon Steel Technical Report No. 382 (2005), p16 Nippon Steel's steel twin torch type tundish plasma heating system

鋼の連続鋳造においてタンディシュに保持された溶鋼を所望の温度に再加熱する際、高周波誘導加熱を応用しようとすると容器の形状は円筒形と同様の形状に限定され、単ストランドには適用可能だが多ストランドの異形容器には適用しにくい。
低周波誘導加熱を適用する場合、補助容器に相当するものを付設して溶鋼のループを構成する必要があり、耐火物の耐久に難点がある。しかも前記方法と同様容器各個に誘導装置の付設が必要で設備費が大きい。
プラズマトーチを適用する場合、容器と一体でないため1式で賄うことができる利点があるが、均熱性が劣るので撹拌が不可欠であり、設備・作業とも難易度が大きい。しかも高額設備である。
本願発明は上記問題に鑑み、タンディシュ内の溶鋼を再加熱するに際して、所定加熱能力が得られ、どのような形状の容器に対しても適用することができ、均熱性に優れ、しかも設備費・操業コストにも無理が無い方法を提供することを解決すべき課題とする。
When reheating the molten steel held in the tundish to the desired temperature in continuous casting of steel, the shape of the vessel is limited to the same shape as the cylindrical shape when applying high frequency induction heating, but it can be applied to single strands. It is difficult to apply to multi-strand shaped containers.
When applying low frequency induction heating, it is necessary to attach a thing corresponding to an auxiliary container to form a loop of molten steel, and there is a difficulty in durability of the refractory. In addition, as with the above method, it is necessary to attach a guidance device to each container, and the equipment cost is high.
When a plasma torch is applied, there is an advantage that it can be covered with one set because it is not integral with the container, but stirring is indispensable because of poor thermal uniformity, and the degree of difficulty in both equipment and work is large. Moreover, it is expensive equipment.
In view of the above problems, the present invention provides a predetermined heating capacity when reheating the molten steel in the tundish, and can be applied to containers of any shape, excellent in heat uniformity, and equipment costs. Providing a method that does not overwhelm operating costs is an issue to be solved.

本願発明は、鋼の連続鋳造に際してタンディシュ内の溶鋼を加熱する方法において、タンディシュを底部に連通孔を持つ隔壁によって受鋼部と鋳込部とに分け、鋳込部に気密性蓋を設けて溶鋼上方に気密性空間を形成し、該気密性空間に黒鉛抵抗発熱体を配置して通電加熱し、溶鋼上にスラグ層を形成して該発熱体の放射熱を吸収し、底面にガス吹込み用プラグを設けて不活性ガスを吹込み、溶鋼とスラグ層を攪拌してスラグ層から溶鋼への伝熱を促進するとともに該空間を不活性雰囲気にすることを特徴とするタンディシュ内溶鋼の加熱方法である。   The present invention relates to a method for heating molten steel in a tundish during continuous casting of steel. An airtight space is formed above the molten steel, a graphite resistance heating element is placed in the airtight space and energized and heated, a slag layer is formed on the molten steel to absorb the radiant heat of the heating element, and A tundish molten steel characterized by providing a plug for injection and blowing inert gas, stirring the molten steel and the slag layer to promote heat transfer from the slag layer to the molten steel and making the space an inert atmosphere. It is a heating method.

上記の発明による第1の効果は、本願発明のタンディシュ加熱方法によるとレードルからの注入流の温度低下に対応してタンディシュ内溶鋼を適切に加熱することができるので鋳込温度(タンディシュ内溶鋼温度)を精密に制御することができる。その結果品質・操業の安定に寄与する。   According to the first effect of the present invention, according to the tundish heating method of the present invention, the molten steel in the tundish can be appropriately heated in response to the temperature drop of the injection flow from the ladle. ) Can be controlled precisely. As a result, it contributes to the stability of quality and operation.

第2の効果は、精練終了温度を従来よりも低位に設定しても鋳込後半の温度不足は本願発明の加熱方法に基づく装置による必要最少の加熱によって回避することができる。精練に必要なアーク加熱よりも本願発明の密閉放射加熱の方が効率が高く(熱損が小さく)、且つ必要最少の加熱量であるから省エネルギーに寄与する。   The second effect is that even if the scouring end temperature is set to a lower level than before, the temperature shortage in the latter half of casting can be avoided by the minimum heating by the apparatus based on the heating method of the present invention. The sealed radiant heating of the present invention has higher efficiency (smaller heat loss) than the arc heating required for scouring, and contributes to energy saving because of the minimum heating amount required.

