[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5677196B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP5677196B2
JP5677196B2 JP2011115723A JP2011115723A JP5677196B2 JP 5677196 B2 JP5677196 B2 JP 5677196B2 JP 2011115723 A JP2011115723 A JP 2011115723A JP 2011115723 A JP2011115723 A JP 2011115723A JP 5677196 B2 JP5677196 B2 JP 5677196B2
Authority
JP
Japan
Prior art keywords
oil
crankshaft
compression mechanism
oil groove
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011115723A
Other languages
Japanese (ja)
Other versions
JP2012241686A (en
JP2012241686A5 (en
Inventor
直隆 服部
直隆 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011115723A priority Critical patent/JP5677196B2/en
Publication of JP2012241686A publication Critical patent/JP2012241686A/en
Publication of JP2012241686A5 publication Critical patent/JP2012241686A5/ja
Application granted granted Critical
Publication of JP5677196B2 publication Critical patent/JP5677196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

この発明は、冷凍冷蔵空調用機器や給湯用機器等のヒートポンプを利用した冷凍サイクルに使用される回転型圧縮機に関するものである。   The present invention relates to a rotary compressor used in a refrigeration cycle using a heat pump such as a refrigeration / refrigeration air conditioning device or a hot water supply device.

従来の密閉型回転型圧縮機は、固定子と回転子から成る電動機が上部に、そしてこの電動機に連結された回転軸により駆動される圧縮機構部が電動機の下方に位置するように密閉容器内に収納されており、冷凍サイクルの低圧(吸入圧)冷媒を圧縮機構部に吸入し、圧縮機構部で高圧(吐出圧)まで圧縮し、密閉容器に固定された吐出管から密閉容器の外部の冷凍サイクルに高圧冷媒を吐出する。   In a conventional hermetic rotary compressor, an electric motor composed of a stator and a rotor is located at the top, and a compression mechanism driven by a rotating shaft connected to the electric motor is located below the electric motor. The refrigerant is sucked into the compression mechanism section and is compressed to a high pressure (discharge pressure) by the compression mechanism section, and is discharged from the discharge pipe fixed to the sealed container to the outside of the sealed container. High pressure refrigerant is discharged into the refrigeration cycle.

圧縮機構部は、シリンダと、前記シリンダ内に設けられた前記クランク軸の偏心部に嵌合されたローラと、前記ローラの偏心回転に追従して前記シリンダに設けられたスロット内を往復運動するベーンと、前記シリンダの両端面を閉塞し前記クランク軸を支持する上軸受と下軸受から構成される。   The compression mechanism reciprocates in a cylinder, a roller fitted in an eccentric portion of the crankshaft provided in the cylinder, and a slot provided in the cylinder following the eccentric rotation of the roller. The vane is composed of an upper bearing and a lower bearing that close the both end faces of the cylinder and support the crankshaft.

前記クランク軸には、軸方向へ向かって回転中心に油通路穴が設けられるとともに、軸受側へと連通する給油穴が設けられている。また、クランク軸の偏心部には前記ローラ内周部と連通する給油穴が設けられ、外周部には油溝が設けられている。   The crankshaft is provided with an oil passage hole at the center of rotation in the axial direction and an oil supply hole communicating with the bearing side. The eccentric part of the crankshaft is provided with an oil supply hole communicating with the inner peripheral part of the roller, and an oil groove is provided on the outer peripheral part.

密閉容器の底部は油溜めとなっており、圧縮機構部の摺動箇所への潤滑や圧縮室のシールを行う冷凍機油が貯留されている。クランク軸の下部はこの油溜めの冷凍機油に浸っていて、クランク軸の回転による遠心ポンプ作用により、冷凍機油がクランク軸の内部に形成された油通路穴に汲み上げられ、圧縮機構部の摺動箇所などに供給される。クランク軸は、圧縮室の上下を閉塞する圧縮機構部の上軸受と下軸受とによって径方向に支持される。   The bottom of the sealed container is an oil sump, which stores refrigerating machine oil that lubricates the sliding portion of the compression mechanism and seals the compression chamber. The lower part of the crankshaft is immersed in the oil in the oil reservoir in the oil sump, and the centrifugal pump is driven by the rotation of the crankshaft, so that the refrigeration oil is pumped into the oil passage hole formed inside the crankshaft, and the sliding of the compression mechanism It is supplied to places. The crankshaft is supported in the radial direction by an upper bearing and a lower bearing of the compression mechanism portion that closes the top and bottom of the compression chamber.

前記圧縮機構部の主な摺動箇所には、クランク下軸と下軸受、クランク偏心軸とローラ内周部、クランク上軸と上軸受などがある。   The main sliding portions of the compression mechanism include a crank lower shaft and a lower bearing, a crank eccentric shaft and a roller inner peripheral portion, a crank upper shaft and an upper bearing, and the like.

クランク下軸〜下軸受間には、前記クランク下軸の給油穴を介して冷凍給油を供給し、クランク偏心軸〜ローラ間には、前記クランク偏心軸の給油穴を介して冷凍機油を供給する。クランク偏心軸とローラ内周部の潤滑に供された冷凍機油の一部は、クランク上軸と上軸受に供給される。   Refrigeration oil is supplied between the crank lower shaft and the lower bearing through the oil supply hole of the crank lower shaft, and refrigeration oil is supplied between the crank eccentric shaft and the roller through the oil supply hole of the crank eccentric shaft. . A part of the refrigerating machine oil used for lubricating the crank eccentric shaft and the roller inner peripheral portion is supplied to the crank upper shaft and the upper bearing.

回転子に向けて伸長する上軸受体の円筒状の上軸受とクランク軸の摺動箇所の潤滑に供給された冷凍機油は、潤滑後に上軸受の上端である上軸受とクランク軸のすきま上端から噴出されるように排出される。冷凍機油は遠心ポンプ作用により供給されるため、特に電動機が可変速対応で、圧縮機の回転数が60rpsを超える高速運転時には、上軸受に供給される単位時間あたりの冷凍機油量は回転数に応じて増加するので、上軸受の上端から排出される冷凍機油の量もそれに応じて増加する。   Refrigerating machine oil supplied to lubricate the sliding part of the cylindrical upper bearing and crankshaft of the upper bearing body extending toward the rotor is lubricated from the upper end of the upper bearing and crankshaft, which is the upper end of the upper bearing after lubrication. It is discharged so as to be ejected. Since the refrigeration oil is supplied by the centrifugal pump action, the amount of refrigeration oil per unit time supplied to the upper bearing is the rotation speed, especially when the motor is capable of variable speed operation and the compressor rotation speed exceeds 60 rps. Accordingly, the amount of refrigerating machine oil discharged from the upper end of the upper bearing also increases accordingly.