第3の効果は、従来使用後のタンディシュの溶鋼面レベル上下にはスラグや地金の固着が必ず認められる。補修作業は煩わしくコストも無視出来ないが、本願発明では上方加熱の故にタンディシュ壁面及び蓋内面とも付着が生じない。従って補修作業は極めて簡単になる。これは従来のタンディシュやタンディシュ加熱装置には無かった効果である。   The third effect is that slag and bullion sticking are always observed above and below the molten steel surface level of the tundish after use. Although the repair work is cumbersome and the cost cannot be ignored, in the present invention, no adhesion occurs on the tundish wall surface and the inner surface of the lid because of the upward heating. Therefore, the repair work is extremely simple. This is an effect that was not found in conventional tundish and tundish heating devices.

本願発明では黒鉛発熱体が消耗品となる。雰囲気制御により数十時間は耐用するが再加熱・再使用には問題がある。今日の連々鋳(連続連続鋳造)は約10時間継続されるので使い捨て方式でもコスト負担は比較的軽い。
従って品質・操業の安定の他コスト低減にも効果がある。
In the present invention, the graphite heating element is a consumable item. Although it lasts for several tens of hours due to the atmosphere control, there are problems with reheating and reuse. Since today's continuous casting (continuous continuous casting) is continued for about 10 hours, the cost burden is relatively light even with the disposable method.
Therefore, it is effective for cost reduction in addition to stable quality and operation.

本発明のタンディシュ内溶鋼を加熱する方法を実施する装置の例(2ストランドの場合)を示す。The example (in the case of 2 strands) of the apparatus which implements the method of heating the molten steel in a tundish of this invention is shown.

以下実施の形態について図面を参照しつつ説明する。
図1において、Aは正面図、Bは側面図、Cは平面図である。タンディシュ1は受鋼部2と鋳込部3とから成る。それぞれ上方は解放している。溶鋼面4は隔壁5によって分断される。該隔壁5の下部には連通孔6が設けらる。鋳込部3には機密性の蓋7が設けられ、鋳込み部3の溶鋼面4上には気密性空間8が形成され、該気密性空間8には抵抗発熱体9が設けられ、タンディシュ1の底には通気性プラグ10が設けられる。タンディシュ1及び蓋7の内面は耐火物11によって内ばりされている。
Hereinafter, embodiments will be described with reference to the drawings.
In FIG. 1, A is a front view, B is a side view, and C is a plan view. The tundish 1 includes a steel receiving part 2 and a cast-in part 3. Each upper part is free. The molten steel surface 4 is divided by a partition wall 5. The lower portion of the partition wall 5 communicating hole 6 is provided, et al is Ru. The cast-in part 3 is provided with a confidential lid 7, an airtight space 8 is formed on the molten steel surface 4 of the cast-in part 3, a resistance heating element 9 is provided in the airtight space 8, and the tundish 1 A breathable plug 10 is provided at the bottom of the. The inner surfaces of the tundish 1 and the lid 7 are filled with a refractory 11.

受鋼に際して溶鋼の冷却・凝固を抑制するため該耐火物11は充分高温に予熱する。受鋼部2にレードル(図示せず)から溶鋼保護用の浸漬管12を介して溶鋼13を注入する。該溶鋼13が所定深さに達すると鋳込ノズル14を開口して鋳型(図示せず)への鋳込を始める。その後鋳込部3には造滓材を装入し、溶鋼面4上で溶融してスラグ層15を形成する。   The refractory 11 is preheated to a sufficiently high temperature in order to suppress the cooling and solidification of the molten steel during steel receiving. Molten steel 13 is poured into the steel receiving part 2 from a ladle (not shown) through a dip tube 12 for protecting the molten steel. When the molten steel 13 reaches a predetermined depth, the casting nozzle 14 is opened and casting into a mold (not shown) is started. Thereafter, a casting material is charged into the casting portion 3 and melted on the molten steel surface 4 to form a slag layer 15.

発熱体9は黒鉛製の管状又は棒状又は板状の形状を持つ。通電により約2000℃に加熱された該発熱体9は気密性空間8内に放射熱を発し耐火物11の表面(蓋7の内面と溶鋼面4より上のタンディシュ壁面)及びスラグ層15を加熱する。それぞれ黒体ではないので一部は受熱し一部は反射するが閉鎖空間であるからいずれ全量浸透していく。耐火物は高温に熱せられるので通常よりも耐火度の大きい耐火物例えばアルミナ質を使用しなければならない。
スラグ層15に直接達した放射熱はスラグを昇温させる。他方耐火物面に達した放射の一部は熱伝導により耐火物を貫通して外部に放熱されるが低熱伝導率の故にその量は少ない。多くは耐火物11の表皮を昇温させ、スラグ層15へ放射し加熱する。
The heating element 9 has a graphite tubular shape, a rod shape, or a plate shape. The heating element 9 heated to about 2000 ° C. by energization emits radiant heat in the airtight space 8 to heat the surface of the refractory 11 (the inner surface of the lid 7 and the tundish wall surface above the molten steel surface 4) and the slag layer 15. To do. Since each is not a black body, part of it receives heat and part of it reflects, but since it is a closed space, it will infiltrate the whole amount. Since the refractory is heated to a high temperature, a refractory having a higher refractory than usual, such as alumina, must be used.
Radiant heat that reaches the slag layer 15 directly raises the temperature of the slag. On the other hand, part of the radiation reaching the refractory surface penetrates the refractory through heat conduction and is radiated to the outside, but its amount is small because of its low thermal conductivity. In many cases, the surface of the refractory 11 is heated and radiated to the slag layer 15 for heating.

放射熱を受けたスラグ層15は、上部が高温のため該部の密度が低下して対流が発生せず、静止状態である。従ってスラグ層15から溶鋼面4への伝熱は伝導が主体となる。スラグの熱伝導率は大きくないので伝熱の隘路が形成される。本願発明では鋳込部3の底に通気性プラグ10が設けてあり、不活性ガスが吹き込まれる。バグリングにより溶鋼13とスラグ層15の両方が撹拌され、混合を通して伝熱は対流が主体となって伝熱量が桁上がりし、且つ溶鋼の均熱化が促進される。その結果発熱体の出力に対応して溶鋼が昇温する。不活性ガスにはもう一つの機能がある。該ガスは気密性空間に充満し発熱体黒鉛の酸化消耗を防ぎ長時間の鋳込みを支える。   The slag layer 15 that has received radiant heat has a high temperature at the top, and the density of the slag layer 15 is reduced and convection does not occur. Therefore, the heat transfer from the slag layer 15 to the molten steel surface 4 is mainly conducted. Since the thermal conductivity of slag is not large, a heat transfer bottleneck is formed. In the present invention, a breathable plug 10 is provided at the bottom of the cast-in portion 3, and an inert gas is blown in. Both the molten steel 13 and the slag layer 15 are agitated by the bagling, and the heat transfer through mixing is mainly performed by convection, and the amount of heat transfer is increased, and soaking of the molten steel is promoted. As a result, the temperature of the molten steel rises corresponding to the output of the heating element. Inert gas has another function. The gas fills an airtight space, prevents oxidation of the heating element graphite, and supports long-time casting.

本願発明の効果を補足説明する。
第1に、鋳込温度を自在に制御することができる。注入流自体の温度は1チャージ約1時間の連続鋳造において約30〜50℃低下する。さらにチャージごとに開始温度が異なる。鋳込温度を一定とするには両者の変動に対応して適宜出力を傾斜的に投入させる。連続測温のフィードバックによる自動制御は容易になし得る。
The effect of the present invention will be supplementarily described.
First, the casting temperature can be freely controlled. The temperature of the injection flow itself decreases by about 30-50 ° C. in continuous casting for about 1 hour per charge. Furthermore, the starting temperature differs for each charge. In order to keep the casting temperature constant, the output is applied in an inclined manner in accordance with the fluctuations of the two. Automatic control with continuous temperature measurement feedback can be easily achieved.

第2に、省エネルギーを図ることができる。前工程の精錬において連続鋳造へ供給する溶鋼温度を従来よりも低位(例:−30℃)に設定する。その分昇温エネルギーが節減される。温度不足になる鋳込後半で本願発明の加熱方法により適宜加熱する。投入エネルギーは適用時間と傾斜的出力から必要最少とすることができる。従来は鋳込末期において鋳込維持に必要な温度が設定され、従って末期以前はエネルギー消費だけでなく品質面でも過剰温度であり、かなりの部分が解消される。
省エネルギーの他の要因は、従来のレードル精錬におけるアークの加熱効率(=溶鋼の受熱/熱源の出熱)が約45%に対して本願発明の閉鎖放射加熱では70%以上が期待される。
Second, energy saving can be achieved. The molten steel temperature supplied to continuous casting in the refining of the previous process is set to a lower level (eg, −30 ° C.) than before. The heating energy is saved accordingly. In the latter half of casting when the temperature becomes insufficient, the heating method according to the present invention is used for appropriate heating. The input energy can be minimized from the application time and the gradient output. Conventionally, the temperature required for maintaining casting is set at the end of casting, and therefore, the temperature is excessive in terms of quality as well as energy consumption before the end, and a considerable part is eliminated.
Another factor of energy saving is expected to be 70% or more in the closed radiant heating of the present invention, while the arc heating efficiency in the conventional ladle refining (= heat receiving of molten steel / heat output of heat source) is about 45%.