上軸受端部より排出した冷凍機油は電動機の固定子と回転子の径方向のスキマであるエアギャップを通って、電動機上部と密閉容器内の二次空間に入り、この二次空間に連通する吐出管から密閉容器外部の冷凍サイクルに吐出される。   The refrigeration oil discharged from the upper bearing end passes through the air gap, which is the radial gap between the stator and rotor of the motor, enters the upper space of the motor and the secondary space in the sealed container, and communicates with this secondary space. It is discharged from the discharge pipe to the refrigeration cycle outside the sealed container.

圧縮機構部の摺動箇所への冷凍機油供給量が少ないと次のような問題が生じる。   The following problems arise when the amount of refrigerating machine oil supplied to the sliding portion of the compression mechanism is small.

圧縮機構部の各摺動箇所の潤滑に必要な冷凍機油の供給量が減って摺動部が潤滑不良を起こし、摺動損失の増加により圧縮機効率が低下したり、摺動部が摩耗、損傷したりする。そして、最悪の場合には摺動部が焼き付いて回転軸がロックし、圧縮機の運転が不能となる。   The amount of refrigeration oil required to lubricate each sliding part of the compression mechanism is reduced, causing the sliding part to be poorly lubricated, increasing the sliding loss, reducing the compressor efficiency, and causing the sliding part to wear. Or damage it. In the worst case, the sliding portion is seized and the rotary shaft is locked, and the compressor cannot be operated.

さらに、圧縮機構部の圧縮室のシール性が低下し、漏れ損失の増加により圧縮機効率が低下する。   Further, the sealing performance of the compression chamber of the compression mechanism portion is lowered, and the compressor efficiency is lowered due to an increase in leakage loss.

また、圧縮機構部の摺動箇所への冷凍機油の供給量が多すぎると次のような問題が生じる。   Further, if the amount of the refrigerating machine oil supplied to the sliding portion of the compression mechanism portion is too large, the following problem occurs.

上軸受の上端部より排出される冷凍機油の量が増加し、該上軸受け上端から排出された油は、エアギャップを通って密閉容器内の二次空間に入り、該二次空間に連通する吐出管から密閉容器外部の冷凍サイクルに吐出されるため、冷凍サイクル上の熱交換器において、伝熱効率を低下させ、冷凍サイクル装置全体の効率が低下する。   The amount of refrigerating machine oil discharged from the upper end of the upper bearing increases, and the oil discharged from the upper bearing upper end enters the secondary space in the sealed container through the air gap and communicates with the secondary space. Since it is discharged from the discharge pipe to the refrigeration cycle outside the sealed container, the heat transfer efficiency is lowered in the heat exchanger on the refrigeration cycle, and the efficiency of the entire refrigeration cycle apparatus is lowered.

従来の回転型圧縮機においては、クランクシャフトの偏心部の摺動面に斜めの溝を設け、上流側から下流側に向かって溝の断面積が徐々に減少するように変化させて設けたものがある(例えば、特許文献1)。   In a conventional rotary compressor, an oblique groove is provided on the sliding surface of the eccentric part of the crankshaft, and the sectional area of the groove is gradually changed from the upstream side to the downstream side. (For example, Patent Document 1).

特開平2−130292号公報(第5頁右上段第11行〜第20行、第2図、第5図)Japanese Patent Laid-Open No. 2-130292 (page 5, upper right row, lines 11 to 20; FIGS. 2 and 5)

しかしながら、特許文献1では、斜めの溝がポンプの役割をして潤滑油を排出するため、冷凍システムへ潤滑油が流出して給油量が減少した時には、クランクシャフトと軸受、クランクシャフトの偏心部とローラピストンが金属接触を起こしやすくなり摺動が過酷になる。   However, in Patent Document 1, since the slant groove serves as a pump and discharges the lubricating oil, when the lubricating oil flows out to the refrigeration system and the amount of oil supply decreases, the crankshaft and the bearing, the eccentric part of the crankshaft As a result, the roller piston is liable to make metal contact and the sliding becomes severe.

この発明は、上記のような問題点を解決するためになされたもので、圧縮機構部の各摺動箇所が潤滑不良を起こさない様な給油量を確保し、且つ、上軸受端部から排出される冷凍機油の量を抑え、圧縮機外から冷凍回路に吐出される冷凍機油の量も少なくし、高効率で信頼性の高い圧縮機を提供することを目的とする。   The present invention has been made to solve the above-described problems. The lubrication amount is ensured so that each sliding portion of the compression mechanism section does not cause poor lubrication and is discharged from the end of the upper bearing. An object of the present invention is to provide a highly efficient and highly reliable compressor by suppressing the amount of refrigeration oil to be discharged and reducing the amount of refrigeration oil discharged from the outside of the compressor to the refrigeration circuit.

この発明における回転型圧縮機は、クランク軸を有する駆動部と、前記クランク軸を介して前記駆動部により駆動される圧縮機構部とを収納する密閉容器とを備え、前記圧縮機構部は、流体が流入するシリンダと、前記クランク軸の偏心部に嵌合され、前記シリンダ内に設けられたローラと、前記シリンダの両端面を閉塞し前記クランク軸を支持する上軸受と下軸受とから構成され、前記偏心部の外周の一部には軸方向の全巾にわたって油溝が設けられ、前記油溝の下端は前記下軸受の軸受部と連通し、前記油溝の断面形状は、前記油溝の下端から上端に向かって、前記油溝の下端から上端まで縮小しているものである。 The rotary compressor according to the present invention includes a drive unit having a crankshaft and a sealed container that houses a compression mechanism unit driven by the drive unit via the crankshaft, and the compression mechanism unit includes a fluid Inflow, a roller fitted in the eccentric part of the crankshaft, and provided in the cylinder, and an upper bearing and a lower bearing for closing the both end faces of the cylinder and supporting the crankshaft. In addition, an oil groove is provided in a part of the outer periphery of the eccentric portion over the entire width in the axial direction, the lower end of the oil groove communicates with the bearing portion of the lower bearing, and the cross-sectional shape of the oil groove is the oil groove The oil groove is reduced from the lower end to the upper end from the lower end to the upper end .