第3に、従来使用後のタンディシュの溶鋼面レベル上下にはスラグや地金の固着が必ず認められる。誘導加熱でも溶鋼は内部から直接加熱され液面上は加熱されず固着が生ずる。プラズマヒーターでは加熱室内は溶鋼上面から加熱され固着は生じないが壁面の多くを占める室外では生ずる。本願発明ではスラグ層を上から広く放射加熱するので耐火物の全壁面の温度は溶鋼温度よりも高く固着が全く生じない。
該固着は次回使用時に有害(溶鋼を汚染する、予熱時に溶解してノズルを閉鎖する等)であるから補修作業は手間・資材ともコストが無視できない。本願発明では補修作業は極めて簡単になる。
Thirdly, sticking of slag and metal is always observed above and below the molten steel surface level of the tundish after use. Even with induction heating, the molten steel is heated directly from the inside, and the liquid surface is not heated but is fixed. In the plasma heater, the heating chamber is heated from the upper surface of the molten steel and does not stick, but it occurs outside the room occupying most of the wall surface. In the present invention, since the slag layer is widely radiantly heated from above, the temperature of the entire wall surface of the refractory is higher than the molten steel temperature, and no sticking occurs.
Since the fixing is harmful at the next use (contamination of molten steel, melting at the time of preheating and closing the nozzle, etc.), the cost of labor and materials for repair work cannot be ignored. In the present invention, the repair work is extremely simple.

以上本願発明の要旨を定性的に述べたが当該構想に無理が無いか、作業条件が不適切とならないかを定量的に検討・試算する。
放射伝熱論によるとある物体1から他の物体2への放射エネルギー(逆も同様)は次式で示される。
12=k・e1・F12・A1 1 4 −−−−−(1)
21=k・e2・F21・A2 2 4 −−−−−(2)
Q:放射熱流束 k:ボルツマン定数 e:放射率 F:形態係数 A:表面積 T1,T2:絶対温度
両者の差が低温側に移行する。
本願発明では発熱体、耐火物壁、スラグ層の3者間で熱の授受が生じる。図1の棒状発熱体9の場合、放射の約1/3(円柱の1/3周分)は直接スラグ層へ、約2/3は耐火物壁を昇温させた後スラグ層へ放射する。
上記式において添え字1を発熱体、2を壁面、3(式は示さず)をスラグ層とし適切な数値を代入すれば放射熱流束が算出される。
Although the gist of the invention of the present application has been described qualitatively, whether or not the concept is reasonable or whether the working conditions are inappropriate will be examined and calculated quantitatively.
According to the radiative heat transfer theory, the radiant energy from one object 1 to another object 2 (and vice versa) is expressed by the following equation.
Q 12 = k · e 1 · F 12 · A 1 · T 1 4 ----- (1)
Q 21 = k · e 2 · F 21 · A 2 · T 2 4 ----- (2)
Q: Radiant heat flux k: Boltzmann constant e: Emissivity F: Form factor A: Surface area T 1 , T 2 : Absolute temperature The difference between the two shifts to the low temperature side.
In the present invention, heat is transferred between the heat generating body, the refractory wall, and the slag layer. In the case of the rod-shaped heating element 9 of FIG. 1, about 1/3 of the radiation (1/3 of the cylinder) is directly emitted to the slag layer, and about 2/3 is emitted to the slag layer after the refractory wall is heated. .
In the above equation, subscript 1 is a heating element, 2 is a wall surface, 3 (the equation is not shown) is a slag layer, and an appropriate numerical value is substituted to calculate a radiant heat flux.