この発明によれば、圧縮機構部へ適量な冷凍機油を供給することができるため、圧縮機構部のシール性や潤滑性を確保することができ、圧縮機構部の各摺動箇所が潤滑不良を起こさない高効率で信頼性の高い回転型圧縮機を得られる効果がある。   According to this invention, since an appropriate amount of refrigerating machine oil can be supplied to the compression mechanism section, the sealing performance and lubricity of the compression mechanism section can be ensured, and each sliding portion of the compression mechanism section has poor lubrication. There is an effect of obtaining a highly efficient and highly reliable rotary compressor that does not occur.

この発明の実施の形態1を示す回転型圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the rotary compressor which shows Embodiment 1 of this invention. 図1に示す回転型圧縮機の要部断面図である。It is principal part sectional drawing of the rotary compressor shown in FIG. 図1に示す回転型圧縮機の圧縮機構を説明するための説明用横断面図である。FIG. 2 is a cross-sectional view for explaining a compression mechanism of the rotary compressor shown in FIG. 1. 図1、図2に示すクランク軸偏心部の油溝の斜視図である。It is a perspective view of the oil groove of the crankshaft eccentric part shown in FIG. 1, FIG.

[実施の形態1]
図1は、この発明を実施するための実施の形態1における密閉型の回転型圧縮機を示す縦断面図であり、図2は図1に示す回転型圧縮機の要部断面図である。図3は、図1に示す回転型圧縮機の圧縮機構部1の圧縮機構を説明するための説明用横断面図であり、図4はこの発明の要部であるクランク軸の偏心部油溝の斜視図である。
[Embodiment 1]
FIG. 1 is a longitudinal sectional view showing a hermetic rotary compressor according to Embodiment 1 for carrying out the present invention, and FIG. 2 is a sectional view of a main part of the rotary compressor shown in FIG. 3 is a cross-sectional view for explaining the compression mechanism of the compression mechanism 1 of the rotary compressor shown in FIG. 1, and FIG. 4 is an eccentric oil groove of the crankshaft which is the main part of the present invention. FIG.

図1、図3に示すように回転型圧縮機は、密閉容器70の内部に圧縮機構部1と、圧縮機構部1をクランク軸2を介して回転駆動させる固定子51と回転子52から成る電動機50を収納し、密閉容器70の外面に保持される気液分離器90を備える。電動機50の下方には圧縮機構部1が配置され、電動機50と圧縮機構部1の間の空間が一次空間80となっている。密閉容器70の底部には、圧縮機構部1に供給され圧縮機構部1の各摺動箇所の潤滑や圧縮室のシールなどに使われる冷凍機油が貯留される油溜め75が設けられている。   As shown in FIGS. 1 and 3, the rotary compressor includes a compression mechanism 1 inside a sealed container 70, a stator 51 that rotates the compression mechanism 1 through a crankshaft 2, and a rotor 52. A gas-liquid separator 90 that houses the electric motor 50 and is held on the outer surface of the sealed container 70 is provided. The compression mechanism unit 1 is disposed below the electric motor 50, and a space between the electric motor 50 and the compression mechanism unit 1 is a primary space 80. An oil sump 75 is provided at the bottom of the hermetic container 70 for storing refrigerating machine oil that is supplied to the compression mechanism unit 1 and used for lubrication of each sliding portion of the compression mechanism unit 1 and sealing of the compression chamber.

密閉容器70は上下を開口した円筒容器71に、上蓋72および底蓋73が溶接等で接合されることで密閉がなされる。底蓋73の底面にはこの回転型圧縮機が自立するための脚体74が接合されている。なお、密閉容器70は絞り加工等で形成した有底の円筒容器71に上蓋72を接合する2分割構成としてもよい。この回転型圧縮機が圧縮する冷媒としては二酸化炭素またはHFC冷媒が使用されている。油溜め75の冷凍機油は、冷媒が二酸化炭素の場合にはPAG(ポリアルキレングリコール)油がよく使用され、HFC冷媒の場合にはエーテル油もしくはエステル油またはアルキルベンゼン油がよく使用される。   The sealed container 70 is hermetically sealed by joining an upper lid 72 and a bottom lid 73 to a cylindrical container 71 that is open at the top and bottom by welding or the like. A leg 74 for allowing the rotary compressor to stand by itself is joined to the bottom surface of the bottom lid 73. The sealed container 70 may have a two-part configuration in which an upper lid 72 is joined to a bottomed cylindrical container 71 formed by drawing or the like. Carbon dioxide or HFC refrigerant is used as the refrigerant compressed by the rotary compressor. As the refrigerating machine oil of the sump 75, PAG (polyalkylene glycol) oil is often used when the refrigerant is carbon dioxide, and ether oil, ester oil or alkylbenzene oil is often used when the refrigerant is HFC refrigerant.

電動機50は、固定子51と回転子52から構成される。電動機50は可変速対応であり、この回転型圧縮機を使用する冷凍サイクル装置の負荷に応じて回転数を変化させるものである。冷凍サイクル装置の運転環境によっては回転数が60rpsを超えるような高速運転も行う。回転子52の外周と固定子51内周の間には、エアギャップと呼ばれる径方向の隙間が全周に渡ってほぼ均一に設けられる。エアギャップ58が広いと電動機効率が低下するため、エアギャップ58は通常、幅が0.3〜1.0mm程度の狭い幅に設定されている。ここで、エアギャップ58の幅とは、固定子51内径と回転子52外径の差の半分であり、半径隙間を表す。エアギャップ58は圧縮機構部1で圧縮された高圧冷媒の流路となる。   The electric motor 50 includes a stator 51 and a rotor 52. The electric motor 50 is variable speed compatible, and changes the number of rotations according to the load of the refrigeration cycle apparatus using this rotary compressor. Depending on the operating environment of the refrigeration cycle apparatus, high-speed operation is also performed such that the rotational speed exceeds 60 rps. Between the outer periphery of the rotor 52 and the inner periphery of the stator 51, a radial gap called an air gap is provided substantially uniformly over the entire periphery. Since the motor efficiency decreases when the air gap 58 is wide, the air gap 58 is usually set to a narrow width of about 0.3 to 1.0 mm. Here, the width of the air gap 58 is half of the difference between the inner diameter of the stator 51 and the outer diameter of the rotor 52, and represents a radial gap. The air gap 58 serves as a flow path for the high-pressure refrigerant compressed by the compression mechanism unit 1.

固定子51は、積層され互いにかしめ固定された略円環状の電磁鋼板の内側歯部にコイルが集中巻き方式で巻かれており、その積層された電磁鋼板の外周が密閉容器70の円筒容器71内壁に直接焼嵌めにより固定される。   In the stator 51, a coil is wound in a concentrated winding manner on the inner teeth of substantially annular electromagnetic steel plates that are stacked and fixed together by caulking, and the outer periphery of the laminated electromagnetic steel plates is a cylindrical container 71 of a sealed container 70. It is fixed to the inner wall directly by shrink fitting.

回転子52は、円環状の電磁鋼板が積層され互いにかしめ固定された回転子コア53と、回転子コア53の上下端面にそれぞれ固定される上バランサ54と下バランサ55を備える。上バランサ54と下バランサ55は、圧縮機構部1での偏心回転に伴う力の不釣合いを静的に、且つ動的にバランシングするために取り付けられるものであり、図示しない、かしめピンにより回転子コア53にかしめられて固定されている。回転子コア53の内部には希土類磁石やフェライト磁石等の永久磁石が埋設される。   The rotor 52 includes a rotor core 53 in which annular electromagnetic steel plates are laminated and fixed by caulking, and an upper balancer 54 and a lower balancer 55 fixed to upper and lower end surfaces of the rotor core 53, respectively. The upper balancer 54 and the lower balancer 55 are mounted to statically and dynamically balance the unbalance of the force due to the eccentric rotation in the compression mechanism unit 1, and the rotor is constituted by caulking pins (not shown). The core 53 is caulked and fixed. A permanent magnet such as a rare earth magnet or a ferrite magnet is embedded in the rotor core 53.

また、回転子52には、回転子52の上下を連通するように複数の風穴56が圧縮機構部1で圧縮された高圧冷媒の流路として設けられている。回転子コア53は、積層された電磁鋼板の内周がクランク軸2と焼嵌められており、固定子51に電力が供給されると、クランク軸2は回転子52と一体となって回転する。密閉容器70の上蓋72には、ガラスターミナル57が溶接固定されていて、ガラスターミナル57と固定子51がリード線で接続され、外部から供給される電力がガラスターミナル57を中継して電動機50に付与される。   The rotor 52 is provided with a plurality of air holes 56 as flow paths for high-pressure refrigerant compressed by the compression mechanism unit 1 so as to communicate with the upper and lower sides of the rotor 52. The rotor core 53 is shrink-fitted with the crankshaft 2 on the inner periphery of the laminated electromagnetic steel plates. When power is supplied to the stator 51, the crankshaft 2 rotates integrally with the rotor 52. . A glass terminal 57 is welded and fixed to the upper lid 72 of the hermetic container 70, and the glass terminal 57 and the stator 51 are connected by lead wires. Electric power supplied from outside relays the glass terminal 57 to the electric motor 50. Is granted.

電動機50の上部(圧縮機構部1との反対側)で密閉容器70と電動機50の間の空間は、二次空間81となっている。二次空間81には、吐出管76が設けられ、上蓋72に接合固定されている。吐出管76は、一方が二次空間81に開口し、他方が密閉容器70の外部に開口したもので、圧縮機構部1で圧縮された高圧冷媒を密閉容器70内部から外部へ吐出する。吐出管76の他方は、この回転型圧縮機を使用する冷凍サイクルの高圧領域の接続配管に接続される。   A space between the sealed container 70 and the electric motor 50 in the upper part of the electric motor 50 (opposite side to the compression mechanism unit 1) is a secondary space 81. A discharge pipe 76 is provided in the secondary space 81 and is fixedly bonded to the upper lid 72. One of the discharge pipes 76 opens into the secondary space 81 and the other opens to the outside of the sealed container 70, and discharges the high-pressure refrigerant compressed by the compression mechanism unit 1 from the inside of the sealed container 70 to the outside. The other of the discharge pipes 76 is connected to a connection pipe in a high pressure region of a refrigeration cycle that uses this rotary compressor.

図3に示すように圧縮機構部1は、クランク軸2の偏心部2aに嵌められたローラ3がシリンダ4の内側空間であるシリンダ室に収納され、このローラ3外周に接触する板状のベーン5がシリンダ4のシリンダ室を吸入室6と圧縮室7に仕切り、ローラ3の偏心回転により圧縮室7の容積を減じて圧縮を行うロータリ圧縮機構を備えている。ベーン5はシリンダ4に形成されたベーン溝4aに嵌り、クランク軸2の回転によるローラ3の偏心回転に伴い、ベーン溝4a内を往復動する。   As shown in FIG. 3, the compression mechanism 1 includes a plate-like vane in which a roller 3 fitted in an eccentric portion 2 a of a crankshaft 2 is accommodated in a cylinder chamber that is an inner space of the cylinder 4 and contacts the outer periphery of the roller 3. Reference numeral 5 denotes a rotary compression mechanism that partitions the cylinder chamber of the cylinder 4 into a suction chamber 6 and a compression chamber 7 and performs compression by reducing the volume of the compression chamber 7 by eccentric rotation of the roller 3. The vane 5 fits into a vane groove 4 a formed in the cylinder 4, and reciprocates in the vane groove 4 a as the roller 3 is eccentrically rotated by the rotation of the crankshaft 2.