スラグ層から溶鋼への伝熱について、静止状態では伝導が主体となりスラグを貫通する熱流束は次式で示される。本願発明では該状態を壊すので適用不要となる。
s=λ(TU−TL)/d −−−−−(3)
s:スラグ内伝導熱流束 λ:熱伝導率 TU:スラグ上面温度
L:スラグ下面温度 d:スラグ厚
それぞれが撹拌状態の場合、対流によって伝熱する。
34=α・(T3−T4) −−−−−(4)
34:対流熱流束 α:熱伝達率 T3:スラグ温度 T4:溶鋼温度
α値が判明しないので推測する。静止的溶融金属と固体間の熱伝達率は約2000(kcal/m2 h℃)であり、流動状態では10000にも達する。流動中の溶鋼と流動中のスラグ間では両側対流となるので対流伝熱は一層増幅する。数1000(例:3000以上)は充分期待することができる。
Regarding heat transfer from the slag layer to the molten steel, the heat flux that is mainly conducted in the stationary state and penetrates the slag is expressed by the following equation. In the present invention, since this state is broken, application is not necessary.
Q s = λ (T U −T L ) / d −−−−− (3)
Q s : conduction heat flux in slag λ: thermal conductivity T U : slag upper surface temperature TL : slag lower surface temperature d: slag thickness When each is in a stirring state, heat is transferred by convection.
Q 34 = α · (T 3 −T 4 ) −−−−− (4)
Q 34 : Convective heat flux α: Heat transfer coefficient T 3 : Slag temperature T 4 : Molten steel temperature Since the α value is not known, it is estimated. The heat transfer coefficient between the stationary molten metal and the solid is about 2000 (kcal / m 2 h ° C.) and reaches 10,000 in the flow state. The convection heat transfer is further amplified because the convection is performed on both sides between the flowing molten steel and the flowing slag. Several thousand (eg, 3000 or more) can be sufficiently expected.

発熱体の発熱量と溶鋼の吸収熱量が均衡する条件を解明しなければならない。
必要加熱能力Pは一意的に決まる(例:鋳造能率120t/hに対して30℃昇温、効率0.8の場合1000kW)。
能力Pに対して無理のない発熱体温度T1を設定(例:2000℃)し、壁面温度T2を許容値(例:1700℃)に設定し、(1)、(2)式に基づいて必要表面積A1を算出する(例:2000℃の場合約1.5m2)。
スラグ層温度T3を壁面温度T2と溶鋼温度T4(=1500℃)の中間値に仮設定する(例:1550℃)。
スラグ溶鋼間の熱伝達率α値を仮設定する(例:3000kcal/m2 h℃)。
It is necessary to elucidate the conditions that balance the heat generated by the heating element and the heat absorbed by the molten steel.
The required heating capacity P is uniquely determined (for example, when the casting efficiency is 120 t / h, the temperature is raised by 30 ° C., and the efficiency is 0.8 kW, 1000 kW).
A heating element temperature T 1 that is reasonable for the capacity P is set (for example, 2000 ° C.), the wall surface temperature T 2 is set to an allowable value (for example, 1700 ° C.), and based on the formulas (1) and (2) The required surface area A 1 is calculated (for example, about 1.5 m 2 at 2000 ° C.).
The slag layer temperature T 3 is temporarily set to an intermediate value between the wall surface temperature T 2 and the molten steel temperature T 4 (= 1500 ° C.) (example: 1550 ° C.).
Temporarily set the heat transfer coefficient α value between the slag molten steel (example: 3000 kcal / m 2 h ° C.).

以上の数値代入により発熱体・壁面・スラグ層・溶鋼間の熱流束が算出される。発熱体からスラグ層へ移行する熱流束の和がスラグ層から溶鋼へ移行する熱流束に均衡するよう、
且つ計算加熱出力Pが所定値に近似するようT1,T2,T3を試算し、α値を変動させて修正する。連立方程式の近似解を数値代入方式で求めることになる。試算結果の一例を実施例のところで述べるが、熱流束が均衡し、熱流量、各部温度、対流熱伝達率(撹拌力の目安となる)の値が作業上問題の無い範囲にあることが判明した。定性と定量の整合が確認された。
The heat flux between the heating element, wall surface, slag layer, and molten steel is calculated by the above numerical substitution. In order to balance the sum of the heat flux transferred from the heating element to the slag layer to the heat flux transferred from the slag layer to the molten steel,
In addition, T1, T2, and T3 are estimated so that the calculated heating output P approximates to a predetermined value, and the α value is changed and corrected. The approximate solution of the simultaneous equations is obtained by the numerical substitution method. An example of the trial calculation result will be described in the embodiment. It is found that the heat flux is balanced, and the values of the heat flow rate, the temperature of each part, and the convective heat transfer coefficient (which is a guideline for stirring force) are within the range where there is no problem in work. did. The consistency between qualitative and quantitative was confirmed.