シリンダ4の上面には、吸入室6と圧縮室7の上側を閉塞する上軸受体10がシリンダ4にボルト固定されている。上軸受体10は回転子52の方向に伸長し、クランク軸2を径方向に支持する円筒状の上軸受11を有する。またシリンダ4の下面には、吸入室6と圧縮室7の下側を閉塞する下軸受体12がシリンダ4にボルト固定されている。下軸受体12は、密閉容器70底部の方向に伸びて、上軸受11とともにクランク軸2を径方向に支持する円筒状の下軸受13を有する。クランク軸2はシリンダ4を挟んで上下で軸受により径方向に支持される。下軸受体12は外周側がシリンダ4の下面と接触する上端面で、偏心部2aの下端面を支持することで回転子52が固定されたクランク軸2の軸方向の支持を行うとともに、ローラ3とベーン5も軸方向に支える。上軸受体10と下軸受体12も圧縮機構部1を構成する部品である。   An upper bearing body 10 that closes the upper sides of the suction chamber 6 and the compression chamber 7 is bolted to the cylinder 4 on the upper surface of the cylinder 4. The upper bearing body 10 has a cylindrical upper bearing 11 that extends in the direction of the rotor 52 and supports the crankshaft 2 in the radial direction. Further, a lower bearing body 12 that closes the lower side of the suction chamber 6 and the compression chamber 7 is bolted to the cylinder 4 on the lower surface of the cylinder 4. The lower bearing body 12 has a cylindrical lower bearing 13 that extends in the direction of the bottom of the sealed container 70 and supports the crankshaft 2 in the radial direction together with the upper bearing 11. The crankshaft 2 is supported in the radial direction by bearings on the upper and lower sides of the cylinder 4. The lower bearing body 12 is an upper end surface whose outer peripheral side is in contact with the lower surface of the cylinder 4, and supports the lower end surface of the eccentric portion 2 a to support the crankshaft 2 to which the rotor 52 is fixed, as well as the roller 3. And the vane 5 are also supported in the axial direction. The upper bearing body 10 and the lower bearing body 12 are also components that constitute the compression mechanism section 1.

上軸受体10には、上軸受体10の上面の一部を覆うように板金で形成された吐出マフラー8が固定されており、上軸受体10上面との間に小容量の消音空間が形成されており、この消音空間は上軸受体10に設置される図示しない吐出弁を介して圧縮室7と連通している。圧縮機構部1は、上軸受体10またはシリンダ4の最外周面が、密閉容器70の円筒容器71に溶接やかしめにより接合されることで固定される。   A discharge muffler 8 made of sheet metal is fixed to the upper bearing body 10 so as to cover a part of the upper surface of the upper bearing body 10, and a small-capacity silencing space is formed between the upper bearing body 10 and the upper surface. The silencing space communicates with the compression chamber 7 via a discharge valve (not shown) installed in the upper bearing body 10. The compression mechanism portion 1 is fixed by joining the outermost peripheral surface of the upper bearing body 10 or the cylinder 4 to the cylindrical container 71 of the sealed container 70 by welding or caulking.

気液分離器90は、過渡的な運転状態時等に圧縮機構部1の圧縮室に液冷媒が直接吸入されないように、液冷媒を一時的に貯留し、同時に円筒状の容器91の容積で低圧冷媒の脈動を消音するもので、円筒容器71に固着された受け具に一体的に保持される。
気液分離器90は容器91の上部に、この回転型圧縮機を使用する冷凍サイクルの低圧領域の接続配管に接続される低圧接続管92が接合される。また容器91の底面には、容器91内部のガス冷媒が流入し、そのガス冷媒を圧縮機構部1の吸入室6に吸入させる吸入管93が接合される。過渡的な運転状態時等で低圧接続管92から容器91に流入した低圧冷媒が液とガスの二相状態であった場合に、液冷媒は容器91内部に一時的に貯留され、ガス冷媒のみが吸入管93から圧縮機構部1に吸入される。
容器91に一時的に貯留された液冷媒は、その後蒸発してガス冷媒となって、吸入管93から圧縮機構部1に吸入される。
The gas-liquid separator 90 temporarily stores the liquid refrigerant so that the liquid refrigerant is not directly sucked into the compression chamber of the compression mechanism unit 1 during a transient operation state or the like, and at the same time, with the volume of the cylindrical container 91. It silences the pulsation of the low-pressure refrigerant, and is integrally held by a receiver fixed to the cylindrical container 71.
In the gas-liquid separator 90, a low-pressure connection pipe 92 connected to a connection pipe in a low-pressure region of a refrigeration cycle using the rotary compressor is joined to the upper portion of the container 91. Further, a suction pipe 93 that joins the gas refrigerant inside the container 91 and sucks the gas refrigerant into the suction chamber 6 of the compression mechanism unit 1 is joined to the bottom surface of the container 91. When the low-pressure refrigerant flowing into the container 91 from the low-pressure connection pipe 92 is in a two-phase state of liquid and gas in a transient operation state or the like, the liquid refrigerant is temporarily stored in the container 91, and only the gas refrigerant is stored. Is sucked into the compression mechanism 1 from the suction pipe 93.
The liquid refrigerant temporarily stored in the container 91 is then evaporated to become a gas refrigerant, and is sucked into the compression mechanism unit 1 from the suction pipe 93.

クランク軸2はクランク軸2の略中央に下端(油溜め75側の端面)から軸方向(クランク軸2の長手方向)に形成され、遠心ポンプ作用により油溜め75の冷凍機油を汲み上げる油通路穴14を有する。油通路穴14はクランク軸2の途中で止まりとなっているが、上端まで貫通していてもよい。またクランク軸2には冷凍機油を下軸受13に供給する下軸受給油穴15が設けられている。下軸受給油穴15は、下軸受13の上方の位置で、一方が油通路穴14に連通し、他方がクランク軸2の外周に開口して下軸受13とクランク軸2との摺動箇所に冷凍機油を導くもので、クランク軸2の軸方向と略直交する方向に形成される。同様にクランク軸2には、ローラ3との摺動箇所を潤滑する冷凍機油を供給する偏心軸給油穴16が設けられている。偏心軸給油穴16はクランク軸2の偏心部2a外周軸方向の全巾に渡って形成された冷凍機油搬送用の偏心軸油溝17と連通している。下軸受給油穴15、16の直径はいずれも油通路穴14の直径よりも小さい。クランク軸2に形成された油通路穴14と下軸受給油穴15、偏心軸給油穴16により給油通路が形成される。   The crankshaft 2 is formed in the approximate center of the crankshaft 2 from the lower end (end surface on the oil sump 75 side) to the axial direction (longitudinal direction of the crankshaft 2), and an oil passage hole for pumping the refrigerating machine oil of the oil sump 75 by centrifugal pump action 14 The oil passage hole 14 stops in the middle of the crankshaft 2, but may penetrate to the upper end. The crankshaft 2 is provided with a lower bearing oil supply hole 15 for supplying refrigeration oil to the lower bearing 13. The lower bearing oil supply hole 15 is at a position above the lower bearing 13, one communicating with the oil passage hole 14, and the other opening to the outer periphery of the crankshaft 2 at a sliding portion between the lower bearing 13 and the crankshaft 2. It guides refrigerating machine oil and is formed in a direction substantially orthogonal to the axial direction of the crankshaft 2. Similarly, the crankshaft 2 is provided with an eccentric shaft oil supply hole 16 for supplying refrigerating machine oil that lubricates a sliding portion with the roller 3. The eccentric shaft oil supply hole 16 communicates with an eccentric shaft oil groove 17 for conveying refrigeration oil formed across the entire width of the crankshaft 2 in the direction of the outer peripheral axis of the eccentric portion 2a. The diameters of the lower bearing oil supply holes 15 and 16 are both smaller than the diameter of the oil passage hole 14. An oil supply passage is formed by the oil passage hole 14 formed in the crankshaft 2, the lower bearing oil supply hole 15, and the eccentric shaft oil supply hole 16.

以上のように構成された回転型圧縮機において、図2に示すように、クランク軸2の偏心部2a外周に設けた油搬送用の偏心軸油溝17に関して、偏心軸油溝の下端17aは下軸受内径13a、つまり下軸受13の軸受部と連通し且つ、偏心軸油溝17の断面が油の流れる方向に向かって縮小していることを特徴とするものである。   In the rotary compressor configured as described above, as shown in FIG. 2, with respect to the eccentric shaft oil groove 17 for oil conveyance provided on the outer periphery of the eccentric portion 2a of the crankshaft 2, the lower end 17a of the eccentric shaft oil groove is The lower bearing inner diameter 13a, that is, communicates with the bearing portion of the lower bearing 13, and the cross section of the eccentric shaft oil groove 17 is reduced in the oil flowing direction.

図2に示すように、クランク軸2の偏心部2a外周に設けた油搬送用の偏心軸油溝の下端17aを下軸受13の軸受部と連通させることにより、下軸受給油穴15から出た冷凍機油は、偏心部2aとローラ3の摺動部の潤滑用としても供給されるため、偏心部2aとローラ3の摺動部の給油量を増やすことができ潤滑性能を上げることが可能となる。   As shown in FIG. 2, the lower end 17 a of the oil conveying eccentric shaft oil groove provided on the outer periphery of the eccentric portion 2 a of the crankshaft 2 is communicated with the bearing portion of the lower bearing 13, thereby exiting from the lower bearing oil supply hole 15. Since the refrigeration oil is also supplied for lubrication of the sliding portion of the eccentric portion 2a and the roller 3, the amount of oil supplied to the sliding portion of the eccentric portion 2a and the roller 3 can be increased and the lubrication performance can be improved. Become.

更に、クランク軸2の偏心部2a外周に設けた油搬送用の偏心軸油溝17に関して、偏心軸油溝17の断面が油の流れる方向(図2では下から上に向かう方向)に向かって縮小しているため、偏心部2aとローラの潤滑に使用された冷凍機油が上軸受体10側へ流入する量を抑え、上軸受11から密閉容器70内に排出される量を適性にすることが可能となるため、密閉容器70外部の冷凍サイクルに吐出される冷凍機油の量を抑え、圧縮機構部1の潤滑性能を落とすことなく、冷凍サイクルの熱交換器の伝熱効率を確保することができる。
なお、偏心軸油溝17の断面形状は油の流れる方向に沿って連続して縮小したものでもよい。
Furthermore, regarding the eccentric shaft oil groove 17 for oil conveyance provided on the outer periphery of the eccentric portion 2a of the crankshaft 2, the cross section of the eccentric shaft oil groove 17 is directed in the direction in which the oil flows (the direction from bottom to top in FIG. 2). Since the size is reduced, the amount of the refrigerating machine oil used for lubricating the eccentric portion 2a and the roller is suppressed to the upper bearing body 10 side, and the amount discharged from the upper bearing 11 into the sealed container 70 is made appropriate. Therefore, the amount of refrigerating machine oil discharged to the refrigeration cycle outside the sealed container 70 can be suppressed, and the heat transfer efficiency of the heat exchanger of the refrigeration cycle can be ensured without degrading the lubrication performance of the compression mechanism unit 1. it can.
The cross-sectional shape of the eccentric shaft oil groove 17 may be continuously reduced along the oil flowing direction.

また、偏心軸油溝17の上軸受側の終端部の溝深さは1.0mm以下であることが望ましい。   Further, it is desirable that the groove depth of the end portion on the upper bearing side of the eccentric shaft oil groove 17 is 1.0 mm or less.

近年回転型圧縮機が圧縮して吐出する冷媒の作動圧力が高圧化している。作動圧力が高い冷媒として、空調機用では、HFC32やHFC32の重量割合が半分以上のHFC混合冷媒がある。また、最近では主に給湯機用に、これらのHFC冷媒よりも作動圧力の高い二酸化炭素が使用されている。これらの作動圧力が高い冷媒は高低圧の差圧が大きいため、圧縮負荷が大きく、摺動負荷が大きくなる。摺動部への負荷が大きくなれば、摺動部が損傷しやすくなるため、摺動部への冷凍機油の供給量を増やす必要がある。   In recent years, the working pressure of refrigerant compressed and discharged by a rotary compressor has been increased. As a refrigerant having a high operating pressure, for air conditioners, there are HFC32 and HFC mixed refrigerant in which the weight ratio of HFC32 is more than half. Recently, carbon dioxide having a higher operating pressure than these HFC refrigerants has been used mainly for hot water heaters. Since these refrigerants having a high operating pressure have a large differential pressure between high and low pressures, the compression load is large and the sliding load is large. If the load on the sliding portion is increased, the sliding portion is likely to be damaged. Therefore, it is necessary to increase the supply amount of refrigerating machine oil to the sliding portion.