本願発明の必要条件の一つであるスラグの介在について説明する。
放射伝熱において吸収率はキルヒホッフの法則により放射率e(下記引用文献、p.211)である。スラグ層が無い場合、溶鋼面が放射を受ける。溶鋼の放射率は0.28(同、p.965)で吸収が極めて小さい。反射分は発熱体及び耐火物壁面を昇温させる。一定出力に対して吸収が不足する分、発熱体と耐火物が昇温することになる。所定の昇温能力を得ることは極めて困難になる。電流値を増加させても発熱体と壁面温度が一層上昇するが溶鋼への増加は小さい。
耐火物温度が1700℃を超えるとアルミナでも耐久に問題が生ずる。コスト上実用困難になり、溶鋼の放射加熱は成立しない。
スラグの放射率(吸収率)は約0.8である。浮遊させることにより伝熱は大幅に向上し所定能力が容易に得られる。金属溶解に使用される反射炉が鉱滓を共存させていることが理解される。これがスラグを介在させる理由である。
The interposition of slag, which is one of the necessary conditions of the present invention, will be described.
In radiant heat transfer, the absorptance is the emissivity e (the following cited reference, p. 211) according to Kirchhoff's law. When there is no slag layer, the molten steel surface receives radiation. Molten steel has an emissivity of 0.28 (p. 965) and very low absorption. The reflection increases the temperature of the heating element and the refractory wall. The heating element and the refractory are heated up due to insufficient absorption for a certain output. It becomes extremely difficult to obtain a predetermined temperature raising capability. Even if the current value is increased, the temperature of the heating element and the wall surface is further increased, but the increase in molten steel is small.
When the refractory temperature exceeds 1700 ° C., there is a problem in durability even with alumina. It becomes practically difficult in terms of cost, and radiant heating of molten steel is not realized.
The emissivity (absorption rate) of slag is about 0.8. By making it float, heat transfer is greatly improved, and a predetermined capacity can be easily obtained. It is understood that the reverberatory furnace used for melting metal coexists with iron ore. This is the reason for interposing slag.

適切なスラグ組成として、耐火物をアルミナ質とすると塩基度0.5〜1.5の酸性から中性が良い。スラグによる溶蝕が少ない。溶鋼を汚染させない非酸化性(FeO+MnOが2%以下)が条件となる。塩基度約1以下はガラス状であり非酸化性なら半透明である。放射の一部はスラグ内部に浸透・通過し溶鋼に達する。反射も吸収(同、p.973)する。放射率以上に伝熱性が向上する。ガラスの溶解炉において上方加熱で対流が無いにもかかわずよく熱せられる理由が理解される。
引用文献: 吉田正彦著、実用熱工学、栗田出版社
As an appropriate slag composition, when the refractory is made of alumina, the basicity is good from the acidity of 0.5 to 1.5. Less corrosion by slag. The non-oxidizing property (FeO + MnO is 2% or less) that does not contaminate the molten steel is a condition. A basicity of about 1 or less is glassy and is non-oxidative and translucent. Part of the radiation penetrates and passes inside the slag and reaches the molten steel. Absorption is also absorbed (p.973). Heat conductivity is improved more than emissivity. It is understood why a glass melting furnace can be heated well in the absence of convection due to upward heating.
Cited Reference: Masahiko Yoshida, Practical Thermal Engineering, Kurita Publishing Co.

発熱体と気密性空間について述べる。2000℃に耐える実用材は黒鉛しかない。黒鉛は酸化消耗し易いので雰囲気制御が不可欠である。本願発明で『気密性』と表記した理由は酸化防止のためであって、従って非酸化性の雰囲気が形成されればよい。完全気密を要しない。目安として酸素ガス濃度が1%以下であれば充分である。
鋳込終了後は空気が侵入して酸化し従って消耗品となる。発熱体は小さいほどコスト上有利になる。
放射熱量は表面積に比例し、自身の温度と対象の温度に依存する。必要量を最少の表面積で得るには自身の温度を高くすればよい。黒鉛発熱体は2000℃以上の耐用実績がある。過剰に高温にすると電極部の熱損や周辺の耐久に問題が生ずる。2000℃以下が無難であり2000℃を基準に表面積を決定すればよい。
発熱体の配置は図示のように水平が無難で、方向は縦でも横でもよい。
発熱体の形状は、必要表面積を確保したらコスト本位で選択すればよい。
The heating element and airtight space are described. The only practical material that can withstand 2000 ° C. is graphite. Since graphite is easily oxidized and consumed, atmosphere control is indispensable. The reason why “airtightness” is described in the present invention is to prevent oxidation, and therefore, a non-oxidizing atmosphere may be formed. Does not require complete airtightness. As a guide, it is sufficient if the oxygen gas concentration is 1% or less.
After the casting is finished, air enters and oxidizes, thus becoming a consumable product. The smaller the heating element, the more advantageous in terms of cost.
The amount of radiant heat is proportional to the surface area and depends on its own temperature and the temperature of the object. To obtain the required amount with the minimum surface area, the temperature of itself should be increased. The graphite heating element has a service life of 2000 ° C. or higher. If the temperature is excessively high, problems occur in the heat loss of the electrode part and the durability of the surroundings. It is safe to use 2000 ° C. or lower, and the surface area may be determined based on 2000 ° C.
As shown in the figure, the heating elements are arranged horizontally, and the direction may be either vertical or horizontal.
The shape of the heating element may be selected on a cost basis once the required surface area is secured.