しかしながら、供給量を増やすと上軸受11端部から噴出する油の量が増加し、油溜め75の油面が低下してしまう。油溜め75の油面が低下すると、ベーン5周面のシール性が悪化して、漏れ損失の増大により性能が大きく低下する問題も発生する。   However, if the supply amount is increased, the amount of oil ejected from the end of the upper bearing 11 is increased, and the oil level of the oil sump 75 is lowered. When the oil level of the oil sump 75 is lowered, the sealing property of the circumferential surface of the vane 5 is deteriorated, and there is a problem that the performance is greatly lowered due to an increase in leakage loss.

本発明は、圧縮機構部1の潤滑に必要な冷凍機油の供給量を確保し且つ、密閉容器70の外部に高圧冷媒とともに吐出されてしまう冷凍機油を抑えることにより、油溜め75の油面高さすなわち貯留量を安定的に維持して、油溜め75の冷凍機油の枯渇を招くことなく安定的に圧縮機構部1の摺動箇所に冷凍機油を供給できるので、このような作動圧力が高い冷媒において特に有効であり、各摺動箇所を確実に潤滑して信頼性を確保し且つ、漏れ損失を抑えて効率を改善することができる。   The present invention secures the supply amount of refrigerating machine oil necessary for lubrication of the compression mechanism section 1 and suppresses refrigerating machine oil that is discharged together with the high-pressure refrigerant to the outside of the sealed container 70, thereby increasing the oil level of the oil reservoir 75. In other words, since the amount of storage can be stably maintained and the refrigerating machine oil can be stably supplied to the sliding portion of the compression mechanism 1 without causing the refrigerating machine oil in the oil reservoir 75 to be exhausted, such an operating pressure is high. Particularly effective in the refrigerant, each sliding portion can be reliably lubricated to ensure reliability, and leakage loss can be suppressed to improve efficiency.

本発明は、作動圧力の高い冷媒に特に有効であるが、HFC32の割合が半分未満あるいはHFC32を含まないHFC冷媒やHC冷媒など上記した作動圧力が高い冷媒以外の冷媒を使用する場合においても、密閉容器70の外部に高圧冷媒とともに吐出されてしまう冷凍機油を減少させることにより、油溜め75の冷凍機油を適量に貯留し油面高さを安定的に維持できるので、圧縮機構部1の圧縮室7のシール性が高まり、また圧縮機構部1の各摺動箇所が潤滑不良を起こすことがなくなり、高効率で信頼性の高い回転型圧縮機とすることができる。なお、冷凍機油として、冷媒がHFC32の割合が半分未満あるいはHFC32を含まないHFC冷媒の場合にはエーテル油もしくはエステル油またはアルキルベンゼン油がよく使用され、冷媒がHC冷媒の場合には鉱油がよく使用される。   The present invention is particularly effective for a refrigerant having a high operating pressure. However, even when a refrigerant other than a refrigerant having a high operating pressure, such as an HFC refrigerant or an HC refrigerant that does not include HFC32, is used, By reducing the refrigerating machine oil discharged together with the high-pressure refrigerant to the outside of the hermetic container 70, the refrigerating machine oil in the oil sump 75 can be stored in an appropriate amount and the oil level can be stably maintained. The sealing performance of the chamber 7 is enhanced, and each sliding portion of the compression mechanism 1 does not cause poor lubrication, so that a rotary compressor with high efficiency and high reliability can be obtained. As refrigeration oil, ether oil, ester oil or alkylbenzene oil is often used when the refrigerant is HFC refrigerant with a ratio of HFC32 of less than half or does not contain HFC32, and mineral oil is often used when the refrigerant is HC refrigerant. Is done.

また電動機50が可変速対応である場合、高圧冷媒の流速が速くなり、上軸受11に供給される冷凍機油の量も増加する回転型圧縮機の回転数が60rpsを超えるような高速運転時に本発明は特に有効であるが、電動機が一定速の圧縮機においても適用でき同様の効果を奏することができる。   Further, when the electric motor 50 is variable speed compatible, the flow rate of the high-pressure refrigerant is increased, and the amount of refrigerating machine oil supplied to the upper bearing 11 is increased, so that the rotational speed of the rotary compressor exceeds 60 rps. Although the invention is particularly effective, the present invention can be applied to a compressor having a constant speed electric motor, and similar effects can be achieved.

実施の形態1に示した回転型圧縮機は、内部が高圧で圧縮機構部1が一つの密閉型シングルロータリ圧縮機であったが、この形態に限定されるものではなく、圧縮機構部1を複数備える形態や、複数の圧縮機構部1で順に圧縮する多段圧縮機構を有する形態に対しても適用できる。また、多段圧縮機構の圧縮機では内部が高圧でなく中間圧や低圧であってもよい。圧縮機構もロータリ式に限るものではなく、レシプロ式、スクロール式等の他の圧縮機構であってもよい。また、回転軸の軸方向が水平方向となる横置きの回転型圧縮機にも適用でき、同様な効果を奏することができる。   The rotary compressor shown in the first embodiment is a hermetic single rotary compressor having a high pressure inside and a single compression mechanism section 1, but is not limited to this form. The present invention can also be applied to a form having a plurality of stages and a form having a multistage compression mechanism that sequentially compresses by a plurality of compression mechanism units 1. Further, in the compressor of the multistage compression mechanism, the inside may be an intermediate pressure or a low pressure instead of a high pressure. The compression mechanism is not limited to the rotary type, and may be another compression mechanism such as a reciprocating type or a scroll type. Further, the present invention can also be applied to a horizontal rotary compressor in which the axial direction of the rotary shaft is the horizontal direction, and similar effects can be achieved.