ガス吹込みについて、タンディシュ容量が小さい場合、1カ所の吹込みで充分撹拌することができるが大きい場合は複数個適当に分散配置するのが望ましい。必要ガス量は意外に少ない。   As for the gas blowing, if the tundish capacity is small, it can be sufficiently stirred by blowing at one place, but if it is large, it is desirable to disperse a plurality of them appropriately. The amount of gas required is surprisingly small.

鋳造能率120t/hの連続鋳造において本発明によって30℃昇温させる場合の条件を表1に、シミュレーションの結果の一例を表2に示す。適当な撹拌力(α≒4000)のもと、発熱体温度2010℃、耐火物壁面温度1675℃、スラグ層温度1540℃において熱流量は約1200kWとなり、放射熱量と溶鋼の受熱量が均衡する。所望加熱能力に対して耐火物温度が1700℃を超えないよう他の要因(例:撹拌力、タンディシュ大きさ)を操作することが良い。

Figure 0005690015
Figure 0005690015
Table 1 shows the conditions for increasing the temperature by 30 ° C. according to the present invention in continuous casting at a casting efficiency of 120 t / h, and Table 2 shows an example of the simulation results. Under an appropriate stirring force (α≈4000), the heat flow becomes about 1200 kW at a heating element temperature of 2010 ° C., a refractory wall surface temperature of 1675 ° C., and a slag layer temperature of 1540 ° C., and the amount of radiant heat and the amount of heat received by the molten steel are balanced. It is preferable to operate other factors (eg, stirring force, tundish size) so that the refractory temperature does not exceed 1700 ° C. with respect to the desired heating capacity.
Figure 0005690015
Figure 0005690015

本願発明による加熱装置は既存の連続鋳造機に容易に付設することができ、品質と生産性に寄与する。   The heating device according to the present invention can be easily attached to an existing continuous casting machine, and contributes to quality and productivity.

1:タンディシュ 2:受鋼部 3:鋳込部 4:溶鋼面 5:隔壁 6:連通孔 7:蓋 8:気密性空間 9:黒鉛発熱体 10:通気性プラグ 11:耐火物 12:浸漬管 13:溶鋼 14:鋳込ノズル   1: Tundish 2: Steel receiving part 3: Casting part 4: Molten steel surface 5: Partition wall 6: Communication hole 7: Lid 8: Airtight space 9: Graphite heating element 10: Breathable plug 11: Refractory 12: Dip tube 13: Molten steel 14: Casting nozzle

Claims (1)

鋼の連続鋳造に際してタンディシュ内の溶鋼を加熱する方法において、タンディシュを底部に連通孔を持つ隔壁によって受鋼部と鋳込部とに分け、鋳込部に気密性蓋を設けて溶鋼上方に気密性空間を形成し、該気密性空間に黒鉛抵抗発熱体を配置して通電加熱し、溶鋼上にスラグ層を形成して該発熱体の放射熱を吸収し、底面にガス吹込み用プラグを設けて不活性ガスを吹込み、溶鋼とスラグ層を攪拌してスラグ層から溶鋼への伝熱を促進するとともに該気密性空間を不活性雰囲気にすることを特徴とするタンディシュ内溶鋼の加熱方法。 In the method of heating the molten steel in the tundish during continuous casting of steel, the tundish is divided into a steel receiving part and a cast part by a partition wall having a communicating hole in the bottom, and an airtight lid is provided on the cast part to provide a hermetic seal above the molten steel. Forming a heat resistant space, placing a graphite resistance heating element in the airtight space and conducting heating, forming a slag layer on the molten steel to absorb the radiant heat of the heating element, and providing a gas blowing plug on the bottom surface A method for heating molten steel in a tundish characterized by providing an inert gas and stirring the molten steel and the slag layer to promote heat transfer from the slag layer to the molten steel and making the airtight space an inert atmosphere. .
JP2014183798A 2014-09-10 2014-09-10 Heating method of molten steel in tundish Expired - Fee Related JP5690015B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014183798A JP5690015B1 (en) 2014-09-10 2014-09-10 Heating method of molten steel in tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014183798A JP5690015B1 (en) 2014-09-10 2014-09-10 Heating method of molten steel in tundish