1 圧縮機構部、2 クランク軸、2a 偏心部、3 ローラ、4 シリンダ、4a ベーン溝、5 ベーン、6 吸入室、7 圧縮室、8 吐出マフラー、10 上軸受体、11 上軸受、12 下軸受体、13 下軸受、13a 下軸受内径、14 油通路穴、15 下軸受給油穴、16 偏心軸給油穴、17 偏心軸油溝、17a 偏心軸油溝の下端、50 電動機、51 固定子、52 回転子、53 回転子コア、54 上バランサ、55 下バランサ、56 風穴、57 ガラスターミナル、58 エアギャップ、70 密閉容器、71 円筒容器、72 上蓋、73 底蓋、74 脚体、75 油溜め、76 吐出管、80 一次空間、81 二次空間、90 気液分離器、91 容器、92 低圧接続管、93 吸入管。   DESCRIPTION OF SYMBOLS 1 Compression mechanism part, 2 Crankshaft, 2a Eccentric part, 3 Roller, 4 Cylinder, 4a Vane groove, 5 Vane, 6 Suction chamber, 7 Compression chamber, 8 Discharge muffler, 10 Upper bearing body, 11 Upper bearing, 12 Lower bearing Body, 13 Lower bearing, 13a Lower bearing inner diameter, 14 Oil passage hole, 15 Lower bearing oil hole, 16 Eccentric shaft oil hole, 17 Eccentric shaft oil groove, 17a Lower end of eccentric shaft oil groove, 50 Electric motor, 51 Stator, 52 Rotor, 53 Rotor core, 54 Upper balancer, 55 Lower balancer, 56 Air hole, 57 Glass terminal, 58 Air gap, 70 Airtight container, 71 Cylindrical container, 72 Upper lid, 73 Bottom lid, 74 Leg, 75 Oil sump, 76 discharge pipe, 80 primary space, 81 secondary space, 90 gas-liquid separator, 91 container, 92 low pressure connection pipe, 93 suction pipe.

Claims (3)

クランク軸を有する駆動部と、前記クランク軸を介して前記駆動部により駆動される圧縮機構部とを収納する密閉容器とを備え、
前記圧縮機構部は、流体が流入するシリンダと、前記クランク軸の偏心部に嵌合され、前記シリンダ内に設けられたローラと、前記シリンダの両端面を閉塞し前記クランク軸を支持する上軸受と下軸受とから構成され、
前記偏心部の外周の一部には軸方向の全巾にわたって油溝が設けられ、
前記油溝の下端は前記下軸受の軸受部と連通し、前記油溝の断面形状は、前記油溝の下端から上端に向かって、前記油溝の下端から上端まで縮小している
ことを特徴とする回転型圧縮機。
A sealed container that houses a drive portion having a crankshaft and a compression mechanism portion driven by the drive portion via the crankshaft;
The compression mechanism includes a cylinder into which a fluid flows, a roller fitted in an eccentric portion of the crankshaft, and an upper bearing that supports the crankshaft by closing both end faces of the cylinder. And a lower bearing,
An oil groove is provided in a part of the outer periphery of the eccentric part over the entire width in the axial direction,
The lower end of the oil groove communicates with the bearing portion of the lower bearing, and the cross-sectional shape of the oil groove is reduced from the lower end to the upper end of the oil groove from the lower end to the upper end. Rotating compressor.
前記油溝の断面形状は、前記油溝の下端から上端に向かって、前記油溝の下端から上端まで連続して縮小している
ことを特徴とする請求項1に記載の回転型圧縮機。
The rotary compressor according to claim 1 , wherein the cross-sectional shape of the oil groove is continuously reduced from the lower end to the upper end of the oil groove from the lower end to the upper end of the oil groove .
前記流体は炭酸ガス冷媒である
ことを特徴とする請求項1または2に記載の回転型圧縮機。
The rotary compressor according to claim 1 or 2, wherein the fluid is a carbon dioxide refrigerant.
JP2011115723A 2011-05-24 2011-05-24 Rotary compressor Active JP5677196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115723A JP5677196B2 (en) 2011-05-24 2011-05-24 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115723A JP5677196B2 (en) 2011-05-24 2011-05-24 Rotary compressor

Publications (3)

Publication Number Publication Date
JP2012241686A JP2012241686A (en) 2012-12-10
JP2012241686A5 JP2012241686A5 (en) 2013-09-26
JP5677196B2 true JP5677196B2 (en) 2015-02-25

Family

ID=47463651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115723A Active JP5677196B2 (en) 2011-05-24 2011-05-24 Rotary compressor

Country Status (1)

Country Link
JP (1) JP5677196B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202687U (en) * 1985-06-10 1986-12-19
JPH0252990U (en) * 1988-10-11 1990-04-17
JPH02130292A (en) * 1988-11-09 1990-05-18 Hitachi Ltd Rotary type compressor and manufacture thereof
JP2009287399A (en) * 2008-05-27 2009-12-10 Daikin Ind Ltd Compressor
JP2010031732A (en) * 2008-07-29 2010-02-12 Panasonic Corp Rotary compressor

Also Published As

Publication number Publication date
JP2012241686A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
EP2689137B1 (en) Scroll compressor
JP5655850B2 (en) Scroll compressor
JP5905005B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP2013108389A (en) Compressor and refrigerating device
JP2007100513A (en) Refrigerant compressor and refrigerant cycle device having the same
JP6134903B2 (en) Positive displacement compressor
JP6206426B2 (en) Hermetic compressor
JP5677196B2 (en) Rotary compressor
JP4992496B2 (en) Rotary compressor
JP5935035B2 (en) Horizontal type compressor
JP5493958B2 (en) Compressor
JP2017172346A (en) Scroll compressor and air conditioner
JP4225793B2 (en) Horizontal type compressor
JP4263047B2 (en) Horizontal type compressor
KR20100112488A (en) 2-stage rotary compressor
JP2014234785A (en) Scroll compressor
JP2014105692A (en) Scroll compressor
JP2012052494A (en) Hermetically sealed compressor
KR102182171B1 (en) Scroll compressor
KR101557506B1 (en) compressor
JP6673491B2 (en) Hermetic compressor
JP6518026B1 (en) Compressor and refrigeration cycle apparatus including the same
KR20180090324A (en) Rotary compressor
JP2020105979A (en) Rotary compressor
KR101738454B1 (en) Hermetic compressor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141226

R150 Certificate of patent or registration of utility model

Ref document number: 5677196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250