Publications (2)

Publication Number Publication Date
JP5690015B1 true JP5690015B1 (en) 2015-03-25
JP2016055316A JP2016055316A (en) 2016-04-21

Family

ID=52823342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014183798A Expired - Fee Related JP5690015B1 (en) 2014-09-10 2014-09-10 Heating method of molten steel in tundish

Country Status (1)

Country Link
JP (1) JP5690015B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105414505A (en) * 2015-12-18 2016-03-23 河南省西保冶材集团有限公司 Special covering slag for auto sheet CSP sheet billet
CN106735018A (en) * 2016-12-07 2017-05-31 重庆市合川区银窝铸造厂 A kind of energy-conservation casting system in reasonable utilization casting area space
CN115323110A (en) * 2022-08-30 2022-11-11 洛阳豫新工程技术股份有限公司 Method and system for non-contact measurement of temperature of molten steel in ladle furnace
CN117862430A (en) * 2023-12-22 2024-04-12 鞍钢股份有限公司 Device and method for removing inclusions in molten steel in tundish

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021041410A (en) * 2019-09-06 2021-03-18 山田 榮子 Method for preventing contamination of molten steel flow in continuous casting tundish

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253805A (en) * 1996-03-21 1997-09-30 Kawasaki Steel Corp Method for plasma-heating molten steel in tundish for continuous casting
JP2014065039A (en) * 2011-02-17 2014-04-17 Eiko Yamada Preheating method of steel making ladle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253805A (en) * 1996-03-21 1997-09-30 Kawasaki Steel Corp Method for plasma-heating molten steel in tundish for continuous casting
JP2014065039A (en) * 2011-02-17 2014-04-17 Eiko Yamada Preheating method of steel making ladle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105414505A (en) * 2015-12-18 2016-03-23 河南省西保冶材集团有限公司 Special covering slag for auto sheet CSP sheet billet
CN106735018A (en) * 2016-12-07 2017-05-31 重庆市合川区银窝铸造厂 A kind of energy-conservation casting system in reasonable utilization casting area space
CN115323110A (en) * 2022-08-30 2022-11-11 洛阳豫新工程技术股份有限公司 Method and system for non-contact measurement of temperature of molten steel in ladle furnace
CN117862430A (en) * 2023-12-22 2024-04-12 鞍钢股份有限公司 Device and method for removing inclusions in molten steel in tundish

Also Published As

Publication number Publication date
JP2016055316A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5690015B1 (en) Heating method of molten steel in tundish
JP4903903B1 (en) Preheating method for steelmaking ladle
JPWO2006132309A1 (en) Crucible continuous melting furnace
JP4809847B2 (en) Molten copper casting rod
US7011136B2 (en) Method and apparatus for melting metals
BR112016013573B1 (en) process for producing metal ingots
US20150098484A1 (en) Tapping device and method using induction heat for melt
CN102343424B (en) Horizontal continuous casting device and method for high-conductivity and high-strength copper alloy round bar
US20160312322A1 (en) Device and method for treating metallic materials
CN105834382A (en) Molten steel feeding system used for preparing amorphous strips
CN107962169A (en) The preparation facilities and method of refractory metal base gradient composite material
US3851090A (en) Means for melting, holding and tapping metals or metal alloys
JP6772677B2 (en) Tandish internal molten steel heating method and tundish plasma heating device
CN204100794U (en) The clean fusing system of non-crystaline amorphous metal
CN205382196U (en) Zinc -tin vacuum distillation stove
CN107541604A (en) The horizontal continuous vacuum induction fusion casting stove in four Room
CN110746092A (en) Preheating device of runner flashboard
CN201399579Y (en) Magnesium alloy melt long-distance transportation system
CN110106532A (en) A kind of method that molten-salt electrolysis prepares terbium ferroalloy
JPH0827553A (en) Hot-dip plating device
CN211419969U (en) Preheating device of runner flashboard
JP2013052407A (en) Apparatus for supplying molten metal to die-casting machine, and method for supplying the molten metal
JP5203680B2 (en) Metal electroslag remelting process and ingot mold used therefor
WO2021045174A1 (en) Method for producing low-carbon ferrochromium
Kittaka et al. Twin-torch type tundish plasma heater “NS-plasma II” for continuous caster

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

R150 Certificate of patent or registration of utility model

Ref document number: 5690015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